JP5897651B2 - COMMUNICATION METHOD, COMMUNICATION DEVICE, AND BAND SYNTHESIS CIRCUIT - Google Patents

COMMUNICATION METHOD, COMMUNICATION DEVICE, AND BAND SYNTHESIS CIRCUIT Download PDF

Info

Publication number
JP5897651B2
JP5897651B2 JP2014128396A JP2014128396A JP5897651B2 JP 5897651 B2 JP5897651 B2 JP 5897651B2 JP 2014128396 A JP2014128396 A JP 2014128396A JP 2014128396 A JP2014128396 A JP 2014128396A JP 5897651 B2 JP5897651 B2 JP 5897651B2
Authority
JP
Japan
Prior art keywords
signal
circuit
band
modulation signal
synthesized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014128396A
Other languages
Japanese (ja)
Other versions
JP2016009928A (en
Inventor
阿部 順一
阿部  順一
杉山 隆利
隆利 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014128396A priority Critical patent/JP5897651B2/en
Publication of JP2016009928A publication Critical patent/JP2016009928A/en
Application granted granted Critical
Publication of JP5897651B2 publication Critical patent/JP5897651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、無線通信または有線通信に用いられる通信装置において、異なる複数のユーザが限られた周波数帯域を有効利用するために、送信装置から周波数帯域を分割して送信された信号を受信装置で帯域合成して復調処理を行う通信方法、通信装置および帯域合成回路に関する。   The present invention relates to a communication apparatus used for wireless communication or wired communication, in which a plurality of different users effectively use a limited frequency band, and a signal transmitted by dividing the frequency band from the transmission apparatus is received by the reception apparatus. The present invention relates to a communication method, a communication apparatus, and a band synthesis circuit that perform band synthesis and perform demodulation processing.

図5は、従来の通信装置の構成例を示す(非特許文献1参照) 。図5(a) は送信装置、図5(b) は受信装置を示す。
図5(a) において、送信装置は、変調器1、ルートロールオフフィルタ2、帯域分割回路10を備える。変調器1は、送信するデータ信号をQPSKなどの変調方式で変調し、ルートロールオフフィルタ2を介して波形整形したシングルキャリア変調信号を帯域分割回路10に入力する。
FIG. 5 shows a configuration example of a conventional communication apparatus (see Non-Patent Document 1). FIG. 5 (a) shows a transmitting apparatus, and FIG. 5 (b) shows a receiving apparatus.
In FIG. 5 (a), the transmission apparatus includes a modulator 1, a root roll-off filter 2, and a band dividing circuit 10. The modulator 1 modulates a data signal to be transmitted by a modulation method such as QPSK, and inputs a single carrier modulation signal whose waveform is shaped via a root roll-off filter 2 to the band dividing circuit 10.

帯域分割回路10は、直並列変換回路12、FFT(高速フーリエ変換) 回路13、分割フィルタ141 〜14N (Nは2以上の整数)、周波数シフタ151 〜15N 、加算回路16、IFFT(高速逆フーリエ変換) 回路17、並直列変換回路18、D/A変換器19を備え、シングルキャリア変調信号の帯域をN分割し、周波数軸上で分散配置して送信する構成である。シングルキャリア変調信号の帯域を3分割(N=3)する例を図6に示す。 The band division circuit 10 includes a series-parallel conversion circuit 12, an FFT (Fast Fourier Transform) circuit 13, division filters 14 1 to 14 N (N is an integer of 2 or more), a frequency shifter 15 1 to 15 N , an addition circuit 16, and an IFFT. (Fast Inverse Fourier Transform) A circuit 17, a parallel / serial converter circuit 18, and a D / A converter 19 are provided, and a band of a single carrier modulation signal is divided into N, and distributed and transmitted on the frequency axis. An example in which the band of the single carrier modulation signal is divided into three (N = 3) is shown in FIG.

帯域分割回路10に入力するシングルキャリア変調信号は直並列変換し、FFT回路13で高速フーリエ変換し、時間領域の信号から周波数領域の信号へ変換する(図6(a))。分割フィルタ141 〜14N は、周波数領域に変換されたシングルキャリア変調信号に対して、図6(b) の破線で示す信号帯域をN分割するフィルタ係数を周波数ごとに乗算し、N個のサブ変調信号を生成する。周波数シフタ151 〜15N は、各サブ変調信号を周波数軸上の所望の帯域に分散配置し、加算回路16で足し合わせることにより、分散配置されたサブ変調信号が生成される(図6(c))。この分散配置後のサブ変調信号は、IFFT回路17で高速逆フーリエ変換により周波数領域の信号から時間領域の信号へ変換され、並直列変換およびD/A変換して送信信号となる。 The single carrier modulation signal input to the band dividing circuit 10 is serial-parallel converted and fast Fourier transformed by the FFT circuit 13 to convert from a time domain signal to a frequency domain signal (FIG. 6A). Each of the division filters 14 1 to 14 N multiplies a single carrier modulation signal converted into the frequency domain by a filter coefficient for dividing the signal band indicated by the broken line in FIG. A sub-modulated signal is generated. The frequency shifters 15 1 to 15 N disperse and arrange the sub-modulated signals in a desired band on the frequency axis, and add them by the adder circuit 16 to generate sub-modulated signals that are dispersed and arranged (FIG. 6 ( c)). The sub-modulated signal after the distributed arrangement is converted from a frequency domain signal to a time domain signal by high-speed inverse Fourier transform in the IFFT circuit 17, and converted into a transmission signal by parallel-serial conversion and D / A conversion.

図5(b) において、受信装置は、帯域合成回路20と復調器6を備える。帯域合成回路20は、A/D変換器21、直並列変換回路22、FFT回路23、抽出フィルタ241 〜24N 、周波数シフタ251 〜25N 、加算回路26、IFFT回路27、並直列変換回路28を備え、帯域をN分割されたサブ変調信号を分割前のシングルキャリア変調信号に合成する構成である。帯域が3分割(N=3)されたシングルキャリア変調信号を合成する例を図7に示す。 In FIG. 5 (b), the receiving device includes a band synthesis circuit 20 and a demodulator 6. The band synthesis circuit 20 includes an A / D converter 21, a serial-parallel conversion circuit 22, an FFT circuit 23, extraction filters 24 1 to 24 N , frequency shifters 25 1 to 25 N , an adder circuit 26, an IFFT circuit 27, and parallel-serial conversion. The circuit 28 is configured to synthesize a sub-modulated signal whose band is divided into N into a single carrier modulated signal before division. An example of synthesizing a single carrier modulation signal whose band is divided into three (N = 3) is shown in FIG.

帯域合成回路20に入力する受信信号は、A/D変換および直並列変換し、FFT回路23で高速フーリエ変換し、時間領域の信号から周波数領域の受信信号へ変換する(図7(a))。抽出フィルタ241 〜24N は、周波数領域に変換された受信信号に対して、図7(b) の破線で示すフィルタ係数を周波数ごとに乗算し、送信側で周波数シフトされた各サブ変調信号を抽出する(図7(c))。周波数シフタ251 〜25N は、抽出されたサブ変調信号を送信側で周波数シフトされる前の帯域に戻し、加算回路26で足し合わせることにより、合成された変調信号を生成する(図7(d))。この合成後の変調信号は、IFFT回路27で高速逆フーリエ変換により周波数領域の信号から時間領域の信号へ変換され、並直列変換して出力される。復調器6は、帯域合成回路20から出力されたシングルキャリア変調信号を復調し、送信装置から送信されたデータ信号を復元する。 The received signal input to the band synthesizing circuit 20 is A / D converted and serial-parallel converted, and fast Fourier transformed by the FFT circuit 23 to convert the time domain signal to the frequency domain received signal (FIG. 7 (a)). . Each of the extraction filters 24 1 to 24 N multiplies the reception signal converted into the frequency domain by a filter coefficient indicated by a broken line in FIG. Is extracted (FIG. 7 (c)). The frequency shifters 25 1 to 25 N return the extracted sub-modulated signal to the band before being frequency-shifted on the transmission side, and add them by the adding circuit 26 to generate a synthesized modulated signal (FIG. 7 ( d)). The combined modulation signal is converted from a frequency domain signal to a time domain signal by high-speed inverse Fourier transform in the IFFT circuit 27, and is subjected to parallel-serial conversion and output. The demodulator 6 demodulates the single carrier modulation signal output from the band synthesis circuit 20 and restores the data signal transmitted from the transmission device.

このような送信装置および受信装置を用いることにより、シングルキャリア変調信号の占有帯域を分割して生成された各サブ変調信号を周波数軸上の任意の場所に分散配置できるため、異なる複数のユーザで不連続な空き周波数帯域を有効利用することができる。   By using such a transmission device and reception device, each sub-modulation signal generated by dividing the occupied band of the single carrier modulation signal can be distributed and arranged at any location on the frequency axis, so that it can be used by different users. A discontinuous free frequency band can be used effectively.

阿部, 山下,小林:“高周波数利用効率を実現するスペクトラム編集型帯域分散伝送の提案”信学技報 SAT2009-48, Dec 2009.Abe, Yamashita, Kobayashi: "Proposal of spectrum-editing band-dispersed transmission to achieve high frequency utilization efficiency" IEICE Tech. Reports SAT2009-48, Dec 2009. 阿部、山下、中平、小林:“スペクトラム編集型帯域分散伝送による既存衛星通信地球局の周波数利用効率向上の検討”信学技報 SAT2010-67, Oct 2010.Abe, Yamashita, Nakahira, Kobayashi: “Examination of frequency utilization efficiency improvement of existing satellite communication earth station by spectrum editing type band dispersion transmission” IEICE Technical Report SAT2010-67, Oct 2010.

送信側では、図6(c) に示すように、分割された各サブ変調信号がそれぞれルートロールオフ特性を有するように、分割フィルタ141 〜14N のフィルタ係数を設計する。なお、分割フィルタ141 ,14N の特性は、左右非対称にスペクトラム編集されている。 On the transmission side, as shown in FIG. 6 (c), the filter coefficients of the division filters 14 1 to 14 N are designed so that each divided sub-modulated signal has a root roll-off characteristic. The characteristics of the division filters 14 1 and 14 N are spectrum-edited asymmetrically.

図6(a) に示すシングルキャリア変調信号のロールオフ率をα、分割後のサブ変調信号のロールオフ率をβとするとき、図6(b) に示す分割フィルタ141 〜14N のフィルタ係数Hdk(f) は、次式で表される。 When the roll-off rate of the single carrier modulation signal shown in FIG. 6A is α and the roll-off rate of the sub-modulation signal after division is β, the filters of the division filters 14 1 to 14 N shown in FIG. The coefficient Hd k (f) is expressed by the following equation.

Figure 0005897651
Figure 0005897651

ここで、fは周波数、fc k は分割後のサブ変調信号kの中心周波数、Bはロールオフフィルタの半値幅、Bk はサブ変調信号kの半値幅である。また、ルートロールオフ関数H(α,f,B)は、次式で表される。 Where f is the frequency and f c k is the center frequency of the divided sub-modulation signal k, B is the half-value width of the roll-off filter, and B k is the half-value width of the sub-modulation signal k. The root roll-off function H (α, f, B) is expressed by the following equation.

Figure 0005897651
Figure 0005897651

受信側では、図7(a) に示すように、ロールオフ率βのルートロールオフ特性を有するサブ変調信号に対して、抽出フィルタ241 〜24N として、同じくロールオフ率βのルートロールオフフィルタを乗算する(図7(b))。これにより、図7(c) に示すように、抽出されたサブ変調信号はロールオフ率βのフルロールオフ特性を有する。 On the receiving side, as shown in FIG. 7 (a), for the sub-modulated signal having the root roll-off characteristic with the roll-off rate β, as the extraction filters 24 1 to 24 N , the root roll-off with the same roll-off rate β is obtained. The filter is multiplied (FIG. 7 (b)). Thereby, as shown in FIG. 7C, the extracted sub-modulated signal has a full roll-off characteristic with a roll-off rate β.

抽出された各サブ変調信号を分割前の帯域に周波数シフトして合成する。このとき、隣接するサブ変調信号で電力が6dB低下する周波数、すなわち抽出フィルタのフィルタ特性における遮断周波数に相当する周波数同士を重ね合わせるように合成されるため、図7(d) に示すように、フルロールオフ特性を有するシングルキャリア変調信号が得られる。この信号は、フルロールオフ特性を有するため、符号間干渉が生じないので、このまま復調器6で復調できる。   Each extracted sub-modulated signal is frequency-shifted to the band before division and synthesized. At this time, since the frequency is reduced by 6 dB in the adjacent sub-modulated signal, that is, the frequencies corresponding to the cutoff frequencies in the filter characteristics of the extraction filter are combined, as shown in FIG. A single carrier modulation signal having a full roll-off characteristic is obtained. Since this signal has a full roll-off characteristic, no intersymbol interference occurs, so that it can be demodulated by the demodulator 6 as it is.

ここで、図5に示す帯域分割回路10および帯域合成回路20だけを取り出し、これを「帯域分散アダプタ」として図8に示すような無線通信システムを構成する(非特許文献2)。すなわち、無線局Aおよび無線局Bは、既存のシングルキャリア変調信号を送受信する既存モデムとアンテナとの間に帯域分散アダプタを挿入し、既存モデムの出力信号を帯域分散アダプタにより周波数軸上で分割し、未使用帯域に分散配置して伝送することにより、周波数利用効率を向上させる構成である。   Here, only the band dividing circuit 10 and the band synthesizing circuit 20 shown in FIG. 5 are taken out, and this is used as a “band distribution adapter” to constitute a wireless communication system as shown in FIG. 8 (Non-Patent Document 2). That is, the wireless station A and the wireless station B insert a band dispersion adapter between the existing modem that transmits and receives an existing single carrier modulation signal and the antenna, and divide the output signal of the existing modem on the frequency axis by the band dispersion adapter. In addition, the frequency utilization efficiency is improved by distributing and transmitting in the unused band.

図9は、既存モデムおよび帯域分散アダプタの回路構成例を示す。
図9において、既存モデムの送信回路は、変調器1、ルートロールオフフィルタ2およびD/A変換器3により構成され、帯域制限されたシングルキャリア変調信号を生成し、出力する。帯域分散アダプタの帯域分割回路10は、図5(a) に示す構成にA/D変換器11を加えた構成であり、送信回路の出力信号をA/D変換および直並列変換し、FFT回路13で時間領域から周波数領域の信号に変換し、分割フィルタ141 〜14N によりルートロールオフ特性を有する複数のサブ変調信号を生成し、周波数シフタ151 〜15N により未使用帯域に分散配置、IFFT回路17により時間領域の信号に変換し、並直列変換およびD/A変換して送信信号を出力する。
FIG. 9 shows a circuit configuration example of an existing modem and a bandwidth distribution adapter.
In FIG. 9, the transmission circuit of the existing modem is composed of a modulator 1, a root roll-off filter 2, and a D / A converter 3, and generates and outputs a band-limited single carrier modulated signal. The band dividing circuit 10 of the band distribution adapter has a configuration in which an A / D converter 11 is added to the configuration shown in FIG. 5A, performs A / D conversion and serial-parallel conversion on the output signal of the transmission circuit, and an FFT circuit. 13 converts the signal from the time domain to the frequency domain, generates a plurality of sub-modulated signals having root roll-off characteristics by the division filters 14 1 to 14 N, and distributes them in the unused band by the frequency shifters 15 1 to 15 N The IFFT circuit 17 converts the signal into a time domain signal, performs parallel-serial conversion and D / A conversion, and outputs a transmission signal.

帯域分散アダプタの帯域合成回路20は、図5(b) に示す構成にD/A変換器29を加えた構成であり、ルートロールオフ特性を有する受信信号を入力してA/D変換および直並列変換し、FFT回路23により時間領域から周波数領域の信号に変換し、抽出フィルタ241 〜24N によりフルロールオフ特性を有するサブ変調信号を抽出し、周波数シフタ251 〜25N で分割前の帯域にシフトし、合成する。合成された信号は、フルロールオフ特性を有するシングルキャリア変調信号である。これをIFFT回路27で時間領域の信号に変換し、並直列変換およびD/A変換して既存モデムの受信回路に入力する。 The band synthesizing circuit 20 of the band distribution adapter has a configuration in which a D / A converter 29 is added to the configuration shown in FIG. 5B, and receives a received signal having a route roll-off characteristic to perform A / D conversion and direct conversion. Parallel conversion is performed, the signal is converted from the time domain to the frequency domain by the FFT circuit 23, the sub-modulation signal having the full roll-off characteristic is extracted by the extraction filters 24 1 to 24 N, and the signal is divided by the frequency shifters 25 1 to 25 N Shift to the band of and combine. The synthesized signal is a single carrier modulation signal having a full roll-off characteristic. This is converted into a signal in the time domain by the IFFT circuit 27, subjected to parallel-serial conversion and D / A conversion, and input to the receiving circuit of the existing modem.

帯域合成回路20における帯域合成例と既存モデムとの関係を図10に示す。図10(a) 〜(d) は、図7(a) 〜(d) を再掲したものである。
既存モデムの受信回路は、A/D変換器4、ルートロールオフフィルタ5および復調器6により構成され、帯域分散アダプタの帯域合成回路20の出力信号をA/D変換してルートロールオフフィルタ5を乗算し、復調器6で復調する。しかしながら、帯域合成回路20の出力信号は、図10(d) に示すように、すでにフルロールオフ特性を有する。そのため、図10(e) ,(f) に示すように、受信回路内でさらにルートロールオフフィルタ5を乗算すると、ロールオフ特性を満足せず、符号間干渉が発生する。よって、信号伝送特性が劣化する課題がある。
FIG. 10 shows the relationship between the band synthesis example in the band synthesis circuit 20 and the existing modem. FIGS. 10 (a) to 10 (d) are a reprint of FIGS. 7 (a) to 7 (d).
The reception circuit of the existing modem includes an A / D converter 4, a route roll-off filter 5 and a demodulator 6. The output signal of the band synthesis circuit 20 of the band dispersion adapter is A / D converted and the route roll-off filter 5. Is demodulated by the demodulator 6. However, the output signal of the band synthesizing circuit 20 already has a full roll-off characteristic as shown in FIG. Therefore, as shown in FIGS. 10 (e) and 10 (f), if the root roll-off filter 5 is further multiplied in the receiving circuit, the roll-off characteristic is not satisfied and intersymbol interference occurs. Therefore, there is a problem that the signal transmission characteristics deteriorate.

本発明は、シングルキャリア変調信号の帯域分割に起因する符号間干渉の発生を防ぎ、信号伝送特性を改善することができる通信方法、通信装置および帯域合成回路を提供することを目的とする。   It is an object of the present invention to provide a communication method, a communication apparatus, and a band synthesis circuit that can prevent the occurrence of intersymbol interference caused by band division of a single carrier modulation signal and improve signal transmission characteristics.

第1の発明は、送信回路から帯域分割回路に変調信号を入力し、帯域分割回路は、複数の分割フィルタで変調信号から周波数軸上で複数の帯域に分割したサブ変調信号を生成し、各サブ変調信号を周波数軸上の任意の場所に分散配置した送信信号を出力し、帯域合成回路は、複数の抽出フィルタで送信信号に対応する受信信号から各サブ変調信号を抽出し、各サブ変調信号の帯域を分散配置前の帯域に戻して合成した変調信号を出力し、帯域合成回路から出力される変調信号を受信回路のルートロールオフフィルタを介して復調器に入力して復調する通信方法において、帯域合成回路は、合成した変調信号を入力するスペクトラム変換手段で、受信回路のルートロールオフ特性と同等になるように、合成した変調信号の遷移域の周波数特性を補償し、遷移域の外側で欠損した周波数成分を補完し、帯域合成回路から出力されるルートロールオフ特性を有する変調信号を受信回路のルートロールオフフィルタに入力し、フルロールオフ特性を有する変調信号を復調器で復調する。   According to a first aspect of the present invention, a modulation signal is input from a transmission circuit to a band division circuit, and the band division circuit generates sub modulation signals divided into a plurality of bands on the frequency axis from the modulation signal by a plurality of division filters, A transmission signal in which the sub-modulated signal is distributed at any location on the frequency axis is output, and the band synthesis circuit extracts each sub-modulated signal from the received signal corresponding to the transmitted signal using multiple extraction filters. A communication method that outputs a modulated signal that is synthesized by returning the signal band to the band before the distributed arrangement, and that demodulates the modulated signal output from the band synthesizing circuit by inputting it to the demodulator via the root roll-off filter of the receiving circuit The band synthesizer is a spectrum converting means for inputting the synthesized modulated signal, and the frequency characteristic of the transition band of the synthesized modulated signal is set to be equivalent to the root roll-off characteristic of the receiving circuit. Compensates and compensates for missing frequency components outside the transition band, and inputs the modulated signal with the root roll-off characteristic output from the band synthesis circuit to the root roll-off filter of the receiving circuit, thereby modulating with the full roll-off characteristic Demodulate the signal with a demodulator.

第1の発明の通信方法において、スペクトラム変換手段は、帯域合成回路で合成した変調信号を入力し、遷移域のロールオフ率を変換した補償信号を生成するとともに、帯域合成回路で合成した変調信号を入力し、受信回路のルートロールオフ特性に対して、合成した変調信号の遷移域の外側で欠損した周波数成分を補完し、かつ位相特性が一致するように位相補償した補完信号を生成し、補償信号および補完信号を加算して出力する。   In the communication method of the first invention, the spectrum converting means receives the modulated signal synthesized by the band synthesizing circuit, generates a compensation signal obtained by converting the roll-off rate of the transition band, and also modulates the modulated signal synthesized by the band synthesizing circuit. To the root roll-off characteristic of the receiving circuit, complement the frequency component missing outside the transition region of the synthesized modulation signal, and generate a complementary signal that is phase-compensated so that the phase characteristics match. Compensation signal and complementary signal are added and output.

第2の発明は、変調信号から周波数軸上で複数の帯域に分割したサブ変調信号を生成する複数の分割フィルタを備え、各サブ変調信号を周波数軸上の任意の場所に分散配置した送信信号を出力する帯域分割回路と、送信信号に対応する受信信号から各サブ変調信号を抽出する複数の抽出フィルタを備え、各サブ変調信号の帯域を分散配置前の帯域に戻して合成した変調信号を出力する帯域合成回路とを備え、帯域合成回路から出力される変調信号を受信回路のルートロールオフフィルタを介して復調器に入力して復調する構成である通信装置において、帯域合成回路は、受信回路のルートロールオフ特性と同等になるように、合成した変調信号の遷移域の周波数特性を補償し、遷移域の外側で欠損した周波数成分を補完するスペクトラム変換手段を含み、帯域合成回路から出力されるルートロールオフ特性を有する変調信号を受信回路のルートロールオフフィルタに入力し、フルロールオフ特性を有する変調信号を復調器で復調する。   A second invention includes a plurality of division filters that generate sub-modulation signals that are divided into a plurality of bands on the frequency axis from the modulation signal, and a transmission signal in which each sub-modulation signal is dispersedly arranged at arbitrary locations on the frequency axis And a plurality of extraction filters for extracting each sub-modulated signal from the received signal corresponding to the transmission signal, and the modulated signal synthesized by returning the band of each sub-modulated signal to the band before the distributed arrangement In a communication device comprising a band synthesizing circuit for outputting and demodulating a modulated signal output from the band synthesizing circuit by inputting to a demodulator via a root roll-off filter of the receiving circuit, the band synthesizing circuit Spectral conversion that compensates for frequency characteristics in the transition region of the synthesized modulation signal and compensates for missing frequency components outside the transition region so that it is equivalent to the root roll-off characteristics of the circuit Includes a stage, receives the modulation signal having the root roll-off characteristic that is output from the band synthesizing circuit in the root roll-off filter of the receiving circuit is demodulated by the demodulator a modulated signal having a full roll-off characteristic.

第2の発明の通信装置において、スペクトラム変換手段は、帯域合成回路で合成した変調信号を入力し、遷移域のロールオフ率を変換した補償信号を生成するスペクトラム変換フィルタと、帯域合成回路で合成した変調信号を入力し、受信回路のルートロールオフ特性に対して、合成した変調信号の遷移域の外側で欠損した周波数成分を補完し、かつ位相特性が一致するように位相補償した補完信号を生成する補完信号生成手段と、補償信号および補完信号を加算して出力する加算回路とを備える。   In the communication apparatus of the second invention, the spectrum conversion means inputs the modulation signal synthesized by the band synthesis circuit, and synthesizes the spectrum conversion filter for generating a compensation signal obtained by converting the roll-off rate of the transition band, and the band synthesis circuit. Is input to the root roll-off characteristic of the receiving circuit, and the complementary frequency signal that compensates for the missing frequency component outside the transition range of the synthesized modulation signal and compensates the phase to match the phase characteristics. Complementary signal generating means for generating, and an adding circuit for adding and outputting the compensation signal and the complementary signal.

第3の発明は、変調信号から周波数軸上で複数の帯域に分割したサブ変調信号を生成する複数の分割フィルタを備え、各サブ変調信号を周波数軸上の任意の場所に分散配置した送信信号を出力する帯域分割回路と、送信信号に対応する受信信号から各サブ変調信号を抽出する複数の抽出フィルタを備え、各サブ変調信号の帯域を分散配置前の帯域に戻して合成した変調信号を出力する帯域合成回路とを備え、帯域合成回路から出力される変調信号を受信回路のルートロールオフフィルタを介して復調器に入力して復調する構成である通信装置の帯域合成回路において、受信回路のルートロールオフ特性と同等になるように、合成した変調信号の遷移域の周波数特性を補償し、遷移域の外側で欠損した周波数成分を補完するスペクトラム変換手段を含む。
A third invention includes a plurality of division filters that generate sub-modulation signals that are divided into a plurality of bands on the frequency axis from the modulation signal , and a transmission signal in which each sub-modulation signal is dispersedly arranged at arbitrary locations on the frequency axis And a plurality of extraction filters for extracting each sub-modulated signal from the received signal corresponding to the transmission signal, and the modulated signal synthesized by returning the band of each sub-modulated signal to the band before the distributed arrangement In the band synthesizing circuit of the communication apparatus, the receiving circuit includes a band synthesizing circuit that outputs the modulated signal output from the band synthesizing circuit to the demodulator through a root roll-off filter of the receiving circuit. The spectrum conversion method compensates for the frequency characteristics in the transition region of the synthesized modulation signal and complements the missing frequency components outside the transition region so that it is equivalent to the root roll-off characteristics of Including the.

第3の発明の帯域合成回路において、スペクトラム変換手段は、帯域合成回路で合成した変調信号を入力し、遷移域のロールオフ率を変換した補償信号を生成するスペクトラム変換フィルタと、帯域合成回路で合成した変調信号を入力し、受信回路のルートロールオフ特性に対して、合成した変調信号の遷移域の外側で欠損した周波数成分を補完し、かつ位相特性が一致するように位相補償した補完信号を生成する補完信号生成手段と、補償信号および補完信号を加算して出力する加算回路とを備える。   In the band synthesizing circuit of the third invention, the spectrum converting means receives the modulation signal synthesized by the band synthesizing circuit, generates a compensation signal obtained by converting the roll-off rate of the transition band, and the band synthesizing circuit. Complementary signal that is input the synthesized modulation signal, complements the root roll-off characteristics of the receiver circuit with the missing frequency components outside the transition range of the synthesized modulation signal, and compensates the phase so that the phase characteristics match. Complementary signal generating means, and an addition circuit that adds and outputs the compensation signal and the complementary signal.

本発明は、受信側の帯域合成回路において、合成した変調信号の周波数特性を受信回路のルートロールオフ特性と同等になるように補償し、ルートロールオフ特性を有する変調信号を受信回路のルートロールオフフィルタに入力することにより、フルロールオフ特性を有する変調信号が生成される。これにより、復調器でフルロールオフ特性を有する変調信号を復調することができ、符号間干渉の発生を防ぎ、伝送特性を向上させることができる。   The present invention compensates the frequency characteristic of the combined modulated signal in the band synthesis circuit on the receiving side so as to be equal to the root roll-off characteristic of the receiving circuit, and converts the modulated signal having the root roll-off characteristic to the root roll-off characteristic of the receiving circuit. By inputting to the off filter, a modulated signal having a full roll-off characteristic is generated. As a result, the demodulator can demodulate the modulated signal having the full roll-off characteristic, prevent the occurrence of intersymbol interference, and improve the transmission characteristic.

また、帯域分割回路および帯域合成回路を帯域分散アダプタとして、既存モデムの送信回路および受信回路に接続して用いることができる。   Further, the band dividing circuit and the band synthesizing circuit can be used as a band distribution adapter by being connected to a transmission circuit and a reception circuit of an existing modem.

本発明の通信装置の実施例構成を示す図である。It is a figure which shows the Example structure of the communication apparatus of this invention. 合成された変調信号とルートロールオフフィルタとの関係を示す図である。It is a figure which shows the relationship between the synthetic | combination modulated signal and a root roll-off filter. 帯域合成回路20Aにおける帯域合成例と既存モデムとの関係を示す図である。It is a figure which shows the relationship between the band composition example in the band composition circuit 20A, and the existing modem. 帯域合成回路20Aにおける補完信号例を示す図である。It is a figure which shows the example of a complementary signal in 20 A of band synthetic | combination circuits. 従来の通信装置の構成例を示す図である。It is a figure which shows the structural example of the conventional communication apparatus. 従来の帯域分割回路10における帯域分割例を示す図である。It is a figure which shows the example of a band division in the conventional band division circuit. 従来の帯域合成回路20における帯域合成例を示す図である。It is a figure which shows the band synthetic | combination example in the conventional band synthetic | combination circuit 20. FIG. 帯域分散アダプタを用いた無線通信システムの構成例を示す図である。It is a figure which shows the structural example of the radio | wireless communications system using a band dispersion | distribution adapter. 既存モデムおよび帯域分散アダプタの回路構成例を示す図である。It is a figure which shows the circuit structural example of the existing modem and a band distribution adapter. 帯域合成回路20における帯域合成例と既存モデムとの関係を示す図である。It is a figure which shows the relationship between the band composition example in the band composition circuit 20, and the existing modem.

図1は、本発明の通信装置の実施例構成を示す。
図1において、通信装置の帯域分散アダプタは、既存モデムの送信回路に接続される帯域分割回路10と、既存モデムの受信回路に接続される帯域合成回路20Aにより構成される。ここに示す既存モデムの送信回路および受信回路、帯域分散アダプタの帯域分割回路10は、図9に示す従来構成と同じ構成である。
FIG. 1 shows an embodiment of a communication apparatus according to the present invention.
In FIG. 1, the band distribution adapter of the communication apparatus is composed of a band division circuit 10 connected to a transmission circuit of an existing modem and a band synthesis circuit 20A connected to a reception circuit of the existing modem. The transmission circuit and reception circuit of the existing modem and the band division circuit 10 of the band distribution adapter shown here have the same configuration as the conventional configuration shown in FIG.

本発明の特徴とする帯域合成回路20Aは、図9に示す従来の帯域合成回路20の加算回路26とIFFT回路27との間にスペクトラム変換回路30を挿入した構成であり、その他は同じ構成である。スペクトラム変換回路30は、スペクトラム変換フィルタ31、補完信号生成回路32,33、補完信号位相補償回路34,35および加算回路36により構成される。   The band synthesizing circuit 20A, which is a feature of the present invention, has a configuration in which a spectrum conversion circuit 30 is inserted between an adder circuit 26 and an IFFT circuit 27 of the conventional band synthesizing circuit 20 shown in FIG. is there. The spectrum conversion circuit 30 includes a spectrum conversion filter 31, complementary signal generation circuits 32 and 33, complementary signal phase compensation circuits 34 and 35, and an addition circuit 36.

帯域合成回路20Aでは、従来の帯域合成回路20と同様に、受信信号からサブ変調信号を抽出して加算回路26で合成する。この合成された変調信号は、図10(e) の破線で示す既存モデムの受信回路のルートロールオフ特性よりも占有帯域幅が狭く、スペクトラムの低周波数側および高周波数側の信号成分が欠損している。詳しくは、既存モデムの受信回路のルートロールオフフィルタ5のロールオフ率をα、受信信号(加算回路26で合成された変調信号)のロールオフ率をβとしたときの周波数特性の関係を図2に示す。実線は合成された変調信号の周波数特性、破線は受信回路のルートロールオフ特性を示す。   In the band synthesizing circuit 20A, as in the conventional band synthesizing circuit 20, the sub-modulation signal is extracted from the received signal and synthesized by the adding circuit 26. This synthesized modulated signal has a smaller occupied bandwidth than the root roll-off characteristic of the receiving circuit of the existing modem indicated by the broken line in FIG. 10 (e), and the signal components on the low frequency side and high frequency side of the spectrum are lost. ing. Specifically, the relationship between the frequency characteristics when the roll-off rate of the root roll-off filter 5 of the receiving circuit of the existing modem is α and the roll-off rate of the received signal (modulated signal synthesized by the adding circuit 26) is β is illustrated. It is shown in 2. The solid line indicates the frequency characteristic of the synthesized modulation signal, and the broken line indicates the root roll-off characteristic of the receiving circuit.

合成された変調信号はフルロールオフ特性を有しており、遷移域(−(1+β)B/2〜−(1−α)B/2、(1−α)B/2〜(1+β)B/2)の特性が受信回路のルートロールオフ特性と異なる。特に、合成された変調信号の遷移域の外側の帯域(−(1+α)B/2〜−(1+β)B/2、(1+β)B/2〜(1+α)B/2)が欠損している。このように欠損した周波数成分a1(−(1+α)B/2〜−(1+β)B/2)および周波数成分a2((1+β)B/2〜(1+α)B/2)は送信側で失われているが、当該遷移域の周波数成分は通過域の成分の折り返しになっているため、欠損した周波数成分a1,a2に相当する通過域の周波数成分b1((1−α)B/2〜(1−β)B/2)および周波数成分b2(−(1−β)B/2〜−(1−α)B/2)で補完が可能である。   The synthesized modulated signal has a full roll-off characteristic, and transition regions (− (1 + β) B / 2 to − (1−α) B / 2, (1−α) B / 2 to (1 + β) B The characteristics of / 2) are different from the root roll-off characteristics of the receiving circuit. In particular, the band outside the transition range of the synthesized modulation signal (-(1 + α) B / 2 to-(1 + β) B / 2, (1 + β) B / 2 to (1 + α) B / 2) is missing. . The frequency component a1 (-(1 + α) B / 2 to-(1 + β) B / 2) and the frequency component a2 ((1 + β) B / 2 to (1 + α) B / 2) lost in this way are lost on the transmission side. However, since the frequency component in the transition region is a return of the component in the pass region, the frequency component b1 ((1-α) B / 2˜ ((1−α) B / 2˜ ( 1-β) B / 2) and frequency component b2 (-(1-β) B / 2 to-(1-α) B / 2) can be complemented.

そこで、スペクトラム変換回路30では、この合成された変調信号の周波数特性を、受信回路のルートロールオフ特性と同等になるように、遷移域の周波数成分のロールオフ率を変換した補償信号と、欠損した周波数成分a1,a2を補完する周波数成分b1,b2の補完信号を生成し、それらを加算して出力する処理を行う。以下、詳しく説明する。   Therefore, in the spectrum conversion circuit 30, a compensation signal obtained by converting the roll-off rate of the frequency component in the transition region so that the frequency characteristic of the synthesized modulation signal is equivalent to the root roll-off characteristic of the reception circuit, and a missing signal are obtained. The complementary signals of the frequency components b1 and b2 that complement the frequency components a1 and a2 that have been generated are generated, added, and output. This will be described in detail below.

帯域合成回路20Aにおいて、帯域が3分割(N=3)された変調信号を合成する例を図3に示す。図3(a) 〜(d) は、図10(a) 〜(d) を再掲したものである。   FIG. 3 shows an example of synthesizing a modulation signal whose band is divided into three (N = 3) in the band synthesizing circuit 20A. FIGS. 3 (a) to 3 (d) are a reprint of FIGS. 10 (a) to (d).

スペクトラム変換回路30のスペクトラム変換フィルタ31は、加算回路26で合成された変調信号を入力し、図3(e) に破線で示すフィルタ特性により、半値幅の帯域と遷移域の周波数特性が受信回路のルートロールオフ特性と同等になるようにロールオフ率を変換した補償信号を出力する。スペクトラム変換フィルタ31のフィルタ係数Hc(f)は、次式で表される。   The spectrum conversion filter 31 of the spectrum conversion circuit 30 inputs the modulation signal synthesized by the adder circuit 26, and the frequency characteristics of the half-value width band and the transition band are received by the receiving circuit by the filter characteristics shown by the broken line in FIG. A compensation signal in which the roll-off rate is converted so as to be equivalent to the root roll-off characteristic is output. The filter coefficient Hc (f) of the spectrum conversion filter 31 is expressed by the following equation.

Figure 0005897651
Figure 0005897651

補完信号生成回路32,33は、加算回路26で合成された変調信号を入力し、図2および図3(f) に示すように、スペクトラムの低周波数側および高周波数側の欠損した周波数成分a1,a2を復元するための周波数成分b1,b2を抽出した補完信号を生成する。補完信号位相補償回路34,35は、加算回路26で合成された変調信号を用いて補完信号の位相を補償する。詳しくは図4を参照して改めて説明する。加算回路36は、スペクトラム変換フィルタ31から出力される補償信号、補完信号位相補償回路34,35から出力される位相補償された各補完信号を加算合成することにより、受信回路のルートロールオフ特性を有する変調信号を出力する(図3(g))。   The complementary signal generation circuits 32 and 33 receive the modulated signal synthesized by the adder circuit 26 and, as shown in FIGS. 2 and 3 (f), the missing frequency component a1 on the low frequency side and high frequency side of the spectrum. , A2 to generate complementary signals extracted from the frequency components b1, b2. The complementary signal phase compensation circuits 34 and 35 compensate the phase of the complementary signal using the modulation signal synthesized by the adder circuit 26. Details will be described again with reference to FIG. The adder circuit 36 adds and synthesizes the compensation signal output from the spectrum conversion filter 31 and each of the phase-compensated complementary signals output from the complementary signal phase compensation circuits 34 and 35, thereby improving the root roll-off characteristic of the receiving circuit. The modulation signal having the same is output (FIG. 3 (g)).

スペクトラム変換回路30から出力されるルートロールオフ特性を有する変調信号は、IFFT回路27で時間領域の信号に変換し、直並列変換およびD/A変換して既存モデムの受信回路に入力される。   The modulation signal having the root roll-off characteristic output from the spectrum conversion circuit 30 is converted into a time-domain signal by the IFFT circuit 27, and subjected to serial / parallel conversion and D / A conversion, and input to the reception circuit of the existing modem.

このように、帯域分散アダプタの帯域合成回路20Aの出力信号がルートロールオフ特性を有することで、既存モデムの受信回路でルートロールオフフィルタ5を乗算することによりフルロールオフ特性の変調信号が得られ(図3(h))、符号間干渉の発生を防ぎ、伝送特性を改善することができる。   As described above, the output signal of the band synthesizing circuit 20A of the band dispersion adapter has the root roll-off characteristic, so that the modulation signal having the full roll-off characteristic is obtained by multiplying the root roll-off filter 5 by the receiving circuit of the existing modem. (FIG. 3 (h)), it is possible to prevent the occurrence of intersymbol interference and improve the transmission characteristics.

ここで、加算回路26で合成された変調信号の低周波数側の欠損した周波数成分a1の補完および位相補償について、図4を参照して説明する。   Here, complementation and phase compensation of the missing frequency component a1 on the low frequency side of the modulation signal synthesized by the adder circuit 26 will be described with reference to FIG.

周波数成分a1の補完信号は、通過域の周波数成分b1((1−α)B/2〜(1−β)B/2)を抽出することになるが、合成された変調信号の中心周波数を0とするとき、合成された変調信号に以下のフィルタ係数Hcomp(f) で示すフィルタを乗算する。   As a complementary signal of the frequency component a1, the frequency component b1 ((1−α) B / 2 to (1−β) B / 2) in the pass band is extracted, but the center frequency of the synthesized modulation signal is extracted. When 0, the synthesized modulation signal is multiplied by a filter indicated by the following filter coefficient Hcomp (f).

Figure 0005897651
Figure 0005897651

ここで生成された周波数成分b1の補完信号を、欠損した周波数成分a1の帯域(−(1+α)B/2〜−(1+β)B/2 )に加算することにより補完する。   The complement signal of the frequency component b1 generated here is supplemented by adding it to the band of the missing frequency component a1 (-(1 + α) B / 2 to-(1 + β) B / 2).

ただし、受信信号には伝送に伴い位相傾斜が生じる場合、受信信号と補完信号との間に位相差が生じるため、周波数成分b1の補完信号を周波数成分a1の帯域にそのまま加算しても位相特性が直線にならず、位相が歪む。   However, when the received signal has a phase gradient due to transmission, a phase difference occurs between the received signal and the complementary signal. Therefore, even if the complementary signal of the frequency component b1 is added to the band of the frequency component a1 as it is, the phase characteristic is obtained. Is not straight and the phase is distorted.

そこで、補完信号位相補償回路34では、受信信号スペクトラムのうち、フィルタで削られずに残存している遷移域の周波数成分c1(−(1+β)B/2〜−B/2)の位相θと、折り返しにより周波数成分c1と同じ周波数成分d1((1−β)B/2〜B/2)の位相φとの間で、位相差ψ=φ−θを算出する。この位相差ψを用いて、補完信号生成回路32から出力される補完信号(周波数成分b1)の位相を補償する。このように位相補償された補完信号を用いて、スペクトラム変換フィルタ31から出力される信号と加算回路36で加算合成することにより、遷移域の信号成分を補償した合成信号を得ることができる。   Therefore, in the complementary signal phase compensation circuit 34, the phase θ of the frequency component c1 (− (1 + β) B / 2 to −B / 2) in the transition region that remains in the received signal spectrum without being removed by the filter, and The phase difference ψ = φ−θ is calculated between the phase φ of the frequency component d1 ((1−β) B / 2 to B / 2) that is the same as the frequency component c1. Using this phase difference ψ, the phase of the complementary signal (frequency component b1) output from the complementary signal generation circuit 32 is compensated. By using the complementary signal that has been phase-compensated in this way and adding and synthesizing the signal output from the spectrum conversion filter 31 by the adder circuit 36, a synthesized signal in which the signal component in the transition region is compensated can be obtained.

なお、図1〜図4を参照して説明した実施例では、補完信号位相補償回路34,35において、加算回路26で合成された変調信号の周波数成分c1,c2を基準に、補完信号生成回路32,33で生成された補完信号の位相を補償していたが、スペクトラム変換フィルタ31から出力される補償信号の周波数成分c1,c2をを基準に、補完信号の位相を補償する構成としてもよい。   In the embodiment described with reference to FIGS. 1 to 4, the complementary signal generation circuit in the complementary signal phase compensation circuits 34 and 35 is based on the frequency components c1 and c2 of the modulation signal synthesized by the adder circuit 26. Although the phase of the complementary signal generated in 32 and 33 is compensated, the phase of the complementary signal may be compensated based on the frequency components c1 and c2 of the compensation signal output from the spectrum conversion filter 31. .

1 変調器
2 ルートロールオフフィルタ
3 D/A変換器
4 A/D変換器
5 ルートロールオフフィルタ
6 復調器
10 帯域分割回路
11 A/D変換器
12 直並列変換回路
13 FFT(高速フーリエ変換) 回路
141 〜14N 分割フィルタ
151 〜15N 周波数シフタ
16 加算回路
17 IFFT(高速逆フーリエ変換) 回路
18 並直列変換回路
19 D/A変換器
20,20A 帯域合成回路
21 A/D変換器
22 直並列変換回路
23 FFT(高速フーリエ変換) 回路
241 〜24N 抽出フィルタ
251 〜25N 周波数シフタ
26 加算回路
27 IFFT(高速逆フーリエ変換) 回路
28 並直列変換回路
29 D/A変換器
30 スペクトラム変換回路
31 スペクトラム変換フィルタ
32,33 補完信号生成回路
34,35 補完信号位相補償回路
36 加算回路
DESCRIPTION OF SYMBOLS 1 Modulator 2 Root roll-off filter 3 D / A converter 4 A / D converter 5 Root roll-off filter 6 Demodulator 10 Band division circuit 11 A / D converter 12 Serial parallel conversion circuit 13 FFT (fast Fourier transform) Circuit 14 1 to 14 N division filter 15 1 to 15 N frequency shifter 16 Adder circuit 17 IFFT (Fast Inverse Fourier Transform) circuit 18 Parallel-serial conversion circuit 19 D / A converter 20, 20A Band synthesis circuit 21 A / D converter 22 serial-parallel conversion circuit 23 FFT (fast Fourier transform) circuit 24 1 to 24 N extraction filter 25 1 to 25 N frequency shifter 26 addition circuit 27 IFFT (fast inverse Fourier transform) circuit 28 parallel-serial conversion circuit 29 D / A converter 30 Spectrum conversion circuit 31 Spectrum conversion filter 32, 33 Complementary signal generation circuit 34, 35 Complement Signal phase compensation circuit 36 addition circuit

Claims (6)

送信回路から帯域分割回路に変調信号を入力し、
前記帯域分割回路は、複数の分割フィルタで前記変調信号から周波数軸上で複数の帯域に分割したサブ変調信号を生成し、各サブ変調信号を周波数軸上の任意の場所に分散配置した送信信号を出力し、
帯域合成回路は、複数の抽出フィルタで前記送信信号に対応する受信信号から前記各サブ変調信号を抽出し、前記各サブ変調信号の帯域を前記分散配置前の帯域に戻して合成した変調信号を出力し、
前記帯域合成回路から出力される変調信号を受信回路のルートロールオフフィルタを介して復調器に入力して復調する通信方法において、
前記帯域合成回路は、前記合成した変調信号を入力するスペクトラム変換手段で、前記受信回路のルートロールオフ特性と同等になるように、前記合成した変調信号の遷移域の周波数特性を補償し、遷移域の外側で欠損した周波数成分を補完し、
前記帯域合成回路から出力されるルートロールオフ特性を有する変調信号を前記受信回路のルートロールオフフィルタに入力し、フルロールオフ特性を有する変調信号を前記復調器で復調する
ことを特徴とする通信方法。
The modulation signal is input from the transmission circuit to the band division circuit,
The band dividing circuit generates a sub modulation signal that is divided into a plurality of bands on the frequency axis from the modulation signal by a plurality of division filters, and a transmission signal in which each sub modulation signal is dispersedly arranged at an arbitrary place on the frequency axis Output
The band synthesizing circuit extracts each sub-modulated signal from the received signal corresponding to the transmission signal by a plurality of extraction filters, returns the band of each sub-modulated signal to the band before the dispersion arrangement, and combines the modulated signal Output,
In the communication method of demodulating the modulation signal output from the band synthesis circuit by inputting to the demodulator via the root roll-off filter of the reception circuit,
The band synthesizing circuit is a spectrum converting means for inputting the synthesized modulation signal, and compensates for the frequency characteristics of the transition area of the synthesized modulation signal so as to be equivalent to the root roll-off characteristics of the receiving circuit. To compensate for missing frequency components outside the region,
A modulation signal having a root roll-off characteristic output from the band synthesis circuit is input to a root roll-off filter of the receiving circuit, and the modulation signal having a full roll-off characteristic is demodulated by the demodulator. Method.
請求項1に記載の通信方法において、
前記スペクトラム変換手段は、
前記帯域合成回路で合成した変調信号を入力し、遷移域のロールオフ率を変換した補償信号を生成するとともに、
前記帯域合成回路で合成した変調信号を入力し、前記受信回路のルートロールオフ特性に対して、前記合成した変調信号の遷移域の外側で欠損した周波数成分を補完し、かつ位相特性が一致するように位相補償した補完信号を生成し、
前記補償信号および前記補完信号を加算して出力する
ことを特徴とする通信方法。
The communication method according to claim 1,
The spectrum conversion means includes
The modulation signal synthesized by the band synthesizing circuit is input, and a compensation signal obtained by converting the roll-off rate of the transition band is generated.
The modulation signal synthesized by the band synthesizing circuit is input, and the root roll-off characteristic of the receiving circuit is supplemented with the frequency component missing outside the transition range of the synthesized modulation signal, and the phase characteristics match. To generate a complementary signal with phase compensation
The communication method, wherein the compensation signal and the complementary signal are added and output.
変調信号から周波数軸上で複数の帯域に分割したサブ変調信号を生成する複数の分割フィルタを備え、各サブ変調信号を周波数軸上の任意の場所に分散配置した送信信号を出力する帯域分割回路と、
前記送信信号に対応する受信信号から前記各サブ変調信号を抽出する複数の抽出フィルタを備え、前記各サブ変調信号の帯域を前記分散配置前の帯域に戻して合成した変調信号を出力する帯域合成回路と
を備え、前記帯域合成回路から出力される変調信号を受信回路のルートロールオフフィルタを介して復調器に入力して復調する構成である通信装置において、
前記帯域合成回路は、前記受信回路のルートロールオフ特性と同等になるように、前記合成した変調信号の遷移域の周波数特性を補償し、遷移域の外側で欠損した周波数成分を補完するスペクトラム変換手段を含み、
前記帯域合成回路から出力されるルートロールオフ特性を有する変調信号を前記受信回路のルートロールオフフィルタに入力し、フルロールオフ特性を有する変調信号を前記復調器で復調する
ことを特徴とする通信装置。
A band division circuit that includes a plurality of division filters that generate sub-modulation signals that are divided into a plurality of bands on the frequency axis from the modulation signal, and that outputs a transmission signal in which each sub-modulation signal is distributed and arranged at arbitrary locations on the frequency axis When,
Band synthesis that includes a plurality of extraction filters that extract each sub-modulated signal from the received signal corresponding to the transmission signal, and outputs a modulated signal that is synthesized by returning the band of each sub-modulated signal to the band before the dispersion arrangement A communication device configured to input and demodulate a modulation signal output from the band synthesis circuit to a demodulator via a root roll-off filter of a reception circuit,
The band synthesizing circuit compensates for the frequency characteristic of the synthesized modulation signal in the transition region so as to be equivalent to the root roll-off characteristic of the receiving circuit, and compensates for the frequency component missing outside the transition region. Including means,
A modulation signal having a root roll-off characteristic output from the band synthesis circuit is input to a root roll-off filter of the receiving circuit, and the modulation signal having a full roll-off characteristic is demodulated by the demodulator. apparatus.
請求項3に記載の通信装置において、
前記スペクトラム変換手段は、
前記帯域合成回路で合成した変調信号を入力し、遷移域のロールオフ率を変換した補償信号を生成するスペクトラム変換フィルタと、
前記帯域合成回路で合成した変調信号を入力し、前記受信回路のルートロールオフ特性に対して、前記合成した変調信号の遷移域の外側で欠損した周波数成分を補完し、かつ位相特性が一致するように位相補償した補完信号を生成する補完信号生成手段と、
前記補償信号および前記補完信号を加算して出力する加算回路と
を備えたことを特徴とする通信装置。
The communication device according to claim 3.
The spectrum conversion means includes
A spectrum conversion filter that inputs a modulation signal synthesized by the band synthesizing circuit and generates a compensation signal obtained by converting a roll-off rate of a transition band;
The modulation signal synthesized by the band synthesizing circuit is input, and the root roll-off characteristic of the receiving circuit is supplemented with the frequency component missing outside the transition range of the synthesized modulation signal, and the phase characteristics match. Complementary signal generation means for generating a complementary signal phase-compensated as described above,
An adder circuit that adds and outputs the compensation signal and the complementary signal.
変調信号から周波数軸上で複数の帯域に分割したサブ変調信号を生成する複数の分割フィルタを備え、各サブ変調信号を周波数軸上の任意の場所に分散配置した送信信号を出力する帯域分割回路と、
前記送信信号に対応する受信信号から前記各サブ変調信号を抽出する複数の抽出フィルタを備え、前記各サブ変調信号の帯域を前記分散配置前の帯域に戻して合成した変調信号を出力する帯域合成回路と
を備え、前記帯域合成回路から出力される変調信号を受信回路のルートロールオフフィルタを介して復調器に入力して復調する構成である通信装置の帯域合成回路において、
前記受信回路のルートロールオフ特性と同等になるように、前記合成した変調信号の遷移域の周波数特性を補償し、遷移域の外側で欠損した周波数成分を補完するスペクトラム変換手段を含む
ことを特徴とする帯域合成回路。
A band division circuit that includes a plurality of division filters that generate sub-modulation signals that are divided into a plurality of bands on the frequency axis from the modulation signal, and that outputs a transmission signal in which each sub-modulation signal is distributed and arranged at arbitrary locations on the frequency axis When,
Band synthesis that includes a plurality of extraction filters that extract each sub-modulated signal from the received signal corresponding to the transmission signal, and outputs a modulated signal that is synthesized by returning the band of each sub-modulated signal to the band before the dispersion arrangement Circuit and
In the band synthesizing circuit of the communication device, the modulation signal output from the band synthesizing circuit is input to the demodulator through the root roll-off filter of the receiving circuit and demodulated.
Comprising spectrum conversion means that compensates for the frequency characteristics of the transition region of the synthesized modulation signal and complements the missing frequency components outside the transition region so as to be equivalent to the root roll-off characteristics of the receiving circuit. A band synthesis circuit.
請求項5に記載の帯域合成回路において、
前記スペクトラム変換手段は、
前記帯域合成回路で合成した変調信号を入力し、遷移域のロールオフ率を変換した補償信号を生成するスペクトラム変換フィルタと、
前記帯域合成回路で合成した変調信号を入力し、前記受信回路のルートロールオフ特性に対して、前記合成した変調信号の遷移域の外側で欠損した周波数成分を補完し、かつ位相特性が一致するように位相補償した補完信号を生成する補完信号生成手段と、
前記補償信号および前記補完信号を加算して出力する加算回路と
を備えたことを特徴とする帯域合成回路。
The band synthesis circuit according to claim 5, wherein
The spectrum conversion means includes
A spectrum conversion filter that inputs a modulation signal synthesized by the band synthesizing circuit and generates a compensation signal obtained by converting a roll-off rate of a transition band;
The modulation signal synthesized by the band synthesizing circuit is input, and the root roll-off characteristic of the receiving circuit is supplemented with the frequency component missing outside the transition range of the synthesized modulation signal, and the phase characteristics match. Complementary signal generation means for generating a complementary signal phase-compensated as described above,
A band synthesizing circuit comprising: an adder circuit that adds and outputs the compensation signal and the complementary signal.
JP2014128396A 2014-06-23 2014-06-23 COMMUNICATION METHOD, COMMUNICATION DEVICE, AND BAND SYNTHESIS CIRCUIT Active JP5897651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014128396A JP5897651B2 (en) 2014-06-23 2014-06-23 COMMUNICATION METHOD, COMMUNICATION DEVICE, AND BAND SYNTHESIS CIRCUIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014128396A JP5897651B2 (en) 2014-06-23 2014-06-23 COMMUNICATION METHOD, COMMUNICATION DEVICE, AND BAND SYNTHESIS CIRCUIT

Publications (2)

Publication Number Publication Date
JP2016009928A JP2016009928A (en) 2016-01-18
JP5897651B2 true JP5897651B2 (en) 2016-03-30

Family

ID=55227238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014128396A Active JP5897651B2 (en) 2014-06-23 2014-06-23 COMMUNICATION METHOD, COMMUNICATION DEVICE, AND BAND SYNTHESIS CIRCUIT

Country Status (1)

Country Link
JP (1) JP5897651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022018802A1 (en) * 2020-07-20 2022-01-27 日本電信電話株式会社 Wireless communication system, wireless communication method, and spectrum combination device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2756383C (en) * 2009-04-01 2015-02-10 Nippon Telegraph And Telephone Corporation Wireless transmission method, wireless transmission system, and transmission apparatus and reception apparatus of wireless transmission system
JP5642863B1 (en) * 2013-11-13 2014-12-17 日本電信電話株式会社 COMMUNICATION DEVICE, COMMUNICATION METHOD, BAND DIVISION CIRCUIT, AND BAND SYNTHESIS CIRCUIT

Also Published As

Publication number Publication date
JP2016009928A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
US10355769B2 (en) Narrowband signal transport sub-system for distributed antenna system
US9065612B2 (en) Wireless transmission method, wireless transmission system, and transmission apparatus and reception apparatus of wireless transmission system
JP5642863B1 (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, BAND DIVISION CIRCUIT, AND BAND SYNTHESIS CIRCUIT
EP3985891B1 (en) Transmission apparatus
JP5450278B2 (en) Communication system, receiver, transmitter
JP5897651B2 (en) COMMUNICATION METHOD, COMMUNICATION DEVICE, AND BAND SYNTHESIS CIRCUIT
JP5699660B2 (en) Wireless communication system, transmitter, receiver, and wireless communication method
JP5897650B2 (en) COMMUNICATION METHOD, COMMUNICATION DEVICE, AND BAND SYNTHESIS CIRCUIT
EP3032790B1 (en) Generalized frequency division multiplexing radio transmission using frequency domain offset-qam
JP2013243526A (en) Wireless communication system and wireless communication method
CN114422038A (en) Photon terahertz wireless communication method and system based on subcarrier OFDM
JP5296240B1 (en) Receiving apparatus and receiving method
JP5296182B2 (en) Receiving apparatus and receiving method
JP2013126088A (en) Receiving apparatus and receiving method
JP6742131B2 (en) OFDM signal transmitter and OFDM signal receiver
US20190349157A1 (en) Receiver, transmitter, communication system for subband communication and methods for subband communication
WO2018083925A1 (en) Wireless communication device, method, program, and recording medium
JP5680734B1 (en) Band distributed transmission system, band distributed transmission method, transmitter and receiver
JP5718785B2 (en) Wireless communication system, wireless receiver and wireless transmitter
JP4930262B2 (en) OFDM receiving apparatus and OFDM receiving method
KR101400926B1 (en) Apparatus and method for transmitting/receiving signal
JP6037503B2 (en) Transmission equipment
TW201707424A (en) Methods of data allocation and signal receiving, wireless transmitting apparatus and wireless receiving apparatus
JP5943272B2 (en) Channelizer for frequency division multiplexed signals
JP5587486B1 (en) Receiving apparatus and receiving method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160302

R150 Certificate of patent or registration of utility model

Ref document number: 5897651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150