JP5909808B2 - Pre-preg for heat and pressure molding and laminate - Google Patents

Pre-preg for heat and pressure molding and laminate Download PDF

Info

Publication number
JP5909808B2
JP5909808B2 JP2012016057A JP2012016057A JP5909808B2 JP 5909808 B2 JP5909808 B2 JP 5909808B2 JP 2012016057 A JP2012016057 A JP 2012016057A JP 2012016057 A JP2012016057 A JP 2012016057A JP 5909808 B2 JP5909808 B2 JP 5909808B2
Authority
JP
Japan
Prior art keywords
component
volume
inorganic filler
thermal conductivity
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012016057A
Other languages
Japanese (ja)
Other versions
JP2013155265A (en
Inventor
哲也 川平
哲也 川平
伊藤 玄
玄 伊藤
米倉 稔
稔 米倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Priority to JP2012016057A priority Critical patent/JP5909808B2/en
Publication of JP2013155265A publication Critical patent/JP2013155265A/en
Application granted granted Critical
Publication of JP5909808B2 publication Critical patent/JP5909808B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、熱伝導性の良い絶縁層を提供するための加熱加圧成形用プリプレグに関する。また、当該プリプレグを用いた積層板に関する。   The present invention relates to a prepreg for heat and pressure molding for providing an insulating layer having good thermal conductivity. Moreover, it is related with the laminated board using the said prepreg.

電子機器に搭載する配線板は、電子機器の軽薄短小化に伴う微細配線・高密度実装の技術が求められる一方で、発熱に対応する高放熱の技術も求められている。特に、各種制御・操作に大電流を使用する自動車などにおける電子回路では、導電回路の抵抗に起因する発熱やパワー素子からの発熱が非常に多く、配線板の放熱特性は高レベルであることが必須となってきている。   A wiring board mounted on an electronic device is required to have a technology for fine wiring and high-density mounting in accordance with a reduction in the thickness and size of the electronic device, and a technology for high heat dissipation corresponding to heat generation is also required. In particular, in electronic circuits such as automobiles that use a large current for various controls and operations, heat generation due to the resistance of the conductive circuit and heat generation from the power element are very large, and the heat dissipation characteristics of the wiring board may be high. It has become essential.

そのような現状において、配線板の絶縁層の熱伝導性を向上させるために、熱硬化性樹脂に無機充填材を添加することは広く行われている。例えば、熱硬化性樹脂中に平均粒径が異なる2種類の球状アルミナを含有する耐熱性接着剤が特許文献1に記載されている。この耐熱性接着剤は、平均粒径が大きな粗粒と、平均粒径が小さな微粒とを、特定割合で配合することにより、多量のアルミナを接着剤に充填することができ、接着剤の熱伝導性を向上させるものである。   Under such circumstances, adding an inorganic filler to a thermosetting resin is widely performed in order to improve the thermal conductivity of the insulating layer of the wiring board. For example, Patent Document 1 discloses a heat-resistant adhesive containing two types of spherical alumina having different average particle diameters in a thermosetting resin. This heat-resistant adhesive can fill a large amount of alumina into the adhesive by blending coarse particles with a large average particle size and fine particles with a small average particle size at a specific ratio, and the heat of the adhesive It improves conductivity.

また、絶縁材料(熱硬化性樹脂)中に粒径が異なる3成分の無機フィラ(無機充填材)を含有する回転機用絶縁材料が特許文献2に記載されている。この絶縁材料は、粒度分布がシャープな3成分の無機フィラを、特定割合で配合することにより、細密充填構造を従来よりも更に完全とすることができ、絶縁材料の熱伝導性を向上させるとともに、樹脂組成物の低粘度化を達成するものである。   Further, Patent Document 2 discloses an insulating material for a rotating machine that contains a three-component inorganic filler (inorganic filler) having different particle sizes in an insulating material (thermosetting resin). This insulating material can be made more compact than before by adding a three-component inorganic filler with a sharp particle size distribution at a specific ratio, improving the thermal conductivity of the insulating material. In order to achieve a low viscosity of the resin composition.

特開2004−217861号公報JP 2004-217861 A 特開2003−306594号公報JP 2003-306594 A

プリント配線板等の配線板を多層化する場合、熱硬化性樹脂組成物をプリプレグ化した層間接着層を使用して、配線回路等の厚み段差を埋める必要がある。この段差は、従来18〜35μm程度であったが、実装部品の性能向上と、顧客からの要求により、配線板は大電流を流すことが多くなっており、それに伴う発熱量の増大に対応して回路が厚銅化しているため、例えば、70μmを超える段差を埋める要求がある。
しかしながら、上記特許文献1、2に記載された樹脂組成物は、無機充填材を高充填すると樹脂の流れ性が悪化することから、これをプリプレグ化して、配線板を多層化する場合の層間接着層に使用すると、例えば、70μmを超えるような大きな段差を埋めることができない(前記段差を埋めることを「回路埋め性」という。以下同。)という問題がある。このため、層間接着界面にクラックやボイドが発生し、絶縁特性が低下する原因となっていた。
When a wiring board such as a printed wiring board is multilayered, it is necessary to fill a thickness step of a wiring circuit or the like using an interlayer adhesive layer obtained by prepregizing a thermosetting resin composition. Conventionally, this step has been about 18 to 35 μm. However, due to the improvement of the performance of mounted parts and the demand from customers, the wiring board often causes a large amount of current to flow. Therefore, there is a demand to fill a step exceeding 70 μm, for example.
However, since the resin composition described in Patent Documents 1 and 2 is poorly filled with an inorganic filler, the flowability of the resin deteriorates. When used for a layer, for example, there is a problem that a large step exceeding 70 μm cannot be filled (filling the step is referred to as “circuit filling ability”; hereinafter the same). For this reason, cracks and voids are generated at the interlayer adhesion interface, which causes the insulation characteristics to deteriorate.

一方、多層プリント配線板の層間接続を行う方法として、多層プリント配線板にレーザー加工等にてビアホールをあけ、ビアホール内をめっき金属によって充填したフィルドビアを形成するビアフィルめっき法がある。この方法では、前記層間接着層が厚いと、ビアホール内部を十分に充填することができず、導通信頼性が低下するという問題がある。このため、前記層間接着層を薄くしたいという要求もある。   On the other hand, as a method for performing interlayer connection of multilayer printed wiring boards, there is a via fill plating method in which a via hole is formed in the multilayer printed wiring board by laser processing or the like and a filled via filled with a plating metal is formed in the via hole. In this method, if the interlayer adhesive layer is thick, there is a problem that the inside of the via hole cannot be sufficiently filled and the conduction reliability is lowered. For this reason, there is also a demand to make the interlayer adhesive layer thin.

本発明が解決しようとする課題は、例えば、70μmを超えるような大きな段差がある場合においても、回路埋め性が良好で、かつ、熱伝導性が良く、上記ビアフィルめっき法にも対応できる薄い絶縁層が得られる加熱加圧成形用プリプレグを提供することである。また、当該プリプレグを用いた積層板を提供することである。   The problem to be solved by the present invention is that, for example, even when there is a large step exceeding 70 μm, the circuit filling property is good, the thermal conductivity is good, and the thin insulation that can cope with the above-mentioned via fill plating method It is to provide a prepreg for heat and pressure molding from which a layer is obtained. Moreover, it is providing the laminated board using the said prepreg.

上記課題を解決するために、本発明に係る加熱加圧成形用プリプレグは、無機充填材を含む熱硬化性樹脂組成物をガラス不織布基材に含浸し乾燥してなる加熱加圧成形用プリプレグであって、前記熱硬化性樹脂組成物は、熱伝導率が0.5W/m・K以上であり、前記ガラス不織布基材は、厚みが100μm以下であり、前記無機充填材は、平均粒径が10μm以上70μm以下の成分(a)と、平均粒径が1μm以上10μm未満の成分(b)と、平均粒径が0.1μm以上1μm未満の成分(c)とで構成され、成分(a)と成分(b)との合計体積と、成分(c)の体積との体積比が、90:10〜70:30であり、熱硬化性樹脂固形分と無機充填材を合わせた体積中に、無機充填材の総含有量が、30〜80体積%であり、さらに、平均粒径が0.001〜0.05μmの潤滑材を含有し、熱硬化性樹脂固形分に対して、潤滑材の含有量が、2質量%以下であることを特徴とする(請求項1)。
In order to solve the above-mentioned problem, a prepreg for heat and pressure molding according to the present invention is a prepreg for heat and pressure molding formed by impregnating a glass nonwoven fabric base material with a thermosetting resin composition containing an inorganic filler and drying it. there, the thermosetting resin composition is a thermal conductivity of 0.5 W / m · K or more, the glass nonwoven substrate has a thickness of Ri der less 100 [mu] m, the inorganic filler has an average particle A component (a) having a diameter of 10 μm or more and 70 μm or less, a component (b) having an average particle size of 1 μm or more and less than 10 μm, and a component (c) having an average particle size of 0.1 μm or more and less than 1 μm, The volume ratio of the total volume of a) and the component (b) and the volume of the component (c) is 90:10 to 70:30, and in the combined volume of the thermosetting resin solid content and the inorganic filler Furthermore, the total content of the inorganic filler is 30 to 80% by volume, Particle size containing a lubricant 0.001~0.05Myuemu, against the thermosetting resin solids content of lubricant is equal to or less than 2 wt% (claim 1) .

好ましくは、成分(a)の体積と成分(b)の体積との体積比が、75:25〜60:40である(請求項2)。
Preferably, the volume ratio of the volume of component (a) to the volume of component (b) is 75:25 to 60:40 (Claim 2).

発明に係る積層板は、上述のプリプレグの層を含む積層構成体を加熱加圧成形してなるものである(請求項)。

The laminated board according to the present invention is obtained by heat-pressing a laminated structure including the above-described prepreg layer (Claim 3 ).

本発明に係る加熱加圧成形用プリプレグは、無機充填材を含む熱硬化性樹脂組成物をガラス不織布基材に含浸し乾燥してなる加熱加圧成形用プリプレグであって、熱硬化性樹脂組成物の熱伝導率が0.5W/m・K以上であり、ガラス不織布基材の厚みが100μm以下であることを特徴とする。このような構成にすることにより、ビアフィルめっき法にも対応できる薄い絶縁層とすることができる。また、絶縁層の厚みを薄くすることにより、熱の流路を確保することができ、熱伝導性を向上することができる。さらに、基材に保持させる樹脂量を多くすることができ、樹脂組成物の流動性が向上し、例えば、70μmを超えるような大きな厚み段差がある場合においても、回路埋め性を向上することができる。   The prepreg for heat and pressure molding according to the present invention is a prepreg for heat and pressure molding formed by impregnating a glass nonwoven fabric base material with a thermosetting resin composition containing an inorganic filler and drying the thermosetting resin composition. The thermal conductivity of the product is 0.5 W / m · K or more, and the thickness of the glass nonwoven fabric substrate is 100 μm or less. By adopting such a configuration, a thin insulating layer that can cope with the via fill plating method can be obtained. In addition, by reducing the thickness of the insulating layer, a heat flow path can be secured and the thermal conductivity can be improved. Furthermore, the amount of resin to be held on the substrate can be increased, the fluidity of the resin composition can be improved, and the circuit filling property can be improved even when there is a large thickness step exceeding 70 μm, for example. it can.

無機充填材として、平均粒径が10μm以上70μm以下の成分(a)と、平均粒径が1μm以上10μm未満の成分(b)と、平均粒径が0.1μm以上1μm未満の成分(c)とで構成され、成分(a)と成分(b)との合計体積と、成分(c)の体積との体積比が、90:10〜70:30であり、熱硬化性樹脂固形分と無機充填材を合わせた体積中に、無機充填材の総含有量が、30〜80体積%である場合には、樹脂組成物の流動性が向上し、回路埋め性をさらに向上することができる。   As the inorganic filler, a component (a) having an average particle size of 10 μm or more and 70 μm or less, a component (b) having an average particle size of 1 μm or more and less than 10 μm, and a component (c) having an average particle size of 0.1 μm or more and less than 1 μm. The volume ratio of the total volume of component (a) and component (b) to the volume of component (c) is 90:10 to 70:30, and the thermosetting resin solid content and inorganic When the total content of the inorganic filler is 30 to 80% by volume in the combined volume of the filler, the fluidity of the resin composition is improved, and the circuit filling property can be further improved.

本発明に使用するガラス不織布基材は、厚みが100μm以下のものを使用する。好ましくは、80μm以下である。なお、厚みの下限値は特に規定するものではないが、ガラス不織布基材の強度や回路埋め性の観点から、40μm以上のものが好ましい。また、質量としては、5〜30g/mであることが好ましい。これにより、回路埋め性を確保しつつ、厚みの薄い絶縁層を形成することができる。
ここで、ガラス不織布基材の厚みの測定は、直径10mmφ、押圧19.6kPaのダイヤルゲージを用いて6点測定し、その平均値を求めた。
The glass nonwoven fabric substrate used in the present invention has a thickness of 100 μm or less. Preferably, it is 80 μm or less. The lower limit of the thickness is not particularly specified, but is preferably 40 μm or more from the viewpoint of the strength of the glass nonwoven fabric substrate and the circuit filling property. Moreover, as mass, it is preferable that it is 5-30 g / m < 2 >. Thereby, an insulating layer with a small thickness can be formed while ensuring circuit fillability.
Here, the thickness of the glass nonwoven fabric substrate was measured at 6 points using a dial gauge having a diameter of 10 mmφ and a pressure of 19.6 kPa, and the average value was obtained.

ガラス不織布基材の厚みが薄くなるにともない、ガラス不織布基材の強度が低下し、樹脂組成物をガラス不織布基材に含浸する操作をできなくなるおそれがある。そこで、ガラス不織布基材を構成する複数のガラス短繊維の交差部をエポキシ樹脂等のバインダにより結合することが好ましい。このようにすれば、エポキシ樹脂等のバインダにより、ガラス短繊維同士が固着されたガラス不織布基材を構成することができ、ガラス不織布基材の強度が維持される。従って、このようなガラス不織布基材には、ガラス不織布基材を損傷させることなく、樹脂組成物を含浸することができる。   As the thickness of the glass nonwoven fabric substrate decreases, the strength of the glass nonwoven fabric substrate decreases, and the glass nonwoven fabric substrate may not be impregnated with the resin composition. Therefore, it is preferable that the intersecting portions of the plurality of short glass fibers constituting the glass nonwoven fabric base material are bonded with a binder such as an epoxy resin. If it does in this way, the glass nonwoven fabric base material with which short glass fibers were fixed can be comprised with binders, such as an epoxy resin, and the intensity | strength of a glass nonwoven fabric base material is maintained. Therefore, such a glass nonwoven fabric base material can be impregnated with the resin composition without damaging the glass nonwoven fabric base material.

本発明に使用する熱硬化性樹脂組成物は、無機充填材を含む熱硬化性樹脂組成物であって、熱伝導率が0.5W/m・K以上のものを使用する。なお、熱伝導率の上限値は特に規定するものではないが、現時点では、回路埋め性の観点から、20W/m・K程度が上限と推測される。   The thermosetting resin composition used in the present invention is a thermosetting resin composition containing an inorganic filler, and has a thermal conductivity of 0.5 W / m · K or more. The upper limit value of the thermal conductivity is not particularly defined, but at present, it is estimated that the upper limit is about 20 W / m · K from the viewpoint of circuit filling performance.

無機充填材は、例えば、少なくとも次の3成分、すなわち、平均粒径が10μm以上70μm以下の成分(a)と、平均粒径が1μm以上10μm未満の成分(b)と、平均粒径が0.1μm以上1μm未満の成分(c)を含有することが好ましい。
なお、前記平均粒径は、公知のレーザー回折・散乱法による粒度測定装置(例えば、日機装株式会社製「マイクロトラックSPA−7997型」)を用いて測定したものである。ここで、レーザー回折・散乱法とは、充填材粒子にレーザー光を照射したとき、粒子径により散乱光の強度パターンが変化することを利用した測定法である。
The inorganic filler is, for example, at least the following three components, that is, a component (a) having an average particle size of 10 μm or more and 70 μm or less, a component (b) having an average particle size of 1 μm or more and less than 10 μm, and an average particle size of 0. It is preferable to contain the component (c) of 1 μm or more and less than 1 μm.
The average particle diameter is measured using a known particle size measuring apparatus (for example, “Microtrack SPA-7997” manufactured by Nikkiso Co., Ltd.) using a laser diffraction / scattering method. Here, the laser diffraction / scattering method is a measurement method utilizing the fact that the intensity pattern of the scattered light changes depending on the particle diameter when the filler particles are irradiated with laser light.

特許文献1、2では、熱伝導性を向上させるために、無機充填材を細密充填しているが、細密充填すると無機充填材が動かない状態となり、流動性は大きく低下する。流動性が低下すれば配線回路等の厚み段差や回路間に樹脂組成物が流れ込まず、層間接着界面にクラックやボイドが発生し、絶縁特性が低下する。そこで、無機充填材を細密充填させず、熱伝導性を確保しつつ、流動性を向上させた構成とすることが好ましい。   In Patent Documents 1 and 2, in order to improve thermal conductivity, the inorganic filler is finely packed. However, if the fine filler is finely packed, the inorganic filler does not move, and the fluidity is greatly reduced. If the fluidity is lowered, the resin composition does not flow between the thickness steps of the wiring circuit or the like and between the circuits, cracks and voids are generated at the interlayer adhesion interface, and the insulating properties are lowered. Therefore, it is preferable that the fluidity is improved while ensuring the thermal conductivity without densely filling the inorganic filler.

成分(a)は、粒径が大きいため、粒子同士の接触面積が小さくなる。そのため、成分(a)だけでは、高い熱伝導性を得ることは難しい。そこで、成分(b)を含有させることで、大きい粒子の間に小さい粒子が入り込み、熱の流路を確保することができ、熱伝導性を向上させることができる。ただし、この2成分だけでは細密充填に近く流動性が低下する。そこで、さらに粒径の小さい成分(c)を含有させることにより、成分(c)の粒子が成分(a)及び成分(b)の粒子の流動性を向上させるための「ころ」の役目を果たす。   Since the component (a) has a large particle size, the contact area between the particles is small. Therefore, it is difficult to obtain high thermal conductivity only with the component (a). Therefore, by including the component (b), small particles can enter between large particles, a heat flow path can be secured, and thermal conductivity can be improved. However, with these two components alone, the fluidity is close to close packing. Therefore, by containing the component (c) having a smaller particle diameter, the particles of the component (c) serve as a “roller” for improving the fluidity of the particles of the component (a) and the component (b). .

また、流動後の樹脂硬化時には、成分(c)の粒子が成分(a)及び成分(b)の粒子の隙間を埋めることになり、樹脂硬化後もこの状態を維持して、熱伝導性向上にも寄与する。こうして、細密充填でなくても熱伝導性を確保しつつ、例えば、70μmを超えるような大きな厚み段差がある場合においても、回路埋め性が良好な樹脂組成物を得ることができる。   In addition, when the resin is cured after flowing, the particles of the component (c) fill the gaps between the particles of the component (a) and the component (b), and this state is maintained even after the resin is cured to improve thermal conductivity. Also contributes. In this way, a resin composition having good circuit filling properties can be obtained while ensuring thermal conductivity even when not densely packed, even when there is a large thickness step exceeding 70 μm, for example.

成分(a)の平均粒径が小さいと、絶縁層(樹脂硬化物)内で樹脂と無機充填材の界面が増加するため、熱抵抗が大きくなり、熱伝導性が低下する。また、平均粒径が大きいと、樹脂と無機充填材の界面から吸湿しやすくなるため絶縁特性が低下する。成分(a)の平均粒径が前述の範囲であれば、熱伝導性、絶縁特性を十分に確保することができ、好ましい。同様に、成分(b)の平均粒径、成分(c)の平均粒径についても、熱伝導性や回路埋め性の観点から、前述の範囲が好ましい。   When the average particle size of the component (a) is small, the interface between the resin and the inorganic filler increases in the insulating layer (cured resin product), so that the thermal resistance increases and the thermal conductivity decreases. On the other hand, if the average particle size is large, moisture absorption is likely to occur from the interface between the resin and the inorganic filler, so that the insulating properties are deteriorated. If the average particle diameter of a component (a) is the above-mentioned range, heat conductivity and an insulation characteristic can fully be ensured, and it is preferable. Similarly, the average particle diameter of the component (b) and the average particle diameter of the component (c) are preferably in the above ranges from the viewpoints of thermal conductivity and circuit filling properties.

成分(a)と成分(b)との合算体積と、成分(c)の体積との体積比は、90:10〜70:30とすることが好ましい。成分(c)の粒子は、成分(a)及び成分(b)の粒子の流動性を向上させるための「ころ」の役目を果たすが、成分(c)の体積比が少ない場合、含有量が少ないため流動性は向上しない。また、体積比が多い場合、成分(a)及び成分(b)の粒子の充填を阻害して熱伝導性が低下する。前記体積比が前述の範囲であれば、熱伝導性、回路埋め性を十分に確保することができる。前記体積比を、90:10〜80:20とすると、熱伝導性、回路埋め性がさらに良好となるので、より好ましい。   The volume ratio of the combined volume of the component (a) and the component (b) and the volume of the component (c) is preferably 90:10 to 70:30. The particles of component (c) serve as “rollers” for improving the fluidity of the particles of component (a) and component (b), but if the volume ratio of component (c) is small, the content is The fluidity is not improved because it is small. Moreover, when there are many volume ratios, the filling of the particle | grains of a component (a) and a component (b) is inhibited, and thermal conductivity falls. If the volume ratio is in the above-mentioned range, sufficient thermal conductivity and circuit fillability can be ensured. It is more preferable that the volume ratio is 90:10 to 80:20, since the thermal conductivity and circuit filling properties are further improved.

また、成分(a)の体積と成分(b)の体積との体積比は、75:25〜60:40とすることが、より好ましい。これにより、細密充填にならないため、流動性を確保できる。成分(b)の体積比が25より小さくなってくると、細密充填に近づくため、流動性が低下してくる。また、成分(b)の体積比が40より大きくなってくると、成分(a)の粒子同士が接触すべき箇所にまで成分(b)の粒子が存在するようになるため、樹脂と無機充填材の界面が増加し、熱伝導性も低下してくる。この体積比の範囲内であれば、例えば、70μmを超えるような大きな回路の厚み段差がある配線板に100μmのプリプレグを重ねて一体化する場合においても、接着界面にクラックやボイドが発生することなく均一に回路の段差を埋めることができる。前記体積比を、70:30〜65:35とすると、熱伝導性、回路埋め性がさらに良好となるので、より好ましい。   Further, the volume ratio of the volume of the component (a) to the volume of the component (b) is more preferably 75:25 to 60:40. Thereby, since it does not become close packing, fluidity | liquidity is securable. When the volume ratio of the component (b) is smaller than 25, the fluidity is lowered because it approaches close packing. In addition, when the volume ratio of the component (b) becomes larger than 40, the particles of the component (b) are present up to the place where the particles of the component (a) should come into contact with each other. The interface of the material increases and the thermal conductivity decreases. Within this volume ratio range, for example, even when a 100 μm prepreg is stacked and integrated on a wiring board having a large circuit thickness step exceeding 70 μm, cracks and voids are generated at the adhesive interface. The steps of the circuit can be filled uniformly. It is more preferable that the volume ratio is 70:30 to 65:35, since the thermal conductivity and circuit fillability are further improved.

無機充填材の総含有量は、熱硬化性樹脂固形分と無機充填材を合わせた体積中に、30〜80体積%とすることが好ましい。無機充填材の総含有量が少ないと、十分な熱伝導性が確保できず、総含有量が多いと、ワニスの粘度が上がりすぎるため、外観の均一なプリプレグの製造が困難となる。無機充填材の総含有量が前述の範囲であれば、熱伝導性を十分に確保することができ、また、外観の均一なプリプレグを製造することができる。   The total content of the inorganic filler is preferably 30 to 80% by volume in the combined volume of the thermosetting resin solid content and the inorganic filler. If the total content of the inorganic filler is small, sufficient thermal conductivity cannot be ensured. If the total content is large, the viscosity of the varnish is excessively increased, making it difficult to produce a prepreg having a uniform appearance. If the total content of the inorganic filler is within the above range, sufficient thermal conductivity can be ensured, and a prepreg having a uniform appearance can be produced.

成分(a)及び成分(b)の材質は、アルミナ、シリカ、酸化チタン等を使用することができる。熱伝導率が30W/m・K以上のものを採用することにより、絶縁層の熱伝導性がさらに向上するため好ましい。
また、成分(c)は、アルミナ、シリカ、酸化チタン、酸化亜鉛等を使用することができる。粒子の形状が球状であれば流動性が向上するため好ましい。
As the material of component (a) and component (b), alumina, silica, titanium oxide or the like can be used. It is preferable to employ a material having a thermal conductivity of 30 W / m · K or more because the thermal conductivity of the insulating layer is further improved.
As the component (c), alumina, silica, titanium oxide, zinc oxide or the like can be used. If the shape of the particles is spherical, it is preferable because the fluidity is improved.

さらに、平均粒径が0.001〜0.05μmの潤滑材を含有することが好ましい。材質は、アルミナ、シリカ、酸化チタン、酸化亜鉛等を使用することができる。前記潤滑材は、成分(a)〜成分(c)を流動させる「ころ」の役目を果たすとともに、流動後の樹脂硬化時には、成分(a)〜成分(c)の粒子の隙間に充填され、樹脂の硬化後もその状態が維持され、熱伝導性を向上させる効果もある。なお、潤滑材の含有量が多いと、成分(a)〜成分(c)の粒子同士が接触すべき箇所にまで潤滑材が存在するようになり、硬化した樹脂中にボイドが発生し熱伝導性が低下する。そのため、前記潤滑材を配合する場合は、その配合量は、熱硬化性樹脂固形分に対して、2質量%以下とする。潤滑材の配合量が少ないと、その配合による流動性向上の効果が十分に現れないので、熱硬化性樹脂固形分に対して0.5質量%以上とすることが望ましい。   Furthermore, it is preferable to contain a lubricant having an average particle size of 0.001 to 0.05 μm. As the material, alumina, silica, titanium oxide, zinc oxide, or the like can be used. The lubricant plays a role of “roller” for flowing the component (a) to the component (c), and at the time of curing the resin after flowing, the gap between the particles of the component (a) to the component (c) is filled. The state is maintained even after the resin is cured, and there is an effect of improving thermal conductivity. In addition, when there is much content of a lubricant, a lubricant will come to the location which the particle | grains of a component (a)-a component (c) should contact, and a void generate | occur | produces in hardened resin and heat conduction is carried out. Sex is reduced. Therefore, when mix | blending the said lubricant, the compounding quantity shall be 2 mass% or less with respect to thermosetting resin solid content. When the blending amount of the lubricant is small, the effect of improving the fluidity due to the blending does not sufficiently appear, so it is desirable that the content is 0.5% by mass or more based on the thermosetting resin solid content.

本発明に使用する熱硬化性樹脂は、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂等を使用することができる。例えば、エポキシ樹脂モノマと硬化剤とから生成されたものを用いることができる。エポキシ樹脂モノマは、ビスフェノールA型エポキシ、ビスフェノールF型エポキシ、ターフェニル型エポキシやその誘導体など一般的なエポキシ樹脂モノマはいずれも使用できる。(式1)で示される分子構造式のビフェニル骨格あるいはビフェニル誘導体の骨格をもち、1分子中に2個以上のエポキシ基をもつエポキシ樹脂モノマの硬化物は樹脂自体の熱伝導性が良好であり、放熱性が向上するため好ましい。   As the thermosetting resin used in the present invention, an epoxy resin, a phenol resin, a polyimide resin, or the like can be used. For example, what was produced | generated from the epoxy resin monomer and the hardening | curing agent can be used. As the epoxy resin monomer, any of general epoxy resin monomers such as bisphenol A type epoxy, bisphenol F type epoxy, terphenyl type epoxy and derivatives thereof can be used. A cured product of an epoxy resin monomer having a biphenyl skeleton or a biphenyl derivative skeleton having a molecular structural formula represented by (Formula 1) and having two or more epoxy groups in one molecule has good thermal conductivity of the resin itself. It is preferable because heat dissipation is improved.

Figure 0005909808
Figure 0005909808

エポキシ樹脂モノマに配合する硬化剤は、エポキシ樹脂モノマの硬化反応を進行させるために従来用いられている硬化剤を使用することができる。例えば、フェノール類又はその化合物、アミン化合物やその誘導体、酸無水物、イミダゾールやその誘導体などが挙げられる。また、硬化促進剤は、エポキシ樹脂モノマとフェノール類又はその化合物、アミン類またはその化合物との重縮合反応を進行させるために従来用いられている硬化促進剤を使用することができる。例えば、トリフェニルホスフィン、イミダゾールやその誘導体、三級アミン化合物やその誘導体などが挙げられる。   As the curing agent to be blended with the epoxy resin monomer, a conventionally used curing agent can be used to advance the curing reaction of the epoxy resin monomer. Examples thereof include phenols or compounds thereof, amine compounds and derivatives thereof, acid anhydrides, imidazoles and derivatives thereof, and the like. Moreover, the hardening accelerator conventionally used in order to advance the polycondensation reaction with an epoxy resin monomer, phenols or its compound, amines, or its compound can be used for a hardening accelerator. Examples thereof include triphenylphosphine, imidazole and derivatives thereof, tertiary amine compounds and derivatives thereof.

エポキシ樹脂モノマと硬化剤、無機充填材、硬化促進剤を配合したエポキシ樹脂組成物には、必要に応じて難燃剤や希釈剤、可塑剤、カップリング剤等を含むことができる。また、このエポキシ樹脂組成物をシート状繊維基材に含浸し乾燥してプリプレグを製造する際、必要に応じて溶剤を使用することができる。これらの使用が、硬化物の熱伝導性に影響を与えることはない。   The epoxy resin composition in which an epoxy resin monomer, a curing agent, an inorganic filler, and a curing accelerator are blended may contain a flame retardant, a diluent, a plasticizer, a coupling agent, and the like as necessary. Moreover, when impregnating this epoxy resin composition in a sheet-like fiber base material and drying and manufacturing a prepreg, a solvent can be used as needed. These uses do not affect the thermal conductivity of the cured product.

上記の無機充填材と熱硬化性樹脂組成物を混練・混合してワニスを調製する際、熱硬化性樹脂組成物に無機充填材を添加していくと無機充填材のチキソ性および凝集性のため、ワニスの粘度が増大する。そのため、攪拌羽根を使用するタイプの攪拌機により混練・混合を行なう場合は、無機充填材を10体積%以上添加すると攪拌しにくくなり、ワニスも均一分散できなくなる。そこで、強力なせん断力を発生する分散機を選択することで、無機充填材の分散性がよくなりワニスの粘度も低下するため、80体積%までの無機充填材の添加が可能となる。強力なせん断力を発生する分散機は、例えば、ボールミル、ビーズミル、三本ロールミルやその原理を応用した分散機などが挙げられる。   When preparing the varnish by kneading and mixing the above inorganic filler and the thermosetting resin composition, if the inorganic filler is added to the thermosetting resin composition, the thixotropic and cohesive properties of the inorganic filler are increased. Therefore, the viscosity of the varnish increases. For this reason, when kneading and mixing are performed with a stirrer using a stirring blade, if the inorganic filler is added in an amount of 10% by volume or more, stirring becomes difficult and varnish cannot be uniformly dispersed. Therefore, by selecting a disperser that generates a strong shearing force, the dispersibility of the inorganic filler is improved and the viscosity of the varnish is also reduced, so that an inorganic filler up to 80% by volume can be added. Examples of the disperser that generates a strong shearing force include a ball mill, a bead mill, a three-roll mill, and a disperser that applies the principle thereof.

本発明を実施するに当り、プリプレグの製造は、一般的に行なわれている製造法を適用することができる。例えば、無機充填材を含む熱硬化性樹脂組成物のワニスをシート状のガラス不織布基材に含浸し加熱乾燥して、半硬化状態とすることができる。   In practicing the present invention, a commonly used production method can be applied to the production of the prepreg. For example, a varnish of a thermosetting resin composition containing an inorganic filler can be impregnated into a sheet-like glass nonwoven fabric substrate and dried by heating to obtain a semi-cured state.

本発明に係る積層板は、上述のプリプレグを、プリプレグ層の全層ないしは一部の層として加熱加圧成形してなるもの、すなわち、当該プリプレグの層を含む積層構成体を加熱加圧成形してなるものであり、必要に応じて前記加熱加圧成形により片面あるいは両面に銅箔等の金属箔を一体に貼り合せることができる。また、上述のプリプレグは、予め準備した配線板同士を重ねて一体化し多層の回路の配線板とするときの接着層として使用することもできる。
上記の配線板は、絶縁層の熱伝導性が良好で優れた放熱性を有するので、自動車機器用の配線板や、パソコン等の高密度実装配線板、インバータ等の絶縁材料に好適である。
The laminate according to the present invention is obtained by heat-pressing the above-described prepreg as a whole layer or a part of the prepreg layer, that is, by heat-pressing a laminated structure including the prepreg layer. If necessary, a metal foil such as a copper foil can be integrally bonded to one side or both sides by the heating and pressing. The above-mentioned prepreg can also be used as an adhesive layer when wiring boards prepared in advance are stacked and integrated to form a multilayer circuit wiring board.
The above-mentioned wiring board is suitable for insulating materials such as wiring boards for automobile equipment, high-density mounting wiring boards such as personal computers, and inverters because the insulating layer has good thermal conductivity and excellent heat dissipation.

以下、本発明に係る実施例を示し、本発明について詳細に説明する。尚、以下の実施例および比較例において、「部」とは「質量部」を意味する。また、本発明は、その要旨を逸脱しない限り、本実施例に限定されるものではない。   Examples of the present invention will be described below, and the present invention will be described in detail. In the following examples and comparative examples, “part” means “part by mass”. Moreover, this invention is not limited to a present Example, unless it deviates from the summary.

実施例1
エポキシ樹脂モノマ成分としてビフェニル骨格をもつエポキシ樹脂モノマ(ジャパンエポキシレジン製「YL6121H」,エポキシ当量175)100部を用意し、これをメチルイソブチルケトン(和光純薬製)100部に100℃で溶解し、室温に戻した。尚、「YL6121H」は、既述の分子構造式(式1)において、R=−CH,n=0.1であるエポキシ樹脂モノマと分子構造式(式1)において、R=−H,n=0.1であるエポキシ樹脂モノマを等モルで含有するエポキシ樹脂モノマである。
硬化剤として1,5−ジアミノナフタレン(和光純薬製「1,5−DAN」,アミン当量40)25部を用意し、これをメチルイソブチルケトン(和光純薬製)100部に100℃で溶解し、室温に戻した。
Example 1
As an epoxy resin monomer component, prepare 100 parts of an epoxy resin monomer having a biphenyl skeleton (Japan Epoxy Resin “YL6121H”, epoxy equivalent 175), and dissolve it at 100 ° C. in 100 parts of methyl isobutyl ketone (Wako Pure Chemical Industries, Ltd.). , Returned to room temperature. “YL6121H” is an epoxy resin monomer in which R = —CH 3 and n = 0.1 in the molecular structural formula (formula 1) described above and R = —H, in the molecular structural formula (formula 1). It is an epoxy resin monomer containing equimolar amounts of an epoxy resin monomer where n = 0.1.
Prepare 25 parts of 1,5-diaminonaphthalene (“1,5-DAN” manufactured by Wako Pure Chemical Industries, Ltd., amine equivalent 40) as a curing agent and dissolve it in 100 parts of methyl isobutyl ketone (manufactured by Wako Pure Chemical Industries) at 100 ° C. And returned to room temperature.

上記のエポキシ樹脂モノマ溶液と硬化剤溶液を混合・撹拌して均一なワニスを作製し、この混合物(熱硬化性樹脂ワニス)に、無機充填材として、成分(a):アルミナ(住化アルケム製「AA−18」,平均粒径:18μm,熱伝導率30W/m・K)115部(熱硬化性樹脂固形分と無機充填材を合わせた体積中の20.2体積%に相当、以下体積%のみ表記する)、成分(b):アルミナ(住化アルケム製「AA−3」,平均粒径:3μm,熱伝導率30W/m・K,粒子形状:粒子状)39部(6.8体積%に相当)、成分(c):アルミナ(住化アルケム製「AA−03」,平均粒径:0.3μm,熱伝導率30W/m・K)17部(3.0体積%に相当)およびメチルイソブチルケトン(和光純薬製)を67部加えて混練し、エポキシ樹脂ワニスを調製した。
なお、成分(a)と成分(b)との合計体積と、成分(c)の体積との体積比は、90:10であり、成分(a)の体積と成分(b)の体積との体積比は、75:25であり、無機充填材の総含有量は、熱硬化性樹脂固形分と無機充填材を合わせた体積中に30体積%である。
The above epoxy resin monomer solution and the curing agent solution are mixed and stirred to produce a uniform varnish, and the mixture (thermosetting resin varnish) has an inorganic filler as component (a): alumina (manufactured by Sumika Alchem). “AA-18”, average particle size: 18 μm, thermal conductivity 30 W / m · K) 115 parts (corresponding to 20.2% by volume in the combined volume of thermosetting resin solids and inorganic filler, volume below Ingredient (b): Alumina (“AA-3” manufactured by Sumika Alchem, average particle size: 3 μm, thermal conductivity 30 W / m · K, particle shape: particulate) 39 parts (6.8) Component (c): Alumina (“AA-03” manufactured by Sumika Alchem, average particle size: 0.3 μm, thermal conductivity 30 W / m · K) 17 parts (corresponding to 3.0% by volume) ) And 67 parts of methyl isobutyl ketone (Wako Pure Chemical Industries, Ltd.) The resin varnish was prepared.
In addition, the volume ratio of the total volume of the component (a) and the component (b) and the volume of the component (c) is 90:10, and the volume of the component (a) and the volume of the component (b) The volume ratio is 75:25, and the total content of the inorganic filler is 30% by volume in the combined volume of the thermosetting resin solids and the inorganic filler.

上記のエポキシ樹脂ワニスを、厚さ60μmのガラス不織布(日本バイリーン製「EPM−006」,質量:6g/m)に含浸し加熱乾燥して半硬化状態のプリプレグを得た。
作製したプリプレグ2枚とその両側に厚さ70μm銅箔(CF−T9C、福田金属製)を配置し、温度175℃、圧力4MPaの条件で90分間加熱加圧成形して一体化し、厚さ0.2mmの積層板を得た。
また、上記積層板の銅箔をエッチングにて回路加工した内層用回路板を準備する。その内層用回路板の両側に、上記のプリプレグ1枚と厚さ35μmの銅箔をこの順序で配置し、温度175℃、圧力4MPaの条件で90分間加熱加圧成形して一体化し、多層の回路板とした(但し、表面の銅箔は回路に未加工)。
The epoxy resin varnish was impregnated into a 60 μm thick glass nonwoven fabric (“EPM-006” manufactured by Nippon Vilene, mass: 6 g / m 2 ) and dried by heating to obtain a semi-cured prepreg.
Two prepared prepregs and 70 μm thick copper foil (CF-T9C, manufactured by Fukuda Metals) are arranged on both sides of the two prepregs, and they are integrated by heating and pressing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa. A 2 mm laminate was obtained.
Moreover, the circuit board for inner layers which prepared the circuit process by etching the copper foil of the said laminated board is prepared. On one side of the circuit board for the inner layer, one prepreg and a copper foil having a thickness of 35 μm are arranged in this order, and they are integrally molded by heating and pressing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa. A circuit board was used (however, the copper foil on the surface was not processed into a circuit).

実施例1で得た多層の回路板について、回路埋め性を、また積層板について、厚さ方向の熱伝導率、耐湿絶縁性、フィルドビア充填性を評価した結果を、エポキシ樹脂組成物の配合組成と共に表1にまとめて示す。測定方法は、以下に示すとおりである。
なお、無機充填材の平均粒径は、日機装株式会社製「マイクロトラックSPA−7997型」を用いて測定した。
回路埋め性:多層の回路板の内層回路と樹脂の界面にクラックやボイドが入らず、かつ厚さ方向の熱伝導率が7W/m・K以上であれば「◎」、回路と樹脂の界面にクラックやボイドが入らず、かつ厚さ方向の熱伝導率が7W/m・K未満であれば「○」、回路と樹脂の界面にクラックやボイドが見られるものを「×」とした。なお、エポキシ樹脂ワニスの増粘などで、プリプレグや積層板が作製できなかったものは「−」とした。
厚さ方向の熱伝導率:上記の積層板から10mm×10mmの板状試料を切り出し、キセノンフラッシュ法(ASTM E1461)に準拠して室温で測定した。なお、エポキシ樹脂ワニスの増粘などで、プリプレグや積層板が作製できなかったものは「−」とした。
耐湿絶縁性:85℃−85%の恒温恒湿槽中に板状試料を入れて50Vの電圧をかけ、1000時間経過後の絶縁抵抗を測定した。そのとき1.0×1010Ω以上であれば「○」、1.0×1010Ω未満であれば「×」とした。なお、エポキシ樹脂ワニスの増粘などで、プリプレグや積層板が作製できなかったものは「−」とした。
フィルドビア充填性:作製した多層の回路板にレーザー加工にてφ0.3mmのビアホールをあけ、ビアフィルめっき法によるビアホール内部へのめっき金属の充填性を評価した。ビアホール内部が完全に充填されていれば「○」、充填できていない場合は「×」とした。
About the multilayer circuit board obtained in Example 1, the circuit filling property was evaluated, and the laminated board was evaluated for the thermal conductivity in the thickness direction, the moisture resistance insulation, and the filled via filling property. The results are summarized in Table 1. The measuring method is as follows.
The average particle size of the inorganic filler was measured using “Microtrac SPA-7997 type” manufactured by Nikkiso Co., Ltd.
Circuit fillability: “◎” if there are no cracks or voids at the interface between the inner circuit of the multilayer circuit board and the resin, and the thermal conductivity in the thickness direction is 7 W / m · K or more. If no cracks or voids are present and the thermal conductivity in the thickness direction is less than 7 W / m · K, “◯” indicates that cracks or voids are observed at the interface between the circuit and the resin. In addition, what was not able to produce a prepreg or a laminated board by the thickening of an epoxy resin varnish, etc. was set to "-".
Thermal conductivity in the thickness direction: A 10 mm × 10 mm plate-like sample was cut out from the above laminate and measured at room temperature in accordance with a xenon flash method (ASTM E1461). In addition, what was not able to produce a prepreg or a laminated board by the thickening of an epoxy resin varnish, etc. was set to "-".
Humidity resistance: A plate-like sample was put in a constant temperature and humidity chamber at 85 ° C. to 85%, a voltage of 50 V was applied, and the insulation resistance after 1000 hours was measured. At that time, if it was 1.0 × 1010Ω or more, it was “◯”, and if it was less than 1.0 × 10 10 Ω, it was “x”. In addition, what was not able to produce a prepreg or a laminated board by the thickening of an epoxy resin varnish, etc. was set to "-".
Filled via filling property: A via hole having a diameter of 0.3 mm was formed by laser processing on the produced multilayer circuit board, and the filling property of the plated metal inside the via hole by the via fill plating method was evaluated. When the inside of the via hole is completely filled, “◯” is indicated. When the via hole is not filled, “X” is indicated.

実施例1においては、積層板の厚さ方向の熱伝導率が3.5W/m・Kであり、回路埋め性、耐湿絶縁性、フィルドビア充填性共に良好であった。   In Example 1, the thermal conductivity in the thickness direction of the laminate was 3.5 W / m · K, and the circuit filling property, moisture resistance insulation property, and filled via filling property were good.

実施例2〜8
実施例1において、成分(a)と成分(b)との合計体積と、成分(c)の体積との体積比、成分(a)の体積と成分(b)の体積との体積比、及び無機充填材の総含有量を、それぞれ表1に示すように変えたエポキシ樹脂ワニスを使用する以外は、実施例1と同様にしてプリプレグ、積層板および多層の回路板を得た。
なお、実施例2では、成分(a)と成分(b)との合計体積と、成分(c)の体積との体積比は、70:30であり、成分(a)の体積と成分(b)の体積との体積比は、75:25であり、無機充填材の総含有量は、熱硬化性樹脂固形分と無機充填材を合わせた体積中に30体積%である。
実施例3では、成分(a)と成分(b)との合計体積と、成分(c)の体積との体積比は、90:10であり、成分(a)の体積と成分(b)の体積との体積比は、60:40であり、無機充填材の総含有量は、熱硬化性樹脂固形分と無機充填材を合わせた体積中に30体積%である。
実施例4では、成分(a)と成分(b)との合計体積と、成分(c)の体積との体積比は、70:30であり、成分(a)の体積と成分(b)の体積との体積比は、60:40であり、無機充填材の総含有量は、熱硬化性樹脂固形分と無機充填材を合わせた体積中に30体積%である。
実施例5では、成分(a)と成分(b)との合計体積と、成分(c)の体積との体積比は、90:10であり、成分(a)の体積と成分(b)の体積との体積比は、75:25であり、無機充填材の総含有量は、熱硬化性樹脂固形分と無機充填材を合わせた体積中に80体積%である。
実施例6では、成分(a)と成分(b)との合計体積と、成分(c)の体積との体積比は、70:30であり、成分(a)の体積と成分(b)の体積との体積比は、75:25であり、無機充填材の総含有量は、熱硬化性樹脂固形分と無機充填材を合わせた体積中に80体積%である。
実施例7では、成分(a)と成分(b)との合計体積と、成分(c)の体積との体積比は、90:10であり、成分(a)の体積と成分(b)の体積との体積比は、60:40であり、無機充填材の総含有量は、熱硬化性樹脂固形分と無機充填材を合わせた体積中に80体積%である。
実施例8では、成分(a)と成分(b)との合計体積と、成分(c)の体積との体積比は、70:30であり、成分(a)の体積と成分(b)の体積との体積比は、60:40であり、無機充填材の総含有量は、熱硬化性樹脂固形分と無機充填材を合わせた体積中に80体積%である。
Examples 2-8
In Example 1, the volume ratio of the total volume of component (a) and component (b) to the volume of component (c), the volume ratio of the volume of component (a) to the volume of component (b), and A prepreg, a laminate, and a multilayer circuit board were obtained in the same manner as in Example 1 except that an epoxy resin varnish having a total inorganic filler content changed as shown in Table 1 was used.
In Example 2, the volume ratio of the total volume of component (a) and component (b) to the volume of component (c) is 70:30, and the volume of component (a) and component (b) ) Volume ratio is 75:25, and the total content of the inorganic filler is 30% by volume in the combined volume of the thermosetting resin solids and the inorganic filler.
In Example 3, the volume ratio of the total volume of the component (a) and the component (b) and the volume of the component (c) is 90:10, and the volume of the component (a) and the component (b) The volume ratio with respect to the volume is 60:40, and the total content of the inorganic filler is 30% by volume in the combined volume of the thermosetting resin solid content and the inorganic filler.
In Example 4, the volume ratio of the total volume of the component (a) and the component (b) to the volume of the component (c) is 70:30, and the volume of the component (a) and the component (b) The volume ratio with respect to the volume is 60:40, and the total content of the inorganic filler is 30% by volume in the combined volume of the thermosetting resin solid content and the inorganic filler.
In Example 5, the volume ratio of the total volume of component (a) and component (b) to the volume of component (c) is 90:10, and the volume of component (a) and component (b) The volume ratio with respect to the volume is 75:25, and the total content of the inorganic filler is 80% by volume in the combined volume of the thermosetting resin solid content and the inorganic filler.
In Example 6, the volume ratio of the total volume of the component (a) and the component (b) and the volume of the component (c) is 70:30, and the volume of the component (a) and the component (b) The volume ratio with respect to the volume is 75:25, and the total content of the inorganic filler is 80% by volume in the combined volume of the thermosetting resin solid content and the inorganic filler.
In Example 7, the volume ratio of the total volume of component (a) and component (b) to the volume of component (c) is 90:10, and the volume of component (a) and the volume of component (b) The volume ratio with respect to the volume is 60:40, and the total content of the inorganic filler is 80% by volume in the combined volume of the thermosetting resin solid content and the inorganic filler.
In Example 8, the volume ratio of the total volume of the component (a) and the component (b) and the volume of the component (c) is 70:30, and the volume of the component (a) and the component (b) The volume ratio with respect to the volume is 60:40, and the total content of the inorganic filler is 80% by volume in the combined volume of the thermosetting resin solid content and the inorganic filler.

これら積層板の厚さ方向の熱伝導率を測定した結果、無機充填材の総含有量が増加すると厚さ方向の熱伝導率は向上した。また、成分(a)の体積が多くなると厚さ方向の熱伝導率は向上する傾向がみられた。逆に、成分(c)の体積が多くなると厚さ方向の熱伝導率は低下する傾向がみられた。この添加量の範囲であれば回路埋め性、耐湿絶縁性、フィルドビア充填性は共に良好であった。   As a result of measuring the thermal conductivity in the thickness direction of these laminates, the thermal conductivity in the thickness direction improved as the total content of the inorganic filler increased. Moreover, when the volume of the component (a) increased, the thermal conductivity in the thickness direction tended to improve. On the contrary, when the volume of the component (c) increases, the thermal conductivity in the thickness direction tends to decrease. Within this range of addition amount, the circuit filling property, moisture resistance insulation property, and filled via filling property were all good.

実施例9
実施例8において、成分(b)として、アルミナ「AA−3」の代わりに、粒子状の無機充填材である水酸化アルミニウム(住友化学製「C−302A」,平均粒径2.0μm,熱伝導率3.0W/m・K,粒子形状:粒子状)358部(22.4体積%に相当)を使用する以外は、実施例8と同様にしてプリプレグ、積層板および多層の回路板を得た。
実施例9では、成分(a)と成分(b)との合計体積と、成分(c)の体積との体積比は、70:30であり、成分(a)の体積と成分(b)の体積との体積比は、60:40であり、無機充填材の総含有量は、熱硬化性樹脂固形分と無機充填材を合わせた体積中に80体積%である。
Example 9
In Example 8, as component (b), instead of alumina “AA-3”, aluminum hydroxide (“C-302A” manufactured by Sumitomo Chemical Co., Ltd., average particle size 2.0 μm, heat) A prepreg, a laminate and a multilayer circuit board were prepared in the same manner as in Example 8 except that 358 parts (corresponding to 22.4% by volume) having a conductivity of 3.0 W / m · K, particle shape: particle shape) was used. Obtained.
In Example 9, the volume ratio of the total volume of component (a) and component (b) to the volume of component (c) is 70:30, and the volume of component (a) and component (b) The volume ratio with respect to the volume is 60:40, and the total content of the inorganic filler is 80% by volume in the combined volume of the thermosetting resin solid content and the inorganic filler.

この積層板の厚さ方向の熱伝導率は4.5W/m・Kであり、実施例8より若干低いものの、厚さ方向の熱伝導率の良好な積層板が得られた。また、回路埋め性、耐湿絶縁性、フィルドビア充填性共に良好であった。   The laminated plate had a thermal conductivity in the thickness direction of 4.5 W / m · K, which was slightly lower than Example 8, but a laminated plate having a good thermal conductivity in the thickness direction was obtained. In addition, the circuit filling property, moisture resistance insulation property, and filled via filling property were good.

実施例10
実施例8において、成分(b)として、アルミナ「AA−3」の代わりに、粒子状の無機充填材であるシリカ(龍森製「B−21」,平均粒径5μm,熱伝導率1.2W/m・K,粒子形状:粒子状)302部(22.4体積%に相当)を使用する以外は、実施例8と同様にしてプリプレグ、積層板および多層の回路板を得た。
実施例10では、成分(a)と成分(b)との合計体積と、成分(c)の体積との体積比は、70:30であり、成分(a)の体積と成分(b)の体積との体積比は、60:40であり、無機充填材の総含有量は、熱硬化性樹脂固形分と無機充填材を合わせた体積中に80体積%である。
Example 10
In Example 8, instead of alumina “AA-3” as component (b), silica (“B-21” manufactured by Tatsumori, average particle size 5 μm, thermal conductivity 1. A prepreg, a laminate, and a multilayer circuit board were obtained in the same manner as in Example 8, except that 302 parts (corresponding to 22.4% by volume) of 2 W / m · K, particle shape: particle shape) were used.
In Example 10, the volume ratio of the total volume of the component (a) and the component (b) and the volume of the component (c) is 70:30, and the volume of the component (a) and the component (b) The volume ratio with respect to the volume is 60:40, and the total content of the inorganic filler is 80% by volume in the combined volume of the thermosetting resin solid content and the inorganic filler.

この積層板の厚さ方向の熱伝導率は4.6W/m・Kであり、実施例8より若干低いものの、厚さ方向の熱伝導率の良好な積層板が得られた。また、回路埋め性、耐湿絶縁性、フィルドビア充填性共に良好であった。   The laminated plate had a thermal conductivity in the thickness direction of 4.6 W / m · K, which was slightly lower than Example 8, but a laminated plate having a good thermal conductivity in the thickness direction was obtained. In addition, the circuit filling property, moisture resistance insulation property, and filled via filling property were good.

実施例11〜14
実施例5において、潤滑材として、シリカ(シーアイ化成製「ナノテック」,平均粒径25nm,熱伝導率1.2W/m・K)またはアルミナ(シーアイ化成製「ナノテック」,平均粒径31nm,熱伝導率30W/m・K)を添加する以外は、実施例5と同様にして、積層板および多層の回路板を得た。それぞれ添加量は表1に示すように変えた(実施例11〜14)。
なお、実施例11では、潤滑材の含有量は、熱硬化性樹脂固形分に対して0.5質量%である。
実施例12では、潤滑材の含有量は、熱硬化性樹脂固形分に対して2.0質量%である。
実施例13では、潤滑材の含有量は、熱硬化性樹脂固形分に対して0.5質量%である。
実施例14では、潤滑材の含有量は、熱硬化性樹脂固形分に対して2.0質量%である。
Examples 11-14
In Example 5, as a lubricant, silica (CNA Chemical “Nanotech”, average particle size 25 nm, thermal conductivity 1.2 W / m · K) or alumina (CII Chemical “Nanotech”, average particle size 31 nm, heat A laminated board and a multilayer circuit board were obtained in the same manner as in Example 5 except that conductivity 30 W / m · K) was added. Each addition amount was changed as shown in Table 1 (Examples 11 to 14).
In Example 11, the content of the lubricant is 0.5% by mass with respect to the thermosetting resin solid content.
In Example 12, the content of the lubricant is 2.0% by mass with respect to the thermosetting resin solid content.
In Example 13, the content of the lubricant is 0.5% by mass with respect to the thermosetting resin solid content.
In Example 14, the content of the lubricant is 2.0% by mass with respect to the thermosetting resin solid content.

実施例11〜14の厚さ方向の熱伝導率は8.0〜12.2W/m・Kであり、流動性が向上したため、厚さ方向の熱伝導率の良好な積層板が得られた。また、回路埋め性、耐湿絶縁性、フィルドビア充填性共に良好であった。   The thermal conductivity in the thickness direction of Examples 11 to 14 was 8.0 to 12.2 W / m · K, and the fluidity was improved, so that a laminate having a good thermal conductivity in the thickness direction was obtained. . In addition, the circuit filling property, moisture resistance insulation property, and filled via filling property were good.

実施例15
実施例1において、「YL6121H」の代わりに、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン製「EP828」,エポキシ当量185)を用いる以外は実施例1と同様にしてプリプレグ、積層板および多層の回路板を得た。この積層板の厚さ方向の熱伝導率は、1.8W/m・Kであり、実施例1より熱伝導率は低下したが、回路埋め性、耐湿絶縁性、フィルドビア充填性共に良好であった。
Example 15
In Example 1, instead of “YL6121H”, a prepreg, a laminate, and a multilayer circuit board were used in the same manner as in Example 1 except that bisphenol A type epoxy resin (“EP828” manufactured by Japan Epoxy Resin, epoxy equivalent 185) was used. Got. The thermal conductivity in the thickness direction of this laminate was 1.8 W / m · K, and the thermal conductivity was lower than that in Example 1, but the circuit filling property, moisture resistance insulation property, and filled via filling property were all good. It was.

実施例16
実施例5において、エポキシ樹脂モノマ「YL6121H」の代わりに、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン製「EP828」,エポキシ当量185)を用いる以外は実施例5と同様にしてプリプレグ、積層板および多層の回路板を得た。この積層板の厚さ方向の熱伝導率は、4.5W/m・Kであり、実施例5より熱伝導率は低下したが、回路埋め性、耐湿絶縁性、フィルドビア充填性共に良好であった。
Example 16
In Example 5, in place of the epoxy resin monomer “YL6121H”, a prepreg, a laminate and a multilayer board were obtained in the same manner as in Example 5 except that a bisphenol A type epoxy resin (“EP828” manufactured by Japan Epoxy Resin, epoxy equivalent 185) was used. The circuit board was obtained. The thermal conductivity in the thickness direction of this laminate was 4.5 W / m · K, and the thermal conductivity was lower than in Example 5. However, the circuit filling property, moisture resistance insulation property, and filled via filling property were all good. It was.

比較例1
実施例1において、熱硬化性樹脂固形分と無機充填材を合わせた体積中に占めるアルミナの割合を、25体積%に変えたエポキシ樹脂ワニスを使用する以外は、実施例1と同様にしてプリプレグ、積層板および多層の回路板を得た。
なお、比較例1では、成分(a)と成分(b)との合計体積と、成分(c)の体積との体積比は、90:10であり、成分(a)の体積と成分(b)の体積との体積比は、80:20であり、無機充填材の総含有量は、熱硬化性樹脂固形分と無機充填材を合わせた体積中に25体積%である。
Comparative Example 1
In Example 1, a prepreg was used in the same manner as in Example 1 except that an epoxy resin varnish was used in which the proportion of alumina in the combined volume of the thermosetting resin solids and the inorganic filler was changed to 25% by volume. A laminated board and a multilayer circuit board were obtained.
In Comparative Example 1, the volume ratio of the total volume of component (a) and component (b) to the volume of component (c) is 90:10, and the volume of component (a) and component (b) ) Volume ratio is 80:20, and the total content of the inorganic filler is 25% by volume in the combined volume of the thermosetting resin solid content and the inorganic filler.

比較例1では、無機充填材の総含有量が少ないため、回路埋め性や耐湿絶縁性は良好なものの、厚さ方向の熱伝導率は0.4W/m・Kであり、実施例1より大きく悪化した。   In Comparative Example 1, since the total content of the inorganic filler is small, the circuit filling property and the moisture resistance insulation property are good, but the thermal conductivity in the thickness direction is 0.4 W / m · K. Deteriorated greatly.

比較例2〜3
比較例1において、成分(b)として、アルミナ「AA−3」の代わりに、粒子状の無機充填材である水酸化アルミニウム(住友化学製「C−302A」,平均粒径2.0μm,熱伝導率3.0W/m・K,粒子形状:粒子状)またはシリカ(龍森製「B−21」,平均粒径5μm,熱伝導率1.2W/m・K)を表3のように使用する以外は、比較例1と同様にしてプリプレグ、積層板および多層の回路板を得た。
Comparative Examples 2-3
In Comparative Example 1, as a component (b), instead of alumina “AA-3”, aluminum hydroxide which is a particulate inorganic filler (“C-302A” manufactured by Sumitomo Chemical Co., Ltd., average particle size 2.0 μm, heat Conductivity 3.0 W / m · K, particle shape: particulate form or silica (“T-21 made by Tatsumori, average particle size 5 μm, thermal conductivity 1.2 W / m · K) as shown in Table 3. A prepreg, a laminated board and a multilayer circuit board were obtained in the same manner as in Comparative Example 1 except that it was used.

比較例2、3では、無機充填材の総含有量が少ないため、回路埋め性や耐湿絶縁性は良好なものの、熱伝導率が低下した。   In Comparative Examples 2 and 3, since the total content of the inorganic filler was small, the circuit conductivity and moisture resistance insulation were good, but the thermal conductivity was lowered.

比較例4
実施例1において、「EPM−006」の代わりに、厚さ400μmのガラス不織布(オリベスト製「SYS−068」,質量:68g/m)を用いる以外は実施例1と同様にしてプリプレグおよび積層板を得た。この積層板の厚さ方向の熱伝導率は、3.5W/m・Kであり、回路埋め性や耐湿絶縁性は良好なものの、絶縁層が厚いためにフィルドビア充填性が不十分であった。
Comparative Example 4
In Example 1, instead of “EPM-006”, a prepreg and a laminate were obtained in the same manner as in Example 1 except that a glass nonwoven fabric having a thickness of 400 μm (“SYS-068” manufactured by Olivest, mass: 68 g / m 2 ) was used. I got a plate. The thermal conductivity in the thickness direction of this laminated board is 3.5 W / m · K, and although the circuit filling property and the moisture resistance insulation property are good, the filled via filling property is insufficient due to the thick insulating layer. .

比較例5
実施例5において、「EPM−006」の代わりに、厚さ400μmのガラス不織布(オリベスト製「SYS−068」,質量:68g/m)を用いる以外は実施例5と同様にしてプリプレグおよび積層板を得た。この積層板の厚さ方向の熱伝導率は、7.0W/m・Kであり、回路埋め性や耐湿絶縁性は良好なものの、絶縁層が厚いためにフィルドビア充填性が不十分であった。
Comparative Example 5
In Example 5, instead of “EPM-006”, a prepreg and a laminate were obtained in the same manner as in Example 5 except that a glass nonwoven fabric having a thickness of 400 μm (“SYS-068” manufactured by Olivest, mass: 68 g / m 2 ) was used. I got a plate. The thermal conductivity in the thickness direction of this laminated board is 7.0 W / m · K, and although the circuit filling property and the moisture resistance insulation property are good, the filled via filling property is insufficient due to the thick insulating layer. .

Figure 0005909808
Figure 0005909808

Figure 0005909808
Figure 0005909808

Figure 0005909808
Figure 0005909808

Claims (3)

無機充填材を含む熱硬化性樹脂組成物をガラス不織布基材に含浸し乾燥してなる加熱加圧成形用プリプレグであって、前記熱硬化性樹脂組成物は、熱伝導率が0.5W/m・K以上であり、前記ガラス不織布基材は、厚みが100μm以下であり、前記無機充填材は、平均粒径が10μm以上70μm以下の成分(a)と、平均粒径が1μm以上10μm未満の成分(b)と、平均粒径が0.1μm以上1μm未満の成分(c)とで構成され、成分(a)と成分(b)との合計体積と、成分(c)の体積との体積比が、90:10〜70:30であり、熱硬化性樹脂固形分と無機充填材を合わせた体積中に、無機充填材の総含有量が、30〜80体積%であり、さらに、平均粒径が0.001〜0.05μmの潤滑材を含有し、熱硬化性樹脂固形分に対して、潤滑材の含有量が、2質量%以下であることを特徴とする加熱加圧成形用プリプレグ。 A prepreg for heat and pressure molding formed by impregnating a glass non-woven fabric substrate with a thermosetting resin composition containing an inorganic filler and drying, wherein the thermosetting resin composition has a thermal conductivity of 0.5 W / and a m · K or more, the glass nonwoven substrate has a thickness of Ri der less 100 [mu] m, the inorganic filler, the average particle size of 10 [mu] m or more 70μm following components (a), 10 [mu] m average particle size of 1μm or more Less than component (b), and component (c) having an average particle size of 0.1 μm or more and less than 1 μm, the total volume of component (a) and component (b), and the volume of component (c) The volume ratio is 90:10 to 70:30, the total content of the inorganic filler is 30 to 80% by volume in the combined volume of the thermosetting resin solids and the inorganic filler, , Containing a lubricant having an average particle size of 0.001 to 0.05 μm, and a thermosetting resin solid content On the other hand, the prepreg for heat and pressure molding is characterized in that the content of the lubricant is 2% by mass or less . 請求項1において、成分(a)の体積と成分(b)の体積との体積比が、75:25〜60:40である加熱加圧成形用プリプレグ。 The prepreg for heat and pressure molding according to claim 1, wherein the volume ratio of the volume of the component (a) to the volume of the component (b) is 75:25 to 60:40 . 請求項1又は2のいずれかに記載のプリプレグの層を含む積層構成体を加熱加圧成形してなる積層板。   A laminated board obtained by heat-pressing a laminated structure including the prepreg layer according to claim 1.
JP2012016057A 2012-01-30 2012-01-30 Pre-preg for heat and pressure molding and laminate Expired - Fee Related JP5909808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016057A JP5909808B2 (en) 2012-01-30 2012-01-30 Pre-preg for heat and pressure molding and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016057A JP5909808B2 (en) 2012-01-30 2012-01-30 Pre-preg for heat and pressure molding and laminate

Publications (2)

Publication Number Publication Date
JP2013155265A JP2013155265A (en) 2013-08-15
JP5909808B2 true JP5909808B2 (en) 2016-04-27

Family

ID=49050786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016057A Expired - Fee Related JP5909808B2 (en) 2012-01-30 2012-01-30 Pre-preg for heat and pressure molding and laminate

Country Status (1)

Country Link
JP (1) JP5909808B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111719A (en) * 2012-11-12 2014-06-19 Panasonic Corp Laminate, metal-clad laminate, printed wiring board, and multilayer printed wiring board

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375980A3 (en) * 1988-12-29 1991-10-30 International Business Machines Corporation Epoxy composition of increased thermal conductivity and use thereof
JP2001279006A (en) * 2000-03-30 2001-10-10 Mitsubishi Gas Chem Co Inc Method for producing prepreg having high dielectric constant
US6562179B1 (en) * 1999-11-04 2003-05-13 Mitsubishi Gas Chemical Company, Inc. High relative-permittivity B-staged sheet, high relative-permittivity prepreg, its production process, and printed wiring board comprising any one of these
JP2001279005A (en) * 2000-03-30 2001-10-10 Mitsubishi Gas Chem Co Inc Prepreg having high dielectric constant
JP5370129B2 (en) * 2008-12-24 2013-12-18 新神戸電機株式会社 Thermosetting resin composition, prepreg and laminate
JP5423590B2 (en) * 2010-06-10 2014-02-19 新神戸電機株式会社 Thermosetting resin composition, prepreg and laminate

Also Published As

Publication number Publication date
JP2013155265A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP4735492B2 (en) Prepress and laminate for heat and pressure molding
JP5652307B2 (en) Prepress and laminate for heat and pressure molding
JP5010112B2 (en) Manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board
JP5370129B2 (en) Thermosetting resin composition, prepreg and laminate
JP6116856B2 (en) Substrate insulating layer composition, prepreg and substrate using the same
JP5549183B2 (en) Method for producing epoxy resin composition, method for producing prepreg, method for producing laminated board and wiring board
TWI716407B (en) Resin composition, resin sheet, prepreg, insulator, hardened resin sheet and heat dissipation member
JP5447355B2 (en) Method for producing thermosetting resin composition, method for producing prepreg and laminate
WO2005092945A1 (en) Resin composition, metal foil with resin, insulating sheet with base material and multilayer printed wiring board
JP2013224424A (en) Insulating layer composition for substrate, and prepreg and substrate using the same
JP5547032B2 (en) Thermally conductive resin composition, resin sheet, prepreg, metal laminate and printed wiring board
JP5423590B2 (en) Thermosetting resin composition, prepreg and laminate
JP2015189884A (en) Thermosetting resin composition, resin sheet, prepreg and laminate sheet
JP4793277B2 (en) Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and wiring board
JP5217865B2 (en) Flame-retardant epoxy resin composition, prepreg, laminate and wiring board
JP5909808B2 (en) Pre-preg for heat and pressure molding and laminate
JP4479659B2 (en) Insulating layer manufacturing method
JP2011046760A5 (en)
JP3821797B2 (en) Resin composition, resin-coated metal foil and multilayer printed wiring board
JP2013129788A (en) Thermosetting resin composition, prepreg for heating pressure molding, and laminate
JP5712488B2 (en) Insulating resin film and laminated board and wiring board using the same
JP4192871B2 (en) Laminated board and wiring board
JP2006036869A (en) Prepreg, laminate and printed wiring board
JP4192870B2 (en) Laminated board and wiring board
JP2009114377A (en) Method of preparing resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160309

R151 Written notification of patent or utility model registration

Ref document number: 5909808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees