JP5900895B2 - Novel carrier molecules and methods for delivering RNA into the cytoplasm by near infrared light - Google Patents

Novel carrier molecules and methods for delivering RNA into the cytoplasm by near infrared light Download PDF

Info

Publication number
JP5900895B2
JP5900895B2 JP2013505776A JP2013505776A JP5900895B2 JP 5900895 B2 JP5900895 B2 JP 5900895B2 JP 2013505776 A JP2013505776 A JP 2013505776A JP 2013505776 A JP2013505776 A JP 2013505776A JP 5900895 B2 JP5900895 B2 JP 5900895B2
Authority
JP
Japan
Prior art keywords
rna
carrier molecule
carrier
protein
cytoplasm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013505776A
Other languages
Japanese (ja)
Other versions
JPWO2012127739A1 (en
Inventor
高史 大槻
高史 大槻
由佳 石躍
由佳 石躍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Original Assignee
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC filed Critical Okayama University NUC
Priority to JP2013505776A priority Critical patent/JP5900895B2/en
Publication of JPWO2012127739A1 publication Critical patent/JPWO2012127739A1/en
Application granted granted Critical
Publication of JP5900895B2 publication Critical patent/JP5900895B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0038Radiosensitizing, i.e. administration of pharmaceutical agents that enhance the effect of radiotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/10Fusion polypeptide containing a localisation/targetting motif containing a tag for extracellular membrane crossing, e.g. TAT or VP22
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/85Fusion polypeptide containing an RNA binding domain
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16311Human Immunodeficiency Virus, HIV concerning HIV regulatory proteins
    • C12N2740/16322New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、所定の機能を発現しうるRNA(機能性RNA)を細胞内に導入し、所定の波長を有する光を照射することによりその機能を発現させるための方法および当該方法に用いられるキャリア分子などに関する。   The present invention relates to a method for expressing a function by introducing RNA (functional RNA) capable of expressing a predetermined function into a cell and irradiating light having a predetermined wavelength, and a carrier used in the method It relates to molecules.

RNAiは、shRNAやsiRNAの塩基配列に依存して特定遺伝子の発現が抑制される現象であり、病気の原因となる遺伝子やウイルス遺伝子の発現抑制に基づく疾患治療などに応用できるため近年非常に注目されている。このような目的のために、RNAを細胞質内に効率的に導入する手段の研究開発が進められている。   RNAi is a phenomenon in which the expression of a specific gene is suppressed depending on the nucleotide sequence of shRNA or siRNA, and since it can be applied to the treatment of diseases based on the suppression of the expression of a gene causing a disease or a viral gene, it has recently received much attention. Has been. For this purpose, research and development of means for efficiently introducing RNA into the cytoplasm is underway.

特許文献1には、RNA結合性タンパク質および膜透過性キャリアペプチドを含む融合タンパク質に、該RNA結合性タンパク質に対する認識配列および任意の配列を有するRNAを結合させ、この結合体を任意の細胞と混合することにより、該RNAを細胞内に導入する方法が記載されている。   In Patent Document 1, RNA having a recognition sequence for an RNA-binding protein and an arbitrary sequence is bound to a fusion protein comprising an RNA-binding protein and a membrane-permeable carrier peptide, and this conjugate is mixed with an arbitrary cell. Thus, a method for introducing the RNA into cells is described.

非特許文献1および2には、RNA結合性タンパク質および膜透過性キャリアペプチドに加えて可視領域の波長の光で励起する蛍光色素(たとえばAlexa Fluor 546、励起波長530-550nm)を含む融合タンパク質にsiRNAを結合させた複合体が記載されている。そして、この結合体と細胞を接触させ、当該結合体がエンドサイトーシスにより細胞内に取り込まれエンドソームに局在化した後、励起光を照射することにより、蛍光色素が光増感剤として作用し、siRNAがエンドソームから細胞質に放出され、所定のRNAi効果を達成できることが記載されている(図1参照)。なお、非特許文献1および2には、近赤外領域の波長の光で励起する蛍光色素を用いても上記のような作用効果が奏されることは、記載も示唆もされていない。   Non-Patent Documents 1 and 2 include a fusion protein containing a fluorescent dye (for example, Alexa Fluor 546, excitation wavelength 530-550 nm) that is excited with light having a wavelength in the visible region in addition to an RNA-binding protein and a membrane-permeable carrier peptide. Complexes with siRNA bound are described. The conjugate is then brought into contact with the cell, and the conjugate is taken up into the cell by endocytosis and localized in the endosome, and then irradiated with excitation light, whereby the fluorescent dye acts as a photosensitizer. , It is described that siRNA can be released from endosomes into the cytoplasm and achieve a predetermined RNAi effect (see FIG. 1). Non-Patent Documents 1 and 2 neither describe nor suggest that the above-described effects can be achieved even when a fluorescent dye excited by light having a wavelength in the near infrared region is used.

一方、特許文献2には、機能性分子キャリアとして金ナノロッドを用い、金ナノロッド凝集体とDNAとの複合体を培養細胞に添加し、近赤外域(波長1064nm)のパルスレーザーを照射することにより、DNAを金ナノロッドから脱離させて、当該DNAからの遺伝子を効率的に発現させる方法が記載されている(実施例参照)。しかしながら、金ナノロッドは光熱変換機能を有し、金ナノロッドを集積させた標的部位周辺組織へのフォトサーマル治療(腫瘍細胞等を発生した熱で死滅させる)ために用いられている材料でもあるため(たとえば特許文献3参照)、そのようなことを目的としない使用における細胞毒性や安全性について懸念される。   On the other hand, in Patent Document 2, gold nanorods are used as a functional molecular carrier, a complex of gold nanorod aggregates and DNA is added to cultured cells, and irradiated with a pulsed laser in the near infrared region (wavelength 1064 nm). A method is described in which DNA is detached from gold nanorods and a gene from the DNA is efficiently expressed (see Examples). However, the gold nanorod has a photothermal conversion function, and is also a material that is used for photothermal treatment of the tissue around the target site where the gold nanorod is accumulated (to kill tumor cells and the like with the generated heat) ( For example, see Patent Document 3), there is a concern about cytotoxicity and safety in such a use that is not intended.

特開2006−280261号公報JP 2006-280261 A 特開2005−255582号公報JP 2005-255582 A 特開2010−083803号公報JP 2010-083803 A

T. Endoh, M. Sisido and T.Ohtsuki (2008) Cellular siRNA delivery mediated by a cell permeant RNA-binding protein and photoinduced RNA interference. Bioconjugate chemistry 19(5), 1017-1024.T. Endoh, M. Sisido and T. Ohtsuki (2008) Cellular siRNA delivery mediated by a cell permeant RNA-binding protein and photoinduced RNA interference.Bioconjugate chemistry 19 (5), 1017-1024. T. Endoh, M. Sisido and T.Ohtsuki (2009) Spatial regulation of specific gene expression through photoactivation of RNAi. Journal of Controlled Release 137, 241-245.T. Endoh, M. Sisido and T. Ohtsuki (2009) Spatial regulation of specific gene expression through photoactivation of RNAi. Journal of Controlled Release 137, 241-245.

非特許文献1および2に記載された方法によりRNAを細胞内に導入する場合、励起光として可視光が用いられるが、可視光は生体内への透過性に劣る。そのため、生体の表層(たとえば皮膚表面)にある細胞へのRNAの導入には適用できるが、生体内の深部にある細胞へのRNAの導入には不適当である。   When RNA is introduced into cells by the methods described in Non-Patent Documents 1 and 2, visible light is used as excitation light, but visible light is inferior in permeability into the living body. Therefore, it can be applied to the introduction of RNA into cells on the surface of the living body (for example, the skin surface), but is inappropriate for the introduction of RNA into cells deep in the living body.

本発明は、細胞障害や発熱の問題を起こさず、生体透過性のよい(好ましくは波長700〜1000nm程度の)近赤外光を利用してRNAを細胞内に導入する手段を提供することを目的とする。   The present invention provides a means for introducing RNA into cells using near-infrared light having good biological permeability (preferably having a wavelength of about 700 to 1000 nm) without causing cell damage or fever problems. Objective.

本発明者らは、近赤外光を励起光とする蛍光色素のうち特定のものが、非特許文献1等に記載の複合体中の蛍光色素として用いた場合に、近赤外光の照射により光増感剤として作用し、エンドソームから細胞質にRNAを放出させる能力を有することを見いだした(図1参照)。さらに、その複合体中の融合タンパク質に特定のペプチドをさらに加えることにより、RNAの細胞質内への導入効率をさらに高めることができることを見出し、本発明を完成させるに至った。   The present inventors irradiate near-infrared light when a specific one of fluorescent dyes having near-infrared light as excitation light is used as a fluorescent dye in a complex described in Non-Patent Document 1 or the like. Has been found to have the ability to act as a photosensitizer and to release RNA from the endosome into the cytoplasm (see FIG. 1). Furthermore, it has been found that the efficiency of introducing RNA into the cytoplasm can be further increased by further adding a specific peptide to the fusion protein in the complex, and the present invention has been completed.

すなわち、本発明は下記の事項を包含する。
[1]細胞膜透過性ペプチド(CPP)およびRNA結合性蛋白質(RBP)を含むキャリア蛋白質と、該キャリア蛋白質のN末端側またはC末端側に連結した、近赤外線領域の波長を有する光で機能する光増感剤(PST)とからなる構造を有することを特徴とするキャリア分子。
That is, the present invention includes the following matters.
[1] It functions with light having a wavelength in the near-infrared region connected to a carrier protein including a cell membrane permeable peptide (CPP) and an RNA-binding protein (RBP) and the N-terminal side or C-terminal side of the carrier protein. A carrier molecule having a structure comprising a photosensitizer (PST).

[2]前記光増感剤(PST)が700nm〜1000nmの波長を有する光で機能するものである、[1]に記載のキャリア分子。
[3]前記光増感剤(PST)が、下記構造式で表される化合物(DY750)、図3に示す蛍光スペクトルを有する化合物(Alexa Fluor750)または図4に示す吸収スペクトルを有する化合物(IRDye800CW)である、[1]または[2]に記載のキャリア分子。
[2] The carrier molecule according to [1], wherein the photosensitizer (PST) functions with light having a wavelength of 700 nm to 1000 nm.
[3] The photosensitizer (PST) is a compound represented by the following structural formula (DY750), a compound having the fluorescence spectrum shown in FIG. 3 (Alexa Fluor750), or a compound having the absorption spectrum shown in FIG. 4 (IRDye800CW). The carrier molecule according to [1] or [2].

[4]前記キャリア蛋白質が、さらにプロテアソーム分解シグナル配列タグ(PDS)および/またはHis−richタグ(HR)を含む、[1]〜[3]のいずれかに記載のキャリア分子。   [4] The carrier molecule according to any one of [1] to [3], wherein the carrier protein further comprises a proteasome degradation signal sequence tag (PDS) and / or a His-rich tag (HR).

[5]前記キャリア蛋白質において、N末端側から、細胞膜透過性ペプチド(CPP)、RNA結合性蛋白質(RBP)、プロテアソーム分解シグナル配列タグ(PDS)および/またはHis−richタグ(HR)がこの順序で連結されており、かつ当該キャリア蛋白質のC末端側に前記光増感剤(PST)が連結されている、[1]〜[4]のいずれかに記載のキャリア分子。   [5] In the carrier protein, cell membrane permeable peptide (CPP), RNA binding protein (RBP), proteasome degradation signal sequence tag (PDS) and / or His-rich tag (HR) are arranged in this order from the N-terminal side. The carrier molecule according to any one of [1] to [4], wherein the photosensitizer (PST) is linked to the C-terminal side of the carrier protein.

[6]前記CPPが、配列番号1で示されるアミノ酸配列を有する、ヒト免疫不全ウイルス由来Tat(trans−activator of transcription)蛋白質中の12アミノ酸からなるペプチドである、[1]〜[5]のいずれかに記載のキャリア分子。
YGRKKRRQRRRG 配列番号1
[6] The CPP is a peptide consisting of 12 amino acids in a human immunodeficiency virus-derived Tat (trans-activator of transcription) protein having the amino acid sequence represented by SEQ ID NO: 1. The carrier molecule according to any one of the above.
YGRKKRRQRRRG SEQ ID NO: 1

[7]前記RBPが、配列番号2で示されるアミノ酸配列を有する、ヒト由来U1A(U1 small nuclear ribonucleoprotein A)のRNA結合ドメインである、[1]〜[6]のいずれかに記載のキャリア分子。
AVPETRPNHTIYINNLNEKIKKDELKKSLYAIFSQFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMK 配列番号2
[7] The carrier molecule according to any one of [1] to [6], wherein the RBP is an RNA binding domain of human-derived U1A (U1 small nuclear riboprotein A) having the amino acid sequence represented by SEQ ID NO: 2. .
AVPETRPNHTIYINNLNEKIKKDELKYKSLYAIFSQFGQILDILVVSLSLKMRGQAFVIFKEVSSATNANLRSQGFPFYDKPMRIQYAKTDSDIIAKMK SEQ ID NO: 2

[8][1]〜[7]のいずれかに記載のキャリア分子と、該RNAキャリア分子中のRBPに結合したRNAとからなる構造を有するキャリア分子/RNA複合体。
[9]前記RNAが、short hairpin RNA(shRNA)、small interfering RNA(siRNA)またはmicroRNA(miRNA)である、[8]に記載のRNA複合体。
[8] A carrier molecule / RNA complex having a structure comprising the carrier molecule according to any one of [1] to [7] and RNA bound to RBP in the RNA carrier molecule.
[9] The RNA complex according to [8], wherein the RNA is short hairpin RNA (shRNA), small interfering RNA (siRNA), or microRNA (miRNA).

[10][8]または[9]に記載のキャリア分子/RNA複合体を含む遺伝子治療薬または診断薬。
[11]がんまたはウイルス疾患を対象とする、[10]に記載の遺伝子治療薬または診断薬。
[10] A gene therapy agent or diagnostic agent comprising the carrier molecule / RNA complex according to [8] or [9].
[11] The gene therapy agent or diagnostic agent according to [10], which targets cancer or viral diseases.

[12]生体外において、[8]または[9]に記載のキャリア分子/RNA複合体を細胞と接触させて当該細胞内のエンドソームに局在化させる工程、および該キャリア分子/RNA複合体中のPSTが機能する近赤外線領域の波長を有する光を照射して該キャリア分子/RNA複合体を細胞質中に拡散させる工程を含むことを特徴とする、細胞質内へのRNAの送達方法。   [12] A step of contacting the carrier molecule / RNA complex according to [8] or [9] with a cell to localize it in an endosome in the cell in vitro, and in the carrier molecule / RNA complex A method of delivering RNA into the cytoplasm comprising the step of irradiating light having a wavelength in the near-infrared region in which the PST functions to diffuse the carrier molecule / RNA complex into the cytoplasm.

本発明によるRNAキャリアは大部分を生体分子である蛋白質で合成することができるため、生分解性で細胞毒性がなく、安全なRNAキャリアとして使用することができる。また、近赤外光を照射したときのみRNAが細胞質内に拡散するので、位置やタイミングを指定してRNAを細胞質内に送達させ、RNAi等のRNA機能の発現を引き起こすことができる。   Since most of the RNA carrier according to the present invention can be synthesized with a protein which is a biomolecule, it can be used as a safe RNA carrier that is biodegradable and non-cytotoxic. Furthermore, since RNA diffuses into the cytoplasm only when irradiated with near-infrared light, the RNA can be delivered into the cytoplasm by specifying the position and timing, and the expression of RNA functions such as RNAi can be caused.

図1は、所定の波長を有する光の照射によりRNAを細胞質内に送達する方法の概要 。A) RNAキャリア蛋白質 (CPP-RBP) とRNAの複合体。B) エンドサイトーシスを経由するCPP-RBP/RNA複合体の細胞質への移行。蛍光基を付加したCPP-RBPは、まず1) CPPを介して細胞内に導入され、2) エンドサイトーシスを経由してエンドソームに取り込まれる。次に、3) 用いる蛍光色素の励起波長の光を照射することにより、エンドソーム膜が崩壊し、4) CPP-RBP/RNA複合体が細胞質に拡散して、5)RNAの機能が発現する(導入したRNAがshRNA等の場合はDNAiが誘導される)。FIG. 1 shows an outline of a method for delivering RNA into the cytoplasm by irradiation with light having a predetermined wavelength. A) RNA carrier protein (CPP-RBP) and RNA complex. B) Translocation of CPP-RBP / RNA complex into cytoplasm via endocytosis. CPP-RBP to which a fluorescent group is added is first introduced into cells via 1) CPP, and 2) taken up into endosomes via endocytosis. Next, 3) by irradiating light with the excitation wavelength of the fluorescent dye used, the endosomal membrane is disrupted, 4) the CPP-RBP / RNA complex diffuses into the cytoplasm, and 5) the function of RNA is expressed ( DNAi is induced when the introduced RNA is shRNA or the like). 図2は、DY750の励起スペクトル(左)および蛍光スペクトル(右)を表す。FIG. 2 represents the excitation spectrum (left) and fluorescence spectrum (right) of DY750. 図3は、Alexa Fluor 750の蛍光スペクトル(右)を表す(対比のためCy7の蛍光スペクトル(左)も併記されている)。FIG. 3 shows the fluorescence spectrum (right) of Alexa Fluor 750 (for comparison, the fluorescence spectrum of Cy7 (left) is also shown). 図4は、IRDye800CWの励起スペクトルを表す(蛍光スペクトルも併記されている)。FIG. 4 represents the excitation spectrum of IRDye800CW (fluorescence spectrum is also shown). 図5は、実施例3)で行った、近赤外光照射によるキャリア/shRNA複合体の細胞質への移行の有無を示す画像である。Alexa Fluor 750、DY750およびIRDye800CWでは細胞質中にRNAが見られ、特にDY750について明瞭であり、これらの蛍光色素を用いると近赤外光の照射によりキャリア/shRNA 複合体を細胞質中に拡散させることができることが確認された。FIG. 5 is an image showing the presence / absence of transfer of the carrier / shRNA complex to the cytoplasm by irradiation with near-infrared light performed in Example 3). Alexa Fluor 750, DY750 and IRDye800CW show RNA in the cytoplasm, especially for DY750, and these fluorescent dyes can diffuse the carrier / shRNA complex into the cytoplasm upon irradiation with near infrared light. It was confirmed that it was possible. 図6は、実施例4)で作製したTatU1A-DY750を用いた近赤外光照射によるRNAi効果を示すグラフである。FIG. 6 is a graph showing the RNAi effect by near-infrared light irradiation using TatU1A-DY750 produced in Example 4). 図7は、実施例6)で作製したTatU1A-His6-DY750を用いた近赤外光照射によるRNAi効果を示すグラフである。FIG. 7 is a graph showing the RNAi effect of near-infrared light irradiation using TatU1A-His6-DY750 produced in Example 6). 図8は、実施例7)で行った、ヒト腫瘍細胞におけるRNAi効果を示すグラフである。(A)フローサイトメトリーによる測定結果。(B)フローサイトメトリーの結果から算出された平均蛍光強度。FIG. 8 is a graph showing the RNAi effect in human tumor cells performed in Example 7). (A) Measurement results by flow cytometry. (B) Average fluorescence intensity calculated from the results of flow cytometry.

―キャリア蛋白質―
本発明におけるキャリア蛋白質は、少なくとも細胞膜透過性ペプチド(CPP)とRNA結合性蛋白質(RBP)を必須の構成要素として含み、好ましくはさらにプロテアソーム分解シグナル配列タグ(PDS)および/またはHis−richタグ(HR)を構成要素として含むペプチド(融合タンパク質)を指す。
―Carrier protein―
The carrier protein in the present invention contains at least a cell membrane permeable peptide (CPP) and an RNA binding protein (RBP) as essential components, and preferably further comprises a proteasome degradation signal sequence tag (PDS) and / or a His-rich tag ( HR) refers to a peptide (fusion protein) containing a constituent element.

CPP、RBP、PDS、His6の要素同士は、直接ペプチド結合を介して連結していてもよいし、リンカーとなるペプチド(通常1〜20個程度のアミノ酸からなるもの)を介して連結していてもよい。また、上記所定の要素およびリンカーを含むキャリア蛋白質全体がペプチド(アミノ酸)のみで構成されることが望ましいが、リンカーとしてペプチド(アミノ酸)以外の化合物、たとえばPEG(ポリエチレングリコール)などを用いてキャリア蛋白質を構成することも可能である。The elements of CPP, RBP, PDS, and His 6 may be directly linked via a peptide bond or linked via a peptide peptide (usually consisting of about 1 to 20 amino acids) as a linker. May be. In addition, it is desirable that the entire carrier protein including the predetermined element and the linker is composed of only a peptide (amino acid). However, a carrier protein using a compound other than the peptide (amino acid) as the linker, for example, PEG (polyethylene glycol) or the like. It is also possible to configure.

必要に応じて、キャリア蛋白質の内部または末端に上記要素以外のペプチドが含まれていてもよい。たとえば、発現ベクターが産生した本発明のキャリア蛋白質をアフィニティ・クロマトグラフィによって精製・回収するためのHisタグまたはGSTタグがキャリア蛋白質のN末端付近に連結されていてもよい(キャリア蛋白質の回収後に上記Hisタグを切断しない場合は、当該Hisタグを膜透過性を高めるためのHRとして利用することができる。そのようなHRはキャリア蛋白質のN末端側およびC末端側の両方に連結されていてもよい。)。また、後述するような手法によりPSTをキャリア蛋白質に連結させるために、システインを末端付近に位置させておいてもよい。   If necessary, a peptide other than the above-mentioned elements may be contained inside or at the end of the carrier protein. For example, a His tag or GST tag for purifying and recovering the carrier protein of the present invention produced by the expression vector by affinity chromatography may be linked to the vicinity of the N-terminus of the carrier protein (after the recovery of the carrier protein, the His When the tag is not cleaved, the His tag can be used as an HR for enhancing membrane permeability, and such HR may be linked to both the N-terminal side and the C-terminal side of the carrier protein. .) Further, in order to link PST to a carrier protein by a method as described later, cysteine may be located near the terminal.

・細胞膜透過性ペプチド(CPP)
CPPは、一般的にアルギニンなどの塩基性アミノ酸に富んだアミノ酸配列を有する、細胞膜と結合し自身を細胞内に取り込ませる働きを持つポリペプチドとして知られており、膜透過性ドメイン(Protein Transduction Domain: PTD)と称されることもある。当初、CPPは、細胞膜を透過して自発的に細胞内に侵入すると考えられたため「細胞膜透過性ペプチド」と命名されているが、現在では一般的に、主に細胞のエンドサイトーシス経路を経て細胞内に取り込まれると考えられている。そして、CPPに連結させて細胞内に運ぼうとする積み荷の性質により、そのままエンドソームに局在化することも多い。本発明においてCPPは、これと連結した複合体の他の要素と共にエンドソームに局在化する能力を有するペプチドを指す用語として定義される。
・ Cell membrane permeable peptide (CPP)
CPP is generally known as a polypeptide having an amino acid sequence rich in basic amino acids such as arginine and having a function of binding to a cell membrane and incorporating itself into a cell. A protein transduction domain (Protein Transduction Domain) : PTD). Initially, CPP was named “cell membrane permeable peptide” because it was thought to permeate the cell membrane and spontaneously enter the cell, but now it is generally via the cell endocytosis pathway. It is thought to be taken up into cells. And it is often localized to the endosome as it is due to the nature of the cargo that is connected to the CPP and carried into the cell. In the present invention, CPP is defined as a term that refers to a peptide that has the ability to localize to the endosome along with other elements of the complex linked thereto.

本発明では様々なCPPを用いることができ、目的とする細胞(通常は哺乳動物細胞)に対応するものであればよく、その種類は特に限定されるものではない。また、CPPは、野生型のアミノ酸配列を有するものであってもよいし、細胞内に侵入する(好ましくは野生型よりも優れた)能力を有する範囲で、野生型のアミノ酸配列に対して置換、欠失、付加を施した変異型のアミノ酸配列を有するものであってもよい。   In the present invention, various CPPs can be used as long as they correspond to the target cells (usually mammalian cells), and the kind thereof is not particularly limited. The CPP may have a wild-type amino acid sequence, or may be substituted for the wild-type amino acid sequence as long as it has the ability to enter cells (preferably better than the wild-type). , May have a mutant amino acid sequence that has been deleted or added.

たとえば、ヒト免疫不全ウイルスI型(HIV-1)に由来するTrans-activator of transcription protein(Tatタンパク質)に含まれる、配列番号1で示されるアミノ酸配列を有するポリペプチドは、本発明におけるCPPとして好適である。
YGRKKRRQRRRG 配列番号1
For example, a polypeptide having the amino acid sequence represented by SEQ ID NO: 1 contained in a trans-activator of transcription protein (Tat protein) derived from human immunodeficiency virus type I (HIV-1) is suitable as the CPP in the present invention. It is.
YGRKKRRQRRRG SEQ ID NO: 1

また、フロックハウスウイルス(FHV)に由来する配列番号3で示されるアミノ酸配列を有するポリペプチド、および配列番号4で示されるアミノ酸配列を有するCTP512(Cytoplasmic Transduction Peptide)も、本発明における好ましいCPPとして挙げられる。
RRRRNRTRRNRRRVR 配列番号3
YGRRARRRRRRR 配列番号4
その他、Revペプチド、ネコヘルペスウイルスCoatタンパク質由来ペプチド、ポリアルギニンなどもCPPとして挙げられる。
Further, a polypeptide having the amino acid sequence represented by SEQ ID NO: 3 derived from flockhouse virus (FHV) and CTP512 (Cytoplasmic Transduction Peptide) having the amino acid sequence represented by SEQ ID NO: 4 are also cited as preferred CPPs in the present invention. It is done.
RRRRNRTRRNRRRVR SEQ ID NO: 3
YGRRRRRRRRR SEQ ID NO: 4
In addition, Rev peptide, feline herpesvirus Coat protein-derived peptide, polyarginine and the like are also exemplified as CPP.

・RNA結合性蛋白質(RBP)
RBPは、RNAの塩基配列または立体構造に依存的または非依存的に結合するタンパク質として公知である。
RNA binding protein (RBP)
RBP is known as a protein that binds in an independent or independent manner to the base sequence or three-dimensional structure of RNA.

本発明では様々なRBPを用いることができ、その種類は特に限定されるものではないが、通常、RNAの特定の塩基配列または立体構造を認識し、特定のRNAと特異的に結合するものを用いるようにする。また、RBPは、野生型のアミノ酸配列を有するものであってもよいし、RNAと結合する(好ましくは野生型よりも優れた)能力を有する範囲で、野生型のアミノ酸配列に対して置換、欠失、付加を施した変異型のアミノ酸配列を有するものであってもよい。   In the present invention, various RBPs can be used, and the kind thereof is not particularly limited, but usually, those that recognize a specific base sequence or three-dimensional structure of RNA and specifically bind to specific RNA. Use it. The RBP may have a wild-type amino acid sequence, or may be substituted for the wild-type amino acid sequence as long as it has the ability to bind to RNA (preferably better than the wild-type). It may have a mutant amino acid sequence subjected to deletion or addition.

たとえば、配列番号2で示されるアミノ酸配列を有する、ヒト由来U1A(U1 small nuclear ribonucleoprotein A)のRNA結合ドメインは、本発明におけるRBPとして好適である。
AVPETRPNHTIYINNLNEKIKKDELKKSLYAIFSQFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMK 配列番号2
For example, the RNA binding domain of human-derived U1A (U1 small nuclear riboprotein A) having the amino acid sequence represented by SEQ ID NO: 2 is suitable as the RBP in the present invention.
AVPETRPNHTIYINNLNEKIKKDELKYKSLYAIFSQFGQILDILVVSLSLKMRGQAFVIFKEVSSATNANLRSQGFPFYDKPMRIQYAKTDSDIIAKMK SEQ ID NO: 2

また、sex−lethalタンパク質は、上記ヒト由来U1AよりもRNA運搬能にやや劣るが、本発明のRBPとして用いてもよい。その他、アミノアシルtRNA合成酵素、伸長因子Tu、RRMモチーフを構造中に有するタンパク質などの、公知のRBPを用いることもできる。   Further, the sex-lethal protein is slightly inferior in RNA carrying ability to the human-derived U1A, but may be used as the RBP of the present invention. In addition, a known RBP such as an aminoacyl-tRNA synthetase, an elongation factor Tu, or a protein having an RRM motif in its structure can also be used.

・プロテアソーム分解シグナル配列タグ(PDS)
プロテアソーム分解シグナル配列は、タンパク質の末端に付加されるアミノ酸配列であって、そこにユビキチンが結合し、プロテアソームでその配列を有するタンパク質を分解しうるものとして公知であり、タンパク質分解(シグナル)配列、分解促進配列などと称されることもある。
・ Proteasome degradation signal sequence tag (PDS)
A proteasome degradation signal sequence is an amino acid sequence added to the end of a protein, and ubiquitin binds to the sequence and is known to be capable of degrading a protein having the sequence in the proteasome. Sometimes referred to as a degradation promoting sequence.

本発明では様々なPDSを用いることができ、その種類は特に限定されるものではない。また、PDSは、野生型のアミノ酸配列を有するものであってもよいし、プロテアソームにより分解される(好ましくは野生型よりも優れた)能力を有する範囲で、野生型のアミノ酸配列に対して置換、欠失、付加を施した変異型のアミノ酸配列を有するものであってもよい。たとえば、CL1、CL2、CL6,CL9,CL10、CL11、CL12、CL15、CL16、SL17、PESTなどの公知のPDSを用いることができる。   In the present invention, various PDSs can be used, and the kind thereof is not particularly limited. The PDS may have a wild-type amino acid sequence, or may be substituted for the wild-type amino acid sequence as long as it has the ability to be degraded by the proteasome (preferably better than the wild-type). , May have a mutant amino acid sequence that has been deleted or added. For example, known PDSs such as CL1, CL2, CL6, CL9, CL10, CL11, CL12, CL15, CL16, SL17, and PEST can be used.

なお、PDSを用いた場合、複合体が細胞質内に導入された後、キャリア蛋白質がプロテアソーム分解系を介して分解され、キャリアタンパク質とRNAの解離が促進されることにより、RNAの機能発現の効果が高くなるものと考えられる。   In addition, when PDS is used, after the complex is introduced into the cytoplasm, the carrier protein is degraded through the proteasome degradation system, and the dissociation of the carrier protein and RNA is promoted. Is considered to be high.

・His−richタグ(HR)
HRは、典型的には6個のヒスチジン(His)からなる、複合体の細胞内への導入効率をより高めることのできるペプチドである。6個のヒスチジンからなるペプチドはアフィニティ・クロマトグラフィのために利用されているHisタグとしても知られている。本発明におけるHRは、そのようなHisタグと同じく(6個の)ヒスチジンのみからなるペプチドであってもよいし、HRを用いない場合よりも細胞内侵入性を向上させる能力を有する範囲でHis6を改変したペプチド、たとえばヒスチジンの数を7〜10個程度に増加させたペプチドや、ヒスチジン以外のアミノ酸を織り交ぜたペプチドであってもよい。HRを構成するアミノ酸数は通常は6〜20個程度であり、また全アミノ酸中のヒスチジンの割合は通常は50%〜100%の範囲である。
・ His-rich tag (HR)
HR is a peptide that is typically composed of 6 histidines (His) and can further increase the efficiency of introduction of the complex into the cell. A peptide consisting of 6 histidines is also known as the His tag, which is used for affinity chromatography. The HR in the present invention may be a peptide consisting only of (six) histidines as in the case of such a His tag, or the His has a capability of improving intracellular invasion compared to the case where HR is not used. A peptide in which 6 is modified, for example, a peptide in which the number of histidines is increased to about 7 to 10 or a peptide in which amino acids other than histidine are interwoven may be used. The number of amino acids constituting HR is usually about 6 to 20, and the ratio of histidine in all amino acids is usually in the range of 50% to 100%.

・作製方法
上記の要素を含むキャリア蛋白質は公知の手段により作製することができる。代表的には、1)PCR法を利用して本発明の所定の要素を含むポリペプチドに対応する塩基配列を有するDNAを作製し、2)作製したDNAをプラスミド等のベクターに導入し、3)部位特異的変異導入法(Site-Directed Mutagenesis)を利用して、C末端にシステインが配置されたポリペプチドに対応する塩基配列を有するベクターを作製し、4)得られたベクターを発現させて目的とするキャリア蛋白質を回収する、という方法が挙げられる。
-Preparation method The carrier protein containing said element can be prepared by a well-known means. Typically, 1) DNA having a base sequence corresponding to a polypeptide containing a predetermined element of the present invention is prepared using PCR, and 2) the prepared DNA is introduced into a vector such as a plasmid. ) Using a site-directed mutagenesis method, a vector having a base sequence corresponding to a polypeptide having a cysteine at the C-terminus was prepared, and 4) the resulting vector was expressed. A method of recovering the target carrier protein can be mentioned.

―キャリア分子―
本発明におけるキャリア分子は、上述したキャリア蛋白質と、近赤外線領域の波長の光(近赤外光)で機能する光増感剤とが連結した分子を指す。
―Carrier molecule―
The carrier molecule in the present invention refers to a molecule in which the above-described carrier protein is linked to a photosensitizer that functions with light having a wavelength in the near infrared region (near infrared light).

・光増感剤(PST)
「近赤外線領域の波長の光(近赤外光)で機能する」光増感剤とは、近赤外光を照射することにより、細胞内に取り込まれエンドソームに局在化していた複合体を細胞質中に拡散させ所定の機能を発揮させる状態にすることが可能である光増感剤をいう。なお、そのメカニズムとしては、近赤外光の照射により励起された光増感剤が一重項酸素を発生させ、これがエンドソーム膜を不安定化させる(破壊する)ためであると推測される。
・ Photosensitizer (PST)
A photosensitizer that "functions with light in the near-infrared region (near-infrared light)" is a complex that has been incorporated into cells and localized to endosomes when irradiated with near-infrared light. A photosensitizer that can be diffused into the cytoplasm to exhibit a predetermined function. It is assumed that the mechanism is that the photosensitizer excited by irradiation with near-infrared light generates singlet oxygen, which destabilizes (destroys) the endosomal membrane.

本発明において、「近赤外領域」は700nm〜2500nmを指す。本発明では、そのような近赤外線領域の波長、より好ましくは700〜1000nmの波長、特に好ましくは700〜850nmの波長の光で機能する、換言すれば極大励起波長がこれらの領域にある光増感剤が用いられる。上記の近赤外線領域の波長が好ましい理由は、生体中のヘモグロビンや水による吸収を回避して、生体組織透過性が高い波長だからである。   In the present invention, the “near infrared region” refers to 700 nm to 2500 nm. In the present invention, it functions with light having a wavelength in the near-infrared region, more preferably 700 to 1000 nm, particularly preferably 700 to 850 nm, in other words, an optical enhancement in which the maximum excitation wavelength is in these regions. A sensitizer is used. The reason why the wavelength in the near-infrared region is preferable is that the wavelength is high in tissue permeability, avoiding absorption by hemoglobin and water in the living body.

本発明におけるPSTの具体例としては、DY750(DYOMICS GmbH社製)、Alexa Fluor 750(登録商標、Invitrogen社製)、IRDye800CW(登録商標、LI−COR社製)が挙げられる。DY750は、下記式に示す構造式および図2に示す励起スペクトル(極大励起波長は747nm)を有する化合物である(DYOMICS GmbH社ホームページ、http://www.dyomics.com/dy-750.html参照)。Alexa Fluor 750は、構造式は明らかにされていないが、図3に示す蛍光スペクトルを有する化合物で極大励起波長は749nmである(Invitrogen社ホームページ、http://www.invitrogen.jp/catalogue/molecular#probes/alexa/alexa#index.htmlおよびhttp://www.invitrogen.jp/catalogue/molecular#probes/alexa/alexafluor750/index.html参照)。IRDye800CWは、構造式は明らかにされていないが、図4に示す励起スペクトル(極大励起波長は774nm)を有する化合物である(LI−COR社のホームページより入手可能なカタログ、http://biosupport.licor.com/docs/800CW#Micro#08618.pdf参照)。   Specific examples of the PST in the present invention include DY750 (manufactured by DYOMICICS GmbH), Alexa Fluor 750 (registered trademark, manufactured by Invitrogen), and IRDye800CW (registered trademark, manufactured by LI-COR). DY750 is a compound having a structural formula shown in the following formula and an excitation spectrum (maximum excitation wavelength is 747 nm) shown in FIG. 2 (see DYOMICS GmbH website, http://www.dyomics.com/dy-750.html). ). Alexa Fluor 750, whose structural formula has not been clarified, has a fluorescence spectrum shown in FIG. 3 and has a maximum excitation wavelength of 749 nm (Invitrogen website, http://www.invitrogen.jp/catalogue/molecular). # probes / alexa / alexa # index.html and http://www.invitrogen.jp/catalogue/molecular#probes/alexa/alexafluor750/index.html). IRDye800CW is a compound having an excitation spectrum (maximum excitation wavelength is 774 nm) shown in FIG. 4 although the structural formula is not clarified (catalog available from the website of LI-COR, http: // biosupport. see licor.com/docs/800CW#Micro#08618.pdf).

・作製方法
キャリア分子は公知の手法によりキャリア蛋白質とPSTとを連結させて作製することができる。代表的には、キャリア蛋白質中唯一のシステインをN末端付近またはC末端付近に配置しておき、一方PSTには当該システインのチオール基と選択的に反応する(キャリア蛋白質中の他のアミノ酸残基とは反応しない)マレイミド基を導入しておき、これらの官能基を反応させてキャリア蛋白質にPSTを結合させる手法が挙げられる。このような手法は、市販の「マレイミド基の付いたPST」を用いて、末端1箇所にシステインを含むキャリア蛋白質と混ぜ合わせたのちに、ゲル濾過スピンカラムなどで未反応のPSTを除去することで行うことができる。
-Preparation method Carrier molecules can be prepared by linking a carrier protein and PST by a known method. Typically, the only cysteine in the carrier protein is placed near the N-terminus or C-terminus, while PST reacts selectively with the cysteine thiol group (other amino acid residues in the carrier protein). And a method in which a maleimide group is introduced and these functional groups are reacted to bind PST to a carrier protein. Such a method is to remove unreacted PST with a gel filtration spin column after mixing with a carrier protein containing cysteine at one end using a commercially available “PST with a maleimide group”. Can be done.

―キャリア分子/RNA複合体―
本発明におけるキャリア分子/RNA複合体(単に「複合体」と称するときもある。)は、上述したキャリア分子にRBPを介してRNAが結合した複合体を指す。ただし、RNAはRBPとの特異的な結合とともに、正電荷を多く有するCPP(たとえばTat)との静電気的・非特異的な結合によってキャリア分子と複合体を形成していてもよい。
―Carrier molecule / RNA complex―
The carrier molecule / RNA complex (sometimes simply referred to as “complex”) in the present invention refers to a complex in which RNA is bound to the above-described carrier molecule via RBP. However, RNA may form a complex with a carrier molecule by specific binding to RBP and electrostatic / non-specific binding to CPP having a large positive charge (for example, Tat).

・RNA
キャリア蛋白質中のRBPに結合させるRNAは、当該RBPのRNA認識部位に認識される塩基配列を有するオリゴヌクレオチドと、細胞質内に導入することにより所定の機能を発揮する塩基配列を有するオリゴヌクレオチド(以下「機能性RNA」と称する。)とを含み、これらは直接結合していても、リンカーとなるオリゴヌクレオチドを介して結合していてもよい。
・ RNA
The RNA to be bound to the RBP in the carrier protein includes an oligonucleotide having a base sequence recognized at the RNA recognition site of the RBP and an oligonucleotide having a base sequence that exhibits a predetermined function when introduced into the cytoplasm (hereinafter referred to as the RNA). These are referred to as “functional RNA”), and may be bound directly or via an oligonucleotide serving as a linker.

機能性RNAとしては様々なRNAを用いることができ、その種類は特に限定されるものではない。本発明における代表的な機能性RNAとしては、特定の遺伝子の発現を抑制するためのshRNA(short hairpin RNA)、siRNA(small interfering RNA)、miRNA(micro RNA)が挙げられる。また、細胞内で特定のタンパク質を合成するためのmRNAや、タンパク質の特定の部位に非天然アミノ酸を導入するための改変されたtRNAも本発明における機能性RNAとして用いることができる。その他、アンチセンスRNA、アプタマーRNA、リボザイムなども本発明における機能性RNAとなり得る。   Various RNAs can be used as the functional RNA, and the type thereof is not particularly limited. Representative functional RNAs in the present invention include shRNA (short hairpin RNA), siRNA (small interfering RNA), and miRNA (micro RNA) for suppressing the expression of a specific gene. Moreover, mRNA for synthesizing a specific protein in a cell and modified tRNA for introducing an unnatural amino acid into a specific site of the protein can also be used as the functional RNA in the present invention. In addition, antisense RNA, aptamer RNA, ribozyme and the like can also be functional RNA in the present invention.

・形成方法
キャリア分子/RNA複合体は、あらかじめ作製したキャリア分子とRNAとを溶液中で混合することにより、容易に形成させることができる。これらの混合量(モル)の比率は適宜調整することができるが、たとえば、実施例で用いているキャリア(TatU1A, TatU1A-CL1, TatU1A-His6)の場合、RNA:キャリア分子=1:5〜10とすることが好ましい。
Formation Method The carrier molecule / RNA complex can be easily formed by mixing a carrier molecule and RNA prepared in advance in a solution. The ratio of these mixed amounts (moles) can be adjusted as appropriate. For example, in the case of carriers (TatU1A, TatU1A-CL1, TatU1A-His6) used in the examples, RNA: carrier molecule = 1: 5 10 is preferable.

―キャリア分子/RNA複合体の細胞質内への送達方法―
本発明によるキャリア分子/RNA複合体は、以下のような手順により細胞質内に送達することができる。
-Delivery method of carrier molecule / RNA complex into cytoplasm-
The carrier molecule / RNA complex according to the present invention can be delivered into the cytoplasm by the following procedure.

まず、キャリア分子/RNA複合体を細胞と接触させて当該細胞内のエンドソームに局在化させる。通常、細胞にキャリア分子/RNA複合体を含む溶液を添加すれば、一定の時間の経過の後、エンドサイトーシスにより自ずとキャリア分子/RNA複合体は取り込まれ、細胞内のエンドソームに局在化する。細胞は、通常は動物細胞(ヒトの細胞を含む)であり、生体内にあるものでも、生体外にあるもの(培養細胞)でもよい。すなわち、本発明による細胞質内へのRNAの送達方法は、生体内、生体外どちらにおいても適用することができる。   First, a carrier molecule / RNA complex is brought into contact with a cell to localize to the endosome in the cell. Usually, when a solution containing a carrier molecule / RNA complex is added to a cell, the carrier molecule / RNA complex is naturally taken up by endocytosis after a certain period of time and is localized in the endosome in the cell. . The cells are usually animal cells (including human cells) and may be in vivo or in vitro (cultured cells). That is, the method for delivering RNA into the cytoplasm according to the present invention can be applied both in vivo and in vitro.

次いで、キャリア分子/RNA複合体中のPSTが機能する近赤外線領域の波長を有する光を照射して該キャリア分子/RNA複合体を細胞質中に拡散させる。そのような所定の近赤外光を照射しなければ、キャリア分子/RNA複合体はほとんどエンドソーム中に局在化したままであり、RNAの所定の機能は実質的に発現しない。   Next, the carrier molecule / RNA complex is diffused in the cytoplasm by irradiation with light having a wavelength in the near infrared region where the PST in the carrier molecule / RNA complex functions. Without such predetermined near-infrared light, the carrier molecule / RNA complex remains mostly localized in the endosome, and the predetermined function of RNA is not substantially expressed.

励起光を照射する手段は特に限定されるものではない。所定の波長の近赤外光を発するキセノンアークランプや色素ポンプレーザーを光源とし、必要に応じて適切なフィルターを用いて、RNAの機能を発現させたい所望の部位の細胞に近赤外光を照射すればよい。   The means for irradiating the excitation light is not particularly limited. Using a xenon arc lamp or dye pump laser that emits near-infrared light of a predetermined wavelength as the light source, and using an appropriate filter as necessary, the near-infrared light is applied to cells at the desired site where RNA functions are to be expressed. Irradiation is sufficient.

このような手順によりキャリア分子/RNA複合体が細胞質内に送達された後は、細胞質中の各種の生体物質の作用によりRNAの所定の機能が発揮される。たとえば、機能性RNAとしてsiRNAまたはshRNAを用いた場合、Dicer酵素の作用によりリンカー配列部分および一本鎖ループ配列部分が切断・分解され、二本鎖部分が細胞固有の特定の構造体に認識されることにより、mRNAからの翻訳反応を阻害し、RNAiが達成される。   After the carrier molecule / RNA complex is delivered into the cytoplasm by such a procedure, a predetermined function of RNA is exhibited by the action of various biological substances in the cytoplasm. For example, when siRNA or shRNA is used as a functional RNA, the linker sequence portion and the single-stranded loop sequence portion are cleaved and decomposed by the action of the Dicer enzyme, and the double-stranded portion is recognized by a specific cell-specific structure. By this, the translation reaction from mRNA is inhibited and RNAi is achieved.

―用途―
本発明のキャリア分子は、当該キャリア分子に結合しうる任意のRNAを細胞質内に導入することができ、その用途は特に限定されるものではない。代表的には、本発明のキャリア分子/RNA複合体は、たとえばがんやウイルス疾患を対象とする遺伝子治療薬として使用することができる。この場合、RNA(機能性RNA)としては、RNAiによりがんまたはウイルス疾患の原因となっている特定の遺伝子の発現を抑制することのできる、適切な塩基配列を有するものが選択される。
―Use―
The carrier molecule of the present invention can introduce any RNA capable of binding to the carrier molecule into the cytoplasm, and its use is not particularly limited. Typically, the carrier molecule / RNA complex of the present invention can be used, for example, as a gene therapy drug for cancer and viral diseases. In this case, RNA (functional RNA) having an appropriate base sequence capable of suppressing the expression of a specific gene causing cancer or viral disease by RNAi is selected.

1) キャリア蛋白質の調製
CPPとしてヒト免疫不全ウィルス由来Tat (trans-activator of transcription) 蛋白質の11アミノ酸からなる膜透過ドメインと、RBPとしてヒト由来U1A (U1 small nuclear ribonucleoprotein A) のRNA結合ドメインとを融合した、配列番号5で示されるアミノ酸配列を有するキャリア蛋白質TatU1Aを調製した (図1A)。下記配列番号5のアミノ酸配列中、二重下線部(13-24位)がTat、下線部(36-132位)がU1Aの配列である。
1) Preparation of carrier protein
A transmembrane domain consisting of 11 amino acids of human immunodeficiency virus-derived Tat (t rans- a ctivator of t ranscription) protein as CPP, a fusion of the RNA binding domain of the human U1A (U1 small nuclear ribonucleoprotein A) as RBP, A carrier protein TatU1A having the amino acid sequence represented by SEQ ID NO: 5 was prepared (FIG. 1A). In the amino acid sequence of SEQ ID NO: 5, the double underline (positions 13-24) is Tat, and the underline (positions 36-132) is U1A.

また、この蛋白質のC末端に、PDSとしてのCL1、あるいはHRとしてのHis6タグを付加した、それぞれ配列番号6および7で示されるアミノ酸配列を有するキャリア蛋白質TatU1A-CL1およびTatU1A-His6も同時に調製した。下記配列番号6のアミノ酸配列中、二重下線部(13-24位)がTat、下線部(36-132位)がU1A、一点鎖線(135-150位)がCL1の配列である。下記配列番号7のアミノ酸配列中、二重下線部(13-24位)がTat、下線部(36-132位)がU1A、二点鎖線(135-141位)がHis6の配列である。 In addition, carrier proteins TatU1A-CL1 and TatU1A-His 6 having the amino acid sequences shown in SEQ ID NOs: 6 and 7, respectively, added with CL1 as PDS or His 6 tag as HR at the C-terminus of this protein are also present. Prepared. In the amino acid sequence of SEQ ID NO: 6, the double underline (positions 13-24) is Tat, the underline (positions 36-132) is U1A, and the alternate long and short dash line (positions 135-150) is CL1. During the following amino acid sequence SEQ ID NO: 7, the double underlined (position 13-24) is Tat, underlined (position 36-132) is U1A, two-dot chain line (position 135-141) is a sequence of His 6.

なお、いずれのキャリア蛋白質も、後にチオール反応性の色素(光増感剤)を付加するため、C末端はシステインにしてある。このC末端のシステインは、キャリア蛋白質の中で唯一のシステインである。 Each carrier protein has a cysteine at the C-terminus for later addition of a thiol-reactive dye (photosensitizer). This C-terminal cysteine is the only cysteine in the carrier protein.

2) キャリア蛋白質への(光増感剤としての)近赤外蛍光色素の付加
1)で調製したキャリア蛋白質に、近赤外光で励起される蛍光色素を付加した。蛍光色素として、DY750 (DYOMICS GMMBH社製)、HiLyte Fluor750 (Anaspec社製)、IRDye800CW (LI-COR社製)、Alexa Fluor 750 (Invitrogen社製) 、DyLight750 (Takara社製) 、DyLight800 (Takara社製)を用いた。Protein Assay Kitを用いて定量したキャリア分子の蛋白質濃度と、分光光度計を用いて吸光度測定により定量した蛍光色素濃度から、蛍光色素付加率を求めた。付加率が10〜30%程度になるように、未標識のキャリア蛋白質を添加し調製した。
2) Addition of near-infrared fluorescent dye (as photosensitizer) to carrier protein
A fluorescent dye excited by near-infrared light was added to the carrier protein prepared in 1). Fluorescent dyes DY750 (DYOMICS GMMBH), HiLyte Fluor750 (Anaspec), IRDye800CW (LI-COR), Alexa Fluor 750 (Invitrogen), DyLight750 (Takara), DyLight800 (Takara) ) Was used. The fluorescent dye addition rate was determined from the protein concentration of the carrier molecule determined using the Protein Assay Kit and the fluorescent dye concentration determined by measuring the absorbance using a spectrophotometer. Unlabeled carrier protein was added and prepared so that the addition rate was about 10 to 30%.

3) 近赤外蛍光色素の付いたキャリア蛋白質によるRNAの細胞内エンドソーム内導入と近赤外光による細胞質への拡散
種々の蛍光色素で標識したキャリア蛋白質(ここではTatU1A)について、U1Aが認識する配列を付加したshRNAの細胞質移行を試みた。shRNAとTatU1A-蛍光色素コンジュゲート(以下これをキャリアと呼ぶ)をそれぞれ最終濃度200 nMおよび2 mMとなるように混合し、遮光条件下で37 ℃で10分間インキュベーションすることにより、キャリア/shRNA 複合体を調製した。ここでは、複合体の細胞内局在を可視化するために、FAM標識したshRNAを用いた。約70%コンフルエントになるまで培養した哺乳動物細胞 (CHO細胞) に、上記キャリア/shRNA混合液を添加し、37 ℃で2時間、CO2インキュベーターで培養した。それぞれの蛍光色素の励起波長で光照射し、キャリア/shRNA 複合体の細胞内局在を蛍光顕微鏡観察により評価した。蛍光色素(光増感剤)としてAlexa Fluor 750, DY750, IRDye800CW を用いた場合にのみ、細胞内に点在 (エンドソームに局在) していたshRNAが近赤外光の照射により細胞質に拡散した (図5)。すなわち、近赤外光照射特異的にキャリア/shRNA 複合体を細胞質に導入できることを示した。このときHiLyte Fluor750、Alexa Fluor 750、およびDyLight750を用いた場合は750±20nmの光(epitex社製 Infrared illuminator L750-66-60)、IRDye800CWおよびDyLight800を用いた場合には780±20 nmの光(epitex社製 Infrared illuminator L780-66-60)を励起光として用いた。
3) Introduction of RNA into intracellular endosome by carrier protein with near-infrared fluorescent dye and diffusion to cytoplasm by near-infrared light U1A recognizes carrier protein (here, TatU1A) labeled with various fluorescent dyes Attempts were made to transfer cytoplasm of shRNA to which sequences were added. Carrier / shRNA complex by mixing shRNA and TatU1A-fluorescent dye conjugate (hereinafter referred to as carrier) to a final concentration of 200 nM and 2 mM, respectively, and incubating at 37 ° C for 10 minutes under light-shielded conditions The body was prepared. Here, FAM-labeled shRNA was used to visualize the intracellular localization of the complex. The above-mentioned carrier / shRNA mixed solution was added to mammalian cells (CHO cells) cultured until they became about 70% confluent, and cultured in a CO 2 incubator at 37 ° C. for 2 hours. Light was irradiated at the excitation wavelength of each fluorescent dye, and intracellular localization of the carrier / shRNA complex was evaluated by observation with a fluorescence microscope. Only when Alexa Fluor 750, DY750, and IRDye800CW were used as fluorescent dyes (photosensitizers), shRNA that was scattered in cells (localized in endosomes) diffused into the cytoplasm by irradiation with near infrared light (Figure 5). That is, it was shown that a carrier / shRNA complex can be introduced into the cytoplasm specifically with near-infrared light irradiation. At this time, when using HiLyte Fluor750, Alexa Fluor 750, and DyLight750, light of 750 ± 20 nm (epitex Infrared illuminator L750-66-60), when using IRDye800CW and DyLight800, light of 780 ± 20 nm ( Epitex Infrared illuminator L780-66-60) was used as excitation light.

4) 近赤外光による哺乳動物細胞の細胞質内へのRNA導入とそのRNAの機能発現(RNAi)の確認
750 nm付近に吸収をもつ蛍光色素DY750を付加したTatU1A (TatU1A-DY750) を用いて、近赤外光照射によるRNAi誘導の検討を行った。shRNAとTatU1A-DY750をそれぞれ最終濃度200 nMおよび2 mMとなるように混合し、遮光条件下で37 ℃で10分間インキュベーションすることにより、TatU1A-DY750/shRNA複合体を調製した。ここでは、EGFPのmRNAを標的とするため、anti-EGFP配列のshRNAを用いた。EGFPを安定発現するCHO細胞 (EGFP-CHO細胞) を約70%コンフルエントになるまで培養し、上記TatU1A-DY750/shRNA 混合液を添加し、さらに37 ℃、2時間CO2インキュベーターで培養した。DY750の励起波長で光照射し、37 ℃で20時間CO2インキュベーターで培養した後、細胞を回収し、フローサイトメトリー法によりRNAi効果を検討した。その結果、光照射した細胞集団のEGFP平均蛍光強度は、光照射しなかったものと比較し、顕著に減少した (図6)。すなわち、光照射を行った細胞において、EGFPに対するRNAi効果が認められた。
4) Introduction of RNA into the cytoplasm of mammalian cells by near-infrared light and confirmation of functional expression of the RNA (RNAi)
Using TatU1A (TatU1A-DY750) to which a fluorescent dye DY750 having absorption at around 750 nm was added, RNAi induction by near infrared light irradiation was examined. TatU1A-DY750 / shRNA complex was prepared by mixing shRNA and TatU1A-DY750 at final concentrations of 200 nM and 2 mM, respectively, and incubating at 37 ° C. for 10 minutes under light-shielded conditions. Here, in order to target EGFP mRNA, shRNA with anti-EGFP sequence was used. CHO cells stably expressing EGFP (EGFP-CHO cells) were cultured until they became about 70% confluent, the above TatU1A-DY750 / shRNA mixed solution was added, and further cultured in a CO 2 incubator at 37 ° C. for 2 hours. After irradiating light at the excitation wavelength of DY750 and culturing in a CO 2 incubator at 37 ° C. for 20 hours, the cells were collected, and the RNAi effect was examined by flow cytometry. As a result, the EGFP average fluorescence intensity of the cell group irradiated with light was remarkably reduced as compared with the cell group not irradiated with light (FIG. 6). That is, an RNAi effect on EGFP was observed in cells irradiated with light.

以上の結果から、TatU1A-DY750によりshRNAを細胞内に導入し、光照射特異的に、つまり近赤外光を照射したときのみshRNAを細胞質に移行させることができ、RNAi(shRNAの機能発現)を誘導することができた。   From the above results, shRNA can be introduced into cells with TatU1A-DY750, and shRNA can be transferred to the cytoplasm only when irradiated with light, that is, when irradiated with near infrared light. RNAi (expression of shRNA function) Could be induced.

5) RNA運搬能の高いキャリア蛋白質の選抜
上記1)で作製したTatU1Aに対して、CPP部分をFHV (フロックハウスウイルス由来のアルギニンペプチド; RRRRNRTRRNRRRVR)またはCTP512 (cytoplasmic transduction peptide;YGRARRRRRRR。変異導入のしやすさを考慮して、配列番号4に記載のアミノ酸配列の4位のRが欠失したものを用いた。)に変えたものを作製した。しかし、FHV-U1AやCTP-U1Aの細胞質へのRNA運搬能はTatU1Aと大差なかった。次に、CPPとしてTatを用い、RBP部分をSxl蛋白質またはバクテリオファージλ-Nペプチドにしたものを作製した。このTatSxlはのRNA運搬能を持っていたもののTatU1Aより劣っていた。TatλNはRNA運搬能が全く見られなかった。
5) Selection of carrier protein with high RNA carrying capacity For TatU1A prepared in 1) above, CPP part is FHV (Flockhouse virus-derived arginine peptide; RRRRNRTRRNRRRVR) or CTP512 (cytoplasmic transduction peptide; YGRARRRRRRR). In consideration of easiness, the amino acid sequence shown in SEQ ID NO: 4 in which R at position 4 was deleted was used. However, the ability of FHV-U1A and CTP-U1A to transport RNA into the cytoplasm was not significantly different from TatU1A. Next, Tat was used as CPP, and the RBP part was made into Sxl protein or bacteriophage λ-N peptide. Although this TatSxl had RNA carrying ability, it was inferior to TatU1A. TatλN did not show any RNA carrying ability.

次に、1)で作製したTatU1A-CL1、TatU1A-His6およびTatU1AのRNA運搬能を調べたところ、TatU1A-CL1およびTatU1A-His6はTatU1AよりもRNA運搬能が高かった。すなわち、キャリア蛋白質部分としては、TatU1A-CL1およびTatU1A-His6が、以上で検討された中で最もRNAキャリアとしての能力が高かった。Next, when the RNA carrying ability of TatU1A-CL1, TatU1A-His 6 and TatU1A prepared in 1) was examined, TatU1A-CL1 and TatU1A-His 6 showed higher RNA carrying ability than TatU1A. That is, as the carrier protein portion, TatU1A-CL1 and TatU1A-His 6 had the highest ability as an RNA carrier among those examined above.

6) 近赤外光による哺乳動物細胞の細胞質内へのRNA導入とそのRNAの機能発現(RNAi)の確認
4)と同様、750 nm付近に吸収をもつ蛍光色素DY750を付加したTatU1A-His6 (TatU1A-His6-DY750) を用いて、近赤外光照射によるRNAi誘導の検討を行った。shRNAとTatU1A-His6-DY750をそれぞれ最終濃度200 nMおよび2 mMとなるように混合し、遮光条件下で37 ℃で10分間インキュベーションすることにより、TatU1A-His6-DY750/shRNA複合体を調製した。ここでは、EGFPのmRNAを標的とするため、anti-EGFP配列のshRNAを用いた。EGFPを安定発現するCHO細胞 (EGFP-CHO細胞) を約70%コンフルエントになるまで培養し、上記TatU1A-His6-DY750/shRNA 混合液を添加し、さらに37 ℃、2時間CO2インキュベーターで培養した。DY750の励起波長で光照射し、37 ℃で20時間CO2インキュベーターで培養した後、細胞を回収し、フローサイトメトリー法によりRNAi効果を検討した。その結果、光照射した細胞集団のEGFP平均蛍光強度は、光照射しなかったものと比較し、顕著に減少した (図7)。すなわち、光照射を行った細胞において、EGFPに対するRNAi効果が認められた。以上の結果から、TatU1A-His6-DY750によりshRNAを細胞内に導入し、光照射特異的にshRNAを細胞質に移行させることができ、RNAi(shRNAの機能発現)を誘導することができた。
6) Introduction of RNA into the cytoplasm of mammalian cells using near-infrared light and confirmation of its functional expression (RNAi)
As in 4), RNAi induction by near-infrared light irradiation was investigated using TatU1A-His 6 (TatU1A-His 6 -DY750) to which a fluorescent dye DY750 having absorption near 750 nm was added. Prepare TatU1A-His 6 -DY750 / shRNA complex by mixing shRNA and TatU1A-His 6 -DY750 to a final concentration of 200 nM and 2 mM, respectively, and incubating for 10 minutes at 37 ° C in the dark. did. Here, in order to target EGFP mRNA, shRNA with anti-EGFP sequence was used. Culturing CHO cells that stably express EGFP (EGFP-CHO cells) until they are about 70% confluent, add the above TatU1A-His 6- DY750 / shRNA mixture, and further culture in a CO 2 incubator at 37 ° C for 2 hours did. After irradiating light at the excitation wavelength of DY750 and culturing in a CO 2 incubator at 37 ° C. for 20 hours, the cells were collected, and the RNAi effect was examined by flow cytometry. As a result, the EGFP average fluorescence intensity of the cell group irradiated with light was remarkably reduced as compared with that obtained without light irradiation (FIG. 7). That is, an RNAi effect on EGFP was observed in cells irradiated with light. From the above results, TatU1A-His 6 -DY750 introduced shRNA into cells, and was able to transfer shRNA to the cytoplasm in a light irradiation-specific manner, and to induce RNAi (expression of shRNA function).

7) ヒトの腫瘍細胞における近赤外光RNAi誘導
4)と同様、750 nm付近に吸収をもつ蛍光色素DY750を付加したTatU1A-CL1 (TatU1A-CL1-DY750) を用いて、近赤外光照射によるRNAi誘導の検討を行った。shRNAとTatU1A-CL1-DY750をそれぞれ最終濃度200 nMおよび2 mMとなるように混合し、遮光条件下で37 ℃で10分間インキュベーションすることにより、TatU1A-CL1-DY750/shRNA複合体を調製した。ここではヒト腫瘍細胞である悪性中皮腫細胞211H を用いた。EGFPを安定発現する211H 細胞を約70%コンフルエントになるまで培養し、上記TatU1A-CL1-DY750/shRNA 混合液を添加し、さらに37 ℃、2時間CO2インキュベーターで培養した。DY750の励起波長で光照射し、37 ℃で20時間CO2インキュベーターで培養した後、細胞を回収し、フローサイトメトリー法によりRNAi効果を検討した。その結果、光照射した細胞集団のEGFP平均蛍光強度は、光照射しなかったものと比較し、顕著に減少した (図8)。すなわち、光照射を行った細胞において、EGFPに対するRNAi効果が認められた。
7) Infrared RNAi induction in human tumor cells
As in 4), RNAi induction by near-infrared light irradiation was investigated using TatU1A-CL1 (TatU1A-CL1-DY750) to which a fluorescent dye DY750 having absorption near 750 nm was added. TatU1A-CL1-DY750 / shRNA complex was prepared by mixing shRNA and TatU1A-CL1-DY750 at final concentrations of 200 nM and 2 mM, respectively, and incubating at 37 ° C. for 10 minutes under light-shielded conditions. Here, malignant mesothelioma cell 211H, which is a human tumor cell, was used. 211H cells stably expressing EGFP were cultured until they became about 70% confluent, the above TatU1A-CL1-DY750 / shRNA mixed solution was added, and further cultured at 37 ° C. for 2 hours in a CO 2 incubator. After irradiating light at the excitation wavelength of DY750 and culturing in a CO 2 incubator at 37 ° C. for 20 hours, the cells were collected, and the RNAi effect was examined by flow cytometry. As a result, the EGFP average fluorescence intensity of the cell group irradiated with light was remarkably reduced as compared with those not irradiated with light (FIG. 8). That is, an RNAi effect on EGFP was observed in cells irradiated with light.

配列番号4:CTP512
配列番号5:TatU1A
配列番号6:TatU1A-CL1
配列番号7:TatU1A-His6
Sequence number 4: CTP512
Sequence number 5: TatU1A
Sequence number 6: TatU1A-CL1
Sequence number 7: TatU1A-His6

Claims (10)

細胞膜透過性ペプチド(CPP)およびRNA結合性蛋白質(RBP)を含むキャリア蛋白質と、該キャリア蛋白質のN末端側またはC末端側に連結した、700nm〜1000nmの波長を有する光で機能する光増感剤(PST)とからなる構造を有するキャリア分子であって、
前記光増感剤(PST)は、下記構造式で表される化合物(DY750:商標)、図3に示す蛍光スペクトルを有する化合物(Alexa Fluor750:登録商標)または図4に示す吸収スペクトルを有する化合物(IRDye800CW:登録商標)であることを特徴とするキャリア分子。
A carrier protein containing a cell membrane permeable peptide (CPP) and an RNA binding protein (RBP), and a photosensitization functioning with light having a wavelength of 700 nm to 1000 nm linked to the N-terminal side or C-terminal side of the carrier protein. A carrier molecule having a structure consisting of an agent (PST),
The photosensitizer (PST) is a compound represented by the following structural formula (DY750 : trademark ), a compound having a fluorescence spectrum shown in FIG. 3 (Alexa Fluor750 : registered trademark ), or a compound having an absorption spectrum shown in FIG. Carrier molecule characterized by being (IRDye800CW : registered trademark ).
前記キャリア蛋白質が、さらにプロテアソーム分解シグナル配列タグ(PDS)および/またはHis−richタグ(HR)を含む、請求項1に記載のキャリア分子。   The carrier molecule according to claim 1, wherein the carrier protein further comprises a proteasome degradation signal sequence tag (PDS) and / or a His-rich tag (HR). 前記キャリア蛋白質において、N末端側から、細胞膜透過性ペプチド(CPP)、RNA結合性蛋白質(RBP)、プロテアソーム分解シグナル配列タグ(PDS)および/またはHis−richタグ(HR)がこの順序で連結されており、かつ当該キャリア蛋白質のC末端側に前記光増感剤(PST)が連結されている、請求項1またはに記載のキャリア分子。 In the carrier protein, a cell membrane permeable peptide (CPP), an RNA binding protein (RBP), a proteasome degradation signal sequence tag (PDS) and / or a His-rich tag (HR) are linked in this order from the N-terminal side. and it has, and the photosensitizer to the C-terminal side of the carrier protein (PST) is connected, the carrier molecule of claim 1 or 2. 前記CPPが、配列番号1で示されるアミノ酸配列を有する、ヒト免疫不全ウイルス由来Tat(trans−activator of transcription)蛋白質中の12アミノ酸からなるペプチドである、請求項1〜3のいずれかに記載のキャリア分子。
YGRKKRRQRRRG 配列番号1
The CPP has the amino acid sequence shown in SEQ ID NO: 1 is a peptide consisting of 12 amino acids of human immunodeficiency virus-derived Tat (trans-activator of transcription) protein in, according to any of claims 1 to 3 Carrier molecule.
YGRKKRRQRRRG SEQ ID NO: 1
前記RBPが、配列番号4で示されるアミノ酸配列を有する、ヒト由来U1A(U1 small nuclear ribonucleoprotein A)のRNA結合ドメインである、請求項1〜4のいずれかに記載のキャリア分子。
AVPETRPNHTIYINNLNEKIKKDELKKSLYAIFSQFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMK 配列番号4
The carrier molecule according to any one of claims 1 to 4 , wherein the RBP is an RNA binding domain of human-derived U1A (U1 small nuclear riboprotein A) having the amino acid sequence represented by SEQ ID NO: 4.
AVPETRPNHTIYINNLNEKIKKDELKYKSLYAIFSQFGQILDILVVSLSLKMRGQAFVIFKEVSSATNANLRSQGFPFYDKPMRIQYAKTDSDIIAKMK SEQ ID NO: 4
請求項1〜5のいずれかに記載のキャリア分子と、該RNAキャリア分子中のRBPに結合したRNAとからなる構造を有するキャリア分子/RNA複合体。 A carrier molecule / RNA complex having a structure comprising the carrier molecule according to any one of claims 1 to 5 and RNA bound to RBP in the RNA carrier molecule. 前記RNAが、short hairpin RNA(shRNA)、small interfering RNA(siRNA)またはmicroRNA(miRNA)である、請求項に記載のキャリア分子/RNA複合体。 The carrier molecule / RNA complex according to claim 6 , wherein the RNA is short hairpin RNA (shRNA), small interfering RNA (siRNA) or microRNA (miRNA). 請求項またはに記載のキャリア分子/RNA複合体を含む遺伝子治療薬。 A gene therapy drug comprising the carrier molecule / RNA complex according to claim 6 or 7 . がんまたはウイルス疾患を対象とする、請求項に記載の遺伝子治療薬。 The gene therapy drug according to claim 8 , which is intended for cancer or viral diseases. 生体外において、請求項またはに記載のキャリア分子/RNA複合体を細胞と接触させて当該細胞内のエンドソームに局在化させる工程、および該キャリア分子/RNA複合体中のPSTが機能する近赤外線領域の波長を有する光を照射して該キャリア分子/RNA複合体を細胞質中に拡散させる工程を含むことを特徴とする、細胞質内へのRNAの送達方法。 A step of bringing the carrier molecule / RNA complex according to claim 6 or 7 into contact with a cell to localize it in an endosome in the cell in vitro, and PST in the carrier molecule / RNA complex functions A method for delivering RNA into the cytoplasm comprising the step of irradiating light having a wavelength in the near infrared region to diffuse the carrier molecule / RNA complex into the cytoplasm.
JP2013505776A 2011-03-23 2011-11-24 Novel carrier molecules and methods for delivering RNA into the cytoplasm by near infrared light Expired - Fee Related JP5900895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013505776A JP5900895B2 (en) 2011-03-23 2011-11-24 Novel carrier molecules and methods for delivering RNA into the cytoplasm by near infrared light

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011063953 2011-03-23
JP2011063953 2011-03-23
PCT/JP2011/077075 WO2012127739A1 (en) 2011-03-23 2011-11-24 Novel carrier molecule and method both for delivering rna into cytoplasm using near-infrared light
JP2013505776A JP5900895B2 (en) 2011-03-23 2011-11-24 Novel carrier molecules and methods for delivering RNA into the cytoplasm by near infrared light

Publications (2)

Publication Number Publication Date
JPWO2012127739A1 JPWO2012127739A1 (en) 2014-07-24
JP5900895B2 true JP5900895B2 (en) 2016-04-06

Family

ID=46878927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013505776A Expired - Fee Related JP5900895B2 (en) 2011-03-23 2011-11-24 Novel carrier molecules and methods for delivering RNA into the cytoplasm by near infrared light

Country Status (2)

Country Link
JP (1) JP5900895B2 (en)
WO (1) WO2012127739A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6586103B2 (en) * 2014-11-08 2019-10-02 国立大学法人 岡山大学 Molecular assembly containing modified RNA and RNA delivery system using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280261A (en) * 2005-03-31 2006-10-19 Toyobo Co Ltd New molecule for transferring nucleic acid into cell, nucleic acid to be transferred to cell and new method for transferring nucleic acid into cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280261A (en) * 2005-03-31 2006-10-19 Toyobo Co Ltd New molecule for transferring nucleic acid into cell, nucleic acid to be transferred to cell and new method for transferring nucleic acid into cell

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
JPN6012002952; J. Control. Release vol.137, no.3, 2009, pp.241-245 *
JPN6012002953; Nucleic Acids Symp. Ser. no.51, 2007, pp.127-128 *
JPN6012002954; Bioconjugate Chem. vol.19, no.5, 2008, pp.1017-1024 *
JPN6012002955; 生化学 vol.81, no.2, 2009, pp.110-112 *
JPN6012002956; 高分子 vol.58, no.3, 2009, pp.140-141 *
JPN6012002957; Adv. Drug Deliv. Rev. vol.61, no.9, 2009, pp.704-709 *
JPN6012002958; Methods Mol. Biol. vol.623, 2010, pp.271-281 *
JPN6012002959; J. Am. Chem. Soc. vol.126, no.47, 2004, pp.15376-15377 *

Also Published As

Publication number Publication date
WO2012127739A1 (en) 2012-09-27
JPWO2012127739A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
US10352945B2 (en) Optogenetic probes for measuring membrane potential
Huang et al. Delivery of nucleic acids and nanomaterials by cell‐penetrating peptides: Opportunities and challenges
Geng et al. Emerging landscape of cell-penetrating peptide-mediated nucleic acid delivery and their utility in imaging, gene-editing, and RNA-sequencing
Endoh et al. Cellular siRNA delivery mediated by a cell-permeant RNA-binding protein and photoinduced RNA interference
EP3158338B1 (en) Optogenetic probes for measuring membrane potential
Gillmeister et al. Cellular trafficking and photochemical internalization of cell penetrating peptide linked cargo proteins: a dual fluorescent labeling study
AU2014318839B2 (en) Compositions and methods for the delivery of molecules into live cells
Orellana et al. Enhancing microRNA activity through increased endosomal release mediated by nigericin
FitzGerald et al. A molecular sensor to quantify the localization of proteins, DNA and nanoparticles in cells
AU2014318839A1 (en) Compositions and methods for the delivery of molecules into live cells
Endoh et al. Spatial regulation of specific gene expression through photoactivation of RNAi
Wang et al. Imaging mRNA expression levels in living cells with PNA· DNA binary FRET probes delivered by cationic shell-crosslinked nanoparticles
Yoo et al. Evaluation of multimeric siRNA conjugates for efficient protamine-based delivery into breast cancer cells
JP5900895B2 (en) Novel carrier molecules and methods for delivering RNA into the cytoplasm by near infrared light
JP6586103B2 (en) Molecular assembly containing modified RNA and RNA delivery system using the same
Yarani et al. Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity
JP5405489B2 (en) Construction of protein-responsive shRNA / RNAi control system using RNP motif
US20180078612A1 (en) Intracellular delivery system and methods
WO2006093083A1 (en) Crosslinking agent, crosslinking method, method of controlling gene expression and method of examining gene function
Miyoshi Novel methods for detection of small RNAs and photo-dependent intercellular delivery of biomolecules
FitzGerald et al. SNAPSwitch: A Molecular Sensor to Quantify the Localization of Proteins, DNA and Nanoparticles in Cells
JP5661148B2 (en) Bio-optical imaging probe
Zhang Folate Receptor-targeted delivery of small interfering RNA to cancer cells
CN111909984A (en) Univalent quantum dot nano beacon, nucleic acid detection reagent and application thereof
Shen et al. Preliminary study on the inhibition of nuclear internalization of Tat peptides by conjugation with a receptor-specific peptide and fluorescent dyes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160301

R150 Certificate of patent or registration of utility model

Ref document number: 5900895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees