JP5901987B2 - Phosphor and light emitting device - Google Patents

Phosphor and light emitting device Download PDF

Info

Publication number
JP5901987B2
JP5901987B2 JP2012026598A JP2012026598A JP5901987B2 JP 5901987 B2 JP5901987 B2 JP 5901987B2 JP 2012026598 A JP2012026598 A JP 2012026598A JP 2012026598 A JP2012026598 A JP 2012026598A JP 5901987 B2 JP5901987 B2 JP 5901987B2
Authority
JP
Japan
Prior art keywords
phosphor
light
peak wavelength
mass
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012026598A
Other languages
Japanese (ja)
Other versions
JP2013163730A (en
Inventor
慶太 小林
慶太 小林
史博 中原
史博 中原
市川 恒希
恒希 市川
水谷 晋
晋 水谷
康人 伏井
康人 伏井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2012026598A priority Critical patent/JP5901987B2/en
Publication of JP2013163730A publication Critical patent/JP2013163730A/en
Application granted granted Critical
Publication of JP5901987B2 publication Critical patent/JP5901987B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、LED(Light Emitting Diode)に用いられる蛍光体及びLEDを用いた発光装置に関する。 The present invention relates to a phosphor used for an LED (Light Emitting Diode) and a light emitting device using the LED.

白色発光装置に用いられる蛍光体として、βサイアロンと赤色発光蛍光体の組み合わせがあり(特許文献1参照)、特定の色座標を有する赤色発光蛍光体と緑色発光蛍光体を組み合わせた蛍光体がある(特許文献2参照)。一方、黄色蛍光体であるイットリウムアルミニウムガーネット(以後YAGと記載)系蛍光体を用いて白色を得る方法(特許文献3参照)もある。前者と区別するために、このような白色を「疑似白色」と称する。「疑似白色」を用いた発光装置は、比較的容易に高輝度が得られ易いが、演色性に劣る。また、両者とも高温や長期間使用した際の輝度低下を少なくすることが求められている。 As a phosphor used in a white light emitting device, there is a combination of β sialon and a red light emitting phosphor (see Patent Document 1), and there is a phosphor in which a red light emitting phosphor having a specific color coordinate and a green light emitting phosphor are combined. (See Patent Document 2). On the other hand, there is also a method of obtaining white color using a yttrium aluminum garnet (hereinafter referred to as YAG) phosphor which is a yellow phosphor (see Patent Document 3). In order to distinguish from the former, such white is called “pseudo white”. A light emitting device using “pseudo white” can easily obtain high luminance, but has poor color rendering. Moreover, both are required to reduce the decrease in luminance when used at high temperatures or for a long period of time.

特開2007−180483号公報JP 2007-180483 A 特開2008−166825号公報JP 2008-166825 A 特許第3503139号公報Japanese Patent No. 3503139

本発明の目的は、YAG系蛍光体に比べてその高輝度な発光を損なうことなく、演色性、信頼性を改善した蛍光体を提供することにあり、この蛍光体を用いた白色発光装置を提供することにある。 An object of the present invention is to provide a phosphor having improved color rendering and reliability without impairing its high-luminance emission as compared with a YAG phosphor. A white light emitting device using this phosphor is provided. It is to provide.

本発明は、455nmの光で励起したピーク波長552nm、蛍光強度256%βサイアロンである酸窒化物蛍光体(A)と、455nmの光で励起したピーク波長595nm、蛍光強度205%αサイアロンである酸窒化物蛍光体(B)と、455nmの光で励起したピーク波長620nmS−CASNを主相とする窒化物蛍光体(C)と、及び、455nmの光で励起したピーク波長537nm、蛍光強度254%βサイアロンである酸窒化物蛍光体(D)を有し、蛍光体(A)及び蛍光体(B)の合計が30質量%以上60質量%以下、蛍光体(C)が10質量%以上17.5質量%以下、蛍光体(D)が蛍光体(C)の質量比で3.0以上6.0以下であり、蛍光体(A)が質量比で蛍光体(A)の2.0以上6.0以下である蛍光体である。 The present invention relates to an oxynitride phosphor (A) which is a β sialon having a peak wavelength of 552 nm and a fluorescence intensity of 256% excited by 455 nm light, and an α sialon having a peak wavelength of 595 nm and a fluorescence intensity of 205% excited by 455 nm light. An oxynitride phosphor (B), a nitride phosphor (C) whose main phase is S-CASN having a peak wavelength of 620 nm excited by light of 455 nm , and a peak wavelength of 537 nm excited by light of 455 nm And an oxynitride phosphor (D) which is β sialon having a fluorescence intensity of 254% , and the total of phosphor (A) and phosphor (B) is 30% by mass to 60% by mass, phosphor (C) Is 10 mass% or more and 17.5 mass% or less, phosphor (D) is 3.0 or more and 6.0 or less by mass ratio of phosphor (C), and phosphor (A) is phosphor (M) by mass ratio. A) of 2.0 or more and 6.0 or less This is a phosphor.

前記蛍光体は、蛍光体(A)及び(D)がβサイアロン、蛍光体(B)がαサイアロン、蛍光体(C)がS−CASNを主相とする蛍光体である
The phosphor sialon phosphor (A) and (D) is beta, phosphor (B) is α-sialon phosphor (C) is a phosphor as a main phase an S-CASN.

本願の他の観点からの発明は、前述の蛍光体と、当該蛍光体を発光面に搭載したLEDとを有する発光装置である。 An invention from another viewpoint of the present application is a light emitting device including the above-described phosphor and an LED having the phosphor mounted on a light emitting surface.

本発明によれば、YAG系蛍光体に比べてその高輝度な発光を損なうことなく、演色性、信頼性を改善した蛍光体を提供することができ、この蛍光体を用いた白色発光装置を提供することができる。 According to the present invention, it is possible to provide a phosphor with improved color rendering and reliability without impairing its high-luminance emission as compared with a YAG phosphor, and a white light emitting device using this phosphor can be provided. Can be provided.

本発明は、455nmの光で励起したピーク波長552nm、蛍光強度256%βサイアロンである酸窒化物蛍光体(A)と、455nmの光で励起したピーク波長595nm、蛍光強度205%αサイアロンである酸窒化物蛍光体(B)と、455nmの光で励起したピーク波長620nmS−CASNを主相とする窒化物蛍光体(C)と、及び、455nmの光で励起したピーク波長537nm、蛍光強度254%βサイアロンである酸窒化物蛍光体(D)を有し、蛍光体(A)及び蛍光体(B)の合計が30質量%以上60質量%以下、蛍光体(C)が10質量%以上17.5質量%以下、蛍光体(D)が蛍光体(C)の質量比で3.0以上6.0以下であり、蛍光体(A)が質量比で蛍光体(A)の2.0以上6.0以下である蛍光体である。 The present invention relates to an oxynitride phosphor (A) which is a β sialon having a peak wavelength of 552 nm and a fluorescence intensity of 256% excited by 455 nm light, and an α sialon having a peak wavelength of 595 nm and a fluorescence intensity of 205% excited by 455 nm light. An oxynitride phosphor (B), a nitride phosphor (C) whose main phase is S-CASN having a peak wavelength of 620 nm excited by light of 455 nm , and a peak wavelength of 537 nm excited by light of 455 nm And an oxynitride phosphor (D) which is β sialon having a fluorescence intensity of 254% , and the total of phosphor (A) and phosphor (B) is 30% by mass to 60% by mass, phosphor (C) Is 10 mass% or more and 17.5 mass% or less, phosphor (D) is 3.0 or more and 6.0 or less by mass ratio of phosphor (C), and phosphor (A) is phosphor (M) by mass ratio. A) of 2.0 or more and 6.0 or less This is a phosphor.

本発明は、蛍光体(A)と蛍光体(B)の配合によってYAGのピーク波形に類似した蛍光体混合物を作成し、この蛍光体混合物に対して、特定の赤色蛍光体(C)及び緑色蛍光体(D)を加えることで、YAG系蛍光体に比べてその高輝度な発光を損なうことなく、演色性、信頼性を改善した蛍光体を得ることができた。 In the present invention, a phosphor mixture similar to the peak waveform of YAG is prepared by blending the phosphor (A) and the phosphor (B), and a specific red phosphor (C) and a green color are produced for this phosphor mixture. By adding the phosphor (D), it was possible to obtain a phosphor with improved color rendering and reliability without impairing its high-luminance emission as compared with the YAG phosphor.

酸窒化物蛍光体(A)の455nmの光で励起したピーク波長を552nmとしたのは、緑から黄色の範囲の色を発光させるためであり、その蛍光強度を256%としたのは、高輝度を得るためである。酸窒化物蛍光体(B)の455nmの光で励起したピーク波長を595nmとしたのは、橙色を発光させるためであり、その蛍光強度205%としたのは、高輝度を得るためである。この二種類の蛍光体の混合物も同様に高信頼性を有する。通常、色合いの異なる蛍光体を配合した場合、各々の励起波長域と発光波長域が重なることなどから、加成性が成り立たなくなり、発光ピークは個別の蛍光体の発光ピークを合成した計算値よりも低くなるが、本発明の組み合わせでは、一方の蛍光体の発光が他方の蛍光体の励起に使われる割合が低いため、ほぼ計算値になり、YAGよりシャープでピーク強度が遙かに高い蛍光体なので、ピーク強度そのものはYAG系蛍光体同等以上となった。
蛍光体(A)及び蛍光体(B)の合計が30質量%以上60質量%以下であるのは、高輝度を維持しつつ高演色性を得るためである。
蛍光体(A)が質量比で蛍光体(B)の2.0以上6.0以下であるのは、YAG類似のピーク波形を得るためである。
双方の蛍光体の蛍光強度を限定したのは、高輝度を得るためである。
The reason why the peak wavelength excited by 455 nm light of the oxynitride phosphor (A) is 552 nm is to emit light in the range from green to yellow, and the fluorescence intensity is 256%. This is to obtain luminance. The reason why the peak wavelength of the oxynitride phosphor (B) excited by 455 nm light is 595 nm is to emit orange light, and the reason why the fluorescence intensity is 205% is to obtain high luminance. The mixture of these two types of phosphors has high reliability as well. Normally, when phosphors with different hues are blended, the excitation wavelength region and the emission wavelength region overlap each other, so additivity does not hold, and the emission peak is based on the calculated value obtained by combining the emission peaks of individual phosphors. However, in the combination of the present invention, since the ratio of the light emission of one phosphor is used to excite the other phosphor, the calculated value is almost calculated, and the fluorescence is sharper than YAG and has a much higher peak intensity. The peak intensity itself was equal to or higher than that of the YAG phosphor.
The reason why the total of the phosphor (A) and the phosphor (B) is 30% by mass or more and 60% by mass or less is to obtain high color rendering while maintaining high luminance.
The reason why the phosphor (A) is 2.0 or more and 6.0 or less of the phosphor (B) by mass ratio is to obtain a peak waveform similar to YAG.
The reason for limiting the fluorescence intensity of both phosphors is to obtain high brightness.

窒化物蛍光体(C)の主相であるS−CASNの、455nmの光で励起したピーク波長を620nmとしたのは高輝度の赤色を発光させるためであり、酸窒化物蛍光体(D)の455nmの光で励起したピーク波長を537nmとしたのは高演色性の緑色を発光させるためである。
蛍光体(D)の蛍光強度を限定したのは、高輝度を得るためである。
窒化物蛍光体(C)は10質量%以上17.5質量%以下であるのは、10質量%以上で演色性の改善効果が発揮され、あまりに多いと輝度と演色性が低下し、甚だしい場合には白色光を示さなくなるためである。
蛍光体(D)の配合比は、少ないと演色性が低下する傾向にあり、多いと輝度が低下する傾向にあるため、蛍光体(C)に対する質量比で3.0以上6.0以下である。
The reason why the peak wavelength of S-CASN, which is the main phase of the nitride phosphor (C) , excited with 455 nm light is 620 nm is to emit high-luminance red, and the oxynitride phosphor (D) The reason why the peak wavelength excited by 455 nm of light is 537 nm is to emit green with high color rendering properties.
The reason for limiting the fluorescence intensity of the phosphor (D) is to obtain high luminance.
The nitride phosphor (C) is 10% by mass or more and 17.5% by mass or less because when 10% by mass or more, the effect of improving the color rendering properties is exhibited, and when too much, the luminance and color rendering properties are deteriorated. This is because there is no white light.
When the blending ratio of the phosphor (D) is small, the color rendering property tends to be lowered. When the blending ratio is large, the luminance tends to be lowered. Therefore, the mass ratio with respect to the phosphor (C) is 3.0 to 6.0. is there.

蛍光体の蛍光強度は、標準試料(YAG、具体的には三菱化学株式会社製P46Y3)のピーク高さを100%とした相対値を%表示して示したものである。蛍光強度の測定機は、株式会社日立ハイテック社製F−7000形分光光度計を用い、測定方法は、次のものである。
<測定法>
1)試料セット:石英製セルに測定試料及び標準試料を充填し、十分にエイジングした測定機に交互にセットして測定する。充填は、相対充填密度35%程度になるようにしてセル高さの3/4程度まで充填した。
2)測定:455nmの光で励起し、300nmから800nmの最大ピークの高さを読み取った。測定を5回行ない、最大、最小値を除いて残りの3点の平均値とした。
The fluorescence intensity of the phosphor is indicated by a relative value, expressed in%, where the peak height of the standard sample (YAG, specifically, P46Y3 manufactured by Mitsubishi Chemical Corporation) is 100%. The fluorescence intensity measuring instrument is an F-7000 spectrophotometer manufactured by Hitachi High-Tech Co., Ltd., and the measuring method is as follows.
<Measurement method>
1) Sample set: A quartz cell is filled with a measurement sample and a standard sample, and is alternately set in a sufficiently aged measuring machine for measurement. The filling was performed up to about 3/4 of the cell height so that the relative filling density was about 35%.
2) Measurement: Excited with 455 nm light, the maximum peak height from 300 nm to 800 nm was read. The measurement was performed 5 times, and the average value of the remaining three points was obtained except for the maximum and minimum values.

蛍光体のピーク波長は、蛍光強度の測定時に最大強度の波長として求められる。蛍光体の半価幅は、大塚電子社製のMCPD−7000瞬間マルチ測定システムにより、HALMA Company製のlabsphere(登録商標)スペクトラロン標準反射板(99%、2.0“×2.0”)を標準試料として用いる。測定方法は、アルミナ製の石板の中央部φ16mmに3mm厚さに試料を充填し、石英板で軽く押しつけ、すり切ってセットする。455nmの光で励起し、300〜800nmのピーク高さを読み取って積分強度を定め、最大値の半分の高さの幅を求める。測定は5回行って、最大、最小値を除いて残り3点の平均値とした。 The peak wavelength of the phosphor is determined as the maximum intensity wavelength when measuring the fluorescence intensity. The half-value width of the phosphor was measured using the MCPD-7000 instantaneous multi-measurement system manufactured by Otsuka Electronics Co., Ltd., the labsphere (registered trademark) Spectralon standard reflector manufactured by HALMA Company (99%, 2.0 “× 2.0”). Is used as a standard sample. The measuring method is that a sample is filled in a central portion φ16 mm of an alumina stone plate to a thickness of 3 mm, lightly pressed with a quartz plate, and then set by grinding. Excitation is performed with light at 455 nm, the peak height of 300 to 800 nm is read to determine the integrated intensity, and the width at half the maximum value is obtained. The measurement was performed five times, and the average value of the remaining three points was obtained except for the maximum and minimum values.

本発明における蛍光体(A)は、455nmの光で励起したピーク波長552nm、蛍光強度256%の緑色発光酸窒化物蛍光体である。具体的には、βサイアロンがあり、より具体的には、電気化学工業株式会社アロンブライト(登録商標)のうち、GR−LW552Fがある。このβサイアロンは、ピーク波長が長波長域にあるにもかかわらず、高いピーク強度を有することと両立させた従来にない蛍光体材料である。βサイアロンでは、ピーク波長がこの波長域にあると、通常の緑色蛍光体に比べて視感度が高いため明るくなる一方、色再現性の低下は比較的小さい。 The phosphor (A) in the present invention is a green light-emitting oxynitride phosphor having a peak wavelength of 552 nm excited with 455 nm light and a fluorescence intensity of 256% . Specifically, there is β sialon, and more specifically, there is GR-LW552F in Aron Bright (registered trademark) of Denki Kagaku Kogyo Co., Ltd. This β sialon is an unprecedented phosphor material compatible with having a high peak intensity even though the peak wavelength is in the long wavelength region. In β sialon, when the peak wavelength is in this wavelength range, the visibility is higher than that of a normal green phosphor, so that it becomes brighter, while the decrease in color reproducibility is relatively small.

本発明における蛍光体(B)は、455nmの光で励起したピーク波長595nmの酸窒化物蛍光体である。具体的には、αサイアロンがあり、より具体的には、電気化学工業株式会社アロンブライト(登録商標)のうち、YL−595Aがある。これは橙色の蛍光体であり、赤色の蛍光体に比べて視感度が高く、通常用いられる赤色の窒化物蛍光体に比べてシャープでピーク強度が高いため、高輝度が得られ易い。また、βサイアロンに比べてやや半価幅が広いため、赤色成分を含み、蛍光体(A)と組み合わせることで、比較的高い色再現性を発現する。 The phosphor (B) in the present invention is an oxynitride phosphor having a peak wavelength of 595 nm excited by light at 455 nm . Specifically, there is α sialon, and more specifically, YL-595A is available from Denki Kagaku Kogyo Co., Ltd. Aron Bright (registered trademark). This is an orange phosphor, which has a higher visibility than a red phosphor and is sharper and has a higher peak intensity than a commonly used red nitride phosphor, so that high brightness is easily obtained. In addition, since the half-value width is slightly wider than β sialon, it contains a red component and exhibits a relatively high color reproducibility when combined with the phosphor (A).

本発明における蛍光体(C)の主相は、455nmの光で励起したピーク波長620nmの窒化物蛍光体である。具体的には、SCASNと略されてエスカズンとよばれる赤色蛍光体であり、より具体的には、三菱化学株式会社BR−102D(ピーク波長620nm)がある。この赤色蛍光体の添加量を超えない範囲で、ピーク波長の調整用として、Intematix社R6436(ピーク波長630nm)やR6535(ピーク波長640nm)、三菱化学株式会社のBR−102C、BR−102F(ピーク波長630nm)やBR−101A(ピーク波長650nm)を混在させた蛍光体を蛍光体(C)としても良い。 The main phase of the phosphor (C) in the present invention is a nitride phosphor having a peak wavelength of 620 nm excited by 455 nm light . Specifically, it is a red phosphor that is abbreviated as S - CASN and is called Escazun, and more specifically, there is Mitsubishi Chemical Corporation BR-102D (peak wavelength: 620 nm). In the range not exceeding the addition amount of this red phosphor, for the adjustment of the peak wavelength, Intematix R6436 (peak wavelength 630 nm), R6535 (peak wavelength 640 nm), Mitsubishi Chemical Corporation BR-102C, BR-102F (peak) A phosphor in which a wavelength of 630 nm) or BR-101A (peak wavelength of 650 nm) is mixed may be used as the phosphor (C).

本発明における蛍光体(D)は、455nmの光で励起したピーク波長537nm、蛍光強度254%の酸窒化物蛍光体であり、具体的には、βサイアロンがあり、より具体的には、電気化学工業株式会社アロンブライト(登録商標)のうち、GR−SW535Fがある。このβサイアロンは、ピーク波長が短波長であることと高いピーク強度を有することを両立させた従来にない蛍光体材料である。
The phosphor (D) in the present invention is an oxynitride phosphor having a peak wavelength of 537 nm excited by 455 nm light and a fluorescence intensity of 254% , specifically β-sialon, more specifically, Among Aron Bright (registered trademark) of Chemical Industry Co., Ltd., there is GR-SW535F . This β sialon is an unprecedented phosphor material that has both a short peak wavelength and a high peak intensity.

高輝度かつ高信頼性を維持するためには、蛍光体(A)、蛍光体(B)、蛍光体(C)及び(D)の配合量は多い方がよいが、特に高い演色性を求める用途や更に高輝度化が必要な場合には、本発明の蛍光体の合計を100重量部とした時に、15重量部を超えない範囲で他の蛍光体を外割で添加することもできる。この場合には、高信頼性の蛍光体の配合が好ましい。 In order to maintain high luminance and high reliability, it is better that the amount of phosphor (A), phosphor (B), phosphor (C) and (D) is large, but particularly high color rendering properties are required. When it is necessary to further increase the brightness of the application, when the total amount of the phosphors of the present invention is 100 parts by weight, other phosphors can be added in an amount not exceeding 15 parts by weight. In this case, a highly reliable phosphor blend is preferable.

蛍光体(A)、(B)、(C)、(D)、更には他の蛍光体との混合手段は、均一に混合又は希望する混合度合いに混合できれば、適宜選択できる。この混合手段にあっては、不純物が混入したり、蛍光体の形状や粒度が明らかに変わったりしないことが前提である。 The mixing means with the phosphors (A), (B), (C), (D), and other phosphors can be appropriately selected as long as they can be uniformly mixed or mixed to a desired mixing degree. In this mixing means, it is premised that impurities are not mixed and the shape and particle size of the phosphor are not clearly changed.

本願の他の観点からの発明は、上述の蛍光体と、当該蛍光体を発光面に搭載したLEDとを有する発光装置である。LEDの発光面に搭載される際の蛍光体は、封止部材によって封止されたものである。封止部材としては、樹脂とガラスがあり、樹脂としてはシリコーン樹脂がある。LEDとしては、最終的に発光される色に合わせて赤色発光LED、青色発光LED、他の色を発光するLEDを適宜選択することが好ましく、青色発光LEDの場合、窒化ガリウム系半導体で形成され、ピーク波長は440nm以上460nm以下にあるものが好ましく、さらに好ましくピーク波長は、445nm以上455nm以下である。LEDの発光部の大きさは0.5mm角以上のものが好ましく、LEDチップの大きさは、かかる発光部の面積を有するものであれば適宜選択でき、好ましくは、1.0mm×0.5mm、更に好ましくは1.2mm×0.6mmである。 The invention from another viewpoint of the present application is a light emitting device including the above-described phosphor and an LED having the phosphor mounted on a light emitting surface. The phosphor when mounted on the light emitting surface of the LED is sealed by a sealing member. The sealing member includes a resin and glass, and the resin includes a silicone resin. As the LED, it is preferable to appropriately select a red light emitting LED, a blue light emitting LED, or an LED emitting another color in accordance with the color finally emitted. In the case of a blue light emitting LED, the LED is formed of a gallium nitride semiconductor. The peak wavelength is preferably from 440 nm to 460 nm, and more preferably from 445 nm to 455 nm. The size of the light emitting part of the LED is preferably 0.5 mm square or more, and the size of the LED chip can be appropriately selected as long as it has the area of the light emitting part, preferably 1.0 mm × 0.5 mm. More preferably, it is 1.2 mm × 0.6 mm.

本発明に係る実施例を、表及び比較例を用いて詳細に説明する。   Examples according to the present invention will be described in detail with reference to tables and comparative examples.

Figure 0005901987
Figure 0005901987

表1に示した蛍光体は、本発明の蛍光体における蛍光体(A)、(B)、(C)及び(D)とその比較例の蛍光体である。表1の蛍光体(A)のうち、P2だけが請求項1記載の範囲内のピーク波長及び蛍光強度を有する蛍光体である。表1の蛍光体(B)のうち、P5のみが請求項1記載の範囲内のピーク波長及び蛍光強度を有する蛍光体である。表1の蛍光体(C)のうち、P7のみが請求項1記載の範囲内のピーク波長及び蛍光強度を有する蛍光体である。表1の蛍光体(D)のうち、P11のみが請求項1記載の範囲内のピーク波長及び蛍光強度を有する蛍光体である。 The phosphors shown in Table 1 are phosphors (A), (B), (C) and (D) in the phosphor of the present invention, and phosphors of comparative examples thereof. Of the phosphors (A) in Table 1, only P2 is a phosphor having a peak wavelength and fluorescence intensity within the range of claim 1. Of the phosphors (B) in Table 1, only P5 is a phosphor having a peak wavelength and fluorescence intensity within the range of claim 1. Of the phosphors (C) in Table 1, only P7 is a phosphor having a peak wavelength and fluorescence intensity within the range of claim 1. Of the phosphors (D) in Table 1, only P11 is a phosphor having a peak wavelength and fluorescence intensity within the range of claim 1.

これら蛍光体を表2の割合で混合して、実施例、比較例に係る蛍光体を得た。 These phosphors were mixed at a ratio shown in Table 2 to obtain phosphors according to Examples and Comparative Examples.

Figure 0005901987
Figure 0005901987

実施例1の蛍光体は、蛍光体(A)としての表1のP2の蛍光体を20.0質量%、蛍光体(B)としての表1のP5の蛍光体を10.0質量%、蛍光体(C)として表1のP7の蛍光体を10.0質量%、更に蛍光体(D)として表1のP11の蛍光体を60.0質量%配合したものである。表1での蛍光体の構成におけるP1乃至P13の値は質量%である。蛍光体同士の混合にあっては、合計2.5gを計量してビニール袋内で混合した上、シリコーン樹脂(東レダウコーニング株式会社OE6656)47.5gと一緒に自転公転式の混合機(株式会社シンキー社株式会社あわとり練太郎ARE−310(登録商標))で混合した。表1のa+b及びa/bは、蛍光体(A)の実施例であるP1の配合比をa、蛍光体(B)実施例であるP6の配合比をbとしたときの値である。但し、bは、P5の配合量を超えない場合には、P6及びP7を含む。 The phosphor of Example 1 is 20.0% by mass of the phosphor of P2 in Table 1 as the phosphor (A), 10.0% by mass of the phosphor of P5 in Table 1 as the phosphor (B), The phosphor of P7 in Table 1 is 10.0% by mass as the phosphor (C), and 60.0% by mass of the phosphor of P11 in Table 1 is blended as the phosphor (D). The values of P1 to P13 in the phosphor structure in Table 1 are mass%. For mixing phosphors, a total of 2.5 g was weighed and mixed in a plastic bag, and then a revolving mixer (stock) with 47.5 g of silicone resin (Toray Dow Corning OE6656) The company was mixed with Shintaro Awatori ARE-310 (registered trademark). In Table 1, a + b and a / b are values when the blending ratio of P1 which is an example of the phosphor (A) is a and the blending ratio of P6 which is the phosphor (B) example is b. However, b contains P6 and P7, when not exceeding the compounding quantity of P5.

LEDへの搭載は、凹型のパッケージ本体の底部にLEDを置いて、基板上の電極とワイヤボンディングした後、混合した蛍光体をマイクロシリンジから注入して行なった。搭載後、120℃で硬化させた後、110℃×10時間のポストキュアを施して封止した。LEDは、発光ピーク波長448nmで、チップ1.0mm×0.5mmの大きさのものを用いた。 Mounting on the LED was performed by placing the LED on the bottom of the concave package body, wire bonding the electrode on the substrate, and then injecting the mixed phosphor from the microsyringe. After mounting, it was cured at 120 ° C., and post-cured at 110 ° C. for 10 hours for sealing. The LED used had an emission peak wavelength of 448 nm and a chip size of 1.0 mm × 0.5 mm.

表2で示した評価について説明する。
表2の初期評価として、演色性の評価を採用した。演色性の評価には色再現範囲を採用し、色座標におけるNTSC規格比の面積(%)で表した。数字が大きいほど演色性が高い。評価の合格条件は70%以上であり、72%以上は優れた色再現性、68%未満は色再現性に劣ると言える。これは一般的なLED−TV向けに採用されていると言われている条件である。
The evaluation shown in Table 2 will be described.
As an initial evaluation in Table 2, the evaluation of color rendering was adopted. For the evaluation of color rendering, a color reproduction range was adopted, and the area was expressed as an area (%) of the NTSC standard ratio in color coordinates. The larger the number, the higher the color rendering. The pass condition for evaluation is 70% or more, and it can be said that 72% or more is excellent in color reproducibility, and less than 68% is inferior in color reproducibility. This is a condition that is said to be adopted for general LED-TVs.

表2の輝度は25℃での光束で評価した。電流100mAを10分間印加した後の測定値を取った。評価の合格条件は、28.6lm以上である。この値は測定機や条件によって変わるため、実施例との相対的な比較するために、(実施例の下限値)×90%として設定した値である。 The luminance in Table 2 was evaluated by the luminous flux at 25 ° C. The measured value after applying a current of 100 mA for 10 minutes was taken. The pass condition of evaluation is 28.6 lm or more. Since this value varies depending on the measuring machine and conditions, it is a value set as (lower limit value of the example) × 90% for relative comparison with the example.

表2の高温特性は、25℃の光束に対する減衰性で評価した。50℃、100℃、150℃での光束を測定して、25℃を100%とした時の値である。評価の合格条件は、50℃で97%以上、100℃で95%以上、150℃で90%以上である。この値も世界共通の規格値ではないが、現状、高信頼性の発光素子の目安と考えられている。 The high temperature characteristics shown in Table 2 were evaluated based on attenuation with respect to a light beam at 25 ° C. It is a value when the light flux at 50 ° C., 100 ° C., and 150 ° C. is measured and 25 ° C. is taken as 100%. The pass conditions for evaluation are 97% or more at 50 ° C, 95% or more at 100 ° C, and 90% or more at 150 ° C. Although this value is not a standard value common to the world, it is considered as a standard for a highly reliable light-emitting element at present.

表2の長期信頼性は、85℃、85%RHに500及び2,000hrs放置後取り出して室温で乾燥した際の光束を測定し、初期値を100%としたときの光束の減衰値である。
評価の合格条件は、500hrsで96%以上、2,000hrsで93%以上である。これは高信頼性の蛍光体でなくては達成できない値である。
The long-term reliability in Table 2 is the attenuation value of the luminous flux when the initial value is set to 100% when the luminous flux is measured after being taken out after leaving at 500 ° C. and 85% RH for 500 and 2,000 hrs and dried at room temperature. .
The pass conditions for the evaluation are 96% or more at 500 hrs and 93% or more at 2,000 hrs. This is a value that cannot be achieved without a highly reliable phosphor.

表2が示すように、本発明の実施例は、比較的良好な色再現性、光束値を示し、且つ高温や高温高湿下で長期保存した際の光束の減衰も比較的小さい。
本発明の比較例1はYAGを用いたいわゆる疑似白色発光装置であり、輝度は良好であるが、演色性に劣り、実施例に比べて信頼性も低くなっている。比較例3、4、5、7、9、10、1112、、14も、色再現性に劣り、比較例3、5、6、7、8、9、10、11、13、14では光束値が小さい。また、蛍光体(A)に本発明の範囲外のシリケート系蛍光体を用いた比較例2、3、4、5では、高温特性、長期信頼性に劣り、信頼性の低いLEDパッケージとなって、テレビやモニターなどの製品に適用することは到底望めない。
As shown in Table 2, the examples of the present invention show relatively good color reproducibility and luminous flux values, and the luminous flux attenuation is relatively small when stored for a long time under high temperature or high temperature and high humidity.
Comparative Example 1 of the present invention is a so-called pseudo white light emitting device using YAG, which has good luminance, but is inferior in color rendering, and is less reliable than the examples. Comparative Examples 3, 4, 5, 7, 9, 10, 1112, 112 are also inferior in color reproducibility, and in Comparative Examples 3, 5, 6, 7, 8, 9, 10, 11, 13, 14 Is small. Further, in Comparative Examples 2, 3, 4, and 5 in which the silicate phosphor outside the scope of the present invention is used as the phosphor (A), the LED package is inferior in high temperature characteristics and long-term reliability and has low reliability. It cannot be expected to be applied to products such as TVs and monitors.

本発明の蛍光体は、白色発光装置に用いられる。本発明の白色発光装置としては、液晶パネルのバックライト、照明装置、信号装置、画像表示装置に用いられる。 The phosphor of the present invention is used in a white light emitting device. The white light emitting device of the present invention is used for a backlight of a liquid crystal panel, an illumination device, a signal device, and an image display device.

Claims (2)

455nmの光で励起したピーク波長552nm、蛍光強度256%βサイアロンである酸窒化物蛍光体(A)と、455nmの光で励起したピーク波長595nm、蛍光強度205%αサイアロンである酸窒化物蛍光体(B)と、455nmの光で励起したピーク波長620nmS−CASNを主相とする窒化物蛍光体(C)、及び、455nmの光で励起したピーク波長537nm、蛍光強度254%βサイアロンである酸窒化物蛍光体(D)を有し、蛍光体(A)及び蛍光体(B)の合計が30質量%以上60質量%以下、蛍光体(C)が10質量%以上17.5質量%以下、蛍光体(D)が蛍光体(C)の質量比で3.0以上6.0以下であり、蛍光体(A)が質量比で蛍光体(B)の2.0以上6.0以下である蛍光体。 An oxynitride phosphor (A) which is a β sialon having a peak wavelength of 552 nm and a fluorescence intensity of 256% excited by 455 nm light, and an oxynitride which is an α sialon having a peak wavelength of 595 nm and a fluorescence intensity of 205% excited by 455 nm light. Phosphor (B), nitride phosphor (C) having S-CASN having a peak wavelength of 620 nm excited by light at 455 nm as a main phase, peak wavelength 537 nm excited by light at 455 nm , fluorescence intensity 254% The oxynitride phosphor (D), which is a β sialon, has a total of phosphor (A) and phosphor (B) of 30% by mass to 60% by mass and phosphor (C) of 10% by mass or more. 17.5% by mass or less, the phosphor (D) is 3.0 to 6.0 in terms of the mass ratio of the phosphor (C), and the phosphor (A) is 2. Phosphors having a value of 0 to 6.0 請求項1に記載の蛍光体と、当該蛍光体を発光面に搭載したLEDとを有する発光装置。 The light-emitting device which has the fluorescent substance of Claim 1, and LED which mounted the said fluorescent substance in the light emission surface.
JP2012026598A 2012-02-09 2012-02-09 Phosphor and light emitting device Expired - Fee Related JP5901987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012026598A JP5901987B2 (en) 2012-02-09 2012-02-09 Phosphor and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012026598A JP5901987B2 (en) 2012-02-09 2012-02-09 Phosphor and light emitting device

Publications (2)

Publication Number Publication Date
JP2013163730A JP2013163730A (en) 2013-08-22
JP5901987B2 true JP5901987B2 (en) 2016-04-13

Family

ID=49175305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026598A Expired - Fee Related JP5901987B2 (en) 2012-02-09 2012-02-09 Phosphor and light emitting device

Country Status (1)

Country Link
JP (1) JP5901987B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4104013B2 (en) * 2005-03-18 2008-06-18 株式会社フジクラ LIGHT EMITTING DEVICE AND LIGHTING DEVICE
JP2008208238A (en) * 2007-02-27 2008-09-11 Showa Denko Kk Fluorescent substance and method for producing the same and lighting apparatus and image display device equipped with the same
JP2009019163A (en) * 2007-07-13 2009-01-29 Sharp Corp Phosphor particle aggregate for light emitting device, light emitting device, and backlight device for liquid crystal display
JP2009177106A (en) * 2007-12-28 2009-08-06 Panasonic Corp Ceramic member for semiconductor light-emitting apparatus, method of manufacturing ceramic member for semiconductor light-emitting apparatus, semiconductor light-emitting apparatus, and display
JP5331089B2 (en) * 2010-11-15 2013-10-30 シャープ株式会社 Phosphor and light emitting device using the same

Also Published As

Publication number Publication date
JP2013163730A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP6083049B2 (en) Phosphor and light emitting device
JP6083048B2 (en) Phosphor and light emitting device
JP5937837B2 (en) Phosphor and light emitting device
JP5886069B2 (en) Phosphor and light emitting device
JP5901987B2 (en) Phosphor and light emitting device
JP5916409B2 (en) Phosphor and light emitting device
JP5916411B2 (en) Phosphor and light emitting device
JP5697765B2 (en) Phosphor and light emitting device
JP5901986B2 (en) Phosphor and light emitting device
JP5919015B2 (en) Phosphor and light emitting device
JP5901985B2 (en) Phosphor and light emitting device
JP5916410B2 (en) Phosphor and light emitting device
JP5919014B2 (en) Phosphor and light emitting device
JP5886070B2 (en) Phosphor and light emitting device
JP5916408B2 (en) Phosphor and light emitting device
JP6083050B2 (en) Phosphor and light emitting device
JP5916413B2 (en) Phosphor and light emitting device
JP5916412B2 (en) Phosphor and light emitting device
JP2015083618A (en) Phosphor and light-emitting device
JP5697766B2 (en) Phosphor and light emitting device
JP2013163725A (en) Phosphor and light-emitting device
JP2013163734A (en) Phosphor and light-emitting device
JP2013163736A (en) Phosphor and light-emitting device
JP2013163723A (en) Phosphor and light-emitting device
JP2013163722A (en) Phosphor and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160309

R150 Certificate of patent or registration of utility model

Ref document number: 5901987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees