JP5902567B2 - Acoustic design support method - Google Patents

Acoustic design support method Download PDF

Info

Publication number
JP5902567B2
JP5902567B2 JP2012144565A JP2012144565A JP5902567B2 JP 5902567 B2 JP5902567 B2 JP 5902567B2 JP 2012144565 A JP2012144565 A JP 2012144565A JP 2012144565 A JP2012144565 A JP 2012144565A JP 5902567 B2 JP5902567 B2 JP 5902567B2
Authority
JP
Japan
Prior art keywords
sound
bgn
clarity
sound source
stat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012144565A
Other languages
Japanese (ja)
Other versions
JP2014010173A (en
Inventor
増田 潔
潔 増田
晃治 山口
晃治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2012144565A priority Critical patent/JP5902567B2/en
Publication of JP2014010173A publication Critical patent/JP2014010173A/en
Application granted granted Critical
Publication of JP5902567B2 publication Critical patent/JP5902567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明は建物内の空間の音響設計支援技術に関する。   The present invention relates to an acoustic design support technology for a space in a building.

音の明瞭度の評価指標として、STI(Speech Transmission Index)やその簡易版であるRASTIが知られている。このような評価指標は、試行錯誤を繰り返すことが可能な大量生産品の分野においてはその音響設計上の有効性が高い。しかし、建築物は試行錯誤を繰り返すことが基本的に許されず、このような評価指標を設計に反映し難い。そこで、本願の発明者は、設計段階で簡易的に明瞭度を予測する手法及びこの予測手法を用いた音響設計方法を既に提案している(特許文献1)。   As an evaluation index of the intelligibility of sound, STI (Speech Transmission Index) and RASTI which is a simplified version thereof are known. Such an evaluation index is highly effective in acoustic design in the field of mass-produced products that can be repeated trial and error. However, buildings are basically not allowed to repeat trial and error, and it is difficult to reflect such an evaluation index in the design. Therefore, the inventor of the present application has already proposed a method of simply predicting the intelligibility at the design stage and an acoustic design method using this prediction method (Patent Document 1).

一方、建築空間においては、音漏れによる情報漏えいの防止対策が必要となる場合がある。間仕切壁に扉やガラスが設置されている場合や、遮音壁に比べて遮音性能が低いハイパーティションなどが間仕切壁である場合、間仕切壁を透過する会話音のスピーチプライバシーが問題になる場合がある。   On the other hand, in an architectural space, it may be necessary to take measures to prevent information leakage due to sound leakage. When a door or glass is installed on the partition wall, or when a high partition having a lower sound insulation performance than the sound insulation wall is the partition wall, the speech privacy of the conversation sound transmitted through the partition wall may be a problem.

特許第4726174号公報Japanese Patent No. 4726174

スピーチプライバシーの問題について、従来では不必要に間仕切壁の遮音性能を高くするか、実際の音漏れに応じてマスキング音を調整するなど、場当たり的な対応しかできておらず、設計段階での対応が要望されている。   For speech privacy issues, conventional measures such as increasing the sound insulation performance of the partition wall unnecessarily or adjusting the masking sound according to the actual sound leakage are available at the design stage. Is desired.

スピーチプライバシーの評価は、音の聞き取り難さであり、したがって、STIで評価される場合も多い。音源と受音点とが同一室内にある場合は特許文献1に開示した技術を適用できるが、特許文献1に開示した技術は、音源と受音点との間に間仕切壁が存在することを想定していない。   Speech privacy evaluation is the difficulty of hearing sounds, and is therefore often evaluated by STI. When the sound source and the sound receiving point are in the same room, the technique disclosed in Patent Document 1 can be applied. However, the technique disclosed in Patent Document 1 indicates that there is a partition wall between the sound source and the sound receiving point. Not assumed.

本発明の目的は、音源と受音点と間に間仕切壁が存在する空間における音響設計を支援することにある。 An object of the present invention is to support the acoustic design of the space in which the partition wall present between the sound source and the sound receiving point.

本発明によれば、音源を有する音源室と、受音点を有する受音室とが間仕切壁で仕切られた空間の音響設計支援方法であって、前記音源が出力する音の前記受音点における明瞭度SNR stat 、前記間仕切壁の音響透過損失TL、前記受音室の暗騒音レベルL BGN 、前記音源のパワーレベルPWL及び指向係数Q、前記音源室及び前記受音室の容積V及び表面積S、前記音源室及び前記受音室の平均吸音率α、及び、前記音源と前記受音点との距離、をパラメータとした以下の関係式を予め用意し、
SNR stat =10・log 10 {(E d +E e )/(E r +E BGN )}
E d =τ・W/c・Q/4πr 2
W=10 (PWL-120)/10
τ=10 (-TL/10)
E e =τ・W/c・4/R・{1-(1-α) n }
R=S・α/(1-α)
n=(r+c・Δt)/p
p=4V/S
E r =τ・W/c・4/R・(1-α) n
E BGN =1/c・10 k
k=(L BGN -120)/10
(c:音速、Δt:有効な初期反射音の最大到達遅れ時間)、
前記関係式に基づき、
前記明瞭度SNR stat と、前記パラメータのうち、予め定めた未確定パラメータと、の関係を求めることを特徴とする音響設計支援方法が提供される。
According to the present invention, there is provided an acoustic design support method for a space in which a sound source room having a sound source and a sound receiving room having a sound receiving point are partitioned by a partition wall, and the sound receiving point of the sound output from the sound source Intelligibility SNR stat , sound transmission loss TL of the partition wall, background noise level L BGN of the sound receiving chamber, power level PWL and directivity factor Q of the sound source, volume V and surface area of the sound source chamber and sound receiving chamber The following relational expression is prepared in advance using S , the average sound absorption coefficient α of the sound source room and the sound receiving room, and the distance r 1 between the sound source and the sound receiving point as parameters:
SNR stat = 10 ・ log 10 {(E d + E e ) / (E r + E BGN )}
E d = τ ・ W / c ・ Q / 4πr 2
W = 10 (PWL-120) / 10
τ = 10 (-TL / 10)
E e = τ ・ W / c ・ 4 / R ・ {1- (1-α) n }
R = S ・ α / (1-α)
n = (r + c ・ Δt) / p
p = 4V / S
E r = τ ・ W / c ・ 4 / R ・ (1-α) n
E BGN = 1 / c ・ 10 k
k = (L BGN -120) / 10
(C: sound speed, Δt: maximum delay time for effective early reflections),
Based on the relational expression,
An acoustic design support method is provided in which a relationship between the clarity SNR stat and a predetermined uncertain parameter among the parameters is obtained.

本発明によれば、音源と受音点と間に間仕切壁が存在する空間における音響設計を支援することができる。 According to the present invention, it is possible to support the acoustic design of the space in which the partition wall present between the sound source and the sound receiving point.

(A)は音響設計の対象となる空間例のモデル図、(B)は関係式を示す図。(A) is a model figure of the example of the space used as the object of acoustic design, (B) is a figure which shows a relational expression. (A)はSTIとSNRstatの変換式、(B)及び(C)は実験データを示す図。(A) is a conversion formula between STI and SNR stat , and (B) and (C) are diagrams showing experimental data. (A)は音響設計支援装置のブロック図、(B)は音響設計支援装置のCPUが実行する処理例を示すフローチャート。(A) is a block diagram of an acoustic design support device, (B) is a flowchart showing a processing example executed by the CPU of the acoustic design support device. (A)乃至(C)は出力例を示す図。(A) thru | or (C) is a figure which shows an example of an output.

図1(A)は音響設計の対象となる空間例のモデル図を示す。このモデルは、音源を有する音源室と、受音点を有する受音室とが間仕切壁で仕切られている。本実施形態では音源が発する音の受音点における明瞭度の指標をSNRstat(dB)と呼ぶ。なお、後述するように、この指標値はSTI値(或いはRASTI値。以下、同じ。)に変換可能であり、本実施形態では、STI値を音の明瞭度、つまり、スピーチプライバシーの評価に用いる場合を想定する。 FIG. 1A shows a model diagram of a space example to be subjected to acoustic design. In this model, a sound source room having a sound source and a sound receiving room having a sound receiving point are partitioned by a partition wall. In this embodiment, the index of intelligibility at the sound receiving point of the sound emitted from the sound source is called SNR stat (dB). As will be described later, this index value can be converted into an STI value (or RASTI value, hereinafter the same), and in this embodiment, the STI value is used for evaluation of sound clarity, that is, speech privacy. Assume a case.

SNRstatは、Lochner及びBurgerが提案したSNR(Signal-to-Ratio)の計算式を、統計室内音響理論に基づく方法で計算可能な評価量に換算することで、図1(B)の式1として定義することができる。 SNR stat is obtained by converting the equation of SNR (Signal-to-Ratio) proposed by Lochner and Burger into an evaluation quantity that can be calculated by a method based on statistical room acoustic theory. Can be defined as

式1において、Edは、間仕切壁を透過した音源から受音点への直接音のエネルギ密度であり、図1(B)の式2で計算される。式2においてτは間仕切壁の透過率であり、式4により与えられる。式4においてTLは、間仕切壁の音響透過損失(dB)である。 In Equation 1, E d is the energy density of the direct sound from the sound source that has passed through the partition wall to the sound receiving point, and is calculated by Equation 2 in FIG. In Equation 2, τ is the transmittance of the partition wall and is given by Equation 4. In Equation 4, TL is the sound transmission loss (dB) of the partition wall.

式2において、Wは音源の音響パワーであり、音声のパワーレベルをPWLとおくと図1(B)の式3で与えられる。cは音速である。Qは音源の指向係数であり、音源そのものの指向特性D(θ,φ)と、音源の設置場所によって決定される放射立体角Ωとにより、式5で与えられる。式2において、rは音源から受音点までの距離である。   In Equation 2, W is the sound power of the sound source, and is given by Equation 3 in FIG. c is the speed of sound. Q is the directivity coefficient of the sound source, and is given by Equation 5 by the directivity characteristic D (θ, φ) of the sound source itself and the radiation solid angle Ω determined by the installation location of the sound source. In Equation 2, r is the distance from the sound source to the sound receiving point.

式1において、Eeは、間仕切壁を透過した音源から受音点への初期反射音のエネルギ密度であり、図1(B)の式6で計算される。式6において、Rは室定数であり、式7で与えられる。式6及び式7において、αは音源室及び受音室の平均吸音率である。式7においてSは音源室及び受音室の全表面積である。式6において、nは明瞭性に貢献する反射音の反射次数であり、式8で与えられる。 In Equation 1, E e is the energy density of the initial reflected sound from the sound source that has passed through the partition wall to the sound receiving point, and is calculated by Equation 6 in FIG. In Equation 6, R is a room constant and is given by Equation 7. In Expressions 6 and 7, α is the average sound absorption coefficient of the sound source room and the sound receiving room. In Equation 7, S is the total surface area of the sound source room and the sound receiving room. In Equation 6, n is the reflection order of the reflected sound that contributes to clarity, and is given by Equation 8.

式8において、Δtは有効な初期反射音の最大到達遅れ時間であり、例えば50msとする。式8において、pは平均自由行路であり、式9で与えられる。式9においてVは音源室及び受音室の全容積である。   In Expression 8, Δt is a maximum arrival delay time of the effective initial reflected sound, and is set to 50 ms, for example. In Equation 8, p is the mean free path and is given by Equation 9. In Equation 9, V is the total volume of the sound source room and the sound receiving room.

式1において、Erは、間仕切壁を透過した音源から受音点への後部残響音のエネルギ密度であり、図1(B)の式10で計算される。また、EBGNは、受音室の背景騒音(暗騒音)のエネルギ密度であり、図1(B)の式11で計算される。式11において、LBGNは暗騒音レベル(dB)である。 In Equation 1, Er is the energy density of the reverberant sound from the sound source that has passed through the partition wall to the sound receiving point, and is calculated by Equation 10 in FIG. EBGN is the energy density of the background noise (background noise) in the sound receiving room, and is calculated by Equation 11 in FIG. In Equation 11, L BGN is the background noise level (dB).

次に、SNRstat値とSTI値の変換式について説明する。同一条件における聴感実験の結果から、SNRstat値とSTI値とには一定の相関関係を有することを確認し、これらの変換式を図2(A)の式12として定義した。図2(B)は、聴感実験の結果と式12(同図の曲線)との関係を示す。 Next, a conversion formula between the SNR stat value and the STI value will be described. From the result of the audibility experiment under the same conditions, it was confirmed that the SNR stat value and the STI value had a certain correlation, and these conversion expressions were defined as Expression 12 in FIG. FIG. 2B shows the relationship between the result of the audibility experiment and Expression 12 (curve in the figure).

式12(及び式1)に示される関係式(以下、STI関係式という。)は、明瞭度STI、音響透過損失TL、暗騒音レベルLBGN、音源の条件(パワーレベルPWL及び指向係数Q)、音源室及び受音室の容積V及び表面積S、音源室及び受音室の平均吸音率α、及び、音源と受音点との距離rをパラメータとした関係式となっている。したがって、明瞭度STIを除く、設計対象とするパラメータを未確定とし、残りの各パラメータを設定することで、明瞭度STIと、設計対象のパラメータとの関係を求めることができる。 The relational expression (hereinafter referred to as STI relational expression) shown in Expression 12 (and Expression 1) is the clarity STI, sound transmission loss TL, background noise level L BGN , and sound source conditions (power level PWL and directivity coefficient Q). The relational expression using the volume V and the surface area S of the sound source room and the sound receiving room, the average sound absorption coefficient α of the sound source room and the sound receiving room, and the distance r between the sound source and the sound receiving point as parameters. Therefore, the relationship between the intelligibility STI and the design target parameter can be obtained by setting the remaining parameters as undesignated parameters to be designed excluding the intelligibility STI.

図2(C)に演算値と実測値との比較を示す。良い対応を示しており、設計方法が適切であることを示している。   FIG. 2C shows a comparison between the calculated value and the actually measured value. It shows a good response and shows that the design method is appropriate.

例えば、音響透過損失TLを未確定のパラメータとすると、式12から明瞭度STIと音響透過損失TLとの関係を得ることができ、スピーチプライバシーを考慮して目標とする明瞭度STIを設定すると、この目標明瞭度を充足する透過損失TLが判明する。この結果にしたがって、間仕切壁の材料等を選択することで目標明瞭度を実現可能となる。   For example, assuming that the sound transmission loss TL is an undetermined parameter, the relationship between the clarity STI and the sound transmission loss TL can be obtained from Equation 12, and when the target clarity STI is set in consideration of speech privacy, A transmission loss TL that satisfies this target intelligibility is found. According to this result, the target clarity can be realized by selecting the material of the partition wall.

設計対象とする未確定パラメータはいずれでもよいが、一般的には、上述した音響透過損失TLの他、暗騒音レベルLBGN、平均吸音率αが多いと考えられる。目標明瞭度を充足する暗騒音レベルLBGNが判明すると、マスキング音の調整、例えば、空調設備の出力調整や、BGMの音量調整、或いは、騒音発生装置の出力調整等により目標明瞭度を実現可能となる。また、目標明瞭度を充足する平均吸音率αが判明すると、内装材の選択によって目標明瞭度を実現可能となる。設計対象とする未確定パラメータは1つである必要はなく、複数でもよい。 Any uncertain parameter to be designed may be used, but it is generally considered that the background noise level L BGN and the average sound absorption coefficient α are large in addition to the sound transmission loss TL described above. When the background noise level L BGN that satisfies the target intelligibility is found, the target intelligibility can be achieved by adjusting the masking sound, for example, adjusting the output of the air conditioning equipment, adjusting the volume of the BGM, or adjusting the output of the noise generator. It becomes. Further, when the average sound absorption coefficient α satisfying the target intelligibility is found, the target intelligibility can be realized by selecting the interior material. The number of uncertain parameters to be designed does not have to be one, and may be plural.

こうして本実施形態では、音源と受音点と間に間仕切壁が存在する空間における音響設計を支援することができる。この結果、過剰な遮音設計をすることなく、内装やマスキング音を組み合わせたスピーチプライバシーが確保されたコストパフォーマンスに優れる室内空間を実現できる設計を低コスト、短時間で実施できる。また、設計パラメーターが少なく、既存のカタログデータ等を用いれば計算可能であって、予測精度としても十分なものが得られる。   Thus, in this embodiment, acoustic design in a space where a partition wall exists between the sound source and the sound receiving point can be supported. As a result, it is possible to carry out a design that can realize an indoor space with excellent cost performance in which speech privacy is ensured by combining interior and masking sound without making excessive sound insulation design at a low cost and in a short time. Moreover, there are few design parameters, it can be calculated by using existing catalog data, etc., and sufficient prediction accuracy can be obtained.

次に、本実施形態を装置上で実施する場合について説明する。図3(A)は本発明の方法が実施可能な音響設計支援装置100のブロック図である。この装置100は、同図に示される構成を有するコンピュータシステムで実現でき、汎用可能コンピュータシステムで実現可能である。   Next, the case where this embodiment is implemented on an apparatus is demonstrated. FIG. 3A is a block diagram of an acoustic design support apparatus 100 that can implement the method of the present invention. The apparatus 100 can be realized by a computer system having the configuration shown in the figure, and can be realized by a general-purpose computer system.

装置100は、後述するプログラムを実行するCPU101と、CPU101が実行するデータやプログラムを記憶するROM102と、CPU1が処理するデータやプログラムを一時的に記憶するRAM103と、記憶装置104と、入力装置105と、ディスプレイ106と、を備える。   The apparatus 100 includes a CPU 101 that executes a program described later, a ROM 102 that stores data and programs executed by the CPU 101, a RAM 103 that temporarily stores data and programs processed by the CPU 1, a storage apparatus 104, and an input apparatus 105. And a display 106.

記憶装置4は例えばハードディスクであり、OS(オペレーションシステム)や後述するプログラム等のプログラム、及び、各種のデータ等が格納される。入力装置105はキーボード、マウス等の入力手段であり、ユーザからの入力を受け付ける。ディスプレイ106はCPU1の処理結果等を表示する表示手段である。本実施形態の場合、演算結果をディスプレイ106により出力するが、このような表示出力以外に、プリンタによる記録出力であってもよい。   The storage device 4 is, for example, a hard disk, and stores an OS (operation system), a program such as a program to be described later, various data, and the like. The input device 105 is input means such as a keyboard and a mouse, and accepts input from the user. The display 106 is a display means for displaying the processing result of the CPU 1 and the like. In the case of the present embodiment, the calculation result is output by the display 106, but in addition to such display output, it may be a recording output by a printer.

図3(B)はCPU101が実行する処理例のフローチャートを示す。この処理は、上述した音響設計支援方法を実行する処理である。   FIG. 3B shows a flowchart of a processing example executed by the CPU 101. This process is a process for executing the above-described acoustic design support method.

S1では、式12(及び式1)のパラメータのうち、設計対象とする未確定のパラメータ以外のパラメータを入力事項として受け付ける。ユーザは、入力装置105を介して入力事項を入力することになる。CPU101は入力事項を例えば、記憶装置104に保存する。STI関係式のパラメータのうち、音源室及び受音室の容積V及び表面積S、及び音源と受音点との距離r以外のパラメータは、評価対象とする音の周波数帯に応じて設定することになる。   In S1, parameters other than the undetermined parameters to be designed among the parameters of Expression 12 (and Expression 1) are accepted as input items. The user inputs input items via the input device 105. The CPU 101 stores the input items in the storage device 104, for example. Among the parameters of the STI relational expression, parameters other than the volume V and surface area S of the sound source room and the sound receiving room and the distance r between the sound source and the sound receiving point should be set according to the frequency band of the sound to be evaluated. become.

S2では、S1で入力された入力事項をSTI関係式に代入し、明瞭度STIと未確定のパラメータとの関係を求める。S3では、S2で求めた明瞭度STIと未確定のパラメータとの関係を出力する。出力内容は、例えば、チャートとすることができる。図4(A)乃至図4(C)はその一例を示す。   In S2, the input matter input in S1 is substituted into the STI relational expression, and the relationship between the clarity STI and the undetermined parameter is obtained. In S3, the relationship between the clarity STI obtained in S2 and the undetermined parameter is output. The output content can be a chart, for example. 4A to 4C show an example.

図4(A)の例は、音響透過損失TLと暗騒音レベルLBGNとを設計対象とした場合であり、チャート上はこれらの合計値と明瞭度STI値との関係を示している。同図の例では、中心周波数を500Hz、2000Hzとした場合をそれぞれ示している。 The example of FIG. 4A is a case where the sound transmission loss TL and the background noise level L BGN are designed, and the relationship between the total value and the clarity STI value is shown on the chart. In the example of the figure, cases where the center frequencies are 500 Hz and 2000 Hz are shown.

このチャートから、例えば、明瞭度STIの上限値を0.3とすると、音響透過損失TLと暗騒音レベルLBGNとの合計で、500Hzの場合は約70dB以上、2000Hzの場合は約55dB以上が必要となることが分かる。よって、間仕切壁の材料選択とマスキング音の調整とでこれらを充足するよう設計することになる。なお、図4(A)の例において他のパラメータの一部を参考として示しておくと、表面積Sは101m2、容積Vは47m3で、500Hzの場合、平均吸音率は0.10、パワーレベルPWLは71.1dB、指向係数Qは1.0、2000Hzの場合、平均吸音率は0.15、パワーレベルPWLは58.4dB、指向係数Qは0.5である。 From this chart, for example, if the upper limit value of the clarity STI is 0.3, the total of sound transmission loss TL and background noise level L BGN requires about 70 dB or more for 500 Hz and about 55 dB or more for 2000 Hz. I understand that Therefore, it is designed to satisfy these requirements by selecting the partition wall material and adjusting the masking sound. In addition, in the example of FIG. 4 (A), some other parameters are shown for reference. The surface area S is 101 m 2 , the volume V is 47 m 3 , the average sound absorption coefficient is 0.10, the power level PWL at 500 Hz. 71.1 dB, directivity coefficient Q is 1.0, and 2000 Hz, the average sound absorption coefficient is 0.15, the power level PWL is 58.4 dB, and the directivity coefficient Q is 0.5.

図4(B)の例は、暗騒音レベルLBGNを設計対象とした場合である。同図の例も、図4(A)の例と同じ条件において、音響透過損失TLを500Hzの場合は30.4dB、2000Hzの場合は38.5dBとしたものである。このチャートから、例えば、明瞭度STIの上限値を0.3とすると、暗騒音レベルLBGNとして、500Hzの場合は約40dB以上、2000Hzの場合は約15dB以上が必要となることが分かる。 The example of FIG. 4B is a case where the background noise level L BGN is a design target. In the example of the figure, the sound transmission loss TL is 30.4 dB in the case of 500 Hz and 38.5 dB in the case of 2000 Hz under the same conditions as in the example of FIG. From this chart, for example, if the upper limit value of the clarity STI is 0.3, it is understood that the background noise level L BGN requires about 40 dB or more for 500 Hz and about 15 dB or more for 2000 Hz.

図4(C)の例は、音響透過損失TLを設計対象とした場合である。同図の例は、図4(A)の例と同じ条件において、暗騒音レベルLBGNを500Hzの場合は24dB、2000Hzの場合は13dBとしたものである。このチャートから、例えば、明瞭度STIの上限値を0.3とすると、音響透過損失TLとして、500Hzの場合及び2000Hzの場合のいずれも約45dB以上が必要となることが分かる。 The example of FIG. 4C is a case where the sound transmission loss TL is a design target. In the example of the figure, the background noise level L BGN is 24 dB when 500 Hz and 13 dB when 2000 Hz under the same conditions as the example of FIG. From this chart, for example, if the upper limit value of the clarity STI is 0.3, it can be seen that the sound transmission loss TL requires about 45 dB or more in both cases of 500 Hz and 2000 Hz.

Claims (5)

音源を有する音源室と、受音点を有する受音室とが間仕切壁で仕切られた空間の音響設計支援方法であって、
前記音源が出力する音の前記受音点における明瞭度SNR stat
前記間仕切壁の音響透過損失TL
前記受音室の暗騒音レベルL BGN
前記音源のパワーレベルPWL及び指向係数Q
前記音源室及び前記受音室の容積V及び表面積S
前記音源室及び前記受音室の平均吸音率α、及び、
前記音源と前記受音点との距離
をパラメータとした以下の関係式を予め用意し、
SNR stat =10・log 10 {(E d +E e )/(E r +E BGN )}
E d =τ・W/c・Q/4πr 2
W=10 (PWL-120)/10
τ=10 (-TL/10)
E e =τ・W/c・4/R・{1-(1-α) n }
R=S・α/(1-α)
n=(r+c・Δt)/p
p=4V/S
E r =τ・W/c・4/R・(1-α) n
E BGN =1/c・10 k
k=(L BGN -120)/10
(c:音速、Δt:有効な初期反射音の最大到達遅れ時間)、
前記関係式に基づき、
前記明瞭度SNR stat と、前記パラメータのうち、予め定めた未確定パラメータと、の関係を求めることを特徴とする音響設計支援方法。
A sound design support method for a space in which a sound source room having a sound source and a sound receiving room having a sound receiving point are partitioned by a partition wall,
Clarity SNR stat at the sound receiving point of the sound output by the sound source,
Sound transmission loss TL of the partition wall,
Background noise level L BGN of the receiving room,
The power level PWL and directivity factor Q of the sound source,
Volume V and surface area S of the sound source chamber and the sound receiving chamber,
Average sound absorption coefficient α of the sound source room and the sound receiving room, and
A distance r between the sound source and the receiving point;
Prepare the following relational expression in advance as a parameter,
SNR stat = 10 ・ log 10 {(E d + E e ) / (E r + E BGN )}
E d = τ ・ W / c ・ Q / 4πr 2
W = 10 (PWL-120) / 10
τ = 10 (-TL / 10)
E e = τ ・ W / c ・ 4 / R ・ {1- (1-α) n }
R = S ・ α / (1-α)
n = (r + c ・ Δt) / p
p = 4V / S
E r = τ ・ W / c ・ 4 / R ・ (1-α) n
E BGN = 1 / c ・ 10 k
k = (L BGN -120) / 10
(C: sound speed, Δt: maximum delay time for effective early reflections),
Based on the relational expression,
An acoustic design support method, characterized in that a relationship between the clarity SNR stat and a predetermined uncertain parameter among the parameters is obtained.
コンピュータが、入力事項として、前記パワーレベルPWL及び指向係数Q、前記容積V及び表面積S、及び、前記距離の入力を少なくとも受け付ける入力工程と、
コンピュータが、前記入力工程で受け付けた前記入力事項と、前記関係式と、に基づいて、前記明瞭度と、前記予め定めた未確定パラメータと、の関係を出力する出力工程と、
を含む請求項1に記載の音響設計支援方法。
An input process in which the computer receives at least inputs of the power level PWL and directivity coefficient Q , the volume V and the surface area S , and the distance r as input items;
An output step of outputting a relationship between the clarity and the predetermined uncertain parameter based on the input item received in the input step and the relational expression;
The acoustic design support method according to claim 1, comprising:
前記入力事項が、前記平均吸音率αを含む一方、前記音響透過損失TL及び前記暗騒音レベルL BGN の双方を含まず、
前記出力工程では、
前記明瞭度SNR stat と前記音響透過損失TL及び前記暗騒音レベルL BGN の合計値との関係を出力することを特徴とする請求項2に記載の音響設計支援方法。
While the input item includes the average sound absorption coefficient α , does not include both the sound transmission loss TL and the background noise level L BGN ,
In the output step,
The acoustic design support method according to claim 2, wherein a relationship between the clarity S NR stat and the total value of the sound transmission loss TL and the background noise level L BGN is output.
前記入力事項が、前記平均吸音率α及び前記音響透過損失TLを含み、
前記出力工程では、
前記明瞭度SNR stat と前記暗騒音レベルL BGN との関係を出力することを特徴とする請求項2に記載の音響設計支援方法。
The input items include the average sound absorption coefficient α and the sound transmission loss TL ,
In the output step,
The acoustic design support method according to claim 2, wherein a relationship between the clarity S NR stat and the background noise level L BGN is output.
前記入力事項が、前記平均吸音率α及び前記暗騒音レベルL BGN を含み、
前記出力工程では、
前記明瞭度SNR stat と前記音響透過損失TLとの関係を出力することを特徴とする請求項2に記載の音響設計支援方法。
The input items include the average sound absorption coefficient α and the background noise level L BGN ,
In the output step,
The acoustic design support method according to claim 2, wherein a relationship between the clarity S NR stat and the sound transmission loss TL is output.
JP2012144565A 2012-06-27 2012-06-27 Acoustic design support method Active JP5902567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012144565A JP5902567B2 (en) 2012-06-27 2012-06-27 Acoustic design support method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012144565A JP5902567B2 (en) 2012-06-27 2012-06-27 Acoustic design support method

Publications (2)

Publication Number Publication Date
JP2014010173A JP2014010173A (en) 2014-01-20
JP5902567B2 true JP5902567B2 (en) 2016-04-13

Family

ID=50106968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012144565A Active JP5902567B2 (en) 2012-06-27 2012-06-27 Acoustic design support method

Country Status (1)

Country Link
JP (1) JP5902567B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7394044B2 (en) * 2020-10-14 2023-12-07 大成建設株式会社 Acoustic design support method and acoustic design support device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048056A (en) * 1998-07-28 2000-02-18 Sekisui Chem Co Ltd Noise simulation device, its method and recording medium
JP4726174B2 (en) * 2001-09-28 2011-07-20 大成建設株式会社 Indoor acoustic design method
JP4877744B2 (en) * 2006-03-08 2012-02-15 旭化成ホームズ株式会社 Building sound simulation system

Also Published As

Publication number Publication date
JP2014010173A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
Rindel et al. Acoustical simulation of open-plan offices according to ISO 3382-3
Thorsson et al. Low-frequency outdoor–indoor noise level difference for wind turbine assessment
Hongisto et al. Test method for determining sound reduction of furniture ensembles
Gomez-Agustina et al. The effects of air temperature and humidity on the acoustic design of voice alarm systems on underground stations
JP5902567B2 (en) Acoustic design support method
Hall et al. Diffuse field measurements of locally resonant partitions
Samodra Optimization of architectural electroacoustics design for the interior mezzanines of vertical buildings
JP4726174B2 (en) Indoor acoustic design method
TWI640983B (en) Method for simulating room acoustics effect
Alarcão et al. On modeling of room acoustics by a sound energy transition approach
Forouharmajd et al. Estimating occupant satisfaction of HVAC system noise using quality assessment index
Herrin et al. A review of prior ASHRAE research efforts to characterize noise propagation in ducts
US10139126B2 (en) Airborne noise reduction system and method
Carlisle et al. Small chamber reverberant absorption Measurement
García et al. Influence of the Form of the Perforation of the Perforated Block in the Loss by Acoustic Transmission
Bibby et al. Prediction study of factors affecting speech privacy between rooms and the effect of ventilation openings
Stojanović et al. The Effect of Occupancy on Acoustic Parameters in a Concert Hall
Ou et al. Minimizing the transient vibroacoustic response of a window to sonic booms by using stiffeners
Ruan et al. A review of prior research on assessing insertion loss of ductwork
Khezri et al. The Schroeder frequency of furnished and unfurnished spaces
Fernandez et al. Indoor simulation of amplitude modulated wind turbine noise
Oldfield Acoustic design of transit stations
Pierce et al. Room Acoustics
KR100573971B1 (en) Impulse Response considering the Material Quality of wall of Rectangular Parallelepiped Room
Peters Noise in the Plastics Processing Industry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160310

R150 Certificate of patent or registration of utility model

Ref document number: 5902567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150