JP5900871B2 - Method for producing amylase using mixed culture system of Aspergillus and Rhizopus - Google Patents
Method for producing amylase using mixed culture system of Aspergillus and Rhizopus Download PDFInfo
- Publication number
- JP5900871B2 JP5900871B2 JP2010293378A JP2010293378A JP5900871B2 JP 5900871 B2 JP5900871 B2 JP 5900871B2 JP 2010293378 A JP2010293378 A JP 2010293378A JP 2010293378 A JP2010293378 A JP 2010293378A JP 5900871 B2 JP5900871 B2 JP 5900871B2
- Authority
- JP
- Japan
- Prior art keywords
- rhizopus
- aspergillus
- amylase
- culture
- glucoamylase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Enzymes And Modification Thereof (AREA)
Description
本発明は、アスペルギルス(Aspergillus)属菌と、リゾープス(Rhizopus)属菌とを混合培養系を用いて、グルコアミラーゼ、場合によってはグルコアミラーゼとα−アミラーゼを製造する方法に関する。 The present invention relates to a method for producing glucoamylase, and in some cases, glucoamylase and α-amylase, using a mixed culture system of Aspergillus and Rhizopus.
ブドウ糖の糖化酵素として工業的に広く用いられているグルコアミラーゼは、従来リゾープス属菌やアスペルギルス属菌等を用いて、純粋培養(いずれか一方の属菌を使用する単一培養)により、小麦ふすまや米糠等の固体培地を用いて生産している。また、近年は、培養コントロールが容易なことと、再現性の高さから、炭素源、窒素源及び塩類等の微生物の生育に必要な物質を含む水溶液(培養液)で培養する液体培養が注目され、液化デンプンやマルトース等の低分子糖等を培養基質として、リゾープス属菌又はアスペルギルス属菌などによる純粋培養の研究が進んでいる。 Glucoamylase, which is widely used industrially as a saccharifying enzyme for glucose, is conventionally produced by pure culture (single culture using one of the genera) using wheat bran using a genus Rhizopus or Aspergillus. It is produced using a solid medium such as rice bran. In recent years, liquid culture has been focused on culturing with an aqueous solution (culture solution) containing substances necessary for the growth of microorganisms such as carbon sources, nitrogen sources and salts, because of easy culture control and high reproducibility. In addition, studies on pure culture using Rhizopus sp. Or Aspergillus sp. Using low molecular sugars such as liquefied starch and maltose as a culture substrate have been advanced.
具体的には、図9に示すように、原料デンプン10を破砕処理11した後、煮沸処理12を行ってデンプンを変性し、耐熱性α−アミラーゼ酵素剤を添加してデンプンを低分子糖に分解する液化工程13を経て、液化デンプンにリゾープス属菌等からなる糸状菌を接種培養してグルコアミラーゼを生産していた。
また、特許文献1には、酒類の製造にあって、アスペルギルス属菌を用いて、グルコアミラーゼ活性を高めること、麹菌の液体培養によって発酵原料によるカタボライトリプレッション(異化産物抑制)を制御し、麹菌の液体培養によって発現する糖質分解酵素の生産性を調整することが記載されている。
Specifically, as shown in FIG. 9, after the
そして、特許文献2(糸状菌類による厨芥処理方法)には、アスペルギルス・ニガー、アスペルギルス・オリーゼ、アスペルギルス・ソーヤ、アスペルギルス・サイトイ、アスペルギルス・アワモリを単独又は混合して、又はリゾープス・ニウベス、リゾープス・デレマーを単独又は混合して、厨芥を分解させることが提案されている。 Patent Document 2 (Acupuncture Treatment Method Using Filamentous Fungi) includes Aspergillus niger, Aspergillus oryzae, Aspergillus soya, Aspergillus cytoii, Aspergillus awamori alone or in combination, or Rhizopus niubes, Rhizopus deremar It has been proposed to decompose soot alone or in combination.
しかしながら、前記した従来方法では、これらの液体培養によるグルコアミラーゼ活性は高いものの、煮沸処理時に熱エネルギーが必要となり、培養基質として高価な低分子糖や液化デンプン調製時に酵素製剤を使うことから全体として製造コストが高騰するという問題があり、生デンプンあるいは液化デンプンなどから直接グルコアミラーゼを高生産する技術が求められている。
特許文献1記載の技術でも同様、80℃前後の高温に加熱した原料に、耐熱性酵素剤が使用されており、加熱と耐熱性酵素剤にコストがかかるという問題が残っている。
特許文献2には、糸状菌として、アスペルギルス属菌及びリゾープス属菌を使用し、厨芥物を分解する酵素を製造することの記載はあるが、目的が厨芥物の分解であり、更には、特許文献2記載の技術は、アスペルギルス属菌及びリゾープス属菌を混ぜて混合培養するものではない。
However, in the above-described conventional methods, although the glucoamylase activity by these liquid cultures is high, heat energy is required during boiling treatment, and an enzyme preparation is used as a culture substrate for the preparation of expensive low molecular sugars or liquefied starches as a whole. There is a problem that the manufacturing cost increases, and there is a need for a technique for directly producing glucoamylase directly from raw starch or liquefied starch.
Similarly, in the technique described in
本発明は、かかる事情に鑑みてなされたもので、アスペルギルス属菌とリゾープス属菌を適当比率で混合培養し、直接、生デンプン又は加工されたデンプンからグルコアミラーゼを含むアミラーゼを効率よく短時間で生産する方法を提供することを目的とする。 The present invention has been made in view of such circumstances. Aspergillus and Rhizopus are mixed and cultured at an appropriate ratio, and amylase including glucoamylase is directly and efficiently produced from raw starch or processed starch in a short time. The purpose is to provide a production method.
前記目的に沿う本発明に係るアスペルギルス属菌及びリゾープス属菌の混合培養系を用いたアミラーゼの生産方法は、原料デンプンを含む培地に、リゾープス属菌とアスペルギルス・オリーゼを加えて混合培養し、α−アミラーゼとグルコアミラーゼを生成するアミラーゼの生産方法であって、
前記リゾープス属菌と前記アスペルギルス・オリーゼとの割合を1対44〜1対94の範囲に制御して接種し、その培養時間を48〜72時間の範囲に制御して混合培養することで、前記α−アミラーゼの活性を前記培地に前記アスペルギルス・オリーゼを加えた純粋培養に比較して抑えて、前記グルコアミラーゼの活性を前記培地に前記リゾープス属菌を加えた純粋培養に比較して高めたアミラーゼを生産する。
The method for producing amylase using the mixed culture system of Aspergillus and Rhizopus according to the present invention, which meets the above-mentioned object, comprises mixing and culturing Rhizopus and Aspergillus oryzae in a medium containing raw starch , α A method for producing amylase producing amylase and glucoamylase, comprising:
The Rhizopus genus and inoculated ratio is controlled in the range of 1-to-44 to 1
ここで、原料デンプンは、穀類(トウモロコシを含む)、豆類、芋類、その他植物でデンプンを含むものであれば適用可能であるし、前記培地と生米粉を使用した液体培地とすることもできる。
また、アスペルギルス属菌としては、1)ニホンコウジカビ(A.oryzae)、ショウユコウジカビ(A.sojae)等で代表される黄麹菌、2)カワチコウジカビ(A.kawachii)で代表される白麹菌、3)アワモリコウジカビ(A.awamori)、アスペルギルス・ニガー(A.niger)で代表される黒麹菌等がある。また、リゾープス属菌としては、例えば、リゾープス・ニベウス(R.niveus)、リゾープス・コーニイ(R.cohnii)等がある。
Here, the raw material starch is applicable as long as it contains starch in cereals (including corn), beans, potatoes, and other plants, and can also be a liquid medium using the medium and raw rice flour. .
Examples of Aspergillus spp. 1) Aspergillus oryzae represented by A. oryzae, A. sojae, etc. 2) Aspergillus oryzae represented by A.kawachii, 3 ) Aspergillus niger (A. niger), and Aspergillus niger (A. niger). Examples of the genus Rhizopus include R. nieveus and R. cohni.
そして、本発明に係るアスペルギルス属菌及びリゾープス属菌の混合培養系を用いたアミラーゼの生産方法において、前記リゾープス属菌はリゾープス・コーニイを用いるのがよい。 In the amylase production method using the mixed culture system of Aspergillus and Rhizopus according to the present invention, Rhizopus cornii is preferably used as the Rhizopus genus.
本発明に係るアスペルギルス属菌及びリゾープス属菌の混合培養系を用いたアミラーゼの生産方法では、アスペルギルス属菌がα−アミラーゼを生産して原料デンプンを分解し、低分子糖(例えば、デキストリン、オリゴ糖等)とすると共に、リゾープス属菌が低分子糖を食べてグルコアミラーゼを生産するので、従来の原料デンプンの煮沸処理及び液化処理を必要とすることなく、原料デンプンから直接グルコアミラーゼ、場合によってはα−アミラーゼも同時に生産できることになった。 In the method for producing amylase using the mixed culture system of Aspergillus and Rhizopus according to the present invention, Aspergillus produces α-amylase to decompose raw starch, and low molecular sugars (for example, dextrin, oligos) Rhizopus bacteria eat saccharides and produce glucoamylase from the raw starch without the need for conventional boiling and liquefaction treatment of the raw starch. Was able to produce α-amylase at the same time.
また、アスペルギルス属菌及びリゾープス属菌の混合培養の比と混合培養の時間を制御することで、製造できるグルコアミラーゼとα−アミラーゼの量を制御できる。従って、用途に応じてグルコアミラーゼとα−アミラーゼとの量を調製した酵素を製造できる。 Moreover, the quantity of the glucoamylase and alpha-amylase which can be manufactured can be controlled by controlling the ratio of mixed culture of Aspergillus genus bacteria and Rhizopus genus bacteria, and the time of mixed culture. Therefore, the enzyme which prepared the quantity of glucoamylase and alpha-amylase according to the use can be manufactured.
続いて、本発明の一実施の形態に係るアスペルギルス属菌及びリゾープス属菌の混合培養系を用いたアミラーゼの生産方法について、その作用効果を確認した実施例と共に説明する。
図1、図2には、リゾープス属菌の一例であるリゾープス・コーニイ(R.cohnii P5)、アスペルギルス属菌の一例であるアスペルギルス・オリーゼ(A.oryzae IFO5238)、及びこれらを1対44で同時接種して混合培養した場合のα−アミラーゼと、グルコアミラーゼの活性の推移を示すものである。
Subsequently, a method for producing amylase using a mixed culture system of Aspergillus and Rhizopus according to an embodiment of the present invention will be described together with Examples confirming the effects thereof.
1 and 2, R. copii (R. cohni P5), which is an example of the genus Rhizopus, A. oryzae IFO 5238, which is an example of the genus Aspergillus, The transition of the activity of α-amylase and glucoamylase when inoculated and mixed culture is shown.
これらの培地(以下、「培地A」という)の組成は、水100mLに対して、生米粉(生デンプン、原料デンプンの一例):1g、CH3COONH4:0.43g、K2HPO4:0.1g、KCl:0.1g、MgSO4・7H2O:0.05g、FeSO4・7H2O:0.001g、ZnSO4・7H2O:0.0003g、CaCl2:0.021g、クエン酸:0.33gを含むものである。なお、本発明はこの培地に限定されるものではなく、糸状菌の培養に一般的に用いられる窒素源、無機塩類を含む他の培地であってもよい。 The composition of these media (hereinafter referred to as “medium A”) is as follows: raw rice flour (raw starch, an example of raw starch): 1 g, CH 3 COONH 4 : 0.43 g, K 2 HPO 4 : 0.1 g, KCl: 0.1 g, MgSO 4 .7H 2 O: 0.05 g, FeSO 4 .7H 2 O: 0.001 g, ZnSO 4 .7H 2 O: 0.0003 g, CaCl 2 : 0.021 g, Citric acid: Contains 0.33 g. In addition, this invention is not limited to this culture medium, The other culture medium containing the nitrogen source generally used for culture | cultivation of a filamentous fungus and inorganic salts may be sufficient.
リゾープス・コーニイとアスペルギルス・オリーゼの混合培養にあっては、両者の菌密度(又は胞子密度)を合わせる必要があるので、リゾープス・コーニイとアスペルギルス・オリーゼをPDA(Potato dextrose agar)スラントで7日間30℃でそれぞれ培養し発生する胞子の数を合わせて、10mLの滅菌水を添加し、胞子(即ち、菌株)数が同一となった胞子懸濁液を作成した。胞子懸濁液の全量を2mLとし、リゾープス・コーニイとアスペルギルス・オリーゼの(胞子の状態で)菌株割合が1対44となるように、培地に接種した。なお、培養に当たっては振とう処理により酸素を供給しながら行った。
In the mixed culture of Rhizopus cornii and Aspergillus oryzae, it is necessary to match the bacterial density (or spore density) of the two, so Rhizopus cornii and Aspergillus oryzae are treated with PDA (Potato Dextrose agar) slant for 7
図1に示すように、α−アミラーゼ活性は、アスペルギルス・オリーゼを単独で使用した場合が一番大きく、リゾープス・コーニイを用いた場合が最小であった。この理由は、アスペルギルス・オリーゼは、栄養源として利用できる大きさの低分子糖類を得るために生デンプンをランダムに分断するα−アミラーゼを造る、すなわち、生デンプンをランダムに分断して低分子糖類を作り、その過程でα−アミラーゼを造るが、リゾープス・コーニイは生デンプンをグルコース単位で分解しようとするからであると解される。 As shown in FIG. 1, the α-amylase activity was greatest when Aspergillus oryzae was used alone, and was minimal when Aspergillus cornii was used. The reason for this is that Aspergillus oryzae produces α-amylase that randomly divides raw starch to obtain low-molecular saccharides of a size that can be used as a nutrient source. In the process, α-amylase is produced, and it is understood that Rhizopus cornii tries to break down raw starch into glucose units.
一方、リゾープス・コーニイとアスペルギルス・オリーゼが1対44の混合培養では、アスペルギルス・オリーゼ単独培養の場合よりα−アミラーゼの活性が減少する。これはリゾープス・コーニイの存在によって、アスペルギルス・オリーゼのα−アミラーゼ生産が抑制される。また、この抑制度合いは、リゾープス・コーニイとアスペルギルス・オリーゼの混合比によって異なるので、この混合比を制御することによって、α−アミラーゼの活性を制御できることになる。 On the other hand, in the mixed culture in which Rhizopus cornii and Aspergillus oryzae are 1:44, the activity of α-amylase is reduced as compared with the case of Aspergillus oryzae single culture. This is because Aspergillus oryzae α-amylase production is suppressed by the presence of Rhizopus cornii. In addition, the degree of inhibition differs depending on the mixing ratio of Rhizopus cornii and Aspergillus oryzae. Therefore, by controlling this mixing ratio, the activity of α-amylase can be controlled.
次に、図2には、リゾープス・コーニイと、アスペルギルス・オリーゼと、これらを1対44で混合培養した菌を、前記した培地に投入し、それぞれのグルコアミラーゼ活性を示す。図2に示すように、アスペルギルス・オリーゼでは殆どグルコアミラーゼの活性は見られないが、両者混合培養では、短時間のうちにグルコアミラーゼの活性が増加し、リゾープス・コーニイの場合、時間をかけてグルコアミラーゼの活性が増加する。 Next, in FIG. 2, Rhizopus cornii, Aspergillus oryzae, and bacteria obtained by mixing these in a ratio of 44 to 44 are added to the medium described above, and the respective glucoamylase activities are shown. As shown in FIG. 2, almost no glucoamylase activity is observed in Aspergillus oryzae, but in both mixed cultures, the activity of glucoamylase increases within a short time, and in the case of Rhizopus cornii, it takes time. The activity of glucoamylase is increased.
図2から、リゾープス・コーニイとアスペルギルス・オリーゼとを混合培養することによって、生デンプンからグルコアミラーゼ活性を短時間に高めることができる。一方、アスペルギルス・オリーゼを用いることで、α−アミラーゼが生産されるので、両者を混合培養すると共に時間制御を行って、任意の割合のα−アミラーゼとグルコアミラーゼを含む酵素剤を造ることができ、酒類の醸造に応用することによって、新規な酒類を製造できる。 From FIG. 2, glucoamylase activity can be increased from raw starch in a short time by co-culturing Rhizopus cornii and Aspergillus oryzae. On the other hand, by using Aspergillus oryzae, α-amylase is produced. Therefore, it is possible to produce an enzyme agent containing α-amylase and glucoamylase in any proportion by mixing and culturing the both and controlling the time. By applying it to brewing alcoholic beverages, new alcoholic beverages can be produced.
続いて、本発明の一実施の形態に係るアスペルギルス属菌及びリゾープス属菌の混合培養系を用いたアミラーゼの生産方法の作用、効果を確認するために行った実施例について説明する。
図3には、各種の糸状菌の生デンプン分解活性との関係について調べた結果を示す。この実施例においては、1)2%米粉懸濁液(pH4.5)に、各種菌を含む酵素液を添加し、40℃で60分保持した。そして、各処理液を遠心分離により得た上澄み溶液中の糖量をフェノール硫酸法で測定した。なお、生デンプン分解活性(Raw Starch digestivity)は、(上澄み溶液中の糖量/初発糖量)×100(%)で表される。
Subsequently, Examples carried out for confirming the action and effect of the amylase production method using the mixed culture system of Aspergillus and Rhizopus according to one embodiment of the present invention will be described.
In FIG. 3, the result of having investigated about the relationship with the raw starch decomposition | disassembly activity of various filamentous fungi is shown. In this example, 1) an enzyme solution containing various bacteria was added to a 2% rice flour suspension (pH 4.5) and held at 40 ° C. for 60 minutes. And the amount of sugars in the supernatant solution obtained by centrifuging each treatment solution was measured by the phenol sulfuric acid method. The raw starch degrading activity is represented by (amount of sugar in the supernatant solution / amount of starting sugar) × 100 (%).
図3から、生デンプン分解活性に大きく寄与するのは、アスペルギルス・オリーゼIFO5238である。なお、2)〜8)の菌は全てアスペルギルス属菌であり、リゾープス・コーニイP5はリゾープス属菌を代表するグルコアミラーゼ生産菌である。 From FIG. 3, it is Aspergillus oryzae IFO5238 that greatly contributes to the raw starch degrading activity. In addition, all the bacteria of 2) -8) are Aspergillus genus bacteria, and Rhizopus cornii P5 is a glucoamylase-producing bacterium representative of Rhizopus bacterium.
図4には、以上の8種の菌を用いて、生デンプンからの生成糖量とグルコースとの割合を調べた結果を示す。グルコース量はGOD法(過酸化水素電極法)によって測定した。測定にあっては、酵素を失活させた同量の培養液中の糖量を引いて算出した。
図4(A)はサンプル中の総糖量を示し、(B)は糖中のグルコース量とそれ以外の低分子糖量との比を示す。これによると、アスペルギルス・オリーゼは生デンプンの分解能が高いが、グルコースが少ないので、グルコアミラーゼ活性が低い、即ち、α−アミラーゼ活性が高くて、生デンプンからグルコース以外の低分子糖を高生産することが判る。
FIG. 4 shows the results of examining the ratio of the amount of sugar produced from raw starch and glucose using the above eight types of bacteria. The amount of glucose was measured by the GOD method (hydrogen peroxide electrode method). In the measurement, the amount of sugar in the same amount of the culture solution in which the enzyme was inactivated was subtracted.
FIG. 4A shows the total amount of sugar in the sample, and FIG. 4B shows the ratio of the amount of glucose in the sugar to the amount of other low-molecular sugars. According to this, Aspergillus oryzae has high resolution of raw starch but low glucose, so glucoamylase activity is low, that is, α-amylase activity is high, and low molecular sugar other than glucose is produced from raw starch in high yield. I understand that.
一方、リゾープス属菌は低分子糖類を基質として、グルコアミラーゼ生産を活性化する作用があるので、リゾープス属菌とアスペルギルス属菌の両方を共同培養した生デンプンの性状を調査した。なお、前記した「培地A」を用いて、リゾープス・コーニイとアスペルギルス・オリーゼを用いた共同培養を行った。図5(A)〜(E)は、リゾープス・コーニイ対アスペルギルス・オリーゼの混合比をa)1:44、b)1:94、c)1:162、d)1:251、e)1:377とした場合で、図5(F)は、これらを純粋培養した場合の、菌体量(DMW)の時間的変化を測定した結果を示す。この実験から、リゾープス・コーニイとアスペルギルス・オリーゼは、共同培養した場合でも総菌体量が維持されており、共存できることが判る。なお、48時間を経過すると菌体量が下がるのは、基質となる生米粉を消費したものと考えられる。 On the other hand, Rhizopus sp. Has the effect of activating glucoamylase production using low-molecular-weight saccharide as a substrate. Therefore, the properties of raw starch co-cultured with both Rhizopus sp. And Aspergillus sp. Were investigated. In addition, the above-mentioned “medium A” was used for co-culture using Rhizopus cornii and Aspergillus oryzae. FIGS. 5 (A) to (E) show the mixing ratio of Rhizopus cornii to Aspergillus oryzae a) 1:44, b) 1:94, c) 1: 162, d) 1: 251, e) 1: FIG. 5 (F) shows the result of measuring the temporal change in the amount of cells (DMW) when these were purely cultured. From this experiment, it can be seen that Rhizopus cornii and Aspergillus oryzae can coexist even when co-cultured, maintaining the total cell mass. In addition, it is thought that the raw rice flour used as a substrate was consumed that the amount of microbial cells fell when 48 hours passed.
図6(A)〜(E)はリゾープス・コーニイとアスペルギルス・オリーゼの混合比を変えて培養した場合、図6(F)は純粋培養した場合の培養液のpHの推移を調べたものであり、いずれも、酸性から中性又はアルカリ性に変わるという同じ推移を示している。
図7(A)〜(E)はリゾープス・コーニイとアスペルギルス・オリーゼの混合比を変えて培養した場合、図7(F)は純粋培養した場合の、α−アミラーゼ活性の推移を調べたものである。混合培養にすることによって、アスペルギルス・オリーゼの純粋培養の場合よりも、α−アミラーゼの活性が下がっている。これによって、リゾープス・コーニイを適当量入れることによって、α−アミラーゼの活性を抑えることができる。
6 (A) to 6 (E) show changes in the pH of the culture solution in the case of culturing while changing the mixing ratio of Rhizopus cornii and Aspergillus oryzae, and FIG. 6 (F) shows the change in pH of the culture solution in the case of pure culture. Both show the same transition from acidic to neutral or alkaline.
7 (A) to (E) show changes in α-amylase activity when cultured with varying mixing ratio of Rhizopus cornii and Aspergillus oryzae, and FIG. 7 (F) shows pure α-amylase activity. is there. By using mixed culture, the activity of α-amylase is lower than in the case of pure culture of Aspergillus oryzae. Thereby, the activity of α-amylase can be suppressed by adding an appropriate amount of Rhizopus cornii.
図8(A)〜(E)はリゾープス・コーニイとアスペルギルス・オリーゼの混合比を変えて培養した場合、図8(F)は純粋培養した場合の、グルコアミラーゼ活性の推移を調べたものである。
このグラフからも明らかなように、リゾープス・コーニイの純粋培養に比較して、リゾープス・コーニイとアスペルギルス・オリーゼの混合培養の方が48時間経過後の又は72時間経過後のグルコアミラーゼ活性が高いことが判る。
8A to 8E show changes in glucoamylase activity in the case of culturing by changing the mixing ratio of Rhizopus cornii and Aspergillus oryzae, and FIG. 8F in the case of pure culture. .
As is clear from this graph, compared to the pure culture of Rhizopus cornii, the mixed culture of Rhizopus cornii and Aspergillus oryzae has higher glucoamylase activity after 48 hours or after 72 hours. I understand.
なお、リゾープス・コーニイとアスペルギルス・オリーゼの混合比率を変えて更なる実験をした結果、リゾープス・コーニイとアスペルギルス・オリーゼの割合は胞子量比で1対377〜1対1(1対251〜1対1がより好ましく、最適には1対44となる)の範囲において短い培養時間(例えば、48時間又は72時間)でグルコアミラーゼが生産可能となる。なお、アスペルギルス・オリーゼのみでは、殆どグルコアミラーゼ活性はないことになる。
従って、生デンプンを用いてグルコアミラーゼを造る場合、リゾープス属菌とアスペルギルス属菌の混合培養をすれば、短時間でグルコアミラーゼを造ることができる。
In addition, as a result of further experiments by changing the mixing ratio of Rhizopus cornii and Aspergillus oryzae, the ratio of Rhizopus cornii and Aspergillus oryzae was 1 to 377 to 1 to 1 (1 to 251 to 1 to 1 in spore amount ratio). Glucoamylase can be produced in a short culture time (for example, 48 hours or 72 hours) in the range of 1 is more preferable and optimally 1:44. Only Aspergillus oryzae has almost no glucoamylase activity.
Therefore, when producing glucoamylase using raw starch, glucoamylase can be produced in a short time if mixed culture of Rhizopus sp. And Aspergillus sp.
また、前記実施の形態においては、原料デンプンとして生デンプンを用いたが、当然のことながら、加工デンプンであっても本発明は適用される。 Moreover, in the said embodiment, although raw starch was used as raw material starch, naturally this invention is applied even if it is modified starch.
10:原料デンプン、11:破砕処理、12:煮沸処理、13:液化工程 10: raw starch, 11: crushing treatment, 12: boiling treatment, 13: liquefaction process
Claims (3)
前記リゾープス属菌と前記アスペルギルス・オリーゼとの割合を1対44〜1対94の範囲に制御して接種し、その培養時間を48〜72時間の範囲に制御して混合培養することで、前記α−アミラーゼの活性を前記培地に前記アスペルギルス・オリーゼを加えた純粋培養に比較して抑えて、前記グルコアミラーゼの活性を前記培地に前記リゾープス属菌を加えた純粋培養に比較して高めたアミラーゼを生産することを特徴とするアスペルギルス属菌及びリゾープス属菌の混合培養系を用いたアミラーゼの生産方法。 A method for producing amylase , comprising adding Rhizopus sp. And Aspergillus oryzae to a medium containing raw material starch and mixed culture, and producing α-amylase and glucoamylase,
The Rhizopus genus and inoculated ratio is controlled in the range of 1-to-44 to 1 pair 94 of the Aspergillus oryzae, the culture time by mixed culture was controlled in the range of 48-72 hours, the of α- amylase activity is suppressed as compared to the pure culture plus the Aspergillus oryzae in the medium was increased by comparing the activity of said glucoamylase in pure culture plus the Rhizopus genus in the medium amylase A method for producing amylase using a mixed culture system of Aspergillus sp. And Rhizopus sp.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010293378A JP5900871B2 (en) | 2010-12-28 | 2010-12-28 | Method for producing amylase using mixed culture system of Aspergillus and Rhizopus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010293378A JP5900871B2 (en) | 2010-12-28 | 2010-12-28 | Method for producing amylase using mixed culture system of Aspergillus and Rhizopus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012139150A JP2012139150A (en) | 2012-07-26 |
JP5900871B2 true JP5900871B2 (en) | 2016-04-06 |
Family
ID=46676101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010293378A Expired - Fee Related JP5900871B2 (en) | 2010-12-28 | 2010-12-28 | Method for producing amylase using mixed culture system of Aspergillus and Rhizopus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5900871B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102010844B1 (en) * | 2017-09-26 | 2019-08-16 | 대한민국 | Mixed culture method of aspergillus sp. and rhizopul sp. |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0810740A (en) * | 1994-06-28 | 1996-01-16 | Bioole Chem:Kk | Treatment of kitchen garbage with mold fungi |
JPH09322761A (en) * | 1996-06-07 | 1997-12-16 | Nisshin Flour Milling Co Ltd | Medium for producing amylase |
WO2002088342A1 (en) * | 2001-04-30 | 2002-11-07 | Biocon India Limited | An enzyme preparation for improved baking quality and a process for preparing the same |
US7118882B2 (en) * | 2001-06-22 | 2006-10-10 | Indian Institute Of Technology An Indian Institute Of Kharagpur | Process for the preparation of gallic acid by co-culture |
JP3798336B2 (en) * | 2002-04-30 | 2006-07-19 | イナダ有限会社 | Enzyme production method using rush |
JPWO2007040008A1 (en) * | 2005-10-05 | 2009-04-16 | アサヒビール株式会社 | Method for producing filamentous fungus culture |
-
2010
- 2010-12-28 JP JP2010293378A patent/JP5900871B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012139150A (en) | 2012-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nadeem et al. | Microbial invertases: a review on kinetics, thermodynamics, physiochemical properties | |
Trivedi et al. | Optimization of inulinase production by a newly isolated Aspergillus tubingensis CR16 using low cost substrates | |
Vu et al. | Improvement of fungal cellulase production by mutation and optimization of solid state fermentation | |
Selvakumar et al. | Solid state fermentation for the synthesis of inulinase from Staphylococcus sp. and Kluyveromyces marxianus | |
Phutela et al. | Pectinase and polygalacturonase production by a thermophilic Aspergillus fumigatus isolated from decomposting orange peels | |
Anto et al. | Glucoamylase production by solid-state fermentation using rice flake manufacturing waste products as substrate | |
Mazutti et al. | Optimization of inulinase production by solid-state fermentation using sugarcane bagasse as substrate | |
Pogorzelski et al. | Flavour enhancement through the enzymatic hydrolysis of glycosidic aroma precursors in juices and wine beverages: a review | |
Divakaran et al. | Comparative study on production of α-amylase from Bacillus licheniformis strains | |
Yu et al. | Alkali-stable cellulase from a halophilic isolate, Gracilibacillus sp. SK1 and its application in lignocellulosic saccharification for ethanol production | |
Behailu et al. | Isolation, production and characterization of amylase enzyme using the isolate Aspergillus niger FAB-211 | |
Akhter et al. | Production of pectinase by Aspergillus niger cultured in solid state media | |
Lin et al. | Production of raw cassava starch-degrading enzyme by Penicillium and its use in conversion of raw cassava flour to ethanol | |
Raju et al. | Production of pectinase by using Bacillus circulans isolated from dump yards of vegetable wastes | |
Tomoyuki et al. | Cold-active pectinolytic activity of psychrophilic-basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1 | |
Koser et al. | Utilization of Aspergillus oryzae to produce pectin lyase from various agro-industrial residues | |
KR101324811B1 (en) | Method for production of liquid koji having enhanced plant fiber digestive enzyme, liquid koji produced by the method, and use of the liquid koji | |
KR101394009B1 (en) | Process for production of liquid koji | |
Rizk et al. | Production of α-amylase by Aspergillus niger isolated from mango kernel | |
Lomthong et al. | Production of raw starch degrading enzyme by the thermophilic filamentous bacterium Laceyella sacchari LP175 and its application for ethanol production from dried cassava chips | |
CN102191212A (en) | Alkaline pectate lyase producing gene engineering bacteria and construction and use thereof | |
Irfan et al. | Study on some properties of calcium-dependent a-amylase from Bacillus subtilis through submerged fermentation of wheat bran | |
Vu et al. | Improvement of a fungal strain by repeated and sequential mutagenesis and optimization of solid-state fermentation for the hyper-production of raw-starch-digesting enzyme | |
TW201516150A (en) | Preparation method conducive to enhancing enzymatic activity of cellulase | |
JP5900871B2 (en) | Method for producing amylase using mixed culture system of Aspergillus and Rhizopus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150325 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150901 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20151127 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20151221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160301 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5900871 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |