JP5906550B2 - Encapsulant with high barrier properties - Google Patents

Encapsulant with high barrier properties Download PDF

Info

Publication number
JP5906550B2
JP5906550B2 JP2011165809A JP2011165809A JP5906550B2 JP 5906550 B2 JP5906550 B2 JP 5906550B2 JP 2011165809 A JP2011165809 A JP 2011165809A JP 2011165809 A JP2011165809 A JP 2011165809A JP 5906550 B2 JP5906550 B2 JP 5906550B2
Authority
JP
Japan
Prior art keywords
plate
sealing material
weight
parts
inorganic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011165809A
Other languages
Japanese (ja)
Other versions
JP2013028722A (en
Inventor
敏之 管野
敏之 管野
小冬 王
小冬 王
明伸 若林
明伸 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moresco Corp
Original Assignee
Moresco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moresco Corp filed Critical Moresco Corp
Priority to JP2011165809A priority Critical patent/JP5906550B2/en
Priority to KR1020120080355A priority patent/KR101668140B1/en
Priority to TW101127164A priority patent/TWI496826B/en
Priority to CN201210264188.1A priority patent/CN102898782B/en
Publication of JP2013028722A publication Critical patent/JP2013028722A/en
Application granted granted Critical
Publication of JP5906550B2 publication Critical patent/JP5906550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Sealing Material Composition (AREA)

Description

本発明は、有機デバイス用封止材組成物、並びに該組成物を架橋反応して得られる有機デバイス用のハイバリア性を有する封止材に関する。   The present invention relates to a sealing material composition for organic devices and a sealing material having high barrier properties for organic devices obtained by crosslinking reaction of the composition.

近年、有機薄膜を利用したデバイスとしては例えば、光センサ、有機ストレージ素子、表示素子、有機トランジスタ、有機薄膜太陽電池、有機半導体素子、通信素子などが注目されている。例えば、有機薄膜太陽電池は、電極に有機物質を蒸着等によって薄膜状に積層され、光照射によって発電する原理を利用した有機デバイスである。有機薄膜を利用することで、従来のシリコン系太陽電池より「薄くて柔軟な」太陽電池となり、広い範囲での応用が期待でされている。また、有機薄膜太陽電池は印刷技術などを利用することによって、生産効率の向上やプロセスコストの低減が期待できることからも、将来有望な太陽電池として期待されている。しかし、有機薄膜を利用したデバイスは、水分や酸素ガス等により変質し、デバイス機能が低下することに起因する寿命の低下という問題がある。そこでハイバリア性を有する封止材が求められている。ここで、ハイバリア性とは、外部からの水分や酸素ガス等の侵入を十分に抑制する特性を意味する。封止材にハイバリア性を付与する手法のひとつとして、迂回理論(非特許文献1)が広く知られている。迂回理論とは、封止材のマトリックス成分中にフィラーを分散させることにより、水分やガスがフィラーの隙間をぬって(フィラーを迂回して)透過するために、単位時間あたりの透過量が小さくなるという理論である(図1)。
迂回理論を応用した従来技術としては、例えば水分を透過し難く耐湿性に優れ、有機エレクトロルミネッセンス素子を封止する封止剤として好適に用いることができる光硬化型樹脂組成物が提案されている(特許文献1)。この樹脂組成物は、平均粒子径が5μmを超える板状の無機フィラーが用いられている。比較的大きなフィラーを用いた場合、図2に示されるようにフィラーはマトリックス中にランダムに分散し、水分やガスの透過を抑制する作用は不十分である。なお、フィラーサイズに関して、特許文献1の〔0009〕においては平均粒子径が5μm未満では耐湿性が不充分になると記載されている。
In recent years, as a device using an organic thin film, for example, an optical sensor, an organic storage element, a display element, an organic transistor, an organic thin film solar cell, an organic semiconductor element, a communication element, and the like have attracted attention. For example, an organic thin film solar cell is an organic device that utilizes the principle that an organic material is laminated on an electrode in a thin film shape by vapor deposition or the like and generates power by light irradiation. By using an organic thin film, it becomes a “thin and flexible” solar cell than a conventional silicon solar cell, and is expected to be applied in a wide range. Organic thin-film solar cells are also expected as promising solar cells in the future because they can be expected to improve production efficiency and reduce process costs by using printing technology and the like. However, a device using an organic thin film has a problem of deterioration of life due to deterioration due to deterioration of device function due to moisture or oxygen gas. Therefore, a sealing material having high barrier properties is required. Here, the high barrier property means a characteristic that sufficiently suppresses intrusion of moisture, oxygen gas, and the like from the outside. As one of the methods for imparting high barrier properties to the sealing material, a detour theory (Non-Patent Document 1) is widely known. The bypass theory means that by dispersing filler in the matrix component of the sealing material, moisture and gas permeate through the filler gap (bypassing the filler) and permeate less per unit time. The theory is (Fig. 1).
As a conventional technique applying the bypass theory, for example, a photocurable resin composition that is difficult to permeate moisture, has excellent moisture resistance, and can be suitably used as a sealant for sealing an organic electroluminescence element has been proposed. (Patent Document 1). In this resin composition, a plate-like inorganic filler having an average particle diameter exceeding 5 μm is used. When a relatively large filler is used, the filler is randomly dispersed in the matrix as shown in FIG. 2, and the action of suppressing the permeation of moisture and gas is insufficient. Regarding the filler size, [0009] of Patent Document 1 describes that the moisture resistance is insufficient when the average particle diameter is less than 5 μm.

特開2006−291072号公報JP 2006-291072 A

ポリマー系ナノコンポジット 基礎から最新展開まで.工業調査会,(2003)From polymer-based nanocomposites to the latest developments. Industrial Research Committee, (2003)

本発明の課題は、外部からの水分や酸素ガス等の侵入を十分に抑制しうる有機デバイス用封止材組成物、並びに該組成物を架橋反応して得られる有機デバイス用のハイバリア性を有する封止材を提供することにある。   An object of the present invention is to provide a sealing material composition for an organic device that can sufficiently suppress entry of moisture, oxygen gas, and the like from the outside, and a high barrier property for an organic device obtained by crosslinking reaction of the composition. It is in providing a sealing material.

本発明は以下の発明に係る。
1.マトリックスポリマー中に板状無機化合物がスタッキング状に分散して含有されてなる有機デバイス用封止材組成物。
2.上記1の封止材組成物を架橋反応して得られる有機デバイス用封止材。
3.マトリックスポリマーがエポキシ樹脂、変性エポキシ樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリアクリレート樹脂、変性オレフィン樹脂、ポリエステル樹脂である上記2に記載の有機デバイス用封止材。
4.板状無機化合物のマイクロトラック法により測定された平均粒子径が0.5μm以上5μm未満で、長径と厚さとの比(長径/厚さ)の平均値が1.3〜50である上記2に記載の有機デバイス用封止材。
5.上記長径/厚さの平均値が1.3〜25である上記4に記載の有機デバイス用封止材。
6.マトリックスポリマー中に板状無機化合物がスタッキング状に分散して含有されてなる有機デバイス用封止材組成物を平行に向かい合う2枚の基材に挟み架橋反応して得られた封止材であって、その封止材膜のX線回折パターンにおいて、封止材中の板状無機化合物に起因する回折ピークが認められ、回折ピークのうち、板状無機化合物が基材と平行する方向に配向している回折ピークの強度の和(Ip)を分母にし、基材と平行していない方向に配向している回折ピークの強度の和(Inp)を分子にして得られる、非平行配向率α(Inp/Ip)が0〜0.1の範囲にある有機デバイス用封止材。
7.上記αが、0.0001〜0.1の範囲にある上記6に記載の有機デバイス用封止材。
8.Ipが(00c)面に帰属できるピークの強度の和であり、Inpが(abc)面(aもしくはbのいずれかは0ではない)ピークの強度の和である上記6〜7のいずれに記載の有機デバイス用封止材。
The present invention relates to the following inventions.
1. A sealing material composition for organic devices, wherein a plate-like inorganic compound is dispersed and contained in a matrix polymer in a stacking shape.
2. The sealing material for organic devices obtained by bridge-reacting the sealing material composition of said 1.
3. 3. The sealing material for organic devices according to 2 above, wherein the matrix polymer is an epoxy resin, a modified epoxy resin, a polyurethane resin, a polycarbonate resin, a polyacrylate resin, a modified olefin resin, or a polyester resin.
4). In the above 2, the average particle diameter of the plate-like inorganic compound measured by the microtrack method is 0.5 μm or more and less than 5 μm, and the average value of the ratio of the major axis to the thickness (major axis / thickness) is 1.3-50. The sealing material for organic devices of description.
5. 5. The organic device sealing material according to 4 above, wherein the average value of the major axis / thickness is 1.3 to 25.
6). A sealing material obtained by sandwiching a sealing material composition for an organic device, in which a plate-like inorganic compound is dispersed and contained in a matrix polymer in a stacking manner, between two substrates facing each other in parallel, and undergoing a crosslinking reaction. In the X-ray diffraction pattern of the encapsulant film, a diffraction peak due to the plate-like inorganic compound in the encapsulant is observed, and the plate-like inorganic compound is oriented in the direction parallel to the substrate among the diffraction peaks. The non-parallel orientation ratio α obtained by using the sum of the intensities of diffraction peaks (Ip) as the denominator and the sum of the intensities of diffraction peaks (Inp) as aligned in the direction not parallel to the substrate. The sealing material for organic devices whose (Inp / Ip) is in the range of 0 to 0.1.
7). 7. The organic device sealing material according to 6 above, wherein α is in the range of 0.0001 to 0.1.
8). Any one of 6 to 7 above, wherein Ip is the sum of the intensities of peaks that can be attributed to the (00c) plane, and Inp is the sum of the intensities of the (abc) plane (either a or b is not 0) Encapsulant for organic devices.

本発明者らは、鋭意検討の結果、マトリックスポリマー中に分散させる板状無機化合物のサイズおよび形状が特定の範囲であり、一定以上の比率で板状無機化合物が基材平面と平行するように配向した状態で分散された場合に、迂回理論に即した良好なハイバリア性を発揮することを見出し、本発明を完成するに至った。   As a result of intensive studies, the inventors have determined that the size and shape of the plate-like inorganic compound dispersed in the matrix polymer are in a specific range, and that the plate-like inorganic compound is parallel to the substrate plane at a certain ratio or more. It has been found that when dispersed in an oriented state, it exhibits good high barrier properties in accordance with the bypass theory, and the present invention has been completed.

本発明においては、水分や酸素ガス等の透過を抑制する封止材を得るために、マトリックスポリマーに板状無機化合物、及び必要により添加剤を配合する。その板状無機化合物は、マイクロトラック法により測定された平均粒子径が0.5μm以上5μm未満であることが好ましく、長径と厚さとの比(長径/厚さ)の平均値が1.3〜50が好ましい。これら配合原料を混合することにより得られる封止材組成物を、平行に向かい合う2枚の基材に挟み込んで架橋反応させることによりほとんどの板状無機化合物が基材平面に平行する方向に配向した状態で分散した封止材が得られる。   In this invention, in order to obtain the sealing material which suppresses permeation | transmission of a water | moisture content, oxygen gas, etc., a plate-shaped inorganic compound and an additive as needed are mix | blended with a matrix polymer. The plate-like inorganic compound preferably has an average particle size of 0.5 μm or more and less than 5 μm as measured by the microtrack method, and the average value of the ratio of the major axis to the thickness (major axis / thickness) is 1.3 to 3. 50 is preferred. Most of the plate-like inorganic compounds were oriented in a direction parallel to the substrate plane by sandwiching the encapsulant composition obtained by mixing these blended raw materials between two parallel substrates facing each other and causing a crosslinking reaction. A sealing material dispersed in a state is obtained.

本発明により水分や酸素ガス等の透過を抑制する効果に優れた有機デバイス用のハイバリア性の封止材を得ることができ、デバイスの長寿命化や封止幅の低減を達成することができる。   According to the present invention, a high-barrier sealing material for organic devices excellent in the effect of suppressing permeation of moisture, oxygen gas, and the like can be obtained, and the life of the device and the reduction of the sealing width can be achieved. .

本発明において、マトリックスポリマーとしては、板状無機化合物との親和性の良いものであればよく、エポキシ樹脂、変性エポキシ樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリアクリレート樹脂、変性オレフィン樹脂、ポリエステル樹脂等を例示することができる。   In the present invention, the matrix polymer is not particularly limited as long as it has a good affinity with the plate-like inorganic compound, and includes epoxy resin, modified epoxy resin, polyurethane resin, polycarbonate resin, polyacrylate resin, modified olefin resin, polyester resin, and the like. It can be illustrated.

エポキシ樹脂としては、ビスフェノールA型、ビスフェノールF型、ノボラック型、脂環型、グリシジルアミン型、水添ビスフェノールA型などのエポキシ樹脂等を例示することができる。また、変性エポキシ樹脂としては、アクリル変性エポキシ樹脂、ポリブタジエン系変性エポキシ樹脂、グラフト変性エポキシ樹脂、シリル化ポリエポキシ樹脂などを例示することができる。エポキシ樹脂は硬化促進剤、光ラジカル重合開始剤などと共に用いるのが好ましい。   Examples of the epoxy resin include bisphenol A type, bisphenol F type, novolac type, alicyclic type, glycidylamine type, and hydrogenated bisphenol A type. Examples of the modified epoxy resin include acrylic modified epoxy resin, polybutadiene modified epoxy resin, graft modified epoxy resin, silylated polyepoxy resin, and the like. The epoxy resin is preferably used together with a curing accelerator, a radical photopolymerization initiator and the like.

ポリウレタン樹脂としては、ポリオール系ウレタン樹脂、ポリイソシアネート系ウレタン樹脂、ポリエーテル系ウレタン樹脂、ポリエステル系ウレタン樹脂、ポリカーボネート系ウレタン樹脂などを例示することができる。
ポリカーボネート樹脂としては、ポリ変性ビスフェノールカーボネート樹脂、ポリジフェニルカーボネート樹脂、ポリエステルカーボネート樹脂、グラフト化ポリカーボネート樹脂、金属原子をキレート化したポリカーボネート樹脂などを例示することができる。
Examples of the polyurethane resin include polyol urethane resins, polyisocyanate urethane resins, polyether urethane resins, polyester urethane resins, and polycarbonate urethane resins.
Examples of the polycarbonate resin include poly-modified bisphenol carbonate resin, polydiphenyl carbonate resin, polyester carbonate resin, grafted polycarbonate resin, and polycarbonate resin chelated with metal atoms.

ポリアクリレート樹脂としては、ポリエチレングリコール系多官能アクリレート樹脂、エポキシ変性アクリレート樹脂、ウレタン変性アクリレート樹脂、シリル化アクリレート樹脂、変性エーテル鎖アクリレート樹脂、変性脂肪族アクリレート樹脂などを例示することができる。   Examples of polyacrylate resins include polyethylene glycol polyfunctional acrylate resins, epoxy-modified acrylate resins, urethane-modified acrylate resins, silylated acrylate resins, modified ether chain acrylate resins, and modified aliphatic acrylate resins.

変性オレフィン樹脂としては、エポキシ変性オレフィン樹脂、アクリレート変性オレフィン樹脂、シリル化オレフィン樹脂、エチレン系重合体、プロピレン系重合体、変性ブタジエン系重合体、変性スチレン系重合体、また各系統の共重合体などを例示することができる。   Examples of modified olefin resins include epoxy-modified olefin resins, acrylate-modified olefin resins, silylated olefin resins, ethylene polymers, propylene polymers, modified butadiene polymers, modified styrene polymers, and copolymers of various systems. Etc. can be illustrated.

ポリエステル樹脂としては、不飽和ポリエステル樹脂、アルキド樹脂、ポリエチレンテレフタレート及び変性ポリエステル樹脂などを例示することができる。   Examples of the polyester resin include unsaturated polyester resins, alkyd resins, polyethylene terephthalate, and modified polyester resins.

板状無機化合物として、クレー、マイカ、タルク、シリケート化合物などを例示することができる。   Examples of the plate-like inorganic compound include clay, mica, talc, and silicate compound.

板状無機化合物のマイクロトラック法により測定された平均粒子径は0.5μm以上5μm未満が好ましく、更に1.5μm〜4.8μmが好ましく、特に2μm〜4.5μmが好ましい。マイクロトラック法は大塚電子製DLS−6000を使用した。長径と厚さとの比(長径/厚さ)の平均値が1.3〜50が好ましく、更に1.5〜25が好ましく、特に2〜20が好ましい。   The average particle diameter of the plate-like inorganic compound measured by the microtrack method is preferably from 0.5 μm to less than 5 μm, more preferably from 1.5 μm to 4.8 μm, particularly preferably from 2 μm to 4.5 μm. The micro track method used DLS-6000 manufactured by Otsuka Electronics. The average value of the ratio of the major axis to the thickness (major axis / thickness) is preferably 1.3 to 50, more preferably 1.5 to 25, and particularly preferably 2 to 20.

板状無機化合物の平均粒子径が0.5μmに満たない場合、粒子が二次凝集する問題があり、5μm以上の場合は、スタッキング状になりにくい問題がある。また、長径/厚さの平均値が1.3に満たない場合は、無機化合物は板状とは言えず封止材膜の中で方向が揃った状態で分散できなくなり、50を超える場合は、加工性に劣るという問題がある。   When the average particle size of the plate-like inorganic compound is less than 0.5 μm, there is a problem that the particles are agglomerated, and when it is 5 μm or more, there is a problem that it is difficult to form a stacking shape. In addition, when the average value of the major axis / thickness is less than 1.3, the inorganic compound cannot be said to be plate-like and cannot be dispersed in a state in which the directions are aligned in the sealing material film. There is a problem that the processability is inferior.

本発明の封止材は、マトリックスポリマー中に分散している板状無機化合物の分散状態に特徴があり、具体的には、図3に示したようにほとんどの板状無機化合物が平行に向かい合う2枚の基材と平行する方向に配向し、かつ、スタッキング状(積み重なるよう)に分散していることを特徴としている。
図2では基材に平行していない板状無機化合物も示しているが、このような基材に平行していない板状無機化合物の割合が大きくなると、スタッキング状態が不明瞭になり、板状無機化合物と板状無機化合物とのすき間が大きく、あるいは多くなり、水分や酸素ガス等を十分に迂回させる機能が損なわれる。
The sealing material of the present invention is characterized by the dispersion state of the plate-like inorganic compound dispersed in the matrix polymer. Specifically, as shown in FIG. 3, most of the plate-like inorganic compounds face each other in parallel. It is characterized by being oriented in a direction parallel to the two substrates and being dispersed in a stacking shape (to be stacked).
Although FIG. 2 also shows a plate-like inorganic compound that is not parallel to the substrate, when the proportion of such a plate-like inorganic compound that is not parallel to the substrate is increased, the stacking state becomes unclear and the plate-like The gap between the inorganic compound and the plate-like inorganic compound is large or increased, and the function of sufficiently circumventing moisture and oxygen gas is impaired.

基材と平行する方向に配向した板状無機化合物は、封止材のX線回折パターンにおいて、回折角θより(00c)面(cは自然数)に帰属できるピークを呈する。ここで、(00c)面に帰属できる全てのピークの回折強度の和をIpとし、(abc)面(aもしくはbのいずれかは0ではない)に帰属できる全てのピーク、すなわち基材に平行しない板状無機化合物に起因する全てのピークの回折強度の和をInpとした場合、両者の比(非平行配向率α=Inp/Ipが、0≦α≦0.1であれば、水分や酸素ガス等が封止材中を透過しようとする際に迂回させる機能を発揮できる。
cは自然数であり、正(プラス)の整数で、0(ゼロ)を含まず、通常は1〜20、好ましくは1〜12である。
αの値が0である場合は、すべての板状無機化合物が基材に平行する方向に配向している(Inp=0)ことを意味している。
The plate-like inorganic compound oriented in the direction parallel to the substrate exhibits a peak that can be attributed to the (00c) plane (c is a natural number) from the diffraction angle θ in the X-ray diffraction pattern of the encapsulant. Here, the sum of diffraction intensities of all peaks that can be attributed to the (00c) plane is Ip, and all peaks that can be attributed to the (abc) plane (either a or b is not 0), that is, parallel to the substrate. When the sum of diffraction intensities of all peaks due to the plate-like inorganic compound is Inp, the ratio between the two (if the non-parallel orientation ratio α = Inp / Ip is 0 ≦ α ≦ 0.1, moisture or A function of detouring when oxygen gas or the like attempts to permeate through the sealing material can be exhibited.
c is a natural number, is a positive (plus) integer, does not include 0 (zero), and is usually 1 to 20, preferably 1 to 12.
When the value of α is 0, it means that all the plate-like inorganic compounds are oriented in a direction parallel to the substrate (Inp = 0).

基材に平行する方向に配向している板状無機化合物の分散状態は、図4のように中心線が基材に垂直になるようにスタッキングしている必要はなく、図5のように板状無機化合物が重なっている(スタッキング状)と言える程度に中心線が傾斜していても良く、図6のように、図4と図5に示したような状態が混在していても良い。   The dispersion state of the plate-like inorganic compound oriented in the direction parallel to the substrate does not need to be stacked so that the center line is perpendicular to the substrate as shown in FIG. The center line may be inclined to the extent that it can be said that the inorganic compounds overlap (stacked), and the states shown in FIGS. 4 and 5 may be mixed as shown in FIG.

Ip、Inpについて、さらに詳細に説明する。図7には板状無機化合物粉末(封止材に配合していない原料粉末)のX線回折パターンを、図8には従来の封止材(比較例1)のX線回折パターンを、図9には本発明の封止材(実施例2)のX線回折パターンを示した。いずれも、板状無機化合物としてタルクを用いており、ピークが認められる回折角2θと結晶面の関係は、2θ=9.4°が(002)面、18.9°が(004)面、28.5°が(006)面、36.3°が(132)面に対応している。   Ip and Inp will be described in more detail. FIG. 7 shows the X-ray diffraction pattern of the plate-like inorganic compound powder (raw material powder not blended in the sealing material), and FIG. 8 shows the X-ray diffraction pattern of the conventional sealing material (Comparative Example 1). 9 shows an X-ray diffraction pattern of the sealing material of the present invention (Example 2). In any case, talc is used as the plate-like inorganic compound, and the relationship between the diffraction angle 2θ at which the peak is recognized and the crystal plane is 2θ = 9.4 ° for the (002) plane, 18.9 ° for the (004) plane, 28.5 ° corresponds to the (006) plane and 36.3 ° corresponds to the (132) plane.

図7では、上記(002)、(004)、(006)、(132)面以外の回折ピークも多数認められ、板状無機化合物が特定の方向に配向していないことが示されている。図8では、図7よりも(00c)面以外の回折ピークが減少しており、基材に平行する方向に板状無機化合物が配向していることが示されている。図8において、2θ=36.3°の位置には(132)面に対応するピークが認められており、これが基材に平行していない結晶面からの最も大きな回折強度を示すピークとなっている。図9においては、(132)面に対応する位置のピークはほとんど消滅しており、相対的に(00c)面に対応するピーク強度は図7や図8よりも大きく測定されている。すなわち、本発明の封止材中の板状無機化合物は、ほとんどすべて基材に平行する方向に配向していると判断できる。   In FIG. 7, many diffraction peaks other than the (002), (004), (006), and (132) planes are also observed, indicating that the plate-like inorganic compound is not oriented in a specific direction. In FIG. 8, the diffraction peaks other than the (00c) plane are smaller than those in FIG. 7, and it is shown that the plate-like inorganic compound is oriented in the direction parallel to the substrate. In FIG. 8, a peak corresponding to the (132) plane is recognized at a position of 2θ = 36.3 °, and this is a peak indicating the largest diffraction intensity from a crystal plane not parallel to the substrate. Yes. In FIG. 9, the peak at the position corresponding to the (132) plane has almost disappeared, and the peak intensity corresponding to the (00c) plane is measured to be larger than those in FIGS. That is, it can be judged that almost all the plate-like inorganic compounds in the sealing material of the present invention are oriented in a direction parallel to the substrate.

本発明において、板状無機化合物の配合割合はマトリックスポリマー100重量部に対して20〜100重量部好ましく、更に40〜80重量部が好ましい。   In the present invention, the blending ratio of the plate-like inorganic compound is preferably 20 to 100 parts by weight, more preferably 40 to 80 parts by weight with respect to 100 parts by weight of the matrix polymer.

板状無機化合物の配合量が20重量部より少なければ迂回作用を発揮するだけの量に足りず、100重量部を超えると、相対的にマトリックスポリマーの割合が少なくなり、基材密着性などマトリックスポリマーが発揮すべき特性が不足する。   If the compounding amount of the plate-like inorganic compound is less than 20 parts by weight, it is not sufficient to exert a detour effect. If it exceeds 100 parts by weight, the ratio of the matrix polymer is relatively reduced, and the matrix adhesion and the like are reduced. The properties that the polymer should exhibit are insufficient.

本発明のマトリックスポリマー中に更に、開始剤、カップリング剤、相溶化剤、消泡剤等の添加剤を配合することができる。   In the matrix polymer of the present invention, additives such as an initiator, a coupling agent, a compatibilizing agent and an antifoaming agent can be further blended.

開始剤としては、過酸化物系開始剤、カルボン酸系開始剤、ベンゾフェノン系開始剤、ホウ素塩系開始剤、リン系開始剤、トリアジン系開始剤、スルホン酸塩系開始剤、イミダゾール系開始剤などを例示することができる。   As initiators, peroxide initiators, carboxylic acid initiators, benzophenone initiators, boron salt initiators, phosphorus initiators, triazine initiators, sulfonate initiators, imidazole initiators Etc. can be illustrated.

カップリング剤としては、γ−アミノプロピルトリエトキシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、ビニールトリメトキシシラン、メタクリルトリエトキシシラン、メルカプトトリメトキシシラン、エポキシ変性シラン、ウレタン変性シラン、アミン系チタネートカップリング剤、ホスファイト系チタネートカップリング剤、ピロリン酸系チタネートカップリング剤、カルボン酸系チタネートカップリング剤などを例示することができる。   As coupling agents, γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, vinyltrimethoxysilane, methacryltriethoxysilane , Mercaptotrimethoxysilane, epoxy-modified silane, urethane-modified silane, amine titanate coupling agent, phosphite titanate coupling agent, pyrophosphate titanate coupling agent, carboxylic acid titanate coupling agent, etc. it can.

相溶化剤としては、脂肪族ジエンポリマー系相溶化剤、ポリオレフィン系相溶化剤、脂環型ジエン系相溶化剤、ビニリデン系相溶化剤、酢酸ビニルとアリルアルコールを混合した相溶化剤などを例示することができる。   Examples of compatibilizers include aliphatic diene polymer compatibilizers, polyolefin compatibilizers, alicyclic diene compatibilizers, vinylidene compatibilizers, and vinyl acetate and allyl alcohol mixed compatibilizers. can do.

消泡剤としては、アクリル系消泡剤、低粘度シリコーン系消泡剤、アルコール系消泡剤、脂肪酸エステル系消泡剤、ポリエーテル系消泡剤などを例示することができる。   Examples of the antifoaming agent include an acrylic antifoaming agent, a low viscosity silicone antifoaming agent, an alcohol antifoaming agent, a fatty acid ester antifoaming agent, and a polyether antifoaming agent.

これら添加剤の配合割合はマトリックスポリマー100重量部に対して0.1〜20重量部が好ましい。特に好ましくはマトリックスポリマー100重量部に対して0.2〜15重量部である。   The blending ratio of these additives is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the matrix polymer. Particularly preferred is 0.2 to 15 parts by weight per 100 parts by weight of the matrix polymer.

本発明においては、マトリックスポリマーに板状無機化合物、及び必要により添加剤を配合し、これをビーズミル、ホモミキサー、ボールミル、3本ロール、ニーダーなどを用いて混合する。好ましくはボールミル、3本ロール、ニーダーなどを用いて混合することにより板状無機化合物をより簡便かつ均一に分散できる。   In the present invention, a plate-like inorganic compound and, if necessary, an additive are added to the matrix polymer, and this is mixed using a bead mill, homomixer, ball mill, three rolls, kneader or the like. Preferably, the plate-like inorganic compound can be more easily and uniformly dispersed by mixing using a ball mill, three rolls, a kneader or the like.

マトリックスポリマー、板状無機化合物、前述した添加剤を上記方法で混合した後、封止すべき間隔を一定にするためにガラスビーズ状、ガラスロッド状、樹脂ビーズ状などのスペーサをさらに混合することができる。スペーサを混合する場合はスペーサが変形したり破壊されたりしないよう、強いせん断力が加わらない混合方法とすることが好ましい。   After mixing the matrix polymer, the plate-like inorganic compound, and the above-described additives by the above method, further mixing a spacer such as a glass bead shape, a glass rod shape, or a resin bead shape in order to make the interval to be sealed constant. Can do. When mixing the spacers, it is preferable to use a mixing method in which a strong shearing force is not applied so that the spacers are not deformed or broken.

本発明の封止材は上記の封止材組成物を架橋反応して得られる。架橋反応としては熱硬化反応および/又は光硬化反応などを例示することができる。熱硬化の条件は70℃×2hr+130℃×4hrまたは80℃×2hrまたは80℃×24hrが例示できる。光硬化の条件は、1〜20J/cmの条件が例示できる。 The encapsulant of the present invention is obtained by crosslinking reaction of the above encapsulant composition. Examples of the crosslinking reaction include a thermosetting reaction and / or a photocuring reaction. Examples of the thermosetting conditions include 70 ° C. × 2 hr + 130 ° C. × 4 hr, 80 ° C. × 2 hr, or 80 ° C. × 24 hr. Examples of the photocuring conditions include 1 to 20 J / cm 2 .

広く認識されている封止材における水分やガスの迂回理論のモデル図である。It is a model figure of the detour theory of the water | moisture content and gas in the sealing material recognized widely. 無機フィラーが樹脂マトリックス中にランダムに分散して水分やガスがあまり迂回していない状態のモデル図である。It is a model figure of the state in which an inorganic filler is disperse | distributing at random in a resin matrix and a water | moisture content and gas have not detoured much. 本発明の無機フィラーが緻密なスッタキング状態に配列したモデル図である。It is a model figure in which the inorganic filler of the present invention is arranged in a dense stucking state. 本発明の無機フィラーの中心線が垂直に緻密なスッタキング状態に配列したモデル図である。FIG. 3 is a model diagram in which the center lines of the inorganic filler of the present invention are arranged vertically in a dense stucking state. 本発明の無機フィラーの中心線が少し傾斜して緻密なスッタキング状態に配列したモデル図である。It is a model figure in which the center line of the inorganic filler of the present invention is slightly inclined and arranged in a dense stucking state. 本発明の無機フィラーの中心線が垂直のものと傾斜したものが混合して緻密なスッタキング状態に配列したモデル図である。FIG. 3 is a model diagram in which the vertical and inclined center lines of the inorganic filler of the present invention are mixed and arranged in a dense stacking state. 板状無機化合物粉末の広角X線回折パターン例を示す。2 shows an example of a wide-angle X-ray diffraction pattern of a plate-like inorganic compound powder. 比較例1の封止材の広角X線回折パターン例を示す。The wide-angle X-ray-diffraction pattern example of the sealing material of the comparative example 1 is shown. 実施例2の封止材の広角X線回折パターン例を示す。The wide-angle X-ray-diffraction pattern example of the sealing material of Example 2 is shown. 有機薄膜太陽電池のデバイス構造の概略図である。It is the schematic of the device structure of an organic thin film solar cell.

以下実施例で本発明をさらに詳しく説明するが、これら実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

本発明の実験に用いられた有機デバイスは、以下のプロセスによって作製した。
図10に示すように、有機薄膜太陽電池の基板上に、透明電極材料ITO(Indium Tin Oxide)薄膜を事前にコーティングし、更にエッチングすることによって、電極配置を完成した。電極の上に、電気伝導性材料ポリ(3,4−エチレンジオキシチオフェン)(PEDOT)およびポリスチレンスルホン酸(PSS)をスピンコート装置によってコーティングし、更に120℃、20分熱処理をした。その上に、P型半導体材料として亜鉛フタロシアニン(ZnPc)、亜鉛フタロシアニン(ZnPc)とフラーレン(C60)を混合したナノ構造層、n型半導体材料としてフラーレン(C60)を、この順序で真空蒸着によって塗布した。
最後に、LiFとAlを陰極として、この順序で真空蒸着によって塗布した。蒸着部位をシャドーマスクによって制御した。
窒素充填のグローブボックス中に封止材を塗った封止キャップと基板と張り合わせて圧着し、最後に紫外線照射と熱処理で封止工程を完了した。なお、デバイス封止用スペーサーとして、ガラスビーズスペーサーを用いた。
The organic device used in the experiment of the present invention was manufactured by the following process.
As shown in FIG. 10, a transparent electrode material ITO (Indium Tin Oxide) thin film was previously coated on the substrate of the organic thin film solar cell and further etched to complete the electrode arrangement. On the electrode, the electrically conductive materials poly (3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonic acid (PSS) were coated by a spin coater, and further heat-treated at 120 ° C. for 20 minutes. Furthermore, zinc phthalocyanine (ZnPc) as a P-type semiconductor material, a nanostructure layer in which zinc phthalocyanine (ZnPc) and fullerene (C60) are mixed, and fullerene (C60) as an n-type semiconductor material are applied in this order by vacuum deposition. did.
Finally, LiF and Al were applied as a cathode in this order by vacuum deposition. The deposition site was controlled by a shadow mask.
A sealing cap coated with a sealing material in a nitrogen-filled glove box and the substrate were bonded together and pressure-bonded, and finally the sealing process was completed by ultraviolet irradiation and heat treatment. A glass bead spacer was used as a device sealing spacer.

実施例1
マトリックスポリマーとして、ビスフェノールA型エポキシ樹脂(jER828、三菱化学製)100重量部、板状無機化合物(マイカ、平均粒径4.5μm、長径/厚さは25である)50重量部、添加剤(ヨウ素系光カチオン重合開始剤)5重量部、添加剤(長鎖アルキルシランカップリング剤)10重量部を混合して、3本ロールにより混練分散し、加圧ろ過を行い、デバイス封止用スペーサー2重量部を混合、分散して、本発明の封止材組成物を得た。
この組成物は、ディスペンサーを用いて上記デバイスの封止したい箇所に塗布して、キャップ部を貼り合わせてから、紫外線ランプを用い、10J/cm紫外線照射し、更に80℃×1hrの条件で熱処理して、デバイスの封止を行った。
Example 1
As a matrix polymer, 100 parts by weight of bisphenol A type epoxy resin (jER828, manufactured by Mitsubishi Chemical), 50 parts by weight of a plate-like inorganic compound (mica, average particle diameter 4.5 μm, long diameter / thickness is 25), additive ( Iodine-based photocationic polymerization initiator) 5 parts by weight and additive (long-chain alkylsilane coupling agent) 10 parts by weight are mixed and dispersed by three rolls, pressure filtration is performed, and a device sealing spacer 2 parts by weight were mixed and dispersed to obtain a sealing material composition of the present invention.
This composition is applied to the portion of the device to be sealed using a dispenser, and the cap portion is bonded together. Then, the composition is irradiated with 10 J / cm 2 ultraviolet rays using an ultraviolet lamp, and further at 80 ° C. × 1 hr. The device was sealed by heat treatment.

実施例2
マトリックスポリマーとして、ビスフェノールF型エポキシ樹脂(jER807、三菱化学製)100重量部、板状無機化合物(タルク、平均粒径3μm、長径/厚さは20である)60重量部、添加剤(アンチモン(Sb)系光カチオン重合開始剤)10重量部、添加剤(エポキシ変性シランカップリング剤)6重量部、ニーダーにより混練分散し、加圧ろ過を行い、デバイス封止用スペーサー2重量部を混合、分散して、本発明の封止材組成物を得た。上記実施例1と同様の条件で有機デバイスの封止を行った。
Example 2
As a matrix polymer, 100 parts by weight of a bisphenol F type epoxy resin (jER807, manufactured by Mitsubishi Chemical), 60 parts by weight of a plate-like inorganic compound (talc, average particle diameter 3 μm, long diameter / thickness is 20), additive (antimony ( Sb) system photocationic polymerization initiator) 10 parts by weight, additive (epoxy-modified silane coupling agent) 6 parts by weight, kneaded and dispersed by a kneader, pressure filtration, and 2 parts by weight of device sealing spacer are mixed, Dispersion was performed to obtain a sealing material composition of the present invention. The organic device was sealed under the same conditions as in Example 1 above.

実施例3
マトリックスポリマーとして、アクリル変性エポキシ樹脂(フタルキッドW795、日立化成製)100重量部、板状無機化合物(シリカ、平均粒径2μm、長径/厚さは5である)55重量部、添加剤(イミダゾール系硬化開始剤)5重量部、添加剤(エポキシ変性シランカップリング剤)10重量部、ニーダーにより混練分散し、加圧ろ過を行い、デバイス封止用スペーサー2重量部を混合、分散して、本発明の封止材組成物を得た。
この組成物は、スクリーン印刷装置を用いてデバイスを封止したい箇所に塗布して、キャップ部を貼り合わせてから、70℃×2hr+130℃×4hrの条件で熱硬化を行い、デバイスの封止を行った。
Example 3
As a matrix polymer, 100 parts by weight of an acrylic-modified epoxy resin (phthalkid W795, manufactured by Hitachi Chemical Co., Ltd.), 55 parts by weight of a plate-like inorganic compound (silica, average particle diameter 2 μm, major axis / thickness is 5), additive (imidazole series) Curing initiator) 5 parts by weight, additive (epoxy-modified silane coupling agent) 10 parts by weight, kneaded and dispersed with a kneader, pressure filtered, mixed and dispersed 2 parts by weight of device sealing spacer, An inventive sealing material composition was obtained.
This composition is applied to a place where the device is to be sealed using a screen printing apparatus, the cap part is bonded, and then thermosetting is performed under conditions of 70 ° C. × 2 hr + 130 ° C. × 4 hr to seal the device. went.

実施例4
マトリックスポリマーとして、ビスフェノールF型エポキシ樹脂(jER807、三菱化学製)100重量部、板状無機化合物(タルク、平均粒径2.5μm、長径/厚さは15である)60重量部、アンチモン系光カチオン重合開始剤5重量部、エポキシ変性シランカップリング剤8重量部、ボールミルにより混練分散し、加圧ろ過を行い、デバイス封止用スペーサー2重量部を混合、分散して、本発明の封止材組成物を得た。上記実施例1と同様の条件で有機デバイスの封止を行った。
Example 4
As a matrix polymer, 100 parts by weight of a bisphenol F type epoxy resin (jER807, manufactured by Mitsubishi Chemical), 60 parts by weight of a plate-like inorganic compound (talc, average particle diameter 2.5 μm, major axis / thickness is 15), antimony light 5 parts by weight of a cationic polymerization initiator, 8 parts by weight of an epoxy-modified silane coupling agent, kneaded and dispersed by a ball mill, subjected to pressure filtration, mixed and dispersed with 2 parts by weight of a spacer for device sealing, and sealing of the present invention A material composition was obtained. The organic device was sealed under the same conditions as in Example 1 above.

実施例5
マトリックスポリマーとして、アクリレート型ウレタン樹脂(V-4006、DIC製)100重量部、板状無機化合物(タルク、平均粒径3μm、長径/厚さは2である)65重量部、アルキルフェノン系光ラジカル重合開始剤5重量部、エポキシ変性シランカップリング剤13重量部、ニーダーにより混練分散し、加圧ろ過を行い、デバイス封止用スペーサー2重量部を混合、分散して、本発明の封止材組成物を得た。上記実施例1と同様の条件で有機デバイスの封止を行った。
Example 5
As a matrix polymer, 100 parts by weight of an acrylate type urethane resin (V-4006, manufactured by DIC), 65 parts by weight of a plate-like inorganic compound (talc, average particle diameter 3 μm, long diameter / thickness is 2), alkylphenone-based photoradical 5 parts by weight of a polymerization initiator, 13 parts by weight of an epoxy-modified silane coupling agent, kneaded and dispersed by a kneader, subjected to pressure filtration, and mixed and dispersed by 2 parts by weight of a device sealing spacer, the sealing material of the present invention A composition was obtained. The organic device was sealed under the same conditions as in Example 1 above.

比較例1
マトリックスポリマーとして、ビスフェノールF型エポキシ樹脂(jER807、三菱化学製)100重量部、板状無機化合物(タルク、平均粒径10μm、長径/厚さは100である)40重量部、添加剤(アンチモン(Sb)系光カチオン重合開始剤)5重量部、添加剤(エポキシ変性シランカップリング剤)15重量部、ニーダーにより混練分散し、加圧ろ過を行い、デバイス封止用スペーサー2重量部を混合、分散して、封止材組成物を得た。上記実施例1と同様の条件で有機デバイスの封止を行った。
Comparative Example 1
As a matrix polymer, 100 parts by weight of a bisphenol F type epoxy resin (jER807, manufactured by Mitsubishi Chemical), 40 parts by weight of a plate-like inorganic compound (talc, average particle diameter 10 μm, long diameter / thickness is 100), additive (antimony ( Sb) system photocationic polymerization initiator) 5 parts by weight, additive (epoxy-modified silane coupling agent) 15 parts by weight, kneaded and dispersed by a kneader, pressure filtration, mixed with 2 parts by weight of a device sealing spacer, Dispersed to obtain an encapsulant composition. The organic device was sealed under the same conditions as in Example 1 above.

比較例2
マトリックスポリマーとして、ビスフェノールA型エポキシ樹脂(jER828、三菱化学製)100重量部、板状無機化合物(マイカ、平均粒径50μm、長径/厚さは20である)55重量部、添加剤(アンチモン(Sb)系光カチオン重合開始剤)5重量部、添加剤(エポキシ変性シランカップリング剤)20重量部、ホモミキサーにより混練分散し、加圧ろ過を行い、デバイス封止用スペーサー2重量部を混合、分散して、封止材組成物を得た。上記実施例1と同様の条件で有機デバイスの封止を行った。
Comparative Example 2
As a matrix polymer, 100 parts by weight of a bisphenol A type epoxy resin (jER828, manufactured by Mitsubishi Chemical), 55 parts by weight of a plate-like inorganic compound (mica, average particle diameter 50 μm, long diameter / thickness is 20), additive (antimony ( Sb) system photocationic polymerization initiator) 5 parts by weight, additive (epoxy-modified silane coupling agent) 20 parts by weight, kneaded and dispersed with a homomixer, pressure filtration, and 2 parts by weight of device sealing spacer mixed And dispersed to obtain an encapsulant composition. The organic device was sealed under the same conditions as in Example 1 above.

比較例3
マトリックスポリマーとして、ビスフェノールA型エポキシ樹脂(jER828、三菱化学製)100重量部、板状無機化合物(タルク、平均粒径22.5μm、長径/厚さは80である)50重量部、添加剤(トリフェニルスルホニウムボレート塩)3重量部、添加剤(エポキシ変性シランカップリング剤)10重量部、3本ロールにより混練分散し、加圧ろ過を行い、デバイス封止用スペーサー2重量部を混合、分散して、封止材組成物を得た。上記実施例1と同様の条件で有機デバイスの封止を行った。
Comparative Example 3
As a matrix polymer, 100 parts by weight of a bisphenol A type epoxy resin (jER828, manufactured by Mitsubishi Chemical), 50 parts by weight of a plate-like inorganic compound (talc, average particle diameter 22.5 μm, major axis / thickness is 80), additive ( Triphenylsulfonium borate salt) 3 parts by weight, additive (epoxy-modified silane coupling agent) 10 parts by weight, kneaded and dispersed with three rolls, pressure filtration, mixing and dispersing 2 parts by weight of device sealing spacer And the sealing material composition was obtained. The organic device was sealed under the same conditions as in Example 1 above.

比較例4
マトリックスポリマーとして、アクリレート型ウレタン樹脂(V-4006、DIC製)100重量部、板状無機化合物(タルク、平均粒径30μm、長径/厚さは20である)60重量部、添加剤(アルキルフェノン系光ラジカル重合開始剤)5重量部、添加剤(エポキシ変性シランカップリング剤)12重量部、ボールミルにより混練分散し、加圧ろ過を行い、デバイス封止用スペーサー2重量部を混合、分散して、封止材組成物を得た。上記実施例1と同様の条件で有機デバイスの封止を行った。
Comparative Example 4
As a matrix polymer, 100 parts by weight of an acrylate type urethane resin (V-4006, manufactured by DIC), 60 parts by weight of a plate-like inorganic compound (talc, average particle size 30 μm, major axis / thickness is 20), additive (alkylphenone) System radical photopolymerization initiator) 5 parts by weight, additive (epoxy-modified silane coupling agent) 12 parts by weight, kneaded and dispersed by a ball mill, pressure filtration, and 2 parts by weight of device sealing spacer are mixed and dispersed. Thus, a sealing material composition was obtained. The organic device was sealed under the same conditions as in Example 1 above.

比較例5
マトリックスポリマーとして、ビスフェノールF型エポキシ樹脂(jER807、三菱化学製)100重量部、板状無機化合物(シリカ、平均粒径15μm、長径/厚さは50である)50重量部、添加剤(イミダゾール系硬化開始剤)10重量部、添加剤(エポキシ変性シランカップリング剤)10重量部、ボールミルにより混練分散し、加圧ろ過を行い、デバイス封止用スペーサー2重量部を混合、分散して、封止材組成物を得た。上記実施例3と同様の条件で有機デバイスの封止を行った。
Comparative Example 5
As a matrix polymer, 100 parts by weight of bisphenol F type epoxy resin (jER807, manufactured by Mitsubishi Chemical), 50 parts by weight of a plate-like inorganic compound (silica, average particle diameter 15 μm, long diameter / thickness is 50), additive (imidazole type) 10 parts by weight of a curing initiator), 10 parts by weight of an additive (epoxy-modified silane coupling agent), kneaded and dispersed by a ball mill, subjected to pressure filtration, mixed and dispersed with 2 parts by weight of a device sealing spacer, and sealed. A stopping material composition was obtained. The organic device was sealed under the same conditions as in Example 3 above.

評価方法1
封止材硬化物の広角X線回折測定はRigaku製Smart lab装置によって行った。計算用ソフトはリガク社「統合粉末X線解析ソフトウェアPDXL」を用い、2θ=3〜90°の範囲に現れる基材と平行する方向に配向している回折ピークの強度の和をIpとし、同じ範囲に現れる基材と平行していない方向に配向している回折ピークの強度の和をInpとした。
評価方法2
寿命試験
60℃、90%RHの環境条件で、封止した有機薄膜太陽電池の耐久性試験を行った。
耐久性試験を行いながら、蛍光を有機薄膜太陽電池デバイスに当てることによって、太陽電池デバイスの光る状態を撮影した。光らなかった箇所はダークスポットと呼び、そのダークスポットの数(またはデバイスのエージから進入した距離)をデバイス寿命評価の根拠になる。実際に実施例と比較例のダークスポットの数(またはデバイスエッジからの進入距離)を測定し、デバイス劣化速度を評価した。
ダークスポットの数が全素子数の10%に到達するとき、有機薄膜太陽電池の寿命と定義し、そこまでかかった時間数を耐久性試験の結果となる。
評価方法3
アウトガスの測定は110℃で、GC/MS(株式会社パーキンエルマージャパン製Clarus 500のGC/MSにTurboMatrix 40のヘッドスペースを合わせた)を用いて行った。得られたデータをトルエン換算値に直した。
評価方法4
水分透過率測定はカップ法水分測定装置を用いて行った。測定方法はJIS Z 0208にしたがっており、測定条件は40℃、90%RHである。
評価方法5
接着強度を評価する際に、まず基材と封止キャップ材の間に封止材組成物を塗布し、上記実施例1と同様な方法でデバイスを封止した。
封止したデバイス基材と封止キャップ材を冶具でつかみ、同軸引っ張り試験(島津製作所製AG-500NI)を用いて行い、その試験で得られた引張り強度を接着強度とする。
Evaluation method 1
The wide-angle X-ray diffraction measurement of the cured encapsulant was performed using a Rigaku Smart lab apparatus. The calculation software is “integrated powder X-ray analysis software PDXL” manufactured by Rigaku Corporation. Ip is the sum of the intensities of diffraction peaks oriented in the direction parallel to the substrate appearing in the range of 2θ = 3 to 90 °. The sum of the intensities of diffraction peaks oriented in a direction not parallel to the substrate appearing in the range was defined as Inp.
Evaluation method 2
Life test A durability test of the sealed organic thin-film solar cell was performed under environmental conditions of 60 ° C. and 90% RH.
While conducting the durability test, the state of the solar cell device that was shining was photographed by applying fluorescence to the organic thin-film solar cell device. The part that did not shine is called a dark spot, and the number of dark spots (or the distance that has entered from the age of the device) is the basis for the device life evaluation. Actually, the number of dark spots (or the approach distance from the device edge) of the example and the comparative example was measured, and the device deterioration rate was evaluated.
When the number of dark spots reaches 10% of the total number of elements, it is defined as the lifetime of the organic thin film solar cell, and the time taken so far is the result of the durability test.
Evaluation method 3
The outgas was measured at 110 ° C. using GC / MS (Clarus 500 GC / MS manufactured by PerkinElmer Japan Co., Ltd. and TurboMatrix 40 headspace combined). The obtained data was converted to a toluene equivalent value.
Evaluation method 4
The moisture permeability was measured using a cup method moisture measuring device. The measurement method conforms to JIS Z 0208, and the measurement conditions are 40 ° C. and 90% RH.
Evaluation method 5
When evaluating the adhesive strength, first, a sealing material composition was applied between the base material and the sealing cap material, and the device was sealed in the same manner as in Example 1.
The sealed device substrate and the sealing cap material are grasped with a jig, and subjected to a coaxial tensile test (AG-500NI manufactured by Shimadzu Corporation), and the tensile strength obtained in the test is defined as the adhesive strength.

各実施例と比較例のX線回折による配向状態と特性と結果を表1に示す。   Table 1 shows the alignment state, characteristics, and results of each example and comparative example by X-ray diffraction.

Figure 0005906550
Figure 0005906550

本発明によれば、水分や酸素などのガスの透過を抑制しやすいハイバリア性に優れ、有機デバイス封止用に好適な封止材を提供できる。この封止材が有機薄膜太陽電池、表示素子などの有機デバイスだけでなく、更にバリア性に対する要求の高い半導体デバイスにも応用でき、広い分野での活躍が期待できる。
ADVANTAGE OF THE INVENTION According to this invention, it is excellent in the high barrier property which is easy to suppress permeation | transmission of gas, such as a water | moisture content and oxygen, and can provide the sealing material suitable for organic device sealing. This sealing material can be applied not only to organic devices such as organic thin-film solar cells and display elements, but also to semiconductor devices with higher demands on barrier properties, and can be expected to play an active role in a wide range of fields.

Claims (10)

マトリックスポリマー 100重量部中にマイクロトラック法により測定された平均粒子径が0.5μm以上5μm未満で、長径と厚さとの比(長径/厚さ)の平均値が1.3〜50である板状無機化合物 50〜100重量部がスタッキング状に分散して含有されてなる有機デバイス用封止材組成物を平行に向かい合う2枚の基材に挟み架橋反応させる板状無機化合物がスタッキング状に分散して含有されてなる有機デバイス用封止材の製造方法A plate having an average particle diameter measured by the microtrack method in 100 parts by weight of a matrix polymer of 0.5 μm or more and less than 5 μm, and an average value of the ratio of the major axis to the thickness (major axis / thickness) is 1.3 to 50 A plate-like inorganic compound that is sandwiched between two substrates facing each other in parallel and contains 50 to 100 parts by weight of a inorganic inorganic compound dispersed in a stacking shape is dispersed in a stacking shape. And the manufacturing method of the sealing material for organic devices contained. マトリックスポリマーがエポキシ樹脂、変性エポキシ樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリアクリレート樹脂、変性オレフィン樹脂、ポリエステル樹脂である請求項1に記載の有機デバイス用封止材の製造方法The method for producing a sealing material for an organic device according to claim 1, wherein the matrix polymer is an epoxy resin, a modified epoxy resin, a polyurethane resin, a polycarbonate resin, a polyacrylate resin, a modified olefin resin, or a polyester resin. 上記長径/厚さの平均値が1.3〜25である請求項1に記載の有機デバイス用封止材の製造方法2. The method for producing a sealing material for organic devices according to claim 1, wherein the average value of the major axis / thickness is 1.3 to 25. 3. マトリックスポリマー100重量部中にマイクロトラック法により測定された平均粒子径が0.5μm以上5μm未満で、長径と厚さとの比(長径/厚さ)の平均値が1.3〜50である板状無機化合物 50〜100重量部がスタッキング状に分散して含有されてなる有機デバイス用封止材組成物を平行に向かい合う2枚の基材に挟み架橋反応させる封止材の製造方法であって、その封止材膜のX線回折パターンにおいて、封止材中の板状無機化合物に起因する回折ピークが認められ、回折ピークのうち、板状無機化合物が基材と平行する方向に配向している回折ピークの強度の和(Ip)を分母にし、基材と平行していない方向に配向している回折ピークの強度の和(Inp)を分子にして得られる、非平行配向率α(Inp/Ip)が0〜0.1の範囲にある有機デバイス用封止材の製造方法A plate having an average particle diameter measured by the microtrack method in 100 parts by weight of a matrix polymer of 0.5 μm or more and less than 5 μm, and an average value of the ratio of the major axis to the thickness (major axis / thickness) is 1.3 to 50 Jo inorganic compound 50-100 parts by weight a method of manufacturing a sealing member that makes scissors crosslinking reaction in the sealing material composition of two substrates in parallel facing the organic device formed by containing dispersed stacking shape In the X-ray diffraction pattern of the encapsulant film, a diffraction peak due to the plate-like inorganic compound in the encapsulant is observed, and the plate-like inorganic compound is oriented in a direction parallel to the substrate. The non-parallel orientation ratio α () obtained by using the sum of the intensity of diffraction peaks (Ip) as the denominator and the sum of the intensity of diffraction peaks aligned in the direction not parallel to the base material (Inp) as molecules. Inp / Ip) is 0 to 0. The manufacturing method of the sealing material for organic devices in the range of 1. 上記αが、0.0001〜0.1の範囲にある請求項4に記載の有機デバイス用封止材の製造方法The method for producing a sealing material for organic devices according to claim 4, wherein α is in the range of 0.0001 to 0.1. Ipが(00c)面に帰属できるピークの強度の和であり、Inpが(abc)面(aもしくはbのいずれかは0ではない)ピークの強度の和である請求項4〜5のいずれか1項に記載の有機デバイス用封止材の製造方法6. Ip is the sum of the peak intensities that can be attributed to the (00c) plane, and Inp is the sum of the intensities of the (abc) plane (either a or b is not 0). The manufacturing method of the sealing material for organic devices of 1 item | term. マトリックスポリマー100重量部中にマイクロトラック法により測定された平均粒子径が0.5μm以上5μm未満で、長径と厚さとの比(長径/厚さ)の平均値が1.3〜50である板状無機化合物 50〜100重量部が分散して含有されてなる組成物を平行に向かい合う2枚の基材に挟み架橋反応させる板状無機化合物がスタッキング状に分散して含有されてなる有機デバイス用封止材の製造方法A plate having an average particle diameter measured by the microtrack method in 100 parts by weight of a matrix polymer of 0.5 μm or more and less than 5 μm, and an average value of the ratio of the major axis to the thickness (major axis / thickness) is 1.3 to 50 For organic devices comprising a plate-like inorganic compound dispersed and contained in a stacking manner by sandwiching a composition containing 50 to 100 parts by weight of a inorganic compound between two substrates facing each other in parallel Manufacturing method of sealing material. マトリックスポリマー100重量部中にマイクロトラック法により測定された平均粒子径が0.5μm以上5μm未満で、長径と厚さとの比(長径/厚さ)の平均値が1.3〜50である板状無機化合物 50〜100重量部が分散して含有されてなる組成物を平行に向かい合う2枚の基材に挟み架橋反応させる封止材の製造方法であって、その封止材膜のX線回折パターンにおいて、封止材中の板状無機化合物に起因する回折ピークが認められ、回折ピークのうち、板状無機化合物が基材と平行する方向に配向している回折ピークの強度の和(Ip)を分母にし、基材と平行していない方向に配向している回折ピークの強度の和(Inp)を分子にして得られる、非平行配向率α(Inp/Ip)が0〜0.1の範囲にある有機デバイス用封止材の製造方法A plate having an average particle diameter measured by the microtrack method in 100 parts by weight of a matrix polymer of 0.5 μm or more and less than 5 μm, and an average value of the ratio of the major axis to the thickness (major axis / thickness) is 1.3 to 50 A method for producing a sealing material in which a composition comprising 50 to 100 parts by weight of a dispersed inorganic compound is dispersed and sandwiched between two substrates facing each other in a cross-linking manner , and the X-ray of the sealing material film In the diffraction pattern, a diffraction peak due to the plate-like inorganic compound in the sealing material is observed, and among the diffraction peaks, the sum of the intensity of the diffraction peaks in which the plate-like inorganic compound is oriented in a direction parallel to the substrate ( Ip) is used as the denominator, and the non-parallel orientation ratio α (Inp / Ip) obtained from the sum of the intensity (Inp) of diffraction peaks oriented in a direction not parallel to the substrate is 0 to 0.00. sealant for an organic device in the first range Manufacturing method . マトリックスポリマー100重量部中にマイクロトラック法により測定された平均粒子径が0.5μm以上5μm未満で、長径と厚さとの比(長径/厚さ)の平均値が1.3〜50である板状無機化合物 50〜100重量部がスタッキング状に分散して含有されてなる有機デバイス用封止材。   A plate having an average particle diameter measured by the microtrack method in 100 parts by weight of a matrix polymer of 0.5 μm or more and less than 5 μm, and an average value of the ratio of the major axis to the thickness (major axis / thickness) is 1.3-50 An organic device sealing material comprising 50 to 100 parts by weight of an inorganic compound dispersed and contained in a stacking shape. マトリックスポリマー100重量部中にマイクロトラック法により測定された平均粒子径が0.5μm以上5μm未満で、長径と厚さとの比(長径/厚さ)の平均値が1.3〜50である板状無機化合物 50〜100重量部が分散して含有されてなる封止材であって、その封止材膜のX線回折パターンにおいて、封止材中の板状無機化合物に起因する回折ピークが認められ、回折ピークのうち、板状無機化合物が基材と平行する方向に配向している回折ピークの強度の和(Ip)を分母にし、基材と平行していない方向に配向している回折ピークの強度の和(Inp)を分子にして得られる、非平行配向率α(Inp/Ip)が0〜0.1の範囲にある有機デバイス用封止材。   A plate having an average particle diameter measured by the microtrack method in 100 parts by weight of a matrix polymer of 0.5 μm or more and less than 5 μm, and an average value of the ratio of the major axis to the thickness (major axis / thickness) is 1.3-50 In the X-ray diffraction pattern of the sealing material film, a diffraction peak due to the plate-like inorganic compound in the sealing material Among the diffraction peaks, the sum (Ip) of the intensity of the diffraction peaks in which the plate-like inorganic compound is oriented in the direction parallel to the substrate is used as the denominator, and is oriented in the direction not parallel to the substrate. An encapsulant for organic devices having a non-parallel orientation ratio α (Inp / Ip) in the range of 0 to 0.1, obtained by using the sum of diffraction peak intensities (Inp) as a molecule.
JP2011165809A 2011-07-28 2011-07-28 Encapsulant with high barrier properties Active JP5906550B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011165809A JP5906550B2 (en) 2011-07-28 2011-07-28 Encapsulant with high barrier properties
KR1020120080355A KR101668140B1 (en) 2011-07-28 2012-07-24 Sealant with high barrier property
TW101127164A TWI496826B (en) 2011-07-28 2012-07-27 Sealing material having barrier properties
CN201210264188.1A CN102898782B (en) 2011-07-28 2012-07-27 There is the encapsulating material of high barrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011165809A JP5906550B2 (en) 2011-07-28 2011-07-28 Encapsulant with high barrier properties

Publications (2)

Publication Number Publication Date
JP2013028722A JP2013028722A (en) 2013-02-07
JP5906550B2 true JP5906550B2 (en) 2016-04-20

Family

ID=47571287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011165809A Active JP5906550B2 (en) 2011-07-28 2011-07-28 Encapsulant with high barrier properties

Country Status (4)

Country Link
JP (1) JP5906550B2 (en)
KR (1) KR101668140B1 (en)
CN (1) CN102898782B (en)
TW (1) TWI496826B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051357B (en) 2013-03-15 2017-04-12 财团法人工业技术研究院 Environmentally sensitive electronic device and packaging method thereof
WO2015049824A1 (en) * 2013-10-02 2015-04-09 ソニー株式会社 Battery, electrolyte, battery pack, electronic device, electric motor vehicle, electrical storage device, and power system
CN104637886B (en) 2013-11-12 2017-09-22 财团法人工业技术研究院 Folding type packaging structure
CN105754273B (en) * 2016-03-11 2018-04-20 安徽金兑新材料科技有限公司 A kind of polymer/nanometer film for obstructing steam and preparation method thereof
CN105802179B (en) * 2016-05-06 2017-04-05 辽宁大禹防水科技发展有限公司 A kind of high-strength resin tire base for waterproof roll and preparation method thereof
CN110035893A (en) * 2016-12-09 2019-07-19 三菱瓦斯化学株式会社 Gas-barrier films
CN109988413A (en) * 2017-12-29 2019-07-09 深圳光启尖端技术有限责任公司 A kind of gas barrier material and preparation method thereof
CN114990753A (en) * 2022-06-17 2022-09-02 烟台经纬智能科技有限公司 Luminescent color-changing fiber and one-step forming preparation method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916527B2 (en) * 2001-01-18 2005-07-12 Matsushita Electric Works, Ltd. Resin moldings
JP4906195B2 (en) * 2001-04-13 2012-03-28 白石工業株式会社 Chlorine-containing polymer compound composition containing platy calcium carbonate
JP2003041019A (en) * 2001-07-26 2003-02-13 Toray Ind Inc Thermoplastic resin film
JP2004179275A (en) * 2002-11-26 2004-06-24 Sumitomo Bakelite Co Ltd Semiconductor device
JP4526776B2 (en) * 2003-04-02 2010-08-18 株式会社半導体エネルギー研究所 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP2006056969A (en) * 2004-08-19 2006-03-02 Nippon Steel Chem Co Ltd Epoxy resin composition and cured product thereof
JP2006249343A (en) * 2005-03-14 2006-09-21 Mitsui Chemicals Inc Epoxy resin composition and package for housing semiconductor element
JP2006291072A (en) * 2005-04-12 2006-10-26 Sekisui Chem Co Ltd Photocurable resin composition, adhesive for organic electroluminescence element, organic electroluminescence display element, and manufacturing method of organic electroluminescence display element
JP2008095001A (en) * 2006-10-13 2008-04-24 Nippon Electric Glass Co Ltd Composition for sealing
JP4780041B2 (en) * 2007-06-07 2011-09-28 住友ベークライト株式会社 Resin paste for semiconductor and semiconductor device
JP5258723B2 (en) * 2008-09-24 2013-08-07 積水化学工業株式会社 Electronic component adhesive and electronic component laminate
JP5332464B2 (en) * 2008-09-30 2013-11-06 住友ベークライト株式会社 Resin composition and semiconductor device produced using resin composition
US8546959B2 (en) * 2008-12-10 2013-10-01 Sumitomo Bakelite Co., Ltd. Resin composition for encapsulating semiconductor, method for producing semiconductor device and semiconductor device
US9136195B2 (en) * 2009-07-17 2015-09-15 Tyco Electronics Corporation Oxygen barrier compositions and related methods

Also Published As

Publication number Publication date
CN102898782A (en) 2013-01-30
KR20130014375A (en) 2013-02-07
TWI496826B (en) 2015-08-21
JP2013028722A (en) 2013-02-07
CN102898782B (en) 2016-07-13
TW201313805A (en) 2013-04-01
KR101668140B1 (en) 2016-10-20

Similar Documents

Publication Publication Date Title
JP5906550B2 (en) Encapsulant with high barrier properties
EP2781570B1 (en) Method for manufacturing electronic device
JP6258471B2 (en) SEALING FILM AND METHOD FOR SEALING ORGANIC ELECTRONIC DEVICE USING THE SAME
KR101552749B1 (en) Adhesive composition
EP2781569B1 (en) Adhesive film
JP5896388B2 (en) Adhesive film and organic electronic device sealing method using the same
JP6195099B2 (en) SEALING MATERIAL FILM AND ELECTRONIC DEVICE INCLUDING THE SAME
JP2016530364A (en) Adhesive film and organic electronic device manufacturing method using the same
KR101621991B1 (en) Adhesive composition for encapsulating cell and adhesive film
TWI558787B (en) Adhesive film and encapsulation product of organic electronic device using the same
JPWO2011152500A1 (en) Water vapor barrier film and method for producing the same
US20150048356A1 (en) Adhesive film and sealing product for organic electronic device using same
JP2012136614A (en) Gas-barrier photosetting resin composition
CN114762144A (en) Sealing agent, sealing sheet, electronic device, and perovskite-type solar cell
JP6434428B2 (en) Film adhesive containing conductive fiber coated particles
JP2013112723A (en) Photocurable resin composition
JP2002368233A (en) Photoelectric converter
CN114555358B (en) Packaging film
CN113646170B (en) Resin sheet with support
JP2015137336A (en) Curable composition containing conductive fiber coated particle
JP2015137339A (en) Curable composition containing conductive fiber coated particle
KR20230123047A (en) Adhesive film for organic solar cells
JP2015193846A (en) Gas-barrier photosetting resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160303

R150 Certificate of patent or registration of utility model

Ref document number: 5906550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250