TWI640983B - Method for simulating room acoustics effect - Google Patents

Method for simulating room acoustics effect Download PDF

Info

Publication number
TWI640983B
TWI640983B TW106121009A TW106121009A TWI640983B TW I640983 B TWI640983 B TW I640983B TW 106121009 A TW106121009 A TW 106121009A TW 106121009 A TW106121009 A TW 106121009A TW I640983 B TWI640983 B TW I640983B
Authority
TW
Taiwan
Prior art keywords
sound
particle
particles
model
deflection
Prior art date
Application number
TW106121009A
Other languages
Chinese (zh)
Other versions
TW201905906A (en
Inventor
林敬舜
洪詡智
Original Assignee
國立臺灣科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣科技大學 filed Critical 國立臺灣科技大學
Priority to TW106121009A priority Critical patent/TWI640983B/en
Application granted granted Critical
Publication of TWI640983B publication Critical patent/TWI640983B/en
Publication of TW201905906A publication Critical patent/TW201905906A/en

Links

Abstract

一種室內聲響效應模擬方法包括:將聲響特徵粒子化形成一無體積的聲音粒子;當聲音粒子從一聲源模型發射之後撞擊到一障礙物時,利用一室內環境模型計算一碰撞點位置,並取用障礙物的表面材質資訊,而界定出一方向選擇區,從其中隨機地選出一偏折方向;當聲音粒子沿偏折方向進入一收音區域時,以一聆聽者模型依據偏折方向取得相關的運算資訊,對聲音粒子當前的聲響特徵做運算,而得到適於模擬真實世界的聲音所帶來的聲響效應之聲響特徵,其包含位置、行進方向、頻譜分佈、聲音強度、頻寬、存在時間、相位及行為。聆聽者模型可以進一步地根據室內環境模型對聲音粒子的追蹤結果及聲音粒子的搭載資訊來計算收音區域的混響時間與整體聲響效應。據此方法,可以開發出一種室內聲響效應的視窗模擬軟體,其操作簡易且能以圖形模擬多樣化室內環境。An indoor acoustic effect simulation method includes: particleizing an acoustic feature into a volumeless sound particle; and when the sound particle hits an obstacle after being emitted from a sound source model, calculating an impact point position by using an indoor environment model, and Taking the surface material information of the obstacle, defining a direction selection area, randomly selecting a deflection direction from the sound direction; when the sound particle enters a sound collection area along the deflection direction, obtaining a listener model according to the deflection direction Relevant computing information, the operation of the sound characteristics of the sound particles, and the sound characteristics suitable for simulating the sound effects of the real world sound, including position, direction of travel, spectrum distribution, sound intensity, bandwidth, There is time, phase and behavior. The listener model can further calculate the reverberation time and the overall sound effect of the sound receiving area according to the tracking result of the sound particles and the loading information of the sound particles according to the indoor environment model. According to this method, a window simulation software with an indoor acoustic effect can be developed, which is easy to operate and can simulate diverse indoor environments by graphics.

Description

室內聲響效應模擬方法Indoor sound effect simulation method

本發明與一種聲響效應模擬方法有關,特別是與一種藉由將聲音粒子化來模擬室內聲響效應的方法有關。The present invention relates to an acoustic effect simulation method, and more particularly to a method for simulating an indoor acoustic effect by particleizing sound.

科技的進步促使人們追求更佳的多媒體聲色效果,於各種場合的音質體驗也因此受到重視。除了音樂廳或電影院等強調音效的空間之外,在演講廳、教室、辦公室、車內甚至一般家庭空間的聲音品質也已逐漸受到重視。因此,建築結構與室內空間的設計上就需考量與預測完工之後的聲音品質。Advances in technology have prompted people to pursue better multimedia sound effects, and the sound quality experience in various occasions has also received attention. In addition to the space that emphasizes sound effects such as concert halls or cinemas, the sound quality in lecture halls, classrooms, offices, cars, and even general home spaces has gradually gained attention. Therefore, the design of the building structure and interior space needs to consider and predict the sound quality after completion.

空間內的聲音品質會受到該空間內的裝潢與擺設物所影響。更明確的說,在空間內的各種家具與人體皆會影響到最終的聆聽效果。然而,現有的室內空間聲音品質的預測方法,例如Sabine與Eyring公式等,皆無法考量到擺設物的位置與空間結構等細節。並且,相關的評估工具多是為了音樂廳與教堂等大型空間而設計,其侷限於矩形空間,只考慮空間牆面的影響,且其目的僅在產生混響音效,操作方式也需要具備一定程度的相關知識與技術。The quality of the sound in the space is affected by the decor and furnishings in the space. More specifically, all kinds of furniture and human body in the space will affect the final listening effect. However, existing methods for predicting the sound quality of indoor spaces, such as Sabine and Eyring formulas, cannot take into account details such as the position and spatial structure of the objects. Moreover, the relevant evaluation tools are mostly designed for large spaces such as concert halls and churches. They are limited to rectangular spaces and only consider the influence of space walls, and their purpose is only to produce reverberation sound effects, and the operation mode needs to have a certain degree. Relevant knowledge and technology.

有鑑於此,建築結構與室內設計工作者需要一種聲音品質模擬工具,其相較於習知技術操作更簡易、能加入更多的環境影響因子而模擬更多樣的空間環境,且其模擬結果能更接近實際的聲響效應。In view of this, building structure and interior design workers need a sound quality simulation tool that is easier to operate than conventional techniques, can add more environmental impact factors to simulate a more diverse space environment, and its simulation results Can be closer to the actual sound effect.

本發明之一目的在於提供一種室內聲響效應模擬方法,用以開發出一室內聲響效應的視窗模擬軟體,其操作簡易、能以圖形模擬多樣化室內環境,且能使其模擬結果更接近實際的聲響效應。An object of the present invention is to provide a room acoustic effect simulation method for developing an indoor sound effect window simulation software, which is simple in operation, can simulate a diverse indoor environment by graphics, and can make the simulation result closer to reality. Sound effect.

為了達到上述目的,本發明提供一種室內聲響效應模擬方法,其步驟包括:將聲響特徵粒子化而形成一無體積的聲音粒子;定義一聲源模型、一室內環境模型及一聆聽者模型,其中聲源模型用以發射聲音粒子,並使多個聲音粒子排列在一行進路徑上而形成一聲線,室內環境模型提供一障礙物的體積、表面積大小及其表面材質資訊,聆聽者模型提供一收音區域;當聲音粒子撞擊到障礙物時,室內環境模型利用一微處理器計算出一碰撞點位置,並取用障礙物的表面材質資訊,而界定出一方向選擇區,該方向選擇區包括多個可能的偏折方向,並且這些可能的偏折方向皆以該碰撞點為起點;接著,從該等可能的偏折方向中隨機地選擇該聲音粒子撞擊該碰撞點之後的一偏折方向;當聲音粒子沿此偏折方向行進而進入收音區域時,聆聽者模型依據此偏折方向取得與收音區域相關的運算資訊,並依據此運算資訊對聲音粒子當前所攜帶的聲響特徵做運算,即可得到收音區域的聲響特徵,或將聲音粒子當前所攜帶的聲響特徵進一步以頭部相關轉移函數與等響曲線做運算求得人體感知資訊。除此之外,聆聽者模型亦可利用聲音粒子的搭載資訊來計算收音區域的混響時間與整體聲響效應。以上的聲音粒子、聲源模型、室內環境模型及聆聽者模型皆可利用數位化的圖形顯示於一使用者介面中。In order to achieve the above object, the present invention provides a room acoustic effect simulation method, the method comprising: particleizing an acoustic feature to form a volumeless sound particle; defining a sound source model, an indoor environment model, and a listener model, wherein The sound source model is used to emit sound particles, and a plurality of sound particles are arranged on a travel path to form a sound line. The indoor environment model provides volume, surface area and surface material information of an obstacle, and the listener model provides a a sound receiving area; when the sound particles hit the obstacle, the indoor environment model uses a microprocessor to calculate a collision point position, and uses the surface material information of the obstacle to define a direction selection area, the direction selection area includes a plurality of possible directions of deflection, and the possible deflection directions are starting from the collision point; then, a direction of deflection after the sound particle hits the collision point is randomly selected from the possible deflection directions When the sound particles travel in the direction of the deflection and enter the sound receiving area, the listener model takes the direction of the deflection According to the operation information related to the radio area, and based on the operation information, the sound characteristics currently carried by the sound particles are calculated, and the sound characteristics of the sound receiving area can be obtained, or the sound characteristics currently carried by the sound particles can be further transferred by the head correlation. The function and the equal-impedance curve are calculated to obtain human perception information. In addition, the listener model can also use the piggybacking information of the sound particles to calculate the reverberation time and overall sound effect of the radio region. The above sound particles, sound source model, indoor environment model, and listener model can all be displayed in a user interface using digital graphics.

在一實施例中,室內環境模型提供一虛擬空間,該虛擬空間可供加入複數物件;並設定該些物件在該虛擬空間的複數聲響參數,其包括位置、形狀、大小、面積、方位與表面材質;以及設定該虛擬空間的一溫度值、一濕度值與一大氣壓力值。In an embodiment, the indoor environment model provides a virtual space for adding a plurality of objects; and setting a plurality of sound parameters of the objects in the virtual space, including position, shape, size, area, orientation, and surface a material; and setting a temperature value, a humidity value, and an atmospheric pressure value of the virtual space.

在一實施例中,聲音粒子的搭載資訊包括位置、行進方向、聲音強度、頻譜分佈、頻寬、存在時間、相位,以及行為等聲響特徵。聲源模型以球體輻射狀地向不同方向發射複數聲音粒子。在每一聲音粒子的搭載資訊中,該等聲響特徵的設定可以是相同或不同的,並且該等聲響特徵的數值皆可隨著時間而改變,用以模擬揚聲器的三維指向性。In one embodiment, the information on the loading of the sound particles includes sound characteristics such as position, direction of travel, sound intensity, spectral distribution, bandwidth, time of presence, phase, and behavior. The sound source model emits a plurality of sound particles in different directions in a radial direction. In the piggybacking information of each sound particle, the setting of the sound characteristics may be the same or different, and the values of the sound characteristics may be changed with time to simulate the three-dimensional directivity of the speaker.

在一實施例中,根據碰撞點位置與聲音粒子當前的位置,室內環境模型可計算聲音粒子從聲源模型行進至碰撞點的過程中,被空氣衰減後的聲音強度值。In an embodiment, the indoor environment model calculates a sound intensity value that is attenuated by the air during the process of moving the sound particle from the sound source model to the collision point according to the location of the collision point and the current position of the sound particle.

在一實施例中,表面材質資訊包括複數不同頻帶的表面材質吸收係數、反射係數、折射係數與散射係數,在計算完空氣衰減之後,室內環境模型利用表面材質吸收係數計算聲音粒子於離開碰撞點瞬間所搭載的聲音強度值,並且利用散射係數來界定方向選擇區。界定方向選擇區步驟包括:考量聲音粒子具有一部分能量作用於反射定律,另一部分能量作用於折射定律,用以決定方向選擇區中以碰撞點為起點的一主要偏折方向;定義一最大擴散角;以及依據散射係數、主要偏折方向及最大擴散角,決定方向選擇區的範圍。除此之外,將碰撞前聲音粒子所帶有的能量減去其沿該主要偏折方向偏折後所用掉的能量而形成一分割後的聲音粒子,並執行上述界定方向選擇區的步驟以決定該分割後的聲音粒子的方向選擇區的範圍。In one embodiment, the surface material information includes surface material absorption coefficient, reflection coefficient, refractive index, and scattering coefficient of a plurality of different frequency bands. After calculating the air attenuation, the indoor environment model calculates the sound particle from the collision point by using the surface material absorption coefficient. The sound intensity value carried in an instant, and the scattering coefficient is used to define the direction selection area. The step of defining the direction selection area includes: considering that the sound particle has a part of energy acting on the law of reflection, and another part of the energy acting on the law of refraction to determine a main deflection direction starting from the collision point in the direction selection area; defining a maximum diffusion angle And determining the range of the direction selection area based on the scattering coefficient, the main deflection direction, and the maximum diffusion angle. In addition, the energy of the sound particles before the collision is subtracted from the energy used after the deflection in the main deflection direction to form a divided sound particle, and the above steps of defining the direction selection region are performed. The range of the direction selection area of the divided sound particles is determined.

在一實施例中,聆聽者模型為了避免對所收集到的這些聲音粒子重覆取樣,因而進行一篩選流程,其步驟包括:判斷這些聲音粒子中任意至少兩個聲音粒子的偏折次數是否相等;若偏折次數相等,則比較此兩聲音粒子的存在時間與偏折方向,以決定將此兩聲音粒子判斷為同一聲音粒子且取其搭載資訊的平均值或拋棄兩聲音粒子其中之一。In an embodiment, the listener model performs a screening process in order to avoid re-sampling the collected sound particles, and the steps include: determining whether the number of deflections of any at least two of the sound particles is equal. If the number of deflections is equal, compare the existence time and the deflection direction of the two sound particles to determine whether the two sound particles are the same sound particle and take the average value of the piggybacked information or discard one of the two sound particles.

綜上所述,本發明的方法基於所定義的聲音粒子,將實體聲源資料納入考慮而使其聲源模型更接近實體聲源,將空氣衰減、表面材料吸收納入考慮並提供隨機選擇聲音粒子碰撞後之偏折方向的機制,讓反射聲音粒子在室內環境碰撞,而折射聲音粒子則形成室外的新虛擬聲源,後者可進一步用來模擬室外環境受室內聲音影響的程度,使整個聲響效應模型更能適切地反映出真實的情況。此外,本發明的方法適合用於3D圖形開發環境,而使所開發的視窗模擬軟體的操作更簡化。In summary, the method of the present invention takes the sound source data into consideration based on the defined sound particles, and makes the sound source model closer to the solid sound source, taking into account air attenuation, surface material absorption and providing randomly selected sound particles. The mechanism of the deflection direction after collision causes the reflected sound particles to collide in the indoor environment, while the refracted sound particles form a new virtual virtual source outside, which can be further used to simulate the degree of influence of the outdoor environment by the indoor sound, so that the entire acoustic effect The model is more appropriate to reflect the real situation. Furthermore, the method of the present invention is suitable for use in a 3D graphics development environment, while simplifying the operation of the developed window simulation software.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是用於參照隨附圖式的方向。因此,該等方向用語僅是用於說明並非是用於限制本發明。The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. The directional terms mentioned in the following embodiments, such as upper, lower, left, right, front or rear, etc., are only used to refer to the directions of the accompanying drawings. Therefore, the directional terms are used for illustration only and are not intended to limit the invention.

圖1A為本發明的室內聲響效應模擬方法的圖形化概念示意圖。此方法將聲響特徵粒子化而定義出一無體積的聲音粒子P,用來模擬聲音在空間中的傳播特性及能量變化。需注意的是,此方法所定義的聲音粒子P與習知的聲子(phonon)是不同的概念,兩者不可混淆使用。此方法還提供一聲源模型100、一室內環境模型200及一聆聽者模型300,用來計算及紀錄聲音粒子P在其行進路徑上受聲源、環境及聆聽者的影響而造成的能量變化,並透過微處理器來實際地達成此三模型100、200及300的運算功能。FIG. 1A is a schematic conceptual diagram of a method for simulating indoor acoustic effects of the present invention. This method particleizes the acoustic characteristics to define a volumeless sound particle P, which is used to simulate the propagation characteristics and energy changes of the sound in space. It should be noted that the sound particles P defined by this method are different from the conventional phonons, and the two cannot be confused. The method also provides a sound source model 100, an indoor environment model 200, and a listener model 300 for calculating and recording energy changes caused by the sound particles P being affected by the sound source, the environment, and the listener on their travel paths. And through the microprocessor to actually achieve the computing functions of the three models 100, 200 and 300.

如圖1A所示,在一實施例中,為了達成數位化圖形顯示的功能,可以設計一視窗模擬軟體10,並提供視窗模擬軟體10運作所需的資料庫20。視窗模擬軟體10包含一系統管理模組11用以管理一聲音粒子管理模組12、一物件管理模組13、一虛擬空間管理模組14及一繪圖模組15。所需的資料庫20包含一聲音粒子參數資料庫21、一聲源資料庫22、一物件資料庫23、一聲響參數資料庫24、一感受響度補償資料庫25、一頭部相關轉移函數資料庫26與一心理聲學資料庫27。聲音粒子P、聲源模型100、室內環境模型200及聆聽者模型300皆可以用繪圖模組15將其以數位化圖形的形式顯示於一使用者介面400中。As shown in FIG. 1A, in an embodiment, in order to achieve the function of digitizing the graphic display, a window simulation software 10 can be designed and a database 20 required for the operation of the window simulation software 10 can be provided. The window simulation software 10 includes a system management module 11 for managing an audio particle management module 12, an object management module 13, a virtual space management module 14, and a graphics module 15. The required database 20 includes an acoustic particle parameter database 21, a sound source database 22, an object database 23, an acoustic parameter database 24, a sensory loudness compensation database 25, and a head related transfer function. The database 26 is associated with a psychoacoustic database 27. The sound particle P, the sound source model 100, the indoor environment model 200, and the listener model 300 can all be displayed in a user interface 400 in the form of a digitized graphic by the drawing module 15.

聲源模型100以球體輻射狀地向不同方向發射多個聲音粒子P,其中每一聲音粒子P根據對應聲源模型100的電器特性、音箱結構與指向性而具有一不同的搭載資訊,並且將這些搭載資訊記錄在這些聲音粒子P中。多個依序由聲源模型100發射而在同一行進路徑上排列為直線的聲音粒子P可視為一聲線,因此適合使用聲線追蹤法做為本發明的演算法基礎。The sound source model 100 emits a plurality of sound particles P in different directions in a radial direction, wherein each sound particle P has a different piggybacking information according to electrical characteristics, speaker structure and directivity of the corresponding sound source model 100, and These piggybacking information is recorded in these sound particles P. A plurality of sound particles P sequentially emitted by the sound source model 100 and arranged in a straight line on the same traveling path can be regarded as a sound line, and therefore it is suitable to use the sound line tracking method as the basis of the algorithm of the present invention.

室內環境模型200以漫射的觀念搭配反射定律或折射定律界定出一方向選擇區230,藉此取得聲音粒子P撞到障礙物210後離開碰撞點 P C 的偏折方向。此方向選擇區230為所有以碰撞點 P C 為起點的可能偏折方向之集合區域,圖1A以多條虛線表示這些可能的偏折方向。這些偏折方向具有不遵守反射定律入射角等於反射角的可能性,也具有不遵守折射定律入射角等於折射角的可能性。因此,可以配合機率分佈的觀念從方向選擇區230中隨機地選擇一偏折方向。 The indoor environment model 200 defines a direction selection region 230 in a diffuse concept with a reflection law or a law of refraction, thereby obtaining a deflection direction in which the sound particles P collide with the obstacle 210 and leave the collision point P C . This direction selection area 230 is a collection area of all possible deflection directions starting from the collision point P C , and FIG. 1A shows these possible deflection directions in a plurality of broken lines. These deflection directions have the possibility that the incident angle is equal to the reflection angle without obeying the law of reflection, and also has the possibility that the incident angle is equal to the angle of refraction without obeying the law of refraction. Therefore, a deflection direction can be randomly selected from the direction selection area 230 in accordance with the concept of the probability distribution.

為了建立聲源到聆聽者的總體脈衝響應,需要收集聆聽者在一特定位置會得到的聲音粒子搭載資訊。但因為聲音粒子P是不存在體積大小的一空間點,故無法保證聆聽者在一特定位置應該要收集到的所有聲音粒子P皆能通過該特定位置。因此,聆聽者模型300以該特定位置為參考點設定一收音區域310。每當有聲音粒子P穿過收音區域310,聆聽者模型300會讀取聲音粒子P當前的搭載資訊進行處理。In order to establish the overall impulse response of the sound source to the listener, it is necessary to collect the sound particle loading information that the listener will get at a particular location. However, since the sound particle P is a spatial point where there is no volume, it is impossible to ensure that all the sound particles P that the listener should collect at a specific position can pass the specific position. Therefore, the listener model 300 sets a sound receiving area 310 with the specific position as a reference point. Whenever the sound particles P pass through the sound receiving area 310, the listener model 300 reads the current piggybacking information of the sound particles P for processing.

圖1B為圖1A中的單一聲音粒子P轉移路徑及能量變化示意圖。本發明之一實施例的聲音粒子P是一脈衝能量封包,其具有直線前進及撞到障礙物210而偏向的傳播特性。例如:當聲音粒子P撞到障礙物210,部分能量會以反彈的方式來改變行進方向,即反射;而其餘能量會以穿透的方式來改變行進方向,即折射。每一聲音粒子P的搭載資訊包括位置、行進方向、聲音強度、頻譜分佈、頻寬、存在時間、相位,以及行為等聲響特徵,這些聲響特徵可儲存在聲音粒子參數資料庫21中。聲響特徵中的「行為」是指隨機散射的係數隨著頻率不同而連帶變動的關係。在以下的說明中,聲音強度亦簡稱為「聲強」。FIG. 1B is a schematic diagram of a single sound particle P transfer path and energy change in FIG. 1A. The sound particle P of one embodiment of the present invention is a pulse energy packet having a propagation characteristic that is linearly advanced and impinges on the obstacle 210. For example, when the sound particle P hits the obstacle 210, part of the energy will change the direction of travel, that is, reflection, in a rebound manner; and the rest of the energy will change the direction of travel, that is, refraction, in a penetrating manner. The piggybacking information of each of the sound particles P includes sound characteristics such as position, traveling direction, sound intensity, spectrum distribution, bandwidth, presence time, phase, and behavior, and these sound characteristics can be stored in the sound particle parameter database 21. The "behavior" in the acoustic characteristics refers to the relationship that the coefficient of random scattering varies with frequency. In the following description, the sound intensity is also simply referred to as "sound strength".

如圖1B所示,聲音粒子P最初攜帶一脈衝訊號 δ。聲源模型100將此脈衝訊號 δ進行傅立葉轉換而得到初始頻譜分佈 H p0 。初始頻譜分佈 H p0 經過聲源模型100而調整成一第一頻譜分佈 H p1 、再經過室內環境模型200而調整成一第二頻譜分佈 H p2 ,最後經過聆聽者模型300而調整成被聆聽到的頻譜分佈 H p 。以此過程計算初始頻譜分佈 H p0 受到聲源、空間、聽者頭部的影響之後的變化。頻譜分佈 H p 經由反傅立葉轉換後得到時域上的脈衝響應 h p ,依據此時域上的脈衝響應 h p 即可計算出單顆聲音粒子P提供給聆聽者的人體感知資訊。 As shown in FIG. 1B, the sound particle P initially carries a pulse signal δ . The sound source model 100 performs Fourier transform on the pulse signal δ to obtain an initial spectral distribution H p0 . The initial spectral distribution H p0 through the sound source model 100 is adjusted into a first spectral distribution of H p1, then through the indoor environment model 200 is adjusted to a second spectral distribution H p2, and finally through the listener model 300 is adjusted so as to be listened to spectrum Distribution H p . This process calculates the change after the initial spectral distribution H p0 is affected by the sound source, space, and listener's head. H p obtained spectral distribution of the pulse response h p in time domain via the inverse Fourier transform on the basis of the pulse response h p domain at this time can be calculated human single particles P is supplied to the sound the listener perceived information.

圖2為聲源模型100之一實施例。聲源模型100包括一均勻輻射向量產生器120、一聲音粒子初始化模組140、一聲源指向性處理模組160及一揚聲器資料庫180。均勻輻射向量產生器120賦予每一聲音粒子P不同的方向,使聲源模型100能以球體輻射狀地向不同方向發射多個聲音粒子P。聲音粒子初始化模組140將每一聲音粒子P的搭載資訊初始化。接著,聲源指向性處理模組160從揚聲器資料庫180中取用一揚聲器的三維指向性資料 D source ,對某一初始方向 D p0 上的聲音粒子P的初始聲音強度 I p0 進行運算,而將聲音粒子P的初始聲音強度 I p0 調整成一第一聲音強度值 I p1 。如此,不同方向上的聲音粒子P所搭載的第一聲音強度值 I p1 皆不相同,藉此模擬實體揚聲器在各方向發出的聲音強度不均等的情況。另外,聲源模型100可取用聲源資料庫22如揚聲器資料庫180中的頻率響應資料 H source ,將其與聲音粒子P的初始頻譜分佈 H p0 進行運算而得到第一頻譜分佈 H p1 ,並將第一頻譜分佈 H p1 及第一聲音強度值 I p1 搭載於預備發射出去的聲音粒子P上。 2 is an embodiment of a sound source model 100. The sound source model 100 includes a uniform radiation vector generator 120, a sound particle initialization module 140, a sound source directivity processing module 160, and a speaker database 180. The uniform radiation vector generator 120 imparts a different direction to each of the sound particles P, so that the sound source model 100 can emit a plurality of sound particles P in different directions in a spherical shape. The sound particle initialization module 140 initializes the piggybacking information of each sound particle P. Next, the sound source directivity processing module 160 takes a three-dimensional directivity data D source of a speaker from the speaker database 180, and calculates an initial sound intensity I p0 of the sound particles P in a certain initial direction D p0 . The initial sound intensity I p0 of the sound particle P is adjusted to a first sound intensity value I p1 . In this way, the first sound intensity values I p1 mounted on the sound particles P in different directions are different, thereby simulating the unevenness of the sound intensity emitted by the physical speakers in each direction. In addition, the sound source model 100 can take the frequency response data H source in the sound source database 22, such as the speaker database 180, and calculate it with the initial spectrum distribution H p0 of the sound particles P to obtain a first spectrum distribution H p1 , and The first spectral distribution H p1 and the first sound intensity value I p1 are mounted on the acoustic particles P to be emitted.

圖3A為室內環境模型200之一實施例。室內環境模型200包括一粒子碰撞資訊模組220、一空氣衰減處理模組240、一表面吸收處理模組260、一倍頻帶合成模組270、一散射處理模組280。圖3A中的虛線框250內部的各模組是用來對單顆聲音粒子P進行如圖3B所示的空間反射與折射迭代運算流程。FIG. 3A is an embodiment of an indoor environment model 200. The indoor environment model 200 includes a particle collision information module 220, an air attenuation processing module 240, a surface absorption processing module 260, a double band synthesis module 270, and a scattering processing module 280. The modules inside the dashed box 250 in FIG. 3A are used to perform a spatial reflection and refraction iterative operation flow as shown in FIG. 3B for a single sound particle P.

首先,粒子碰撞資訊模組220以聲源模型100處理後所取得的聲音粒子P的搭載資訊為迭代初始值(步驟 S210),並依據聲音粒子P當前的位置 P p0 與行進方向 D p0 來取得與障礙物210的碰撞點 P C 位置,並取得障礙物210的表面材質資訊(步驟 S220)。本實施例的障礙物210是一空間牆面;但在其他實施例中障礙物210也可以是虛擬空間中的靜物或動物。表面材質資訊包括在多個不同頻帶的表面材質吸收係數 α fc 、散射係數 S、反射係數及折射係數。此外,在本實施例中包含有虛擬空間管理模組14,可用來記錄虛擬空間每個邊界的環境參數、體積、面積、形狀與所在座標,並設定該虛擬空間的一溫度值、一濕度值與一大氣壓力值。上述的多個虛擬空間資訊都會影響到所述多個聲音粒子P在虛擬空間中傳播時的衰減程度與行進方向等變化。 First, the mounting information of the sound particles P obtained by the particle collision information module 220 after being processed by the sound source model 100 is an iterative initial value (step S210), and is obtained according to the current position P p0 of the sound particle P and the traveling direction D p0 . The collision point P C with the obstacle 210 is positioned, and the surface material information of the obstacle 210 is obtained (step S220). The obstacle 210 of the present embodiment is a space wall; however, in other embodiments the obstacle 210 may also be a still life or an animal in a virtual space. The surface material information includes surface material absorption coefficient α fc , scattering coefficient S , reflection coefficient, and refractive index in a plurality of different frequency bands. In addition, the virtual space management module 14 is included in the embodiment, and can be used to record the environmental parameters, volume, area, shape, and coordinates of each boundary of the virtual space, and set a temperature value and a humidity value of the virtual space. With an atmospheric pressure value. The plurality of virtual space information described above may affect the degree of attenuation and the direction of travel of the plurality of sound particles P as they propagate in the virtual space.

接著,如圖3B所示,為了判斷聲音粒子P的能量是否衰減 (步驟 S232),聲音粒子管理模組12會持續於聲音粒子P飛行於行進路徑期間與碰撞時刻判斷聲音粒子P的能量是否已經被衰減至零,再判斷其是否停止行進(步驟 S234);若有衰減至零或停止的情形,則結束對該聲音粒子P的追蹤(步驟 S290)。Next, as shown in FIG. 3B, in order to determine whether the energy of the sound particles P is attenuated (step S232), the sound particle management module 12 continues to determine whether the energy of the sound particles P has been during the flight of the sound particles P during the flight path and the collision time. It is attenuated to zero, and it is judged whether or not it stops traveling (step S234); if it is attenuated to zero or stopped, the tracking of the sound particle P is ended (step S290).

若聲音粒子P的能量無衰減至零及停止的情形,則空氣衰減處理模組240會根據碰撞點 P C 的位置與聲音粒子P的當前位置 P p0 計算出行進距離與行進時間,再依此計算聲音粒子P從聲源模型100行進至撞擊碰撞點 P C 前一瞬間,被空氣衰減後的總聲強值、各頻帶的聲強值以及存在時間,據以對聲音粒子P先前的搭載資訊中的第一頻譜分佈 H p1 進行調整(步驟 S240)。 If the energy of the sound particle P does not decay to zero and stops, the air attenuation processing module 240 calculates the travel distance and the travel time according to the position of the collision point P C and the current position P p0 of the sound particle P, and then Calculating the total sound intensity value after the sound particle P travels from the sound source model 100 to the impact collision point P C , the total sound intensity value after being attenuated by the air, the sound intensity value of each frequency band, and the existence time, according to the previous loading information of the sound particle P The first spectrum distribution H p1 in the adjustment is adjusted (step S240).

實務上,被空氣衰減後的聲音強度值可使用 來求得,其中 IL( l)為聲音強度,其單位為dB; l代表行進距離; a為衰減係數(Attenuation Coefficient),其定義為聲波行進每公里所衰減的聲壓級,單位為dB/km。衰減係數 a的計算方法考慮了空氣中氮分子與氧分子的影響,根據環境中的大氣壓力、溫度、相對濕度與聲音訊號頻率來求得。在模擬時使用設定好的溫度值與濕度值計算出依頻率變化的衰減係數函數 a( f)。當聲音粒子P在空間當中由起始點行進了 l公尺之後,其頻譜分佈 H( f)變化以下式(1)計算。 (dB) (1) In practice, the sound intensity value after being attenuated by air can be used. To find, where IL ( l ) is the sound intensity, the unit is dB; l represents the travel distance; a is the attenuation coefficient (Attenuation Coefficient), which is defined as the sound pressure level attenuated per kilometer of the sound wave travel, in dB/ Km. The calculation method of the attenuation coefficient a takes into account the influence of nitrogen molecules and oxygen molecules in the air, and is obtained according to the atmospheric pressure, temperature, relative humidity and the frequency of the sound signal in the environment. The attenuation coefficient function a ( f ) according to the frequency is calculated using the set temperature and humidity values during the simulation. When the sound particle P travels by 1 m from the starting point in space, its spectral distribution H ( f ) changes as calculated by the following equation (1). (dB) (1)

接著,表面吸收處理模組260使用表面材質的多個不同頻帶的表面材質吸收係數 α fc ,計算聲音粒子P撞擊後離開碰撞點 P C 瞬間的各頻帶聲強值,再經由倍頻帶合成模組270將各頻帶聲強值 I 63, I 125, I 250, I 500, I 1k, I 2k, I 4k, I 8k合成總聲強值,據此將步驟S240調整後的頻譜分佈再次調整而得到聲音粒子P離開碰撞點 P C 瞬間的頻譜分佈,並據以更新聲音粒子P的搭載資訊(步驟 S260)。經過步驟 S240及S260計算完能量變化後,再計算行進方向(步驟 S280)。若聲音粒子P還有下一次碰撞,則跳回步驟S220再次運算出本次碰撞至下次碰撞之間的空氣衰減、下個碰撞點的表面吸收,直到最後一次碰撞後,再計算最後碰撞點至收音區域310之間的空氣衰減。如此,室內環境模型200將頻譜分佈經過多次調整後得到第二聲音強度值 I p2 及第二頻譜分佈 H p2 Next, the surface absorption processing module 260 calculates the sound intensity values of the respective bands at the moment of leaving the collision point P C after the impact of the sound particles P using the surface material absorption coefficient α fc of the plurality of different frequency bands of the surface material, and then passes through the octave band synthesis module. 270 synthesize the total sound intensity values of the sound intensity values I 63 , I 125 , I 250 , I 500 , I 1k , I 2k , I 4k , I 8k of each frequency band, and accordingly adjust the spectrum distribution adjusted in step S240 again to obtain The sound particle P leaves the spectrum distribution at the moment of the collision point P C and updates the piggybacking information of the sound particle P (step S260). After the energy change is calculated in steps S240 and S260, the traveling direction is calculated (step S280). If the sound particle P has the next collision, then jump back to step S220 to calculate the air attenuation between the current collision and the next collision again, and the surface absorption of the next collision point until the last collision, and then calculate the final collision point. The air attenuation between the sound receiving areas 310. In this manner, the indoor environment model 200 obtains the second sound intensity value I p2 and the second spectrum distribution H p2 by adjusting the spectrum distribution a plurality of times.

實務上,頻譜資訊可以用倍頻帶聲強 I fc 來做紀錄,因此必須將其轉換成頻譜分佈 H Room 以取得空間脈衝響應。聲音模型100所傳來的第一聲音強度值 I p1 在室內環境模型200中被分解為八個頻帶聲強值 I 63, I 125, I 250, I 500, I 1k, I 2k, I 4k, I 8k。第一聲音強度值 I p1 與各頻帶聲強值 I fc 之間的關係如下式(2)。 (2) In practice, the spectrum information can be recorded with the octave intensity I fc , so it must be converted into the spectral distribution H Room to obtain the spatial impulse response. The first sound intensity value I p1 transmitted by the sound model 100 is decomposed into eight band sound intensity values I 63 , I 125 , I 250 , I 500 , I 1k , I 2k , I 4k in the indoor environment model 200 . I 8k . The relationship between the first sound intensity value I p1 and each band sound intensity value I fc is as shown in the following formula (2). (2)

接著,我們使用倍頻濾波器(Octave Filter)將聲音模型100傳來的第一頻譜分佈 H p1 分解為各頻帶的頻譜分佈 H fc 。第一頻譜分佈 H p1 與各頻帶的頻譜分佈 H fc 之間的關係如下式: (3) Next, we use the Octave Filter to decompose the first spectral distribution H p1 from the sound model 100 into the spectral distribution H fc of each frequency band. The relationship between the first spectral distribution H p1 and the spectral distribution H fc of each frequency band is as follows: (3)

最後,將迭代運算後得到的各頻帶上的聲強 I fc 當做權重,以下式(4)計算經過空氣衰減(步驟 S240)及表面吸收(步驟 S260)之後聲音粒子P所攜帶的第二頻譜分佈 H p2 (4) Finally, the sound intensity I fc on each frequency band obtained after the iterative operation is taken as a weight, and the second spectrum distribution carried by the sound particles P after air attenuation (step S240) and surface absorption (step S260) is calculated by the following equation (4). H p2 : (4)

如步驟 S280,為了計算行進方向,散射處理模組280使用當前行進方向 D p0 與表面法向量 N根據反射定律可計算得到一主要偏折方向 D SR 。再使用圖3C所示的偏向處理方法,以此主要偏折方向 D SR 及散射係數 S來計算一可能的偏折方向 D p2 做為新的行進方向。若聲音粒子P還有下一次碰撞而未達結束條件,則跳回步驟S220再次運算出下次碰撞後的偏折方向 D p2N ,否則結束該聲音粒子P的追蹤。 As step S280, the traveling direction in order to calculate the scattering process module 280 using the current traveling direction D p0 and the surface normal N can be calculated to give a main deflecting direction D SR according to the law of reflection. Then, using the deflection processing method shown in FIG. 3C, a main deflection direction Dp2 and a scattering coefficient S are used to calculate a possible deflection direction Dp2 as a new traveling direction. If the sound particle P has the next collision and the end condition is not reached, the process returns to step S220 to calculate the deflection direction D p2N after the next collision again, otherwise the tracking of the sound particle P is ended.

附帶一提的是,計算行進方向的步驟 S280也可以和計算能量變化的步驟 S240及S260同時並行處理,不一定要在計算完能量變化後,才計算行進方向。Incidentally, the step S280 of calculating the traveling direction may be simultaneously processed in parallel with the steps S240 and S260 for calculating the energy change, and the traveling direction is not necessarily calculated after the energy change is calculated.

如圖3C所示,考量聲音粒子P的一部分能量作用於反射定律,另一部分能量作用於折射定律,散射處理模組280可以使用反射定律來決定一個以碰撞點 P C 為起點的主要偏折方向 D SR ;再依據散射係數 S及一最大擴散角 θ DR ,決定方向選擇區230;最大擴散角 θ DR 代表主要偏折方向 D SR 與此方向選擇區230之一邊際方向 D B1 D B2 的夾角。此外,散射處理模組280也將碰撞前聲音粒子P所帶有的能量減去其沿主要偏折方向 D SR 反射後所用掉的能量而分割成一折射聲音粒子,並使用折射定律來決定折射聲音粒子的主要偏折方向 D SR ’,再執行上述界定方向選擇區230的步驟以界定出折射聲音粒子的方向選擇區230’範圍。此方向選擇區230’亦包含一最大擴散角 θ DR ’,其代表主要偏折方向 D SR ’與邊際方向 D B1 ’或 D B2 ’ 的夾角。此方向選擇區230’ 的範圍適用於聲音粒子P穿透障礙物210的情形。本發明的方法在界定上述兩方向選擇區230及230’時,並無需限定其先後順序。 As shown in FIG. 3C, considering that part of the energy of the sound particle P acts on the law of reflection, and another part of the energy acts on the law of refraction, the scattering processing module 280 can use the law of reflection to determine a main deflection direction starting from the collision point P C . D SR ; further determining the direction selection area 230 according to the scattering coefficient S and a maximum diffusion angle θ DR ; the maximum diffusion angle θ DR represents the main deflection direction D SR and the marginal direction D B1 or D B2 of the direction selection area 230 Angle. In addition, the scatter processing module 280 also divides the energy carried by the pre-collision sound particles P by the energy used to reflect it in the main deflection direction D SR to be divided into a refracted sound particle, and uses the law of refraction to determine the refracted sound. The main deflection direction D SR ' of the particles, the above-described step of defining the direction selection region 230 is performed to define a range of direction selection regions 230' that refract the sound particles. The direction selection area 230' also includes a maximum diffusion angle θ DR ', which represents the angle between the main deflection direction D SR ' and the marginal direction D B1 ' or D B2 '. The range of this direction selection area 230' is applicable to the case where the sound particles P penetrate the obstacle 210. The method of the present invention does not need to limit its order when defining the two-direction selection areas 230 and 230'.

上述的主要偏折方向 D SR 可以用鏡面反射角 θ SR 表示;主要偏折方向 D SR ’可以用折射角 θ SR ’表示。鏡面反射角 θ SR (或折射角 θ SR ’)的範圍為 。散射係數S的範圍為 。最大擴散角 θ DR (或 θ DR ’)的範圍為 。如此,可以用一可能的反射方向角 θ=θ SR+S*θ DR 來界定反射的方向選擇區230範圍;相同的運算過程也可用來計算可能的折射方向角 θ’,用以界定折射的方向選擇區230’範圍。 The above-described main deflection direction D SR can be expressed by the specular reflection angle θ SR ; the main deflection direction D SR ' can be expressed by the refraction angle θ SR '. The range of the specular reflection angle θ SR (or the refraction angle θ SR ') is . The range of the scattering coefficient S is . The range of the maximum diffusion angle θ DR (or θ DR ') is . Thus, a possible reflection direction angle θ = θ SR + S * θ DR can be used to define the range of the direction selection region 230 of the reflection; the same operation can also be used to calculate the possible refraction direction angle θ ' to define the refraction Direction selection area 230' range.

值得一提的是,分割後的反射聲音粒子與折射聲音粒子的搭載資訊皆會繼承分割前的聲音粒子P。亦即反射聲音粒子的能量可為碰撞前的聲音粒子P的能量乘以反射係數;相似地,而折射聲音粒子的能量可為碰撞前的聲音粒子P的能量乘以折射係數,但反射聲音粒子與折射聲音粒子所攜帶能量的總和會小於碰撞前聲音粒子P所具有的能量。It is worth mentioning that the information of the reflected sound particles and the refracted sound particles will inherit the sound particles P before the split. That is, the energy of the reflected sound particle may be the energy of the sound particle P before the collision multiplied by the reflection coefficient; similarly, the energy of the refracted sound particle may be the energy of the sound particle P before the collision multiplied by the refractive index, but the reflected sound particle The sum of the energy carried by the refracting sound particles will be smaller than the energy of the sound particles P before the collision.

在本實施例中,由於理想漫射表面的漫射分佈呈現餘弦分佈型態,因此將方向選擇區中230或230’中的所有可能偏折方向的機率分佈型態設定為餘弦分佈或鐘型曲線分佈,據此從方向選擇區中230或230’中選擇一偏折方向做為聆聽者模型300所需的運算資料。在其他實施例中,機率分佈型態也可能是例如常態分佈、Gamma分佈、Beta分佈、Poisson分佈或Binomial分佈等型態,用來隨機取得於指定範圍內聲音粒子更新後的行進方向。In the present embodiment, since the diffuse distribution of the ideal diffusing surface exhibits a cosine distribution pattern, the probability distribution pattern of all possible deflecting directions in the 230 or 230' in the direction selecting region is set to a cosine distribution or a bell shape. The curve distribution, according to which a deflection direction is selected from the 230 or 230' in the direction selection area as the operation data required for the listener model 300. In other embodiments, the probability distribution pattern may also be, for example, a normal distribution, a Gamma distribution, a Beta distribution, a Poisson distribution, or a Binomial distribution, and is used to randomly obtain a traveling direction after the sound particles are updated within a specified range.

如圖4A所示,聆聽者模型300包括一頭部相關脈衝響應資料庫320及一響度加權模組340等相關心理聲學模型,並將這些心理聲學模型儲存於心理聲學資料庫27。另外,心理聲學模型亦可記錄關於聽覺遮蔽(Auditory Masking)、遺失基頻(Missing Fundamental)、雙耳時間差(Interaural Time Difference)、雙耳強度差(Interaural Level Difference)、雙耳遮蔽位準差(Binaural Masking Level Difference)等資料來建立聆聽者模型300。本實施例所採用的頭部相關脈衝響應資料庫320,包括但不限於美國加州大學影像處理整合計算中心(Center for Image Processing and Integrated Computing, CIPIC)提供的頭部相關脈衝響應(Head Related Impulse Response, HRIR)資料庫。響度加權模組340是根據國際標準組織的標準ISO226所畫出的等響曲線,再將等響曲線轉換成以聲壓級為自變量所對應出的響度級曲線圖,從響度級曲線圖可得到不同聲壓級對應不同頻率的響度級權重函數。As shown in FIG. 4A, the listener model 300 includes a related psychoacoustic model such as a head related impulse response database 320 and a loudness weighting module 340, and these psychoacoustic models are stored in the psychoacoustic database 27. In addition, the psychoacoustic model can also record about Auditory Masking, Missing Fundamental, Interaural Time Difference, Interaural Level Difference, and binaural masking ( Binaural Masking Level Difference and the like to establish a listener model 300. The head related impulse response database 320 used in this embodiment includes, but is not limited to, a Head Related Impulse Response provided by the Center for Image Processing and Integrated Computing (CIPIC). , HRIR) database. The loudness weighting module 340 is an equal-tone curve drawn according to the standard ISO226 of the international standard organization, and then converts the equal-cord curve into a loudness level curve corresponding to the sound pressure level as an independent variable, and the loudness level curve can be A loudness weight function with different sound pressure levels corresponding to different frequencies is obtained.

以碰撞後沿偏折方向 D p2 行進而進入收音區域310的聲音粒子P為例,聆聽者模型300將每一顆聲音粒子P其當前搭載資訊 P inf 中的偏折方向 D p2 取出,再從頭部相關脈衝響應資料庫320取得與此偏折方向 D p2 相對應的頭部相關脈衝響應 h head 。將此頭部相關脈衝響應 h head 取傅立葉轉換,得到頭部相關轉移函數(Head Related Transfer Function) H head ,這些頭部相關轉移函數 H head 可儲存於頭部相關轉移函數資料庫26中。將此頭部相關轉移函數 H head 與聲音粒子P當前的搭載資訊 P inf 中的頻譜分佈 H p2 做運算,而得到由不同方向進入人耳的聲音粒子P的頻譜分佈 H p 。此頻譜分佈 H p 可用來進一步計算人耳主觀感受的音量或模擬真實世界的聲音所帶來的聲響效應等人體感知資訊。為了求得這些人體感知資訊,此頻譜分佈 H p 需要再使用響度加權模組340進行加權運算而得到響度補償後的頻譜分佈 H pw ,加權運算所需的資料可取自感受響度補償資料庫25中。 Taking the sound particles P that enter the sound receiving area 310 after the collision in the deflecting direction D p2 as an example, the listener model 300 takes out the deflection direction D p2 in the current carrying information P inf of each sound particle P, and then de novo The partial correlation impulse response database 320 obtains a head related impulse response h head corresponding to the deflection direction D p2 . The head related impulse response h head is Fourier transformed to obtain a Head Related Transfer Function H head , and these head related transfer functions H head can be stored in the head related transfer function database 26. The head-related transfer function H head and the spectral distribution H p2 in the current piggybacking information P inf of the sound particles P are calculated to obtain the spectral distribution H p of the sound particles P entering the human ear from different directions. This spectral distribution H p can be used to further calculate the volume of subjective perception of the human ear or to simulate human perception information such as the acoustic effects brought about by real world sounds. In order to obtain these human perception information, the spectral distribution H p needs to be weighted by the loudness weighting module 340 to obtain the loudness compensated spectral distribution H pw , and the data required for the weighting operation can be taken from the perceived loudness compensation database 25 . in.

在得到每一顆聲音粒子P受聲源、環境及聆聽者影響的頻譜分佈 H p 之後,將其做反傅立葉轉換取得時域上的脈衝響應 h p 。由於每顆聲音粒子P由聲源出發後到被聆聽者收集的過程中存在著時間差,因此必須將每顆聲音粒子P脈衝響應 h p 做延遲處理,最後再加總合成一總體脈衝響應。 After obtaining the spectral distribution H p of each sound particle P affected by the sound source, environment and listener, it is inverse-Fourier transform to obtain the impulse response h p in the time domain. Since there is a time difference between each sound particle P starting from the sound source and being collected by the listener, each sound particle P impulse response h p must be delayed, and finally a total impulse response is synthesized.

如圖4B所示,為了避免重覆取樣,聆聽者模型300提供一時間閾值及一角度閾值,用以對收音區域310所收集到的多個反射聲音粒子P 1, P 2, P 3進行一篩選流程。篩選流程的步驟包括:判斷任意兩個反射聲音粒子P 1, P 2的偏折次數是否相等;若偏折次數相等,則將該兩反射聲音粒子P 1, P 2的存在時間差與該時間閾值進行比較,並且將該兩反射聲音粒子P 1, P 2的偏向角度差與該角度閾值進行比較;當該兩反射聲音粒子P 1, P 2的存在時間差小於該時間閾值,並且其偏向角度差小於該角度閾值時,將取兩反射聲音粒子P 1, P 2所搭載資訊的平均,或任意只保留其中之一,將另一反射聲音粒子P 1或 P 2拋棄。以上是以反射聲音粒子P 1, P 2, P 3為例所做的說明,相同的篩選流程亦適用於如圖4B所示收音區域310’所收集到的折射聲音粒子P1’, P2’及P3’。 As shown in FIG. 4B, in order to avoid repeated sampling, the listener model 300 provides a time threshold and an angle threshold for performing a plurality of reflected sound particles P 1 , P 2 , P 3 collected by the sound receiving area 310. Screening process. The step of the screening process includes: determining whether the number of times of deflection of any two reflected sound particles P 1 , P 2 is equal; if the number of times of deflection is equal, the time difference between the two reflected sound particles P 1 , P 2 and the time threshold Comparing, and comparing the deviation angle difference between the two reflected sound particles P 1 , P 2 with the angle threshold; when the difference between the two reflected sound particles P 1 , P 2 is less than the time threshold, and the deviation angle difference When it is less than the angle threshold, the average of the information carried by the two reflected sound particles P 1 , P 2 is taken, or only one of them is retained, and the other reflected sound particle P 1 or P 2 is discarded. The above description is made by taking the reflected sound particles P 1 , P 2 , P 3 as an example, and the same screening procedure is also applicable to the refracted sound particles P1 ′, P2 ′ collected by the sound receiving region 310 ′ as shown in FIG. 4B . P3'.

依據本發明的室內聲響效應模擬方法,可以使用例如遊戲引擎Unity 3D做為開發環境,建構出一個具有如圖1A所示3D繪圖模組15及使用者介面400的視窗模擬軟體10,可用於跨平台模擬室內聲響效應。此視窗模擬軟體10適合在個人電腦、筆電或手持式裝置上執行,方便使用者在各種場合操作。According to the indoor acoustic effect simulation method of the present invention, for example, the game engine Unity 3D can be used as a development environment, and a window simulation software 10 having a 3D drawing module 15 and a user interface 400 as shown in FIG. 1A can be constructed, which can be used for cross The platform simulates the indoor acoustic effect. The window emulation software 10 is suitable for execution on a personal computer, a laptop or a handheld device, and is convenient for the user to operate in various situations.

本發明的聲源模型100考慮了揚聲器的物理特性包含如三維指向性與揚聲器的頻率響應。據此,所開發的視窗模擬軟體10可提供使用者依其需求在虛擬空間中任意處擺放虛擬聲源來模擬單聲源環境,亦可增設多個虛擬聲源來模擬如家庭劇院與車內空間等多聲源環境。除了聲源擺放位置及數量之外,各個虛擬聲源的擺設方向、聲源音量與揚聲器物理特性亦可由使用者自行設定。此外,聲源模型100經過特定的調整後亦可對重低音聲源做評估模擬。The sound source model 100 of the present invention takes into account the physical characteristics of the speaker including, for example, three-dimensional directivity and the frequency response of the speaker. Accordingly, the developed window simulation software 10 can provide a user to place a virtual sound source anywhere in the virtual space to simulate a single sound source environment, and can also add multiple virtual sound sources to simulate such as a home theater and a car. Multiple sound source environments such as internal space. In addition to the location and number of sound sources, the direction of the virtual sound source, the volume of the sound source and the physical characteristics of the speakers can also be set by the user. In addition, the sound source model 100 can be evaluated and simulated on the subwoofer source after a specific adjustment.

本發明的室內環境模型200考慮了聲音在空間中行進時的空氣衰減與碰撞時的表面材質吸收、表面材質散射等特性。這些特性隱含溫度與相對濕度等環境參數,以及聲波在空間中的位置、行進方向、頻譜分佈、聲音強度、頻寬、存在期間、相位、及行為等聲響特徵資訊。據此,所開發的視窗模擬軟體10可提供使用者自由規劃空間形狀及大小規模,並依照欲模擬的場景在空間內任意處增設家具或人物等物件。使用者可將所選的空間裝潢、家具或人物拖曳至虛擬空間的任意位置,並且利用旋轉等功能來調整物件的擺放方位。物件管理模組13更可依據物件資料庫23需求自動與聲響參數資料庫24做關聯,依據不同的頻率給予不同物件表面相對應的聲響參數。聲響參數資料庫24包含該些物件在該虛擬空間的複數聲響參數,該等聲響參數包括位置、形狀、大小、面積、方位與表面材質等。視窗模擬軟體10所規劃的空間形狀不限於具有明確邊角關係的規則形狀。對於空間牆面、家具或人物等各種表面,使用者可設定各種不同的表面材質,每個表面材質皆可調整其聲音特性,如對聲音反射的程度、對聲音散射的程度與聲音透射的程度等。並根據所有聲音粒子在各頻率對應虛擬空間的能量衰減程度來計算出虛擬空間的混響時間。所述能量衰減曲線可從總體脈衝響應來求得。上述根據隨時間變化的全部聲音粒子的各頻率的聲強來計算總體脈衝響應、能量衰減曲線與混響時間的方式並非用來限定本發明。此外,本發明的室內環境模型200適合搭配Sabine或Eyring提出的公式來運算出該空間中的混響時間,用以提供空間設計者做為評估聲音品質參考;亦可提供使用者匯入原始音檔與如揚聲器廠商所提供的規格參數,用以產生在特定空間內預計聽到的聲響效果。The indoor environment model 200 of the present invention considers characteristics such as air attenuation when the sound travels in space and surface material absorption and surface material scattering at the time of collision. These characteristics imply environmental parameters such as temperature and relative humidity, as well as acoustic characteristics such as position, direction of travel, spectral distribution, sound intensity, bandwidth, duration, phase, and behavior of sound waves in space. Accordingly, the developed window simulation software 10 can provide the user to freely plan the shape and size of the space, and add furniture or characters to any place in the space according to the scene to be simulated. The user can drag the selected space decoration, furniture or character to any position in the virtual space, and use the functions of rotation to adjust the orientation of the object. The object management module 13 can be automatically associated with the acoustic parameter database 24 according to the requirements of the object database 23, and the sound parameters corresponding to different object surfaces can be given according to different frequencies. The acoustic parameter database 24 includes a plurality of acoustic parameters of the objects in the virtual space, such as position, shape, size, area, orientation, and surface material. The spatial shape planned by the window simulation software 10 is not limited to a regular shape having a clear corner relationship. For various surfaces such as space walls, furniture or people, users can set a variety of different surface materials, each surface material can adjust its sound characteristics, such as the degree of reflection of sound, the degree of scattering of sound and the degree of sound transmission Wait. The reverberation time of the virtual space is calculated according to the degree of energy attenuation of all the sound particles corresponding to the virtual space at each frequency. The energy decay curve can be derived from the overall impulse response. The manner in which the overall impulse response, the energy decay curve, and the reverberation time are calculated from the sound intensities of the respective frequencies of all the sound particles as a function of time is not intended to limit the present invention. In addition, the indoor environment model 200 of the present invention is suitable for calculating the reverberation time in the space by using the formula proposed by Sabine or Eyring to provide a space designer as a reference for evaluating the sound quality; The gears and specifications provided by the speaker manufacturer are used to produce the sound effects expected to be heard in a particular space.

本發明的聆聽者模型300考慮心理聲學賦予聆聽者如頭部相關轉移函數等雙耳聽覺資料,並設定收音區域310或310’用以模擬不同位置的聆聽點所聽到的聲音效果。使用者可依其需求在空間中增設聆聽者,並可調整聆聽者的位置與方位角。The listener model 300 of the present invention considers psychoacoustic imparting to the listener such as a head related transfer function such as a head related transfer function, and sets the sound receiving area 310 or 310' to simulate the sound effect heard by the listening point at different positions. The user can add a listener to the space according to his needs and adjust the position and azimuth of the listener.

相較於習知技術,本發明的方法除了操作更簡易之外,其可模擬的空間環境容許更多的變化,並且其對於聲響效應的模擬結果更接近實際狀況。Compared to the prior art, the method of the present invention allows for more variations in the simulated spatial environment, and its simulation results for acoustic effects are closer to actual conditions than the simpler operation.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. In addition, any of the objects or advantages or features of the present invention are not required to be achieved by any embodiment or application of the invention. In addition, the abstract sections and headings are only used to assist in the search of patent documents and are not intended to limit the scope of the invention.

10‧‧‧視窗模擬軟體10‧‧‧Windows simulation software

11‧‧‧系統管理模組11‧‧‧System Management Module

12‧‧‧聲音粒子管理模組12‧‧‧Sound Particle Management Module

13‧‧‧物件管理模組13‧‧‧Object Management Module

14‧‧‧虛擬空間管理模組14‧‧‧Virtual Space Management Module

15‧‧‧繪圖模組15‧‧‧Drawing module

20‧‧‧資料庫20‧‧‧Database

21‧‧‧聲音粒子參數資料庫21‧‧‧Sound Particle Parameter Database

22‧‧‧聲源資料庫22‧‧‧Source database

23‧‧‧物件資料庫23‧‧‧ Object database

24‧‧‧聲響參數資料庫24‧‧‧Acoustic parameter database

25‧‧‧感受響度補償資料庫25‧‧‧Feeling loudness compensation database

26‧‧‧頭部相關轉移函數資料庫26‧‧‧ head related transfer function database

27‧‧‧心理聲學資料庫27‧‧‧Psychoacoustic database

100‧‧‧聲源模型100‧‧‧ source model

120‧‧‧均勻輻射向量產生器120‧‧‧Uniform Radiation Vector Generator

140‧‧‧聲音粒子初始化模組140‧‧‧Sound Particle Initialization Module

160‧‧‧聲源指向性處理模組160‧‧‧Source directional processing module

180‧‧‧揚聲器資料庫180‧‧‧Speaker Database

200‧‧‧室內環境模型200‧‧‧ indoor environment model

210‧‧‧障礙物210‧‧‧ obstacles

220‧‧‧粒子碰撞資訊模組220‧‧‧Particle collision information module

230, 230’‧‧‧方向選擇區230, 230’‧‧ Directional selection area

240‧‧‧空氣衰減處理模組240‧‧‧Air attenuation processing module

250‧‧‧虛線框250‧‧‧dotted box

260‧‧‧表面吸收處理模組260‧‧‧Surface Absorption Processing Module

270‧‧‧倍頻帶合成模組270‧‧‧ octave band synthesis module

280‧‧‧散射處理模組280‧‧‧scatter processing module

S210, S220, S232, S234, S240, S260, S280, S290‧‧‧空間反射與折射迭代運算流程的步驟S210, S220, S232, S234, S240, S260, S280, S290‧‧‧Steps of spatial reflection and refraction iterative operation flow

300‧‧‧聆聽者模型300‧‧‧Lister model

310, 310’‧‧‧收音區域310, 310’‧‧‧ Radio area

320‧‧‧頭部相關脈衝響應資料庫320‧‧‧ head related impulse response database

340‧‧‧響度加權模組340‧‧‧ Loudness weighting module

400‧‧‧使用者介面400‧‧‧User interface

D B1 , D B2 ‧‧‧(反射)方向選擇區的邊際方向 D B1 , D B2 ‧‧‧ (reflection) direction selection direction of the marginal direction

D B1 ’, D B2 ’‧‧‧(折射)方向選擇區的邊際方向 D B1 ', D B2 '‧‧‧ (refraction) direction selection direction of the marginal direction

D p0 ‧‧‧聲音粒子的初始方向 D p0 ‧‧‧ initial direction of the sound particles

D p2N , D p2 , D p2 ’‧‧‧碰撞後的偏折方向 D p2N , D p2 , D p2 '‧‧‧ Deflection direction after collision

D source ‧‧‧揚聲器的三維指向性資料 D source ‧‧‧3D directional data of the speaker

D SR ‧‧‧(反射)主要偏折方向 D SR ‧‧‧ (reflection) main deflection direction

D SR ’‧‧‧(折射)主要偏折方向 D SR '‧‧‧ (refraction) main deflection direction

H head ‧‧‧頭部相關轉移函數 H head ‧‧‧Head related transfer function

H p0 ‧‧‧聲音粒子的初始頻譜分佈 H p0 ‧‧‧ initial spectral distribution of sound particles

H p1 ‧‧‧聲音粒子受聲源影響後的第一頻譜分佈 H p1 ‧‧‧First spectrum distribution of sound particles affected by sound source

H p2 ‧‧‧聲音粒子受聲源及環境影響後的第二頻譜分佈 H p2 ‧‧‧Second spectrum distribution of sound particles affected by sound source and environment

H p ‧‧‧聲音粒子受聲源、環境及聆聽者影響後的頻譜分佈 H p ‧‧‧Split distribution of sound particles affected by sound source, environment and listeners

H pw ‧‧‧響度補償後的頻譜分佈 H pw ‧‧‧Spread spectrum distribution after loudness compensation

H Room ‧‧‧依據倍頻帶聲強所轉換成的頻譜分佈 H Room ‧‧‧Spectral spectral distribution based on octave intensity

H source ‧‧‧揚聲器資料庫中的頻率響應資料 H source ‧‧‧Frequency response data in the loudspeaker database

h p ‧‧‧頻譜分佈轉換後的脈衝響應 h p ‧‧‧ Impulse response after spectral distribution conversion

I p0 ‧‧‧聲音粒子初始聲音強度 I p0 ‧‧‧Initial sound intensity of sound particles

I p1 ‧‧‧聲音粒子受聲源影響後的第一聲音強度值 I p1 ‧‧‧The first sound intensity value of the sound particle after being affected by the sound source

I p2 ‧‧‧聲音粒子受聲源及環境影響後的第二聲音強度值 I p2 ‧‧‧Second sound intensity values of sound particles affected by sound source and environment

I 63, I 125, I 250, I 500, I 1k, I 2k, I 4k, I 8k‧‧‧各頻帶聲強值 I 63 , I 125 , I 250 , I 500 , I 1k , I 2k , I 4k , I 8k ‧‧‧ Sound intensity values for each band

N‧‧‧表面法向量 N ‧‧‧ surface normal vector

P‧‧‧聲音粒子P‧‧‧Sound Particles

P 1, P 2, P 3‧‧‧反射的聲音粒子 P 1 , P 2 , P 3 ‧ ‧ reflected sound particles

P 1’, P 2’, P 3’‧‧‧折射的聲音粒子 P 1 ', P 2 ', P 3 '‧‧‧ refracted sound particles

P C ‧‧‧碰撞點 P C ‧‧‧ collision point

P inf ‧‧‧聲音粒子的搭載資訊 P inf ‧‧‧Information on the sound particles

θ‧‧‧可能的反射方向角 θ ‧‧‧ possible reflection direction angle

θ’‧‧‧可能的折射方向角 θ '‧‧‧ possible refraction direction angle

θ DR ‧‧‧(反射)最大擴散角 θ DR ‧‧‧ (reflection) maximum diffusion angle

θ DR ’‧‧‧(折射)最大擴散角 θ DR '‧‧‧ (refraction) maximum diffusion angle

θ SR ‧‧‧鏡面反射角 θ SR ‧‧‧ specular angle

θ SR ’‧‧‧折射角 θ SR '‧‧‧Reflection angle

δ‧‧‧聲音粒子最初所攜帶脈衝訊號 δ ‧‧‧The sound particles originally carried the pulse signal

圖1A為本發明室內聲響效應模擬方法的圖形化概念示意圖。FIG. 1A is a schematic conceptual diagram of a method for simulating indoor acoustic effects according to the present invention.

圖1B為單一聲音粒子轉移路徑及能量變化示意圖。FIG. 1B is a schematic diagram of a single sound particle transfer path and energy change.

圖2為本發明之一實施例的聲源模型示意圖。2 is a schematic diagram of a sound source model according to an embodiment of the present invention.

圖3A為本發明之一實施例的室內環境模型示意圖。3A is a schematic diagram of an indoor environment model according to an embodiment of the present invention.

圖3B為本發明之一實施例的空間反射與折射迭代運算流程圖。3B is a flow chart of spatial reflection and refraction iterative operations in accordance with an embodiment of the present invention.

圖3C為本發明之一實施例的方向選擇區示意圖。3C is a schematic diagram of a direction selection area according to an embodiment of the present invention.

圖4A為本發明之一實施例的聆聽者模型示意圖。4A is a schematic diagram of a listener model in accordance with an embodiment of the present invention.

圖4B為本發明之一實施例的聲音粒子重覆取樣示意圖。4B is a schematic diagram of repeated sampling of sound particles according to an embodiment of the present invention.

no

no

Claims (7)

一種室內聲響效應模擬方法,包括:提供一無體積並具有搭載資訊的聲音粒子,其中該聲音粒子是一脈衝能量封包,其具有直線前進及撞到一障礙物而偏向的傳播特性,該聲音粒子的搭載資訊包括複數聲響特徵,該等聲響特徵包括位置、行進方向、聲音強度、頻譜分佈、頻寬、存在時間、相位,以及行為;定義一聲源模型、一室內環境模型及一聆聽者模型,其中該聲源模型用以發射該聲音粒子,該室內環境模型提供該障礙物的體積、表面積大小及其表面材質資訊,該聆聽者模型提供一收音區域;當該聲音粒子撞擊到該障礙物時,該室內環境模型利用一微處理器計算出一碰撞點位置,並取用該障礙物的表面材質資訊,而界定出一方向選擇區,該方向選擇區包括複數可能的偏折方向,該等可能的偏折方向皆以該碰撞點為起點;從該等可能的偏折方向中隨機地選擇該聲音粒子撞擊該碰撞點之後的一偏折方向;當該聲音粒子沿該偏折方向行進而進入該收音區域時,該聆聽者模型依據該聲音粒子之該偏折方向而取得與該收音區域相關的運算資訊,並依據該運算資訊對該聲音粒子當前的聲響特徵做運算,而得到該收音區域的聲響特徵;以及將該聲音粒子、該聲源模型、該室內環境模型及該聆聽者模型進行數位圖形化之後顯示於一使用者介面中。A method for simulating an indoor acoustic effect, comprising: providing a sound particle having no volume and having information for loading, wherein the sound particle is a pulse energy packet having a propagation characteristic that is linearly advanced and impinges on an obstacle, and the sound particle The piggybacking information includes a plurality of acoustic characteristics including position, direction of travel, sound intensity, spectral distribution, bandwidth, presence time, phase, and behavior; defining a sound source model, an indoor environment model, and a listener model The sound source model is configured to emit the sound particle, the indoor environment model provides volume, surface area and surface material information of the obstacle, and the listener model provides a sound receiving area; when the sound particle hits the obstacle The indoor environment model uses a microprocessor to calculate a collision point position, and uses the surface material information of the obstacle to define a direction selection area, where the direction selection area includes a plurality of possible deflection directions, The possible deflection directions are all based on the collision point; from the possible deflection directions Selecting a direction of deflection after the sound particle hits the collision point; when the sound particle travels along the deflection direction and enters the sound receiving area, the listener model obtains according to the deflection direction of the sound particle The operation information related to the sound receiving area is calculated according to the operation information, and the sound characteristics of the sound particle are calculated to obtain the sound characteristics of the sound receiving area; and the sound particle, the sound source model, the indoor environment model, and the sound The listener model is digitally graphical and displayed in a user interface. 如申請專利範圍第1項所述的室內聲響效應模擬方法,其中該室內環境模型提供一虛擬空間,該方法更包括:在該虛擬空間中加入複數物件;設定該些物件在該虛擬空間的複數聲響參數,該等聲響參數包括位置、形狀、大小、面積、方位與表面材質;以及設定該虛擬空間的一溫度值、一濕度值與一大氣壓力值。The indoor acoustic effect simulation method according to the first aspect of the invention, wherein the indoor environment model provides a virtual space, the method further comprises: adding a plurality of objects in the virtual space; setting a plurality of objects in the virtual space Acoustic parameters, including position, shape, size, area, orientation, and surface material; and setting a temperature value, a humidity value, and an atmospheric pressure value of the virtual space. 如申請專利範圍第1項所述的室內聲響效應模擬方法,更包括:該聲源模型以球體輻射狀地向不同方向發射複數聲音粒子,其中每一該聲音粒子的搭載資訊中,該等聲響特徵的設定皆不相同,並且該等聲響特徵的數值皆隨著時間而改變。The indoor acoustic effect simulation method as described in claim 1, further comprising: the sound source model radiating a plurality of sound particles in different directions in a spherical shape, wherein each of the sound particles is loaded with information, the sound is The settings of the features are all different, and the values of the acoustic features change over time. 如申請專利範圍第3項所述的室內聲響效應模擬方法,更包括:根據該碰撞點位置與該聲音粒子當前的位置,該室內環境模型計算該聲音粒子從該聲源模型行進至該碰撞點的過程中,被空氣衰減後的聲音強度值。The indoor acoustic effect simulation method according to claim 3, further comprising: calculating, according to the location of the collision point and the current position of the sound particle, the indoor environment model to calculate the sound particle traveling from the sound source model to the collision point The value of the sound intensity after being attenuated by the air. 如申請專利範圍第4項所述的室內聲響效應模擬方法,其中該表面材質資訊包括複數不同頻帶的表面材質吸收係數、反射係數、折射係數與散射係數,在計算完空氣衰減之後,該室內環境模型將該等表面材質吸收係數用於計算該聲音粒子於離開該碰撞點瞬間所搭載的聲音強度值。The indoor acoustic effect simulation method as described in claim 4, wherein the surface material information includes a surface material absorption coefficient, a reflection coefficient, a refractive index, and a scattering coefficient of a plurality of different frequency bands, and the indoor environment is calculated after the air attenuation is calculated. The model uses the surface material absorption coefficient to calculate the sound intensity value that the sound particle is mounted at the moment of leaving the collision point. 如申請專利範圍第5項所述的室內聲響效應模擬方法,其中該等可能的偏折方向具有不遵守反射定律及折射定律的可能性,該室內環境模型將該散射係數用於界定該方向選擇區,其步驟包括:考量該聲音粒子具有一部分能量作用於反射定律,另一部分能量作用於折射定律,用以決定該方向選擇區中以該碰撞點為起點的一主要偏折方向;定義一最大擴散角;依據該散射係數、該主要偏折方向及該最大擴散角,決定該方向選擇區的範圍;將該聲音粒子碰撞前所帶有的能量減去其沿該主要偏折方向偏折後所用掉的能量,而形成一分割後的聲音粒子;以及執行上述界定該方向選擇區的步驟,以決定該分割後的聲音粒子的一方向選擇區的範圍。The indoor acoustic effect simulation method according to claim 5, wherein the possible deflection directions have the possibility of not obeying the law of reflection and the law of refraction, and the indoor environment model uses the scattering coefficient to define the direction selection. The step includes: considering that the sound particle has a part of energy acting on the law of reflection, and another part of the energy acting on the law of refraction to determine a main deflection direction of the direction selection area starting from the collision point; defining a maximum a diffusion angle; determining a range of the direction selection region according to the scattering coefficient, the main deflection direction, and the maximum diffusion angle; and subtracting the energy of the sound particle before the collision with the major deflection direction The energy used is formed to form a segmented sound particle; and the step of defining the direction selection region is performed to determine a range of the one direction selection region of the segmented sound particle. 如申請專利範圍第3項所述的室內聲響效應模擬方法,其中該聆聽者模型對所收集到的該等聲音粒子進行一篩選流程,其步驟包括:判斷該等聲音粒子中至少兩個該聲音粒子的偏折次數是否相等;若偏折次數相等,則比較該兩聲音粒子的存在時間與偏折方向,以決定將該兩聲音粒子判斷為同一聲音粒子且取其搭載資訊的平均或拋棄該兩聲音粒子其中之一。The indoor acoustic effect simulation method according to claim 3, wherein the listener model performs a screening process on the collected sound particles, the step comprising: determining at least two of the sound particles Whether the number of times of deflection of the particles is equal; if the number of times of deflection is equal, comparing the existence time and the direction of deflection of the two sound particles to determine whether the two sound particles are the same sound particle and take the average of the mounted information or discard the One of the two sound particles.
TW106121009A 2017-06-23 2017-06-23 Method for simulating room acoustics effect TWI640983B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106121009A TWI640983B (en) 2017-06-23 2017-06-23 Method for simulating room acoustics effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106121009A TWI640983B (en) 2017-06-23 2017-06-23 Method for simulating room acoustics effect

Publications (2)

Publication Number Publication Date
TWI640983B true TWI640983B (en) 2018-11-11
TW201905906A TW201905906A (en) 2019-02-01

Family

ID=65034258

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106121009A TWI640983B (en) 2017-06-23 2017-06-23 Method for simulating room acoustics effect

Country Status (1)

Country Link
TW (1) TWI640983B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390403A (en) * 2021-12-27 2022-04-22 达闼机器人有限公司 Audio playing effect display method and device
WO2023202551A1 (en) * 2022-04-19 2023-10-26 北京字跳网络技术有限公司 Acoustic transmission method and device, and nonvolatile computer readable storage medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. Krokstad, S. Strom, and S. Sorsdal, "Calculating the acoustical room response by the use of a ray tracing technique," Journal of Sound and Vibration, vol. 8, pp. 118-125, Jul. 1968. *
B. M. Gibbs and D. K. Jones, "A simple image method for calculating the distribution of sound pressure levels within an enclosure," Acta Acustica united with Acustica, vol. 26, no. 1, pp. 24-32, Jan. 1972. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390403A (en) * 2021-12-27 2022-04-22 达闼机器人有限公司 Audio playing effect display method and device
WO2023202551A1 (en) * 2022-04-19 2023-10-26 北京字跳网络技术有限公司 Acoustic transmission method and device, and nonvolatile computer readable storage medium

Also Published As

Publication number Publication date
TW201905906A (en) 2019-02-01

Similar Documents

Publication Publication Date Title
US9398393B2 (en) Aural proxies and directionally-varying reverberation for interactive sound propagation in virtual environments
Rindel Modelling in auditorium acoustics. From ripple tank and scale models to computer simulations
Schimmel et al. A fast and accurate “shoebox” room acoustics simulator
TWI640983B (en) Method for simulating room acoustics effect
Jeon et al. Objective and subjective assessment of sound diffuseness in musical venues via computer simulations and a scale model
US20230306953A1 (en) Method for generating a reverberation audio signal
US8515105B2 (en) System and method for sound generation
Tommasini et al. A computational model to implement binaural synthesis in a hard real-time auditory virtual environment
US8644520B2 (en) Morphing of aural impulse response signatures to obtain intermediate aural impulse response signals
Georgiou Modeling for auralization of urban environments: incorporation of directivity in sound propagation and analysis of a framework for auralizing a car pass-by
Rodríguez-Molares A new method for auralisation of airborne sound insulation
Nironen Diffuse reflections in room acoustics modelling
Steffens et al. Auditory orientation and distance estimation of sighted humans using virtual echolocation with artificial and self-generated sounds
Vorländer Auralization of spaces
Agus et al. Energy-Based Binaural Acoustic Modeling
GOŁAŚ et al. Analysis of Dome Home Hall theatre acoustic field
Queiroz et al. AcMus: an open, integrated platform for room acoustics research
Georgiou et al. Prediction and auralisation of urban sound environments
WO2023162581A1 (en) Sound production device, sound production method, and sound production program
Schissler Efficient Interactive Sound Propagation in Dynamic Environments
Mihelj et al. Acoustic modality in virtual reality
Feistel et al. Acoustic Modelling–Basics
JP2023140190A (en) Sound field evaluation device and program
D’Antonio Minimizing acoustic distortion in project studios
Schroeder Concert halls: from magic to number theory