JP5892549B2 - Tactile sensor - Google Patents

Tactile sensor Download PDF

Info

Publication number
JP5892549B2
JP5892549B2 JP2012209957A JP2012209957A JP5892549B2 JP 5892549 B2 JP5892549 B2 JP 5892549B2 JP 2012209957 A JP2012209957 A JP 2012209957A JP 2012209957 A JP2012209957 A JP 2012209957A JP 5892549 B2 JP5892549 B2 JP 5892549B2
Authority
JP
Japan
Prior art keywords
subject
contact
friction coefficient
base member
tactile sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012209957A
Other languages
Japanese (ja)
Other versions
JP2014066526A (en
Inventor
年泰 喜成
年泰 喜成
宏 立矢
宏 立矢
史也 吉村
史也 吉村
匡平 高桑
匡平 高桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2012209957A priority Critical patent/JP5892549B2/en
Publication of JP2014066526A publication Critical patent/JP2014066526A/en
Application granted granted Critical
Publication of JP5892549B2 publication Critical patent/JP5892549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は被検体の表面をなぞることで、当該被検体の表面構造を認識できる触覚センサーに関する。   The present invention relates to a tactile sensor that can recognize the surface structure of a subject by tracing the surface of the subject.

例えば、布、織物、編物等の分野においては、糸の太さや糸密度、織り方等により、表面構造が異なり、質感が変化する。
また、紙製品、ゴム製品、樹脂製品等においても、表面の凹凸形状により質感が変化する。
これらの表面構造を定量的に認識する方法として、特許文献1にはCCDカメラを用いて被検体の表面画像を取得し、この表面画像を解析するためのシボ織物のシボ立ち性測定装置を開示する。
しかし、画像処理方法では高倍率カメラ等の専用装置が必要となるだけでなく、光源の強さや角度によっても計測条件が相異し、織物の織り構造等の解析には適用が困難である。
特許文献2は、弾性変形可能なベース部材にウイスカを装着した複数個の触覚センサーからなるセンサーユニットを開示する。
同公報に開示するセンサーユニットは比較的簡単な構成であるが、複数のセンサーを組み合せる必要があった。
For example, in the fields of cloth, woven fabric, knitted fabric, etc., the surface structure differs and the texture changes depending on the thickness of the yarn, the yarn density, and the weaving method.
In addition, the texture of paper products, rubber products, resin products, and the like changes depending on the surface irregularities.
As a method for quantitatively recognizing these surface structures, Patent Document 1 discloses a texture texture measuring apparatus for a textured fabric for acquiring a surface image of a subject using a CCD camera and analyzing the surface image. To do.
However, the image processing method requires not only a dedicated device such as a high-magnification camera, but also the measurement conditions differ depending on the intensity and angle of the light source, and is difficult to apply to the analysis of the woven structure of the fabric.
Patent Document 2 discloses a sensor unit including a plurality of tactile sensors in which whiskers are mounted on an elastically deformable base member.
The sensor unit disclosed in the publication has a relatively simple configuration, but it is necessary to combine a plurality of sensors.

特開平11−279936号公報JP-A-11-279936 特開2002−116101号公報JP 2002-116101 A

本発明は、被検体の表面をなぞるだけで当該被検体の表面構造の認識や解析が可能な触覚センサーの提供を目的とする。   An object of the present invention is to provide a tactile sensor capable of recognizing and analyzing the surface structure of a subject by simply tracing the surface of the subject.

本発明に係る触覚センサーは、被検体の表面に接触する接触子と、前記接触子と被検体表面とを相対的に回転運動させる回転制御手段と、前記接触子が被検体表面に接触することにより得られる摩擦係数の計測手段と、前記計測手段により得られた摩擦係数の振動に基づいて被検体の表面構造を解析するための解析手段とを有することを特徴とする。   The tactile sensor according to the present invention includes a contact that contacts the surface of the subject, a rotation control unit that relatively rotates the contact and the surface of the subject, and the contact that contacts the surface of the subject. The friction coefficient measuring means obtained by the above-mentioned method, and the analyzing means for analyzing the surface structure of the subject based on the vibration of the friction coefficient obtained by the measuring means.

ここで、接触子と被検体表面とを相対的に回転運動させると表現したのは、接触子の先端が被検体の表面を円で描くようになぞることができれば、センサー側が回転しても被検体側が回転してもよい。
例えば本発明に係るセンサーをロボットハンドに把持させて被検体の表面をなぞってもよい。
Here, we expressed the relative rotational movement of the contact and the surface of the subject as long as the tip of the contact can trace the surface of the subject in a circle. The specimen side may rotate.
For example, the sensor according to the present invention may be grasped by a robot hand and the surface of the subject may be traced.

接触子の先端が被検体の表面をなぞる際に、この被検体の表面の構造により変動する鉛直方向の力(圧縮力)Nと、水平方向の力(摩擦力)Fがこの接触子に作用する。
従って、摩擦係数の計測手段は弾性変形可能なベース部材と、当該ベース部材に取り付けた接触子と歪みゲージとを有し、接触子の先端が被検体の表面をなぞることで生じるベース部材の変形を歪みゲージで検出するようにすると、前記NとFとから動摩擦係数を算出することができる。
このようにして得られた動摩擦係数は被検体の表面構造を反映した波形として出現するので、FFT解析することでスペクトルチャートが得られる。
これにより特定のスペクトルの周波数やそのピークの大きさにより被検体の表面構造を認識することができる。
また、動摩擦係数の振幅の変動を解析することで、表面構造の認識や解析を行うことができる。
When the tip of the contact traces the surface of the subject, a vertical force (compression force) N and a horizontal force (friction force) F that vary depending on the structure of the subject surface act on the contact. To do.
Therefore, the coefficient of friction measurement means has a base member that can be elastically deformed, a contact attached to the base member, and a strain gauge, and the deformation of the base member caused by the tip of the contact tracing the surface of the subject. Is detected by a strain gauge, the dynamic friction coefficient can be calculated from N and F.
Since the dynamic friction coefficient thus obtained appears as a waveform reflecting the surface structure of the subject, a spectrum chart can be obtained by performing FFT analysis.
Thereby, the surface structure of the subject can be recognized by the frequency of a specific spectrum and the size of the peak.
Moreover, the surface structure can be recognized and analyzed by analyzing the fluctuation of the amplitude of the dynamic friction coefficient.

本発明に係る触覚センサーにあっては、触覚センサーの接触子が被検体の表面を相対的に回転するようになぞるので、例えば織物のたて糸やよこ糸に対するなぞり角度が変化し、その複雑な表面構造を認識することができる。
織物等の表面を一方向になぞり、歪みゲージを介して表面構造を検出する方法の場合には織物に対するなぞり方向の角度を順次変えて情報を取り込む必要があるのに対して、本発明に係る触覚センサーは、なぞり方向の角度が連続的に変化するので、測定時間が短く摩擦係数の変動の見落としを防止する。
また、回転運動により、なぞり角度を変えながら摩擦係数の連続的な変化を計測した後に所定のなぞり角度に沿って詳細に計測することもできるので、検出精度が向上する。
In the tactile sensor according to the present invention, since the contact of the tactile sensor is traced so as to rotate relative to the surface of the subject, for example, the tracing angle with respect to the warp or weft of the fabric changes, and the complicated surface structure Can be recognized.
In the case of a method of tracing the surface of a fabric or the like in one direction and detecting the surface structure via a strain gauge, it is necessary to change the angle of the tracing direction with respect to the fabric in order to capture information. In the tactile sensor, since the angle in the tracing direction is continuously changed, the measurement time is short, and the fluctuation of the friction coefficient is prevented from being overlooked.
Further, since the continuous change of the friction coefficient can be measured while changing the tracing angle by the rotational motion, it can be measured in detail along the predetermined tracing angle, so that the detection accuracy is improved.

(a)は検出部の構造例を示し、(b)は接触子部分の拡大図を示す。(A) shows the structural example of a detection part, (b) shows the enlarged view of a contact part. なぞり動作を模式的に示す。A tracing operation is schematically shown. (a)は圧縮力とひずみの関係を示し、(b)は摩擦力とひずみの関係を示す。(A) shows the relationship between compressive force and strain, and (b) shows the relationship between frictional force and strain. 実験装置の構造例を示す。An example of the structure of the experimental apparatus is shown. 織物三原組織の表面写真を示す。The surface photograph of a woven fabric Mihara organization is shown. (a)は摩擦係数の波形例を示し、(b)はそのFFT解析例を示す。(A) shows the example of a waveform of a friction coefficient, (b) shows the example of FFT analysis. 主ピーク周波数とよこ糸密度の関係を示す。The relationship between the main peak frequency and the weft density is shown. 動摩擦係数振幅とよこ糸太さの関係を示す。The relationship between dynamic friction coefficient amplitude and weft thickness is shown. 動摩擦係数振幅となぞり方向の関係を示す。The relationship between the dynamic friction coefficient amplitude and the sliding direction is shown.

以下、本発明に係る触覚センサーを用いた実験結果を説明する。
触覚センサーは図1に示すように、正方形状のベース部材11(厚さ1mm,25mm四方)の中心に被検体の表面と接触する接触子12を取り付けた構造となっている。
接触子12はアクリル製の帯板(厚さ0.5mm,幅5mm,長さ10mm)からなる支持部12bに接触部12aであるピアノ線(直径0.5mm)を接着した構造であり、全長は15mmである。
ベース部材11は弾性材からなり、接触子12が被検体の表面をなぞる際に生じる圧縮力Nと摩擦力Fが、このベース部材11に伝達されるように連結部12cにて連結してある。
その際にベース部材11に生じる歪みを検出できるように本実験では、図1及び図2に示すようにベース部材11のなぞり方向であって、接触子12の前後に歪みゲージA,Bをそれぞれ貼付し、歪みゲージBに対応したベース部材11の裏面側に歪みゲージCを貼付した。
図2に接触子12が被検体1の表面部1aを矢印の方向になぞる場合のベース部材11の変形を模式的に示す。
Hereinafter, experimental results using the tactile sensor according to the present invention will be described.
As shown in FIG. 1, the tactile sensor has a structure in which a contact 12 that contacts the surface of a subject is attached to the center of a square base member 11 (thickness: 1 mm, 25 mm square).
The contact 12 has a structure in which a piano wire (0.5 mm in diameter) as a contact portion 12a is bonded to a support portion 12b made of an acrylic strip (thickness 0.5 mm, width 5 mm, length 10 mm). Is 15 mm.
The base member 11 is made of an elastic material, and is connected by a connecting portion 12 c so that the compressive force N and the frictional force F generated when the contact 12 traces the surface of the subject are transmitted to the base member 11. .
In this experiment, strain gauges A and B are respectively placed in the tracing direction of the base member 11 and before and after the contact 12 so that the strain generated in the base member 11 can be detected. The strain gauge C was stuck on the back side of the base member 11 corresponding to the strain gauge B.
FIG. 2 schematically shows the deformation of the base member 11 when the contact 12 traces the surface 1a of the subject 1 in the direction of the arrow.

上記のようになぞり動作によって接触子12には鉛直方向の力(圧縮力)Nと水平方向の力(摩擦力)Fが作用する。
ベース部材11に生じる歪みは、これらの影響の和となる。
接触部12aにNとFをそれぞれ与えた実験結果を図3に示す。
各歪みゲージに生じるひずみは、NとFに対して線形である。
よって式(1)が成り立つ。
εは歪みゲージA,B,Cの歪みを示し、a,bは比例定数である。
これらの値は図3を最小二乗近似することで得ることができる。
FをNで除することで動摩擦係数μが求められる。
As described above, a vertical force (compression force) N and a horizontal force (friction force) F act on the contact 12 by the tracing operation.
The distortion generated in the base member 11 is the sum of these effects.
FIG. 3 shows an experimental result in which N and F are respectively given to the contact portion 12a.
The strain generated in each strain gauge is linear with respect to N and F.
Therefore, Formula (1) is materialized.
ε i indicates strain of strain gauges A, B, and C, and a i and b i are proportional constants.
These values can be obtained by approximating the least squares of FIG.
The dynamic friction coefficient μ is obtained by dividing F by N.

本実験では、図4に示すように被検体を回転テーブル20の上に固定し、触覚センサー10に所定のおもりを載置し、鉛直方向の荷重を調整しながら行った。
実験時には、回転テーブル20を一定速度で回転させ接触子12で被検体である織物をなぞった。
この場合に図1(a)に示すようにベース部材11の4隅に設けた取付孔11aを用い、保持体14にボルトナット15により固定し、この保持体14を上下動するアームに取り付けた。
織物をなぞる方向は、接触子の幅方向をよこ糸に平行とし、たて糸方向を接線方向として、なぞる向きをなぞり方向0°と定義する。
測定は、なぞり方向−2.5°〜182.5°において行なった。
また、接触子12と回転中心との距離は20mmとした。
試料の織物には、多くの織物の基礎となっている三原組織の平織,綾織,朱子織を使用し、糸太さや糸密度がそれぞれ異なるものを十数種類用意した。
なお、代表的な試料の写真を図5に示す。
In this experiment, as shown in FIG. 4, the subject was fixed on the rotary table 20, a predetermined weight was placed on the tactile sensor 10, and the load in the vertical direction was adjusted.
During the experiment, the rotary table 20 was rotated at a constant speed, and the contactor 12 traced the fabric as the subject.
In this case, as shown in FIG. 1 (a), mounting holes 11a provided at the four corners of the base member 11 are used, fixed to the holding body 14 with bolts and nuts 15, and this holding body 14 is attached to an arm that moves up and down. .
The direction in which the fabric is traced is defined as a direction in which the width direction of the contact is parallel to the weft yarn, the warp yarn direction is the tangential direction, and the tracing direction is 0 °.
The measurement was performed in a tracing direction of −2.5 ° to 182.5 °.
The distance between the contact 12 and the rotation center was 20 mm.
As the sample fabric, plain weave, twill weave, and satin weave, which are the foundations of many fabrics, were used, and dozens of types with different thread thicknesses and yarn densities were prepared.
A photograph of a representative sample is shown in FIG.

織物の表面を本発明に係る触覚センサーでなぞると、図6(a)に示すような動摩擦係数の振動波形が得られ、これをFFT解析すると図6(b)に示すようなスペクトルチャートが得られる。
本実験では、なぞり方向−2.5°〜2.5°において測定された動摩擦係数1024点をFFT解析した。
そのとき、スペクトルが最も大きくなる周波数をなぞり方向0°における主ピーク周波数fp0と定義する。
17種類の織物を用い、よこ糸密度とfp0の関係を求め、図7に示す。
よこ糸密度[pick/cm]は、織物のたて方向の単位長さに何本のよこ糸がならんでいるかを表す単位で、織物の表面凹凸間隔に関係していると考えられる。
図7中の一点鎖線は、接触子が各糸を乗り越える度に動摩擦係数の振動が生じるとして、よこ糸密度と回転テーブルの回転速度および回転半径から算出した理論周波数である。
図7より、平織の試料ではfp0と理論周波数がほぼ一致しており、糸密度の推定が可能だと考えられる。
綾織および朱子織の試料においては、fp0が理論周波数よりも低い値となっている。
これにより、織物の平織、綾織、朱子織の区別ができる。
When the surface of the fabric is traced with the tactile sensor according to the present invention, a vibration waveform having a dynamic friction coefficient as shown in FIG. 6A is obtained, and when this is FFT-analyzed, a spectrum chart as shown in FIG. 6B is obtained. It is done.
In this experiment, FFT analysis was performed on 1024 dynamic friction coefficients measured in the tracing direction of −2.5 ° to 2.5 °.
At that time, the frequency at which the spectrum becomes the largest is defined as the main peak frequency f p0 in the tracing direction 0 °.
Using 17 types of woven fabric, the relationship between the weft density and fp0 was determined and shown in FIG.
The weft density [pick / cm] is a unit indicating how many wefts are aligned in the unit length in the warp direction of the fabric, and is considered to be related to the surface unevenness of the fabric.
A one-dot chain line in FIG. 7 is a theoretical frequency calculated from the weft yarn density, the rotational speed of the rotary table, and the rotational radius, assuming that the vibration of the dynamic friction coefficient is generated every time the contactor gets over each yarn.
From FIG. 7, it is considered that the fp0 and the theoretical frequency are almost the same in the plain weave sample, and the yarn density can be estimated.
In the twill weave and satin weave samples, f p0 is lower than the theoretical frequency.
Thereby, the plain weave, twill weave, and satin weave can be distinguished.

次に、なぞり方向−2.5°〜2.5°において測定された動摩擦係数の平均偏差を動摩擦係数振幅Aと定義する。
なぞり方向0°でのよこ糸太さと動摩擦係数振幅Aの関係を求め、図8に示す。
図8より、平織試料ではAとよこ糸太さに正の相関がみられる。
これは糸太さが増加することにより、表面の凹凸は大きくなり、凹凸を乗り越えるとき接触子が大きくたわむためだと考えられる。
綾織の試料においてはAとよこ糸太さに相関が認められなかったのは、表面のたて糸の占める割合が大きかったためと思われる。
Next, the average deviation of the dynamic friction coefficient measured in the tracing direction from −2.5 ° to 2.5 ° is defined as the dynamic friction coefficient amplitude A 0 .
FIG. 8 shows the relationship between the weft thread thickness and the dynamic friction coefficient amplitude A 0 when the tracing direction is 0 °.
From FIG. 8, a positive correlation is observed in the A 0 and weft thickness in plain weave sample.
This is thought to be because the surface unevenness increases as the thread thickness increases, and the contactor bends greatly when the unevenness is overcome.
In the sample of twill it was not observed correlation A 0 and weft thickness is probably because the ratio of warp of the surface was large.

次に、織物組織が異なる3種の試料に対する、なぞり方向と動摩擦係数振幅Aの関係を図9に示す。
Aはプロットのあるなぞり方向の±2.5°の区間の動摩擦係数の平均偏差を表している。
図9から、各試料により、Aが増加するなぞり方向が異なることがわかる。
平織では、よこ糸が接触子に平行に当たる0°と、たて糸がこの接触子に平行に当たる90°にピークが出現するとともに、よこ糸とたて糸の交錯点を拾った約45°と135°にもピークが出現している。
また、綾織の場合は120°付近に斜め方向の綾線を示すピークが出現している。
朱子織の場合は、表面にあるたて糸の割合により100°付近の大きなピークとその両側に小さなピークが数ヶ所に出現した。
このことから、動摩擦係数の振幅変動を解析することで表面構造の認別が可能であることが分かる。
Next, FIG. 9 shows the relationship between the stroking direction and the dynamic friction coefficient amplitude A for three types of samples having different fabric structures.
A represents the average deviation of the dynamic friction coefficient in the section of ± 2.5 ° in the tracing direction with the plot.
From FIG. 9, it can be seen that the tracing direction in which A increases differs depending on each sample.
In plain weaving, a peak appears at 0 ° when the weft yarn is parallel to the contactor and 90 ° when the warp yarn is parallel to the contactor, and at about 45 ° and 135 ° when the intersection of the weft yarn and the warp yarn is picked up. Has appeared.
In the case of twill weave, a peak showing an oblique twill line appears around 120 °.
In the case of satin weave, large peaks near 100 ° and small peaks appeared on several sides depending on the ratio of warp yarns on the surface.
From this, it can be seen that the surface structure can be identified by analyzing the amplitude fluctuation of the dynamic friction coefficient.

1 被検体
1a 表面部
10 検出部
11 ベース部材
12 接触子
12a 接触部
12b 支持部
12c 連結部
13a 歪みゲージ
14 保持体
20 回転テーブル
DESCRIPTION OF SYMBOLS 1 Subject 1a Surface part 10 Detection part 11 Base member 12 Contact 12a Contact part 12b Support part 12c Connection part 13a Strain gauge 14 Holding body 20 Rotary table

Claims (2)

被検体の表面に接触する接触子と、
前記接触子と被検体表面とを相対的に回転運動させる回転制御手段と、
前記接触子が被検体表面に接触することにより得られる摩擦係数の計測手段と、前記計測手段により得られた摩擦係数の振動に基づいて被検体の表面構造を解析するための解析手段とを有し、
前記解析手段は、摩擦係数の振動数のFFT解析手段又は/及び摩擦係数の変動解析手段であり、
前記摩擦係数の計測手段は弾性変形可能なプレート状のベース部材と、当該ベース部材に取り付けた接触子とを有し、前記接触子の先端が被検体の表面をなぞることで生じるベース部材の歪みに基づいて計測するものであることを特徴とする触覚センサー。
A contact that contacts the surface of the subject;
A rotation control means for relatively rotating the contact and the subject surface;
A friction coefficient measuring means obtained by the contact of the contact with the surface of the subject, and an analysis means for analyzing the surface structure of the subject based on the vibration of the friction coefficient obtained by the measuring means. And
The analysis means is an FFT analysis means of the friction coefficient frequency and / or a friction coefficient fluctuation analysis means,
The friction coefficient measuring means has a plate-like base member that can be elastically deformed and a contact attached to the base member, and the distortion of the base member caused by the tip of the contact tracing the surface of the subject. A tactile sensor characterized by being measured based on the above.
請求項1記載の触覚センサーを用いた被検体の表面の凹凸構造の認別及び解析方法。A method for identifying and analyzing a concavo-convex structure on a surface of a subject using the tactile sensor according to claim 1.
JP2012209957A 2012-09-24 2012-09-24 Tactile sensor Active JP5892549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012209957A JP5892549B2 (en) 2012-09-24 2012-09-24 Tactile sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209957A JP5892549B2 (en) 2012-09-24 2012-09-24 Tactile sensor

Publications (2)

Publication Number Publication Date
JP2014066526A JP2014066526A (en) 2014-04-17
JP5892549B2 true JP5892549B2 (en) 2016-03-23

Family

ID=50743091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209957A Active JP5892549B2 (en) 2012-09-24 2012-09-24 Tactile sensor

Country Status (1)

Country Link
JP (1) JP5892549B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6713680B2 (en) * 2015-05-14 2020-06-24 国立大学法人 東京大学 Friction coefficient measuring device, friction coefficient measuring system, and walking robot
JP6811794B2 (en) 2019-02-22 2021-01-13 本田技研工業株式会社 Artificial epidermis structure
JP7239982B2 (en) * 2019-06-04 2023-03-15 国立大学法人広島大学 Tactile evaluation system, tactile evaluation method and program

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109640U (en) * 1987-01-09 1988-07-14
JPH0334678Y2 (en) * 1987-10-06 1991-07-23
JPH11279936A (en) * 1998-03-25 1999-10-12 Asahi Chem Ind Co Ltd Creping capability measurement system for creped woven fabric and creping capability measurement
JP4353624B2 (en) * 2000-10-06 2009-10-28 高松機械工業株式会社 Tactile sensor and sensor unit combining the same
JP2004077346A (en) * 2002-08-20 2004-03-11 Yamaguchi Technology Licensing Organization Ltd Tactile sensor, surface form measurement system using the same, and surface form measurement method
JP4632202B2 (en) * 2005-07-06 2011-02-16 独立行政法人産業技術総合研究所 Tactile sensor
JP2008256490A (en) * 2007-04-04 2008-10-23 Enshu Ltd Pin-on-friction testing device
JP2009145140A (en) * 2007-12-12 2009-07-02 National Institute For Materials Science Friction measuring device
JP2010093058A (en) * 2008-10-08 2010-04-22 Tokyo Electron Ltd Polishing method and polishing apparatus

Also Published As

Publication number Publication date
JP2014066526A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP5892549B2 (en) Tactile sensor
WO2010134610A1 (en) Tactile sensor
CN103234848A (en) Device for testing nano scratch and friction stick-slip properties of film surfaces
TWI783990B (en) Method, system and sensor for detecting a characteristic of a textile or metal thread fed to an operating machine
JP2007248463A5 (en)
CN111551461A (en) High-performance fiber bundle wear resistance testing device and testing method
CN212932272U (en) High-performance fiber bundle wear resistance testing device
CN1272618C (en) Pressure testing method and device in circumstances of single sided low tension compression of fabric
CN109799134A (en) A kind of superhigh precision friction wear testing machine carrying out rubbing surface in-situ observation
RU2510009C1 (en) Device to measure parameters of surface relief and mechanical properties of materials
RU2502982C2 (en) Method to determine force of friction of textile webs
US10151645B2 (en) Arrangement and method for the synchronous determination of the shear modulus and of the Poisson's number on samples of elastically isotropic and anisotropic materials
CN108254379B (en) Defect detection device and method
Ezazshahabi et al. Analysis of frictional behavior of woven fabrics by a multi-directional tactile sensing mechanism
RU2519028C1 (en) Device for evaluation of thread slippage of textile materials
TW201418667A (en) Apparatus of detecting thickness of fibre cloth and method therefor
WO2010078621A1 (en) Apparatus and method for providing a measurement of the prickle propensity of a fabric, yarn or garment surface having protruding fibre ends
Potluri et al. Towards automated testing of fabrics
KR101033031B1 (en) Strain measuring device
Wang et al. Yarn break detection using an optical method in real time
Xi Application of Computer Vision and Image Processing for Micro Deformation
Sampo et al. Curvelet-based method for orientation estimation of particles
Cordero et al. Monitoring the strain-rate progression of an aluminium sample undergoing tensile deformation by electronic speckle-pattern interferometry (ESPI)
JP2002296162A (en) Apparatus and method for measuring flexural characteristics of fiber-shaped or sheet-shaped article
Abdolkarim Hosseini Ravandi et al. Objective evaluation of woven fabrics using optical sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150729

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150825

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160217

R150 Certificate of patent or registration of utility model

Ref document number: 5892549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250