JP5914139B2 - Method and apparatus for manufacturing porous semiconductor electrode - Google Patents

Method and apparatus for manufacturing porous semiconductor electrode Download PDF

Info

Publication number
JP5914139B2
JP5914139B2 JP2012101035A JP2012101035A JP5914139B2 JP 5914139 B2 JP5914139 B2 JP 5914139B2 JP 2012101035 A JP2012101035 A JP 2012101035A JP 2012101035 A JP2012101035 A JP 2012101035A JP 5914139 B2 JP5914139 B2 JP 5914139B2
Authority
JP
Japan
Prior art keywords
substrate
porous semiconductor
mounting surface
thin film
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012101035A
Other languages
Japanese (ja)
Other versions
JP2013229208A (en
Inventor
敬介 廣瀬
敬介 廣瀬
和美 花田
和美 花田
河野 充
充 河野
俊久 藤高
俊久 藤高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd, Nippon Steel and Sumikin Engineering Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2012101035A priority Critical patent/JP5914139B2/en
Publication of JP2013229208A publication Critical patent/JP2013229208A/en
Application granted granted Critical
Publication of JP5914139B2 publication Critical patent/JP5914139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、表裏を貫通する細孔を有する多孔質金属製の基板の表面に薄膜を形成する多孔質半導体電極の製造方法および製造装置であり、例えば、色素増感型の光電気化学セル、光触媒皮膜等の製造に関する。 The present invention is a method and apparatus for manufacturing a multi-porous semiconductor electrodes that form a thin film on the porous metal surface of the substrate having pores penetrating the front and back, for example, photoelectric dye-sensitized The present invention relates to the manufacture of chemical cells, photocatalytic films, and the like.

従来、自然エネルギの利用の一環として太陽電池あるいは太陽光発電システムの利用が進められている。太陽電池システムでは、太陽光を電気エネルギに変換するために太陽電池セル(光電気化学セル)が用いられる。
光電気化学セルについては、その光電変換効率の向上に向けて研究開発が進められており、近年では色素増感型光電気化学セルが知られている(特許文献1および特許文献2参照)。
Conventionally, the use of solar cells or photovoltaic power generation systems has been promoted as part of the use of natural energy. In a solar battery system, a solar battery cell (photoelectrochemical cell) is used to convert sunlight into electric energy.
Research and development of the photoelectrochemical cell has been promoted for improving the photoelectric conversion efficiency, and in recent years, dye-sensitized photoelectrochemical cells have been known (see Patent Document 1 and Patent Document 2).

図9において、特許文献1の色素増感型光電気化学セル90は、多孔質金属製の基板91の表面に色素付きの多孔質半導体製の薄膜92を形成した受光側電極93を有する。この受光側電極93の裏面には、スペーサ94を介して、所定間隔で平行に対極95が設置されている。スペーサ94の間の空間には電解質96が充填されるとともに、これらの外周は透明な光透過性膜97で被覆されている。
このような色素増感型光電気化学セル90では、受光側電極93で受光された光により、電解質96を挟んで対向された受光側電極93と対極95との間に起電力が生じ、この起電力を各電極93,95に接続された導線98で取り出すことができる。
9, a dye-sensitized photoelectrochemical cell 90 of Patent Document 1 has a light-receiving side electrode 93 in which a thin film 92 made of a porous semiconductor with a dye is formed on the surface of a substrate 91 made of a porous metal. On the back surface of the light-receiving side electrode 93, a counter electrode 95 is installed in parallel at a predetermined interval via a spacer 94. The space between the spacers 94 is filled with an electrolyte 96 and the outer periphery thereof is covered with a transparent light transmissive film 97.
In such a dye-sensitized photoelectrochemical cell 90, an electromotive force is generated between the light receiving side electrode 93 and the counter electrode 95 facing each other with the electrolyte 96 interposed therebetween by the light received by the light receiving side electrode 93. The electromotive force can be taken out by a conductive wire 98 connected to the electrodes 93 and 95.

ここで、従来の光電気化学セルにおいては、受光側電極93として、導電性ガラス等による電極基板の表面に、金属酸化物製の透明電極膜を形成した構成を用いていた。
これに対し、特許文献1の色素増感型光電気化学セル90では、多孔質金属製の基板の表面に、色素付きの多孔質半導体製の薄膜を形成して多孔質半導体製の受光側電極93を形成している。
このような特許文献1の受光側電極では、従来のガラス製基板および透明電極膜を用いた電極に比べて、光電気化学セルとしての製造コストの低減、電気抵抗の軽減、軽量化および柔軟性の確保を図ることができる。
Here, in the conventional photoelectrochemical cell, the structure which formed the transparent electrode film made from a metal oxide on the surface of the electrode substrate by conductive glass etc. was used as the light-receiving side electrode 93.
On the other hand, in the dye-sensitized photoelectrochemical cell 90 of Patent Document 1, a thin film made of a porous semiconductor with a dye is formed on the surface of a porous metal substrate to receive a light-receiving side electrode made of porous semiconductor. 93 is formed.
In such a light-receiving side electrode of Patent Document 1, as compared with a conventional electrode using a glass substrate and a transparent electrode film, the manufacturing cost as a photoelectrochemical cell is reduced, the electrical resistance is reduced, the weight is reduced, and the flexibility is increased. Can be secured.

特許文献1の色素増感型光電気化学セル90では、受光側電極93を製造するにあたり、多孔質金属製の基板91の表面に色素付きの多孔質半導体製の薄膜92を形成するために、薄膜92となるべき多孔質半導体をスラリー状にして基板91の表面に塗布することが行われている。
図8において、受光側電極93は、多孔質金属製の基板91の表面に多孔質半導体製の薄膜92を塗布して構成される。
基板91は、金属の粒子91Aを焼結などにより板状に成形した多孔質の導電性自立基板であり、粒子91Aの間には空隙が形成され、その一部は基板91の表裏を貫通する細孔91Bとされている。
薄膜92は、色素を有する多孔質半導体を基板91に塗布して薄膜状に形成される。具体的には、スラリー状にした多孔質半導体粒子(例えば多孔質半導体の前駆体を含む溶液またはペースト)を、多孔質金属製基板の表面に塗布したうえ、加熱することにより多孔質半導体薄膜を形成し、この多孔質半導体薄膜に色素を含有させて前述した薄膜92を形成する。
In the dye-sensitized photoelectrochemical cell 90 of Patent Document 1, when the light-receiving side electrode 93 is manufactured, in order to form a porous semiconductor thin film 92 with a dye on the surface of the porous metal substrate 91, A porous semiconductor to be the thin film 92 is applied in the form of a slurry to the surface of the substrate 91.
In FIG. 8, the light-receiving side electrode 93 is configured by applying a porous semiconductor thin film 92 on the surface of a porous metal substrate 91.
The substrate 91 is a porous conductive self-supporting substrate obtained by forming metal particles 91A into a plate shape by sintering or the like. A gap is formed between the particles 91A, and part of the substrate 91 penetrates the front and back of the substrate 91. The pores are 91B.
The thin film 92 is formed into a thin film by applying a porous semiconductor having a pigment to the substrate 91. Specifically, a porous semiconductor thin film is formed by applying slurry-like porous semiconductor particles (for example, a solution or paste containing a precursor of a porous semiconductor) to the surface of a porous metal substrate and then heating it. Then, the above-described thin film 92 is formed by adding a dye to the porous semiconductor thin film.

前述した通り、特許文献1においては、受光側電極93の製造にあたって多孔質金属製の基板91に薄膜92となるべき多孔質半導体粒子のスラリーを塗布する。
ここで、多孔質半導体粒子のスラリーを基板91に塗布した際には、多孔質半導体粒子のスラリーが基板91の表面に拡がることがあるとともに、スラリーの粒子92Aの一部が多孔質の基板91の細孔91B内に侵入することがある。
特許文献1では、多孔質半導体粒子のスラリー(前述した溶液またはペースト)を基板91の表面に塗布する際には、このような多孔質半導体粒子のスラリーの塗布時の拡がり方や、形成される膜厚、細孔への侵入度合い等を調整するために、溶液またはペーストの粘度を調整することが示されている。
As described above, in Patent Document 1, a slurry of porous semiconductor particles to be the thin film 92 is applied to a porous metal substrate 91 in manufacturing the light-receiving side electrode 93.
Here, when the slurry of the porous semiconductor particles is applied to the substrate 91, the slurry of the porous semiconductor particles may spread on the surface of the substrate 91, and a part of the slurry particles 92A may be porous. May penetrate into the pores 91B.
In Patent Document 1, when a slurry of porous semiconductor particles (the above-described solution or paste) is applied to the surface of the substrate 91, it is spread or formed during the application of the slurry of porous semiconductor particles. It has been shown that the viscosity of a solution or paste is adjusted in order to adjust the film thickness, the degree of penetration into pores, and the like.

前述した特許文献1の色素増感型光電気化学セル90では、薄膜92となるべき多孔質半導体粒子をスラリー状にして基板91に塗布していた。
一方、特許文献2には、基材上に薄膜を形成する際にスラリーを用いない方法が記載されている。
特許文献2では、基材上に二酸化チタン触媒皮膜を形成するために、加圧ガスにより粉末状の二酸化チタン粒子を基板に向けて吹き付け、この粒子を基板表面に堆積させるコールドスプレー法が示されている。このようなコールドスプレー法では、薄膜を形成する二酸化チタン粒子を、乾燥した粉末の状態で吹き付けるため、スラリー(液体分を含む)とする必要がない。
In the dye-sensitized photoelectrochemical cell 90 of Patent Document 1 described above, porous semiconductor particles to be the thin film 92 are applied in a slurry form to the substrate 91.
On the other hand, Patent Document 2 describes a method in which a slurry is not used when forming a thin film on a substrate.
Patent Document 2 discloses a cold spray method in which powdered titanium dioxide particles are sprayed onto a substrate with a pressurized gas in order to form a titanium dioxide catalyst film on a substrate, and the particles are deposited on the substrate surface. ing. In such a cold spray method, titanium dioxide particles that form a thin film are sprayed in a dry powder state, so that it is not necessary to use a slurry (including a liquid component).

特開2010−21091号公報JP 2010-21091 A 特開2008−297184号公報JP 2008-297184 A

ところで、前述した特許文献1の色素増感型光電気化学セル90における受光側電極93では、多孔質金属製の基板91の細孔91Bに粒子92Aが入り込むことで、多孔質半導体製の薄膜92の厚みが変動することになる。すなわち、細孔91Bのある部分では、細孔91Bに入り込んだ粒子92Aの分だけ、他の部分より薄膜92の厚みが大きくなる。このような薄膜92の厚みの変動があると、特に厚みの大きな部分で電子の拡散が生じにくく、光電変換効率が低下する可能性がある。   By the way, in the light-receiving side electrode 93 in the dye-sensitized photoelectrochemical cell 90 of Patent Document 1 described above, the particles 92A enter the pores 91B of the porous metal substrate 91, whereby the porous semiconductor thin film 92 is obtained. Will vary in thickness. That is, the thickness of the thin film 92 is larger in the portion where the pore 91B is present than in the other portion by the amount of the particle 92A entering the pore 91B. When the thickness of the thin film 92 varies as described above, it is difficult for electrons to be diffused particularly in a thick portion, and the photoelectric conversion efficiency may be lowered.

このような細孔91Bへの侵入を回避するために、薄膜92とするために塗布する多孔質半導体粒子のスラリーの粘度を高めることが考えられる。粘度調整以外の方法として、多孔質半導体粒子のスラリーを多孔質金属製の基板91の下面側から塗布することも考えられるが、重力と反対向きのスラリーの塗布が困難であるばかりか、毛細管現象によりスラリーが細孔91B内に侵入することが避けられず、粘度調整が最も現実的な対応といえる。   In order to avoid such penetration into the pores 91B, it is conceivable to increase the viscosity of the slurry of porous semiconductor particles applied to form the thin film 92. As a method other than the viscosity adjustment, it is conceivable to apply a slurry of porous semiconductor particles from the lower surface side of the substrate 91 made of porous metal. Therefore, it is inevitable that the slurry enters the pores 91B, and it can be said that the viscosity adjustment is the most realistic countermeasure.

しかし、細孔91Bへの侵入を回避するためにスラリーの粘度を高めた場合、細孔91Bへの侵入が抑止されるだけでなく、基板91の表面での拡散性が低下し、全体として塗膜が厚くなることがあり、これらの性能を総合的に満足するような粘度調整は難しいという問題があった。
また、塗布にあたって多孔質半導体粒子のスラリーの粘度を常に一定に維持することは難しく、細孔91Bへのスラリー侵入の回避が不十分になり、薄膜92の厚みが変動する可能性があった。
さらに、粘度を高めるためにスラリーに高沸点の高分子化合物を添加することがあるが、このような場合には、多孔質半導体製の薄膜を形成した後の多孔質半導体の表面に高分子化合物の残渣あるいはこれの分解物などの炭素化合物が付着することがあり、例えば、色素増感太陽電池としたときの性能を低下させる原因となることが考えられる。
However, when the viscosity of the slurry is increased in order to avoid the penetration into the pores 91B, not only the penetration into the pores 91B is suppressed, but also the diffusibility on the surface of the substrate 91 is lowered, and the coating is applied as a whole. The film may be thick, and there is a problem that it is difficult to adjust the viscosity so that these performances are comprehensively satisfied.
Further, it is difficult to keep the viscosity of the slurry of the porous semiconductor particles constant at the time of application, and it is difficult to avoid the entry of the slurry into the pores 91B, and the thickness of the thin film 92 may fluctuate.
Furthermore, in order to increase the viscosity, a high-boiling polymer compound may be added to the slurry. In such a case, the polymer compound is formed on the surface of the porous semiconductor after forming the porous semiconductor thin film. It is considered that the carbon residue such as the residue thereof or a decomposition product thereof may adhere, and, for example, may cause a decrease in performance when a dye-sensitized solar cell is obtained.

一方、色素増感太陽電池の基板の薄膜形成に、特許文献2に記載されたようなコールドスプレー法を用いれば、薄膜とする粒子をスラリーにして基板表面に塗布する必要がなくなるため、前述したスラリーの細孔内への侵入が回避できる可能性がある。
しかし、コールドスプレー法に基づいて、多孔質半導体粒子を加圧ガスによって基板に吹き付ける処理を実験的に行ってみると、多孔質半導体粒子の基板細孔内への侵入は期待通り抑制できるものの、スプレーを受けた基板がしばしば破損するという問題があった。
On the other hand, if the cold spray method as described in Patent Document 2 is used for forming a thin film on the substrate of the dye-sensitized solar cell, it is not necessary to form particles as a thin film into a slurry and apply it to the substrate surface. Intrusion into the pores of the slurry may be avoided.
However, based on the cold spray method, when the process of spraying the porous semiconductor particles onto the substrate with pressurized gas is experimentally performed, the penetration of the porous semiconductor particles into the substrate pores can be suppressed as expected, There was a problem that the substrate which received the spray was often damaged.

本発明の目的は、一定膜厚の多孔質半導体薄膜が得られる多孔質半導体電極の製造方法および製造装置を提供することにある。 An object of the present invention is to provide a method and apparatus for manufacturing a porous semiconductor electrodes to the porous semiconductor thin film having a constant thickness is obtained.

本願発明の発明者は、鋭意研究の結果、コールドスプレー法を用いた場合、加圧ガスが基板の細孔を通して裏面側に回り込み、基板を浮かせてしまうことが破損の原因になっていることを見いだし、これを解決するために独自の構成を提案するものである。
図7に示すように、コールドスプレー用の装置の載置台87の表面(載置面)上に基板81を保持し、スプレー装置88を用いて基板81の表面に多孔質半導体粒子および加圧ガスをスプレーしたとする。
このスプレーにより、基板81の表面には多孔質半導体製の薄膜82が形成される。薄膜82を形成する多孔質半導体粒子は、スラリーとしてではなく粉末状で基板81に堆積され、基板81の細孔81Bへの侵入が抑制される。
As a result of earnest research, the inventors of the present invention have found that when the cold spray method is used, the pressurized gas wraps around the back surface through the pores of the substrate and floats the substrate, causing damage. It finds and proposes a unique configuration to solve this.
As shown in FIG. 7, a substrate 81 is held on the surface (mounting surface) of a mounting table 87 of an apparatus for cold spraying, and porous semiconductor particles and pressurized gas are applied to the surface of the substrate 81 using a spray device 88. Is sprayed.
By this spraying, a porous semiconductor thin film 82 is formed on the surface of the substrate 81. The porous semiconductor particles forming the thin film 82 are deposited on the substrate 81 in the form of powder rather than as a slurry, and the penetration of the substrate 81 into the pores 81B is suppressed.

多孔質半導体粒子とともにスプレーされる加圧ガスの一部は、基板81の細孔81Bを通して基板81の表面側から裏面側に抜け、基板81の裏面と載置面(載置台87の表面)との間に溜まり、このガス溜まりによって基板81の裏面と載置面との間には空洞86が形成される。
このような空洞86が生じることで、基板81が載置面から浮き上がって変形し、条件によっては基板81が膜状に振動し、結果として基板81が破壊に至ると考えられる。
本発明は、このような破壊の原因となる加圧ガスによる空洞86を解消するべく、以下の構成を採用するものである。
Part of the pressurized gas sprayed with the porous semiconductor particles passes from the front surface side of the substrate 81 to the back surface side through the pores 81B of the substrate 81, and the back surface of the substrate 81 and the mounting surface (the surface of the mounting table 87). The cavity 86 is formed between the back surface of the substrate 81 and the mounting surface due to the gas accumulation.
Due to the formation of such a cavity 86, the substrate 81 is lifted from the mounting surface and deformed, and depending on the conditions, the substrate 81 vibrates like a film, and as a result, the substrate 81 is considered to be broken.
The present invention employs the following configuration in order to eliminate the cavity 86 caused by the pressurized gas that causes such destruction.

本発明の多孔質半導体電極の製造方法は、表裏を貫通する細孔を有する多孔質金属製の基板の表面に多孔質半導体製の薄膜を形成して構成される多孔質半導体電極の製造方法であって、前記基板を載置する載置面と、前記載置面に形成されて当該載置面に臨むガスを外部へ排出可能なガス抜き用凹部とを有し、前記ガス抜き用凹部は、前記載置面に形成された多数の溝条である載置台を用い、前記基板を前記載置面に載置して前記基板の裏面と前記載置面とを密着させ、前記載置面に載置された前記基板の表面に前記薄膜となる多孔質半導体粒子を加圧ガスによりスプレーし、前記基板の細孔を通して裏面側に抜けた前記加圧ガスを前記ガス抜き用凹部により排出することを特徴とする。 The method for producing a porous semiconductor electrode of the present invention is a method for producing a porous semiconductor electrode formed by forming a porous semiconductor thin film on the surface of a porous metal substrate having pores penetrating the front and back surfaces. there are a mounting surface for mounting the substrate, is formed on the mounting surface it has a gas capable of discharging to the outside degassing recess facing said mounting surface, said venting recess is The mounting surface is a plurality of grooves formed on the mounting surface, the substrate is mounted on the mounting surface, and the back surface of the substrate and the mounting surface are brought into close contact with each other. The porous semiconductor particles to be the thin film are sprayed with a pressurized gas on the surface of the substrate placed on the substrate, and the pressurized gas that has escaped to the back side through the pores of the substrate is discharged by the degassing recess. It is characterized by that.

このような本発明では、載置面に載置された基板の表面に、粉末状の多孔質半導体粒子を加圧ガスとともにスプレーし、多孔質半導体粒子を基板の表面に薄く堆積させることにより、表面に多孔質半導体製の薄膜が形成された基板を得ることができる。
この際、基板にスプレーされる多孔質半導体粒子および加圧ガスのうち、多孔質半導体粒子は薄膜として基板表面に堆積されるが、加圧ガスは、一部が基板の周囲に拡散しつつ、他の一部は基板の細孔を通して基板の裏面側に抜ける。
ここで、載置面にはガス抜き用凹部が形成されており、細孔を通して基板の裏面側に抜けた加圧ガスは、ガス抜き用凹部により排出され、基板と載置面との間に空洞を形成することがない。
従って、載置面に載置された基板は破壊されることなく、表面に多孔質半導体製の薄膜が形成された状態で取り出すことができる。
In the present invention, by spraying the powdered porous semiconductor particles together with the pressurized gas on the surface of the substrate placed on the placing surface, and depositing the porous semiconductor particles thinly on the surface of the substrate, A substrate having a porous semiconductor thin film formed on the surface can be obtained.
At this time, among the porous semiconductor particles and the pressurized gas sprayed on the substrate, the porous semiconductor particles are deposited on the substrate surface as a thin film, but the pressurized gas is partially diffused around the substrate, The other part escapes to the back side of the substrate through the pores of the substrate.
Here, a concave portion for venting gas is formed on the mounting surface, and the pressurized gas that has escaped to the back side of the substrate through the pores is discharged by the concave portion for venting gas, and between the substrate and the mounting surface. There is no formation of cavities.
Therefore, the substrate placed on the placement surface can be taken out in a state in which a porous semiconductor thin film is formed on the surface without being destroyed.

さらに、本発明において、前記ガス抜き用凹部は、前記載置面に形成された多数の溝条とされる。
このような多数の溝条を用いることで、基板の裏面に回り込んだ加圧ガスは、溝条により載置面に沿って、載置面の基板が密着された領域から載置面の基板のない領域へと排出される。このため、基板と載置面との間に空洞が生じることがない。
Further, in the present invention, the venting recess is Ru are a number of groove line formed on the mounting surface.
In Rukoto using such a large number of groove line, wrapped around it pressurized gas to the back surface of the substrate, along the mounting surface by the grooves, the substrate mounting surface is adhesion area placement of surface It is discharged to the area without the substrate. For this reason, a cavity does not arise between a board | substrate and a mounting surface.

本発明において、ガス抜き用凹部は、スプレーされる加圧ガスの流用および基板の細孔からの貫通量を考慮し、基板と載置面との間に空洞を生じないような十分な排気能力が得られるように適宜設定すればよい。
また、粉末状の多孔質半導体粒子を加圧ガスとともにスプレーする際の、加圧ガスの圧力、流量、温度、等は、基板の強度、薄膜とする多孔質半導体粒子の量、薄膜の厚み等に応じて適宜設定すればよい。
In the present invention, the concave portion for venting has sufficient exhaust capacity so as not to cause a cavity between the substrate and the mounting surface in consideration of the flow of pressurized gas to be sprayed and the penetration amount from the pores of the substrate. May be set as appropriate to obtain the above.
In addition, when spraying powdered porous semiconductor particles with a pressurized gas, the pressure, flow rate, temperature, etc. of the pressurized gas are the strength of the substrate, the amount of porous semiconductor particles to be a thin film, the thickness of the thin film, etc. What is necessary is just to set suitably according to.

本発明の多孔質半導体電極の製造装置は、表裏を貫通する細孔を有する多孔質金属製の基板の表面に多孔質半導体製の薄膜を形成して構成される多孔質半導体電極の製造装置であって、前記基板を載置する載置面と、前記載置面に形成されて当該載置面に臨むガスを外部へ排出可能なガス抜き用凹部とを有し、前記ガス抜き用凹部は、前記載置面に形成された多数の溝条である載置台と、前記載置面に載置された前記基板の表面に前記薄膜となる多孔質半導体粒子を加圧ガスによりスプレーするスプレー装置とを有することを特徴とする。
このような本発明では、前述した本発明の多孔質半導体電極の製造方法に基づいて、表裏を貫通する細孔を有する多孔質金属製の基板の表面に多孔質半導体製の薄膜を形成することができる。
The porous semiconductor electrode manufacturing apparatus of the present invention is a porous semiconductor electrode manufacturing apparatus configured by forming a porous semiconductor thin film on the surface of a porous metal substrate having pores penetrating the front and back surfaces. there are a mounting surface for mounting the substrate, is formed on the mounting surface it has a gas capable of discharging to the outside degassing recess facing said mounting surface, said venting recess is A mounting table that is a plurality of grooves formed on the mounting surface, and a spray device that sprays the porous semiconductor particles to be the thin film on the surface of the substrate mounted on the mounting surface with a pressurized gas It is characterized by having.
In the present invention, a porous semiconductor thin film is formed on the surface of a porous metal substrate having pores penetrating the front and back, based on the method for producing a porous semiconductor electrode of the present invention described above. Can do.

本発明の実施形態の前提となる参考例の多孔質半導体電極の製造装置を示す模式図。The schematic diagram which shows the manufacturing apparatus of the porous semiconductor electrode of the reference example used as the premise of embodiment of this invention. 前記参考例の載置面材を示す模式図。The schematic diagram which shows the mounting surface material of the said reference example . 前記参考例におけるスプレー動作を示す模式図。The schematic diagram which shows the spray operation | movement in the said reference example . 前記参考例で製造される多孔質半導体電極を示す模式図。The schematic diagram which shows the porous semiconductor electrode manufactured by the said reference example . 本発明の実施形態の多孔質半導体電極の製造装置を示す模式図。Schematic diagram showing an apparatus for manufacturing a porous semiconductor electrode implementation of the invention. 記実施形態の載置面材を示す模式図。Schematic view showing the mounting surface material before you facilities embodiment. 本発明が解決する課題を説明するための模式図。The schematic diagram for demonstrating the subject which this invention solves. 従来の色素増感型光電気化学セルを示す模式図。The schematic diagram which shows the conventional dye-sensitized photoelectrochemical cell. 従来の多孔質半導体電極を示す模式図。The schematic diagram which shows the conventional porous semiconductor electrode.

以下、本発明の実施形態について図面を用いて説明する。
参考例
図1から図4には、本発明の実施形態の前提となる参考例が示されている。
図4において、本参考例では、基板11としてチタン焼結体による多孔質金属基板を用い、その表面に薄膜12として二酸化チタン多孔質半導体の薄膜を形成し、基板11の表面に薄膜12を有する多孔質半導体電極13を製造する。
そのために、本参考例では、図1に示すように、コールドスプレー法で基板11の表面に薄膜12を形成する製造装置20を用い、薄膜12となるべき粉末状の多孔質半導体粒子12Aを加圧ガスGによって基板11の表面へとスプレーする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[ Reference example ]
1 to 4 show a reference example which is a premise of the embodiment of the present invention.
4, in this reference example , a porous metal substrate made of a titanium sintered body is used as the substrate 11, a titanium dioxide porous semiconductor thin film is formed as the thin film 12 on the surface, and the thin film 12 is provided on the surface of the substrate 11. The porous semiconductor electrode 13 is manufactured.
Therefore, in this reference example , as shown in FIG. 1, a manufacturing apparatus 20 for forming a thin film 12 on the surface of the substrate 11 by a cold spray method is used to add powdered porous semiconductor particles 12A to be the thin film 12. Spray onto the surface of the substrate 11 with the pressurized gas G.

製造装置20は、基礎上に固定された載置台21を有する。載置台21の上面側には基板11を載置する載置面材22が水平に支持されている。
載置面材22の表面は載置面23とされ、載置面23に載置された基板11の裏面は載置面23と密着される。
図2に示すように、本参考例の載置面材22は、載置面23のガス抜き用凹部として、載置面23である表面から載置面材22の裏面まで貫通する多数の貫通孔26を備えている。貫通孔26は、それぞれ所定内径の円形断面とされ、同じ物が載置面23に二次元的に配列されている。
The manufacturing apparatus 20 has a mounting table 21 fixed on a foundation. On the upper surface side of the mounting table 21, a mounting surface material 22 on which the substrate 11 is mounted is supported horizontally.
The surface of the mounting surface material 22 is a mounting surface 23, and the back surface of the substrate 11 mounted on the mounting surface 23 is in close contact with the mounting surface 23.
As shown in FIG. 2, the mounting surface material 22 of the present reference example has a large number of through holes that penetrate from the surface that is the mounting surface 23 to the back surface of the mounting surface material 22 as the gas vent recesses of the mounting surface 23. A hole 26 is provided. Each of the through holes 26 has a circular cross section with a predetermined inner diameter, and the same object is two-dimensionally arranged on the mounting surface 23.

なお、貫通孔26の断面は、矩形、楕円、ハニカム構造等、特に制約を受けるものではない。又、貫通孔26の断面寸法は、同一のである必要はなく、異なる寸法の貫通孔を配置しても良い。さらに、貫通孔26は、異なる断面形状の貫通孔を配置しても良い。
図1に戻って、載置面23の外周部分には、載置面23に載置された基板11の辺縁を保持するためのクランプ24が設置されている。
The cross-section of the through hole 26 is not particularly limited, such as a rectangle, an ellipse, or a honeycomb structure. The cross-sectional dimensions of the through holes 26 do not have to be the same, and through holes having different dimensions may be arranged. Further, the through hole 26 may be a through hole having a different cross-sectional shape.
Returning to FIG. 1, a clamp 24 for holding the edge of the substrate 11 placed on the placement surface 23 is installed on the outer peripheral portion of the placement surface 23.

載置面23の上方には、載置面23に沿って移動可能なスプレー装置25が設置されている。
スプレー装置25は、加圧ガスGを供給する外部の加圧ガス源(図示省略)および多孔質半導体粒子を供給する定量供給装置(図示省略)を有する。
このようなスプレー装置25では、加圧ガスGにより多孔質半導体粒子12Aを分散させてノズル25Bから噴出させ、これを載置面23に載置された基板11の表面に向けてスプレーすることで、基板11の表面に薄膜12を形成することができる。
なお、定量供給装置は、多孔質半導体粒子を必要量、安定供給出来る物であればよく、スクリュー式、コイル式、振動式、サークル式、テーブル式、金網式、枡式、これらを組合せた方式や、容積式、ロスインイエイト方式等、特に制約を受けるものではない。
A spray device 25 that can move along the placement surface 23 is installed above the placement surface 23.
The spray device 25 includes an external pressurized gas source (not shown) that supplies the pressurized gas G and a quantitative supply device (not shown) that supplies porous semiconductor particles.
In such a spray device 25, the porous semiconductor particles 12 </ b> A are dispersed by the pressurized gas G, ejected from the nozzle 25 </ b> B, and sprayed toward the surface of the substrate 11 placed on the placement surface 23. The thin film 12 can be formed on the surface of the substrate 11.
In addition, the quantitative supply device may be anything that can stably supply the necessary amount of porous semiconductor particles, such as a screw type, a coil type, a vibration type, a circle type, a table type, a wire net type, a saddle type, and a combination thereof. There are no particular restrictions such as positive displacement or loss-in-eight.

参考例においては、次のような手順で多孔質半導体電極13を製造する。
図3に示すように、基板11を載置面23に載置し、クランプ24(図1参照)により固定する。続いて、スプレー装置25によりスプレーを行い、粉末状の多孔質半導体粒子12Aを分散させた加圧ガスGを基板11の表面に吹き付ける。
このスプレーにより、基板11の表面には多孔質半導体粒子12Aが堆積されて薄膜12が形成される。
In this reference example , the porous semiconductor electrode 13 is manufactured by the following procedure.
As shown in FIG. 3, the board | substrate 11 is mounted in the mounting surface 23, and it fixes with the clamp 24 (refer FIG. 1). Subsequently, spraying is performed by the spray device 25, and the pressurized gas G in which the powdery porous semiconductor particles 12 </ b> A are dispersed is sprayed on the surface of the substrate 11.
By this spraying, porous semiconductor particles 12A are deposited on the surface of the substrate 11 to form the thin film 12.

この際、基板11にスプレーされる多孔質半導体粒子12Aおよび加圧ガスGのうち、多孔質半導体粒子12Aは薄膜12として基板11の表面に堆積されるが、加圧ガスGは、一部が基板11の周囲に拡散しつつ、他の一部は基板11の細孔11Bを通して基板の裏面側に抜ける。載置面23には、ガス抜き用凹部としての貫通孔26が形成されており、細孔11Bを通して基板11の裏面側に抜けた加圧ガスGは、貫通孔26により載置面材22の裏面側へ排出され、基板11と載置面23との間に空洞86(図7参照)を生じることがない。   At this time, among the porous semiconductor particles 12A and the pressurized gas G sprayed on the substrate 11, the porous semiconductor particles 12A are deposited on the surface of the substrate 11 as the thin film 12, but the pressurized gas G is partially While diffusing around the substrate 11, another part passes through the pores 11 </ b> B of the substrate 11 to the back side of the substrate. A through hole 26 is formed in the mounting surface 23 as a degassing recess, and the pressurized gas G that has escaped to the back surface side of the substrate 11 through the pores 11 </ b> B passes through the through hole 26. It is discharged to the back surface side, and the cavity 86 (see FIG. 7) is not generated between the substrate 11 and the placement surface 23.

これらにより、載置面23に載置された基板11の表面に、粉末状の多孔質半導体粒子12Aを薄く堆積させ、基板11の表面に多孔質半導体製の薄膜12が形成された多孔質半導体電極13を製造することができる。
そして、載置面23にガス抜き用凹部としての貫通孔26が形成されているため、スプレーに用いる加圧ガスGによる基板11の破壊を未然に防止することができ、本参考例で製造される多孔質半導体電極13を確実に得ることができる。
Accordingly, the porous semiconductor in which the powdery porous semiconductor particles 12A are thinly deposited on the surface of the substrate 11 placed on the placement surface 23, and the thin film 12 made of porous semiconductor is formed on the surface of the substrate 11. The electrode 13 can be manufactured.
And since the through-hole 26 as a degassing recessed part is formed in the mounting surface 23, destruction of the board | substrate 11 by the pressurized gas G used for spraying can be prevented beforehand, and it manufactures in this reference example. The porous semiconductor electrode 13 can be obtained reliably.

図4に示すように、このようにして本参考例で製造された多孔質半導体電極13は、基板11を構成する金属材料の粒子11Aの間に多数の細孔11Bを有する。しかし、粉末状の多孔質半導体粒子12Aをコールドスプレー法により吹き付けることで、基板11の表面に多孔質半導体粒子12Aを薄く堆積させることができ、この多孔質半導体粒子12Aが細孔11Bに侵入することがない。
このため、二酸化チタンの多孔質半導体粒子12Aの薄膜12は厚さTでの安定した膜厚を得ることができる。
また、コールドスプレー法であるため、スラリー塗布のような加熱乾燥は必要がなく、製造を短時間で効率よく行うことができる。
As shown in FIG. 4, the porous semiconductor electrode 13 manufactured in this way in this reference example has a large number of pores 11 </ b> B between the metal material particles 11 </ b> A constituting the substrate 11. However, by spraying the powdery porous semiconductor particles 12A by the cold spray method, the porous semiconductor particles 12A can be thinly deposited on the surface of the substrate 11, and the porous semiconductor particles 12A enter the pores 11B. There is nothing.
For this reason, the thin film 12 of the porous semiconductor particle 12A of titanium dioxide can obtain a stable film thickness at the thickness T.
Moreover, since it is a cold spray method, heating drying like slurry application is unnecessary, and it can manufacture efficiently in a short time.

〔実施形態〕
図5および図6には、本発明の実施形態が示されている。
図5に示すように、本実施形態は、前記参考例と同様に、基板11の表面に薄膜12を形成して多孔質半導体電極13を製造するものであり、前記参考例と同様なコールドスプレー法に基づく製造装置20Aを用いる。
[Implementation Embodiment
5 and 6, there is shown implementation of the invention.
As shown in FIG. 5, this embodiment, as in the reference example, which forms a thin film 12 on the surface of the substrate 11 to produce a porous semiconductor electrode 13, the reference example and similar cold spray A manufacturing apparatus 20A based on the law is used.

製造装置20Aは、各部構成が前記参考例と共通であり、共通の構成については同じ符号を付して重複する説明は省略する。但し、本実施形態の載置面材22Aは、前記参考例と異なる構成とされている。
図6に示すように、本実施形態の載置面材22Aは、載置面23のガス抜き用凹部として、載置面23である表面に平行に配列された多数の溝条27を備えている。溝条27は、それぞれ所定深さおよび溝幅の矩形断面とされ、載置面23の一辺に沿って平行に配列されている。
なお、溝状27の断面形状は、円形、楕円等、特に制約を受けるものではない。また、溝条27の断面寸法は、同一である必要はなく、異なる寸法の溝状を配置してもよい。さらに、溝条27は、異なる断面形状の溝条を配置してもよい。
In the manufacturing apparatus 20A, each component configuration is the same as that of the reference example, and the same configuration is denoted by the same reference numeral, and redundant description is omitted. However, the mounting surface material 22A of the present embodiment is configured differently from the reference example .
As shown in FIG. 6, the mounting surface material 22 </ b> A of the present embodiment includes a large number of grooves 27 arranged in parallel to the surface that is the mounting surface 23 as a degassing recess of the mounting surface 23. Yes. The grooves 27 each have a rectangular cross section having a predetermined depth and a groove width, and are arranged in parallel along one side of the mounting surface 23.
The cross-sectional shape of the groove 27 is not particularly limited, such as a circle or an ellipse. Moreover, the cross-sectional dimension of the groove 27 does not need to be the same, You may arrange | position the groove shape of a different dimension. Further, the grooves 27 may be grooves having different cross-sectional shapes.

このような本実施形態においても、前述した参考例と同様な手順により、コールドスプレー法に基づいて基板11の表面に薄膜12が形成された多孔質半導体電極13を製造することができる。
この際、本実施形態の載置面材22Aでは、載置面23のガス抜き用凹部として溝条27を用いており、スプレーに含まれる加圧ガスGは溝条27により排出される。
図5に示すように、加圧ガスGは、基板11の細孔11Bを通して裏面へ通り抜け、それぞれ最寄りの溝条27内に入り込む。溝条27に集められた加圧ガスGは、載置面23の基板11が載置されていない領域で大気に放散される。なお、溝条27に集められた加圧ガスGの一部は、基板11のスプレーされていない領域で細孔11Bを通して基板11の表面側へ排出されることもある。
Also in this embodiment, the porous semiconductor electrode 13 in which the thin film 12 is formed on the surface of the substrate 11 can be manufactured based on the cold spray method by the same procedure as the reference example described above.
At this time, in the mounting surface material 22A of the present embodiment, the groove 27 is used as the gas vent recess of the mounting surface 23, and the pressurized gas G contained in the spray is discharged by the groove 27.
As shown in FIG. 5, the pressurized gas G passes through the pores 11 </ b> B of the substrate 11 to the back surface, and enters the nearest groove 27. The pressurized gas G collected in the grooves 27 is dissipated into the atmosphere in the region of the mounting surface 23 where the substrate 11 is not mounted. A part of the pressurized gas G collected in the groove 27 may be discharged to the surface side of the substrate 11 through the pores 11B in a region where the substrate 11 is not sprayed.

このように、本実施形態においても、載置面23に載置された基板11の表面に、粉末状の多孔質半導体粒子12Aを薄く堆積させ、基板11の表面に多孔質半導体製の薄膜12が形成された多孔質半導体電極13を製造することができる。
そして、載置面23にガス抜き用凹部としての溝条27が形成されているため、スプレーに用いる加圧ガスGによる基板11の破壊を未然に防止することができ、本実施形態で製造される多孔質半導体電極13を確実に得ることができる。
As described above, also in the present embodiment, the powdery porous semiconductor particles 12A are thinly deposited on the surface of the substrate 11 placed on the placement surface 23, and the porous semiconductor thin film 12 is deposited on the surface of the substrate 11. The porous semiconductor electrode 13 in which is formed can be manufactured.
And since the groove | channel 27 as a degassing recessed part is formed in the mounting surface 23, destruction of the board | substrate 11 by the pressurized gas G used for spraying can be prevented beforehand, and it manufactures by this embodiment. The porous semiconductor electrode 13 can be obtained reliably.

〔変形例〕
本発明は、前述した実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形などは本発明に含まれるものである。
例えば、コールドスプレー法に用いる加圧ガスGは、一般に空気を用いればよいが、窒素ガスその他の不活性ガス等を用いてもよい。
[Modification]
The present invention is not limited to the above-described embodiments, and modifications and the like within a scope that can achieve the object of the present invention are included in the present invention.
For example, the pressurized gas G used in the cold spray method may generally use air, but nitrogen gas or other inert gas may be used.

また、前記各実施形態では、基板11としてチタン焼結体による多孔質金属基板を用い、その表面に二酸化チタン多孔質半導体の薄膜12を形成するとしたが、基板11および薄膜12に用いる材料は他の材料であってもよく、適宜選択することができる。
さらに、載置台21において載置面材22,22Aを支持する構造等は適宜設計すればよく、スプレー装置25の具体的構造、スプレー装置25と載置台21とを相対移動させる構造等も、必要な機能が得られるように適宜設計すればよい。
In each of the above embodiments, a porous metal substrate made of a titanium sintered body is used as the substrate 11 and the titanium dioxide porous semiconductor thin film 12 is formed on the surface thereof. However, other materials may be used for the substrate 11 and the thin film 12. The material may be selected as appropriate.
Furthermore, the structure for supporting the mounting surface materials 22 and 22A in the mounting table 21 may be designed as appropriate, and the specific structure of the spray device 25 and the structure for moving the spray device 25 and the mounting table 21 relative to each other are also necessary. What is necessary is just to design suitably so that an appropriate function may be acquired.

前記参考例ではガス抜き用凹部として貫通孔26を用い、前記実施形態ではガス抜き用凹部として溝条27を用いたが、これらを組み合わせて溝条27の底面にさらに載置面材の背面側に抜ける貫通孔26を形成してもよい。
さらに、前記実施形態のガス抜き用凹部としては、溝条27を縦横に形成して格子状を描くようにしたもの(基板11は格子の升内に形成される突起で支持される)であってもよい。
また、実施形態において、載置面23と基板11の間には、スペーサを挿入してもよい。スペーサとしては、金網や多孔質金属基板11と同様の構造の細孔を有するものが使用できる。
Wherein the through-hole 26 used as a reference example the recess for venting, but before the you facilities form with the grooves 27 as recesses for venting, the further mounting surface material to a bottom surface of the groove line 27 in combination You may form the through-hole 26 which goes out to a back side.
Furthermore, the gas venting recesses of the above embodiment are those in which grooves 27 are formed vertically and horizontally so as to draw a lattice shape (the substrate 11 is supported by protrusions formed in the lattice cage). May be.
Further, in the implementation form, between the mounting surface 23 and the substrate 11, it may be inserted spacer. As the spacer, those having pores having the same structure as that of the metal mesh or the porous metal substrate 11 can be used.

11…基板
11A…チタン焼結体粒子
11B…細孔
12…薄膜
12A…多孔質半導体粒子
13…多孔質半導体電極
20,20A…製造装置
21…載置台
22,22A…載置面材
23…載置面
24…クランプ
25…スプレー装置
25B…ノズル
26…ガス抜き用凹部である貫通孔
27…ガス抜き用凹部である溝条
G…加圧ガス
DESCRIPTION OF SYMBOLS 11 ... Board | substrate 11A ... Titanium sintered compact particle 11B ... Fine pore 12 ... Thin film 12A ... Porous semiconductor particle 13 ... Porous semiconductor electrode 20, 20A ... Manufacturing apparatus 21 ... Mounting stand 22, 22A ... Mounting surface material 23 ... Mounting Placement surface 24 ... Clamp 25 ... Spray device 25B ... Nozzle 26 ... Through hole 27 which is a recess for gas venting ... Groove G which is a recess for gas venting ... Pressure gas

Claims (2)

表裏を貫通する細孔を有する多孔質金属製の基板の表面に多孔質半導体製の薄膜を形成して構成される多孔質半導体電極の製造方法であって、
前記基板を載置する載置面と、前記載置面に形成されて当該載置面に臨むガスを外部へ排出可能なガス抜き用凹部とを有し、前記ガス抜き用凹部は、前記載置面に形成された多数の溝条である載置台を用い、
前記基板を前記載置面に載置して前記基板の裏面と前記載置面とを密着させ、前記載置面に載置された前記基板の表面に前記薄膜となる多孔質半導体粒子を加圧ガスによりスプレーし、前記基板の細孔を通して裏面側に抜けた前記加圧ガスを前記ガス抜き用凹部により排出することを特徴とする多孔質半導体電極の製造方法。
A method for producing a porous semiconductor electrode configured by forming a porous semiconductor thin film on the surface of a porous metal substrate having pores penetrating the front and back,
A mounting surface for mounting the substrate, is formed on the mounting surface have a gas exhaust possible venting recess to the outside facing the mounting surface, said venting recess, the front, wherein Using a mounting table that is a large number of grooves formed on the mounting surface ,
The substrate is placed on the mounting surface, the back surface of the substrate and the mounting surface are brought into close contact with each other, and porous semiconductor particles to be the thin film are added to the surface of the substrate placed on the mounting surface. A method for producing a porous semiconductor electrode, characterized in that the pressurized gas sprayed by pressurized gas and discharged to the back side through the pores of the substrate is discharged by the recess for degassing.
表裏を貫通する細孔を有する多孔質金属製の基板の表面に多孔質半導体製の薄膜を形成して構成される多孔質半導体電極の製造装置であって、
前記基板を載置する載置面と、前記載置面に形成されて当該載置面に臨むガスを外部へ排出可能なガス抜き用凹部とを有し、前記ガス抜き用凹部は、前記載置面に形成された多数の溝条である載置台と、
前記載置面に載置された前記基板の表面に前記薄膜となる多孔質半導体粒子を加圧ガスによりスプレーするスプレー装置とを有することを特徴とする多孔質半導体電極の製造装置。
A porous semiconductor electrode manufacturing apparatus configured by forming a porous semiconductor thin film on the surface of a porous metal substrate having pores penetrating the front and back,
A mounting surface for mounting the substrate, is formed on the mounting surface have a gas exhaust possible venting recess to the outside facing the mounting surface, said venting recess, the front, wherein A mounting table which is a large number of grooves formed on the mounting surface ;
An apparatus for producing a porous semiconductor electrode, comprising: a spray device that sprays the porous semiconductor particles to be the thin film with a pressurized gas on the surface of the substrate placed on the placement surface.
JP2012101035A 2012-04-26 2012-04-26 Method and apparatus for manufacturing porous semiconductor electrode Expired - Fee Related JP5914139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012101035A JP5914139B2 (en) 2012-04-26 2012-04-26 Method and apparatus for manufacturing porous semiconductor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012101035A JP5914139B2 (en) 2012-04-26 2012-04-26 Method and apparatus for manufacturing porous semiconductor electrode

Publications (2)

Publication Number Publication Date
JP2013229208A JP2013229208A (en) 2013-11-07
JP5914139B2 true JP5914139B2 (en) 2016-05-11

Family

ID=49676646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012101035A Expired - Fee Related JP5914139B2 (en) 2012-04-26 2012-04-26 Method and apparatus for manufacturing porous semiconductor electrode

Country Status (1)

Country Link
JP (1) JP5914139B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039286A (en) * 2002-06-28 2004-02-05 Toto Ltd Method for manufacturing optical semiconductor electrode and photoelectric conversion element
JP4666476B2 (en) * 2005-05-25 2011-04-06 日産自動車株式会社 Film forming apparatus and film forming method using the same
JP5273700B2 (en) * 2007-06-04 2013-08-28 国立大学法人豊橋技術科学大学 Photocatalytic titanium oxide film and method for producing the same
JP5252488B2 (en) * 2008-07-14 2013-07-31 独立行政法人産業技術総合研究所 Semiconductor electrode and dye-sensitized photoelectrochemical cell using the same

Also Published As

Publication number Publication date
JP2013229208A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
Zhang et al. Three-dimensional FTO/TiO2/BiVO4 composite inverse opals photoanode with excellent photoelectrochemical performance
Wang et al. Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications
Yang et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media
US6620542B2 (en) Flex based fuel cell
JP5758609B2 (en) Method for producing core-shell particles
JP5797555B2 (en) Dye-sensitized solar cell
EP1933387A3 (en) Dye-sensitized solar cell
JP2010021091A (en) Semiconductor electrode, and dye-sensitized photo-electrochemical cell using the same
EP2061049A3 (en) Dye-sensitized solar cell including anode porous conductive layer
JP4601286B2 (en) Method for forming porous semiconductor electrode and method for producing electrode substrate for dye-sensitized solar cell
Bian et al. Wafer-scale fabrication of silicon nanocones via controlling catalyst evolution in all-wet metal-assisted chemical etching
JP5914139B2 (en) Method and apparatus for manufacturing porous semiconductor electrode
JP2019512865A (en) Solar cell comprising particles of doped semiconductor material and method of manufacturing a solar cell
JP2009289692A (en) Method of manufacturing electrode layer for fuel cell
JP4892873B2 (en) Conductive porous body and fuel cell used in fuel cell
EP2104123B1 (en) Method of manufacturing a dye-sensitised solar cell and dye-sensitised solar cell
JP5930770B2 (en) Method for producing porous semiconductor electrode
CA3203444C (en) A solar cell comprising a plurality of porous layers and charge conducting medium penetrating the porous layers
KR101595221B1 (en) Solid oxide fuel cell using metal support having array structure and method for manufacturing the same
JP2019002044A (en) Photoelectrode and method for producing the same, photoelectrochemical cell, and method for producing hydrogen
Faubert et al. Femtosecond laser structuring of novel electrodes for 3D fuel cell design with increased reaction surface
CN210073998U (en) Low-impedance heat-resistant diaphragm
JP4496013B2 (en) Dye-sensitized solar cell
KR102445284B1 (en) boron phosphate matrix layer
JP6319734B2 (en) A counter electrode for a dye-sensitized solar cell, a dye-sensitized solar cell using the same, and a method for producing a counter electrode for a dye-sensitized solar cell.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5914139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees