JP5892011B2 - Method and apparatus for measuring birefringence of articles having uniaxial orientation - Google Patents

Method and apparatus for measuring birefringence of articles having uniaxial orientation Download PDF

Info

Publication number
JP5892011B2
JP5892011B2 JP2012197860A JP2012197860A JP5892011B2 JP 5892011 B2 JP5892011 B2 JP 5892011B2 JP 2012197860 A JP2012197860 A JP 2012197860A JP 2012197860 A JP2012197860 A JP 2012197860A JP 5892011 B2 JP5892011 B2 JP 5892011B2
Authority
JP
Japan
Prior art keywords
measured
transmittance spectrum
phase difference
spectrum
birefringence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012197860A
Other languages
Japanese (ja)
Other versions
JP2014052317A (en
Inventor
勝 丸喜
勝 丸喜
清和 酒井
清和 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2012197860A priority Critical patent/JP5892011B2/en
Publication of JP2014052317A publication Critical patent/JP2014052317A/en
Application granted granted Critical
Publication of JP5892011B2 publication Critical patent/JP5892011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明はチューブもしくは棒状物のような押出し成形品又は一軸延伸フィルム・シートなど、一軸配向をもつ光透過性物品の複屈折を測定する方法と装置に関するものである。   The present invention relates to a method and an apparatus for measuring the birefringence of a light-transmitting article having a uniaxial orientation, such as an extruded product such as a tube or a rod, or a uniaxially stretched film sheet.

光透過性被測定物の位相差を測定する一般的な方法としては、偏光子と検光子それぞれの透過軸を平行に配置し、偏光子と検光子との間に被測定物を置き、偏光子と検光子とを平行ニコル状態に保って1回転し、そのときの透過光強度変化から被測定物の位相差と配向角とを求める方法(平行ニコル回転法)がある。   As a general method for measuring the phase difference of a light-transmitting object to be measured, the transmission axes of the polarizer and the analyzer are arranged in parallel, and the object to be measured is placed between the polarizer and the analyzer. There is a method (parallel Nicol rotation method) in which the optical element and the analyzer are rotated once while maintaining the parallel Nicol state, and the phase difference and the orientation angle of the object to be measured are obtained from the change in transmitted light intensity at that time.

また、透明樹脂成形品のある面積内の位相差分布を測定するために、平行ニコル回転法とCCDカメラとを組み合わせた装置も実用化されており、主に位相差が約260nm以下の比較的低位相差範囲の被測定物を対象とした位相差分布測定に利用されている。   In addition, in order to measure the phase difference distribution within a certain area of the transparent resin molded product, an apparatus combining a parallel Nicol rotation method and a CCD camera has been put into practical use. It is used for phase difference distribution measurement for objects to be measured in the low phase difference range.

さらに、測定面積内で数千nmの広範囲にわたる位相差変化を有する透明樹脂成形品の位相差分布を測定するためには、白色光と平行ニコル配置の偏光子・検光子とイメージング分光器とを備え、透過光の分光スペクトルから位相差を測定する装置もある(特許文献1参照。)。   Furthermore, in order to measure the phase difference distribution of a transparent resin molded product having a phase change over a wide range of several thousand nm within the measurement area, a polarizer / analyzer and imaging spectrometer with white light and parallel Nicol arrangement are used. There is also an apparatus that measures the phase difference from the spectrum of transmitted light (see Patent Document 1).

医療用カテーテルチューブの製造において分子配向の大小は耐伸び性や耐キンク性と関係することから、分子配向の大小の指標となる複屈折の管理が重要である(特許文献2参照。)。チューブにおける複屈折は、チューブの長手方向とそれに直交する円周方向との屈折率の差を示すものである。複屈折が小さいときは耐伸び性が小さくなり、医療用カテーテルチューブの場合には治療デバイスを挿入の際にチューブが長手方向に変形して位置調節が不正確になるからである。このことは、カテーテルチューブに限らず、その他の医療用チューブ又は一般用途のチューブにおいても同様のことが言える。   In the manufacture of a medical catheter tube, since the magnitude of molecular orientation is related to elongation resistance and kink resistance, management of birefringence, which is an index of the magnitude of molecular orientation, is important (see Patent Document 2). Birefringence in the tube indicates a difference in refractive index between the longitudinal direction of the tube and the circumferential direction perpendicular thereto. This is because when the birefringence is small, the stretch resistance is small, and in the case of a medical catheter tube, the tube is deformed in the longitudinal direction when the treatment device is inserted, and the position adjustment becomes inaccurate. The same can be said for other medical tubes or general-purpose tubes as well as catheter tubes.

特許文献2では、位相差Rを王子計測機器株式会社製の簡易レタデーシヨン測定器を用いて計測し、チューブ肉厚tをレーザーマイクロダイアメーターを用いて計測したチューブ外径と芯線とから算出し、複屈折をR/tとして求めている。   In Patent Document 2, the phase difference R is measured using a simple retardation measuring instrument manufactured by Oji Scientific Instruments, and the tube thickness t is calculated from the tube outer diameter and the core wire measured using a laser microdiameter, Birefringence is determined as R / t.

特開2009−281787号公報JP 2009-281787 A WO2007/046348号WO2007 / 046348

日本写真学会誌, Vol.27, No.6, pp.478-483 (1990)Journal of the Japan Society of Photography, Vol.27, No.6, pp.478-483 (1990)

本発明は、一軸配向をもつ光透過性物品の複屈折を簡便に測定する方法と装置を提供することを目的とするものである。   An object of the present invention is to provide a method and an apparatus for simply measuring the birefringence of a light-transmitting article having a uniaxial orientation.

本発明の複屈折測定方法は、一軸配向をもつ光透過性物品からなる被測定物を挟んで偏光子と検光子を平行ニコルに配置するとともに、偏光子・検光子の透過軸を被測定物の配向軸に対して特定の方位角θで固定した状態で、偏光子を通して被測定物に多波長成分を含む測定光を照射し、被測定物を透過した測定光を検光子を通してイメージング分光器に入射させて透過光分光スペクトルを取り込む位相差測定装置を用い、以下のステップ(S1)から(S4)を備えて被測定物の複屈折を測定する。   In the birefringence measuring method of the present invention, a polarizer and an analyzer are arranged in parallel Nicols with a measured object made of a light-transmitting article having a uniaxial orientation, and the transmission axes of the polarizer and the analyzer are measured. In a state that is fixed at a specific azimuth angle θ with respect to the orientation axis of the imaging spectrometer, the measurement light including multi-wavelength components is irradiated to the object to be measured through the polarizer, and the measurement light transmitted through the object to be measured is passed through the analyzer to the imaging spectrometer. The birefringence of the object to be measured is measured by using the phase difference measurement device that enters the transmission light spectrum and captures the transmitted light spectrum and includes the following steps (S1) to (S4).

(S1)計算透過率スペクトルTcal(λ)(=I(θ)/I0(θ))を複数の位相差について予め求めて用意しておくステップ、
(S2)前記位相差測定装置を用いて被測定物の透過光分光スペクトルから透過率スペクトルTobs(λ)(=I(θ)/I0(θ))を求めるステップ、
(S3)ステップS1で用意された計算透過率スペクトルTcal(λ)のうちで透過率スペクトルTobs(λ)に最も近い計算透過率スペクトルTcal(λ)に該当する位相差Rとして位相差Rmを求めるステップ、及び
(S4)ステップS3で求められた位相差Rmを被測定物の厚さtで割り算することにより複屈折ΔnをΔn=Rm/tとして求めるステップ。
(S1) calculating and preparing a calculated transmittance spectrum Tcal (λ) (= I (θ) / I 0 (θ)) in advance for a plurality of phase differences;
(S2) obtaining a transmittance spectrum Tobs (λ) (= I (θ) / I 0 (θ)) from the transmitted light spectrum of the object to be measured using the phase difference measuring device;
(S3) The phase difference Rm is obtained as the phase difference R corresponding to the calculated transmittance spectrum Tcal (λ) closest to the transmittance spectrum Tobs (λ) among the calculated transmittance spectra Tcal (λ) prepared in step S1. And (S4) a step of obtaining birefringence Δn as Δn = Rm / t by dividing the phase difference Rm obtained in step S3 by the thickness t of the object to be measured.

ここで、I0は被測定物がないときの検出光強度、Iは被測定物があるときの検出光強度、λは測定光の波長である。 Here, I 0 is the detection light intensity when there is no measurement object, I is the detection light intensity when there is a measurement object, and λ is the wavelength of the measurement light.

平行ニコル配置の場合、一般的に検出光強度は下記の式で表現される。
I(θ)
=I0{α2cos4(θ−φ)+sin4(θ−φ)+(Cα/2)sin2 2(θ−φ )}
(1)
ただし、C =cos(2πR /λ ) (2)
In the case of the parallel Nicol arrangement, the detection light intensity is generally expressed by the following equation.
I (θ)
= I 02 cos 4 (θ−φ) + sin 4 (θ−φ) + (Cα / 2) sin 2 2 (θ−φ)}
(1)
Where C = cos (2πR / λ) (2)

ここで、αは直交する2つの光学主軸方向に直線偏光が透過するときの振幅透過率比、φは被測定物の配向角(被測定物の2つの光学主軸のうちの屈折率が大きい方向である。θとφは適当に設定した基準方位に対する角度である。   Here, α is the amplitude transmittance ratio when linearly polarized light is transmitted in two orthogonal optical principal axis directions, φ is the orientation angle of the object to be measured (the direction in which the refractive index of the two optical principal axes of the object to be measured is large) Θ and φ are angles with respect to an appropriately set reference direction.

本発明の複屈折測定方法を実施する複屈折測定装置は、偏光子と検光子が平行ニコルに配置され、多波長成分を含む測定光が偏光子から検光子を通してイメージング分光器に入射して透過光分光スペクトルを測定する分光スペクトル測定部と、偏光子と検光子の間に被測定物を保持し、被測定物の配向軸が偏光子・検光子の透過軸に対して特定の方位角θとなるように位置決めする試料台と、分光スペクトル測定部で測定された透過光分光スペクトルから被測定物の複屈折を算出する演算処理部と、を備えている。   In the birefringence measuring apparatus for carrying out the birefringence measuring method of the present invention, a polarizer and an analyzer are arranged in parallel Nicols, and measurement light including multi-wavelength components enters the imaging spectroscope from the polarizer through the analyzer and is transmitted. Spectral spectrum measurement unit for measuring optical spectrum, and holding the measurement object between the polarizer and the analyzer, the orientation axis of the measurement object is a specific azimuth angle θ with respect to the transmission axis of the polarizer / analyzer A sample stage that is positioned so as to be, and an arithmetic processing unit that calculates the birefringence of the object to be measured from the transmitted light spectral spectrum measured by the spectral spectrum measuring unit.

そして、演算処理部は、好ましい一実施形態を示す図5に示されるように、計算透過率スペクトルTcal(λ)を複数の位相差について予め求めて保持しておく透過率スペクトル保持部102と、分光スペクトル測定部により測定された被測定物の透過光分光スペクトルから透過率スペクトルTobs(λ)を算出する透過率スペクトル算出部104と、透過率スペクトル保持部102に保持された計算透過率スペクトルTcal(λ)のうちで透過率スペクトル算出部104で算出された透過率スペクトルTobs(λ)に最も近い計算透過率スペクトルTcal(λ)に該当する位相差Rmを求める位相差算出部108と、位相差算出部108で求められた位相差Rmを被測定物の厚さtで割り算することにより複屈折ΔnをΔn=Rm/tとして求める複屈折算出部112と、を備えている。位相差算出部108は、例えば、計算透過率スペクトルTcal(λ)と実測の透過率スペクトルTobs(λ)の差として波長ごとの残差2乗和を計算するようにすることにより、両者の一致を判断する。   Then, as shown in FIG. 5 showing a preferred embodiment, the arithmetic processing unit obtains and holds a calculated transmittance spectrum Tcal (λ) for a plurality of phase differences in advance, and a transmittance spectrum holding unit 102, A transmittance spectrum calculating unit 104 that calculates a transmittance spectrum Tobs (λ) from a transmitted light spectrum of the object measured by the spectrum measuring unit, and a calculated transmittance spectrum Tcal held in the transmittance spectrum holding unit 102 A phase difference calculating unit 108 for obtaining a phase difference Rm corresponding to the calculated transmittance spectrum Tcal (λ) closest to the transmittance spectrum Tobs (λ) of the transmittance spectrum calculating unit 104 among (λ); Birefringence calculation for obtaining birefringence Δn as Δn = Rm / t by dividing the phase difference Rm obtained by the phase difference calculation unit 108 by the thickness t of the object to be measured. It is provided with a 112. For example, the phase difference calculation unit 108 calculates the residual sum of squares for each wavelength as the difference between the calculated transmittance spectrum Tcal (λ) and the actually measured transmittance spectrum Tobs (λ), thereby matching the two. Judging.

透過率スペクトル保持部102は、位相差を異ならせて算出された複数の計算透過率スペクトルTcal(λ)を保持するものであり、例えば100〜10000nmの位相差の範囲について位相差10nmごとに計算透過率スペクトルTcal(λ)求めて保持しておく。   The transmittance spectrum holding unit 102 holds a plurality of calculated transmittance spectra Tcal (λ) calculated with different phase differences. For example, the transmittance spectrum holding unit 102 calculates a phase difference range of 100 to 10000 nm for each 10 nm phase difference. The transmittance spectrum Tcal (λ) is obtained and held.

イメージング分光器は、スリットから入射した一直線状の光をグレーティングによってその一直線とは直交する方向に分散させた分光スペクトルをCCDカメラなどの二次元検出器で検出することにより、一直線上の位置ごとの分光スペクトルを一度に検出できるようにしたものである。ここでの一直線上の位置とは、例えば被測定物がチューブ状又は棒状の長尺物である場合には長手方向に直交する一直線上すなわち径方向を意味する。   An imaging spectroscope detects a spectral spectrum in which a linear light incident from a slit is dispersed by a grating in a direction perpendicular to the straight line by a two-dimensional detector such as a CCD camera. A spectrum can be detected at a time. Here, the position on a straight line means a straight line that is perpendicular to the longitudinal direction, that is, the radial direction when the object to be measured is a long object having a tube shape or a rod shape.

複屈折測定方法の好ましい形態では、被測定物がチューブ又は棒状物であり、被測定物の厚さtはイメージング分光器に入射した被測定物の画像を処理して得ることにより、一台の位相差測定装置で位相差Rmと厚さtをともに得て複屈折Δnを求める。これにより、厚さtを求める装置を設ける必要がなくなる。イメージング分光器に入射した被測定物の画像から厚さtを求める方法について、後で図8を参照して説明する。   In a preferred form of the birefringence measuring method, the object to be measured is a tube or a rod-like object, and the thickness t of the object to be measured is obtained by processing an image of the object to be measured that has entered the imaging spectrometer. The phase difference measuring device obtains both the phase difference Rm and the thickness t to obtain the birefringence Δn. This eliminates the need to provide a device for determining the thickness t. A method for obtaining the thickness t from the image of the object to be measured that has entered the imaging spectrometer will be described later with reference to FIG.

チューブ及び棒状物は通常、押出し成形により製造される。押出し成形により製造されたチューブ及び棒状物は長手方向に一軸配向をもつため長手方向が配向軸方向となる。   Tubes and rods are usually produced by extrusion. Tubes and rods produced by extrusion molding have a uniaxial orientation in the longitudinal direction, so the longitudinal direction becomes the orientation axis direction.

この好ましい形態の複屈折測定方法に対応して、複屈折測定装置の好ましい形態では、好ましい一実施形態を示す図5に示されるように、演算処理部10は、被測定物としてチューブ又は棒状物を測定したとき、イメージング分光器に入射した被測定物の画像を処理して被測定物の厚さtを算出する画像処理部110をさらに備えており、複屈折算出部112は被測定物の厚さtとして画像処理部110で算出された被測定物の厚さtを使用する。   Corresponding to the birefringence measuring method of this preferred form, in the preferred form of the birefringence measuring apparatus, as shown in FIG. Is further provided with an image processing unit 110 that processes the image of the measurement object incident on the imaging spectroscope and calculates the thickness t of the measurement object, and the birefringence calculation unit 112 includes the measurement object. The thickness t of the measurement object calculated by the image processing unit 110 is used as the thickness t.

複屈折測定方法のさらに好ましい形態では、被測定物の配向軸に対する偏光子・検光子の透過軸の方位角θを45°とし、計算透過率スペクトルTcal(λ)と透過率スペクトルTobs(λ)を(1+C)/2として求める。それに対応して、複屈折測定装置の好ましい形態では、試料台は偏光子・検光子の透過軸に対する被測定物の配向軸の方位角θが45°となるように被測定物を保持するように構成されており、演算処理部10は計算透過率スペクトルTcal(λ)と透過率スペクトルTobs(λ)を(1+C)/2として処理する。   In a more preferred form of the birefringence measurement method, the azimuth angle θ of the transmission axis of the polarizer / analyzer with respect to the orientation axis of the object to be measured is 45 °, and the calculated transmittance spectrum Tcal (λ) and transmittance spectrum Tobs (λ) Is determined as (1 + C) / 2. Correspondingly, in a preferred embodiment of the birefringence measuring apparatus, the sample stage holds the object to be measured so that the azimuth angle θ of the object to be measured with respect to the transmission axis of the polarizer / analyzer is 45 °. The arithmetic processing unit 10 processes the calculated transmittance spectrum Tcal (λ) and the transmittance spectrum Tobs (λ) as (1 + C) / 2.

複屈折測定方法のさらに好ましい形態では、ステップ(S2)と(S3)の間に、ステップ(S2)で求められた透過率スペクトルTobs(λ)とステップ(S1)で用意されている計算透過率スペクトルTcal(λ)それぞれの最大値と最小値が一致するように透過率スペクトルTobs(λ)を補正して補正透過率スペクトルT'obs(λ)を算出するステップをさらに備え、ステップ(S3)では透過率スペクトルTobs(λ)に替えて補正透過率スペクトルT'obs(λ)を使用して位相差Rmを求める。それに対応して、複屈折測定装置の好ましい形態では、好ましい一実施形態を示す図5に示されるように、演算処理部10は、透過率スペクトル算出部104で算出された透過率スペクトルTobs(λ)と透過率スペクトル保持部102に保持された計算透過率スペクトルTcal(λ)それぞれの最大値と最小値が一致するように透過率スペクトルTobs(λ)を補正して補正透過率スペクトルT'obs(λ)を算出する透過率スペクトル補正部106をさらに備え、位相差算出部108は透過率スペクトルTobs(λ)に替えて透過率スペクトル補正部106で算出された補正透過率スペクトルT'obs(λ)を使用して位相差Rmを求める。   In a further preferred embodiment of the birefringence measuring method, the transmittance spectrum Tobs (λ) obtained in step (S2) and the calculated transmittance prepared in step (S1) are provided between steps (S2) and (S3). The method further includes the step of calculating the corrected transmittance spectrum T′obs (λ) by correcting the transmittance spectrum Tobs (λ) so that the maximum value and the minimum value of each spectrum Tcal (λ) match, and step (S3). Then, the phase difference Rm is obtained using the corrected transmittance spectrum T′obs (λ) instead of the transmittance spectrum Tobs (λ). Correspondingly, in the preferred embodiment of the birefringence measuring apparatus, as shown in FIG. 5 showing a preferred embodiment, the arithmetic processing unit 10 transmits the transmittance spectrum Tobs (λ) calculated by the transmittance spectrum calculating unit 104. ) And the calculated transmittance spectrum Tcal (λ) held in the transmittance spectrum holding unit 102 are corrected so that the maximum value and the minimum value of the calculated transmittance spectrum Tcal (λ) coincide with each other, thereby correcting the corrected transmittance spectrum T′obs. A transmittance spectrum correction unit 106 that calculates (λ) is further included, and the phase difference calculation unit 108 replaces the transmittance spectrum Tobs (λ) with the corrected transmittance spectrum T′obs ( λ) is used to determine the phase difference Rm.

(1)式において、I0及びRは測定波長λに依存する。また、αはほとんどの場合ほぼ1であるが、被測定物の位相差が大きいときは2つの光学主軸の屈折率差が大きいことに相当するため、2つの方向において表面反射率に差が生じ、その結果2つの光学主軸方向に対する直線偏光の透過率にも差が生じて、αは1より小さくなる。しかし、その場合でもαは0.95程度まで小さくなるだけである。 In the equation (1), I 0 and R depend on the measurement wavelength λ. In addition, α is almost 1 in most cases, but when the phase difference of the object to be measured is large, this corresponds to a large difference in refractive index between the two optical main axes. As a result, a difference also occurs in the transmittance of linearly polarized light with respect to the two optical principal axis directions, and α is smaller than 1. However, even in that case, α is only reduced to about 0.95.

まず簡単のために、(1)式においてα=1の場合について考える。チューブ状の被測定物の長手方向を角度の基準とすると、押出法によって成形されるチューブ状あるいは棒状の被測定物の配向角φは長手方向であるため、φ=0°と考えてよい。好ましい形態におけるθ=45°のときの検出光強度をI(45)と表記し、このときのI0をI0(45)とすると、次のように表される。
I(45)=I0(45)・(1+C)/2 (3)
First, for the sake of simplicity, consider the case where α = 1 in equation (1). Assuming that the longitudinal direction of the tube-shaped object to be measured is the reference of the angle, the orientation angle φ of the tube-shaped or rod-shaped object to be measured formed by the extrusion method is the longitudinal direction, so it may be considered that φ = 0 °. In a preferred embodiment, the detected light intensity when θ = 45 ° is expressed as I (45), and I 0 at this time is expressed as I 0 (45).
I (45) = I 0 (45) · (1 + C) / 2 (3)

したがって、I(45)/I0(45)はCすなわち位相差Rと測定波長λによって決まる。一般的に位相差Rも波長分散があるので、I(45)/I0(45)をTcal(λ)と表わし、計算透過率スペクトルと呼ぶことにする。また、I0(45)とI(45)を実測し、それらの比率として求めた透過率スペクトルをTobs(λ)と表すことにする。 Therefore, I (45) / I 0 (45) is determined by C, that is, the phase difference R and the measurement wavelength λ. In general, since the phase difference R also has wavelength dispersion, I (45) / I 0 (45) is represented as Tcal (λ) and is referred to as a calculated transmittance spectrum. Further, I 0 (45) and I (45) are actually measured, and the transmittance spectrum obtained as a ratio between them is represented as Tobs (λ).

位相差をR(λ)として波長分散を次の(4)式で表し、あらかじめ式中の係数a、b、cを材料ごとに区別して登録しておくことができる。
R(λ)=a+b/(λ2−c2) (4)
a、b、cの各係数の値は、被測定物と同じ材料でフィルム状の試料を作製することにより、例えば王子計測機器(株)製の位相差測定装置KOBRA−WRを用いて容易に求めることができる。波長分散を(4)式で表すことができることについては非特許文献1に記載されている。
The chromatic dispersion is expressed by the following equation (4) with the phase difference being R (λ), and the coefficients a, b, and c in the equation can be distinguished and registered for each material in advance.
R (λ) = a + b / (λ 2 −c 2 ) (4)
The values of the coefficients a, b, and c can be easily obtained by preparing a film-like sample using the same material as the object to be measured, for example, using a phase difference measuring device KOBRA-WR manufactured by Oji Scientific Instruments. Can be sought. Non-patent document 1 describes that the chromatic dispersion can be expressed by the equation (4).

任意に定めることができる基準波長をλ0とすると、(4)式より基準波長λ0に対する任意の波長λでの分散比率R(λ)/R(λ0)は容易に求まる。延伸倍率の違いや厚さの違いによって被測定物の位相差R(λ)が異なる場合も、分散比率R(λ)/R(λ0)は材料ごとにほぼ等しくなることがよく知られている。例えば、図2(A)は5種のPETフィルムの位相差の波長依存性を示したものであり、(B)はλ0を590nmとしたときの分散比率の波長依存性を示したグラフであるが、実際に分散比率はほぼ1本の曲線に重なっている。 When 0 reference wavelength lambda which can be arbitrarily set, (4) distribution ratio R (lambda) / R (lambda 0) at any wavelength lambda for the reference wavelength lambda 0 from equation easily obtained. It is well known that the dispersion ratio R (λ) / R (λ 0 ) is almost equal for each material even when the phase difference R (λ) of the object to be measured differs due to the difference in the draw ratio or the thickness. Yes. For example, FIG. 2A shows the wavelength dependence of retardation of five types of PET films, and FIG. 2B is a graph showing the wavelength dependence of the dispersion ratio when λ 0 is 590 nm. In fact, the dispersion ratio actually overlaps one curve.

したがって、(4)式の各係数を設定して波長分散式を登録しておくことにより、基準波長に対する分散比率も求まり、計算上R(λ0)を所定の範囲だけ所定の刻みで変化させれば、その都度任意の波長に対してR(λ)も容易に計算できる。すなわち、被測定物の位相差の波長分散式が既知であれば基準波長に対する位相差を任意に変化させながら、そのときの計算透過率スペクトルTcal(λ)を自由に計算できることを意味している。 Therefore, by setting each coefficient of the equation (4) and registering the chromatic dispersion equation, the dispersion ratio with respect to the reference wavelength can also be obtained, and R (λ 0 ) is changed by a predetermined range within a predetermined range in calculation. Then, R (λ) can be easily calculated for an arbitrary wavelength each time. That is, if the wavelength dispersion formula of the phase difference of the object to be measured is known, it means that the calculated transmittance spectrum Tcal (λ) at that time can be freely calculated while arbitrarily changing the phase difference with respect to the reference wavelength. .

そこで、本発明のさらに好ましい形態の複屈折測定方法では、ステップ(S1)での計算透過率スペクトルTcal(λ)は、被測定物についての位相差R(λ)の波長分散式に基づいて基準波長λ0での位相差R(λ0)を複数に変化させたときの対応する位相差R(λ)から算出したものである。 Therefore, in the birefringence measuring method according to a further preferred embodiment of the present invention, the calculated transmittance spectrum Tcal (λ) in step (S1) is based on the wavelength dispersion formula of the phase difference R (λ) for the object to be measured. This is calculated from the corresponding phase difference R (λ) when the phase difference R (λ 0 ) at the wavelength λ 0 is changed to a plurality.

それに対応して、複屈折測定装置の好ましい形態では、好ましい一実施形態を示す図5に示されるように、演算処理部10は、被測定物についての位相差R(λ)の波長分散式から基準波長λ0に対する位相差の分散比率R(λ)/R(λ0)を計算する分散比率算出部100をさらに備えており、透過率スペクトル保持部102に保持されている透過率スペクトルTcal(λ)は、分散比率算出部100においてR(λ0)を複数に変化させたときの対応するR(λ)から算出されたものである。 Correspondingly, in the preferred form of the birefringence measuring apparatus, as shown in FIG. 5 showing a preferred embodiment, the arithmetic processing unit 10 calculates the phase difference R (λ) of the measured object from the wavelength dispersion formula. It further includes a dispersion ratio calculating unit 100 for calculating a dispersion ratio R (λ) / R (λ 0 ) of the phase difference with respect to the reference wavelength λ 0 , and the transmittance spectrum Tcal (held by the transmittance spectrum holding unit 102). λ) is calculated from the corresponding R (λ) when R (λ 0 ) is changed to a plurality in the dispersion ratio calculation unit 100.

さらに具体的に示すと、一直線上の位置ごとでのそれぞれの透過光分光スペクトルI0(45)とI(45)を測定する動作を行う。ここで、一直線上とは、例えば、後で説明する実施例の図1に示されるように、被測定物6の径方向(Y方向)の直線上を指しており、被測定物6の長手方向をX方向としている。I(45)は前記一直線上の各位置(Y)によって異なる。透過率スペクトル算出部104では、透過光分光スペクトルI0(45)とI(45)の比を計算して透過率スペクトルTobs(λ)を求める。しかし、例えばR(λo)が1510nmのチューブを測定したときのTobs(λ)とTcal(λ)のグラフは、図3の細実線と破線のようになり必ずしも一致しない場合がある。そこで、好ましい形態では、Tobs(λ)とTcal(λ)それぞれの最大値と最小値を調べて、それらが一致するように補正係数を算出し、実測の透過率スペクトルを次式によって補正してT'obs(λ)を計算する。
T'obs(λ)=(Tobs(λ)−Tobs(λ).mv-min)/K (5)
ただし、
K=(Tobs.mv-max(λ)−Tobs(λ).mv-min)/(Tcal(λ).max−Tcal(λ).min)
Tobs(λ).mv-min:実測透過率スペクトルTobs(λ)の移動平均の最小値
Tobs(λ).mv-max:実測透過率スペクトルTobs(λ)の移動平均の最大値
Tcal(λ).max:計算透過率スペクトルの最大値
Tcal(λ).max:計算透過率スペクトルの最小値
である。
More specifically, an operation of measuring each transmitted light spectrum I 0 (45) and I (45) at each position on a straight line is performed. Here, the term “on a straight line” means, for example, a straight line in the radial direction (Y direction) of the DUT 6 as shown in FIG. The direction is the X direction. I (45) differs depending on each position (Y) on the straight line. The transmittance spectrum calculation unit 104 calculates the ratio of the transmitted light spectrum I 0 (45) and I (45) to obtain the transmittance spectrum Tobs (λ). However, for example, the graph of Tobs (λ) and Tcal (λ) when measuring a tube with R (λo) of 1510 nm is as shown by a thin solid line and a broken line in FIG. Therefore, in a preferred embodiment, the maximum value and the minimum value of Tobs (λ) and Tcal (λ) are examined, correction coefficients are calculated so that they match, and the measured transmittance spectrum is corrected by the following equation. Calculate T′obs (λ).
T'obs (λ) = (Tobs (λ) −Tobs (λ) .mv-min) / K (5)
However,
K = (Tobs.mv-max (λ) −Tobs (λ) .mv-min) / (Tcal (λ) .max−Tcal (λ) .min)
Tobs (λ) .mv-min: Minimum value of moving average of measured transmittance spectrum Tobs (λ) Tobs (λ) .mv-max: Maximum value of moving average of measured transmittance spectrum Tobs (λ) Tcal (λ) .max: Maximum value of the calculated transmittance spectrum Tcal (λ) .max: Minimum value of the calculated transmittance spectrum.

それに対応して、好ましい一実施形態を示す図5に示されるように、演算処理部10は、透過率スペクトル算出部104で算出された透過率スペクトルTobs(λ)と透過率スペクトル保持部102に保持された計算透過率スペクトルTcal(λ)それぞれの最大値と最小値が一致するように透過率スペクトルTobs(λ)を補正して補正透過率スペクトルT'obs(λ)を算出する透過率スペクトル補正部106をさらに備えている。その場合、位相差算出部108は透過率スペクトルTobs(λ)に替えて透過率スペクトル補正部108で算出された補正透過率スペクトルT'obs(λ)を使用して位相差Rmを求める。位相差算出部108は、例えば、計算透過率スペクトルTcal(λ)と実測の補正透過率スペクトルT'obs(λ)の差として波長ごとの残差2乗和を計算するようにすることにより、両者の一致を判断する。   Correspondingly, as shown in FIG. 5 showing a preferred embodiment, the arithmetic processing unit 10 stores the transmittance spectrum Tobs (λ) calculated by the transmittance spectrum calculating unit 104 and the transmittance spectrum holding unit 102. The transmittance spectrum for correcting the transmittance spectrum Tobs (λ) so that the maximum value and the minimum value of each of the stored calculated transmittance spectra Tcal (λ) coincide with each other to calculate the corrected transmittance spectrum T′obs (λ). A correction unit 106 is further provided. In this case, the phase difference calculating unit 108 obtains the phase difference Rm using the corrected transmittance spectrum T′obs (λ) calculated by the transmittance spectrum correcting unit 108 instead of the transmittance spectrum Tobs (λ). For example, the phase difference calculation unit 108 calculates a residual sum of squares for each wavelength as a difference between the calculated transmittance spectrum Tcal (λ) and the actually measured corrected transmittance spectrum T′obs (λ). Judgment is made between the two.

次に、2つの光学主軸方向の振幅透過率比αが1ではない場合を検討する。α≠1のとき(1)式においてθ=45°と置き、仮に材質をPETとしてR(λo)=1500nmの場合の、αが1のときと0.95のときのTcal(λ)を比較すると図4のようになり、確かに計算上でもαの値によって最大透過率が変わる。しかし、実測される透過率は図3のTobs(λ)のようになり、αの影響以上に最大値・最小値が計算上の値からずれることが分かる。したがって、計算上は常にα=1としてTcal(λ)を求め、上述の透過率スペクトル補正部106で実測値を補正処理すればよい。   Next, a case where the amplitude transmittance ratio α in the two optical principal axis directions is not 1 will be considered. When α ≠ 1, place θ = 45 ° in equation (1) and compare Tcal (λ) when α is 1 and 0.95 when PET is R (λo) = 1500 nm. Then, as shown in FIG. 4, the maximum transmittance varies depending on the value of α. However, the actually measured transmittance is as shown in Tobs (λ) in FIG. 3, and it can be seen that the maximum and minimum values deviate from the calculated values more than the influence of α. Therefore, Tcal (λ) is always obtained with α = 1, and the measured value is corrected by the above-described transmittance spectrum correction unit 106.

好ましい形態において、被測定物がチューブ又は棒状物であり、被測定物の厚さtをイメージング分光器に入射した被測定物の画像を処理して得ることにより、一台の位相差測定装置で位相差Rmと厚さtをともに得て複屈折Δnを求める方法について具体的に説明する。図8はチューブ状の被測定物を測定した場合のイメージング分光器の取込み画像の一例であり、測定光が透過せずに陰になる個所があって、実際に光が透過するのはチューブ径方向の中央部である。また、チューブ径方向の中央部のみがチューブの肉厚tの2倍に相当するので、図8の陰部分の位相差は測定する必要がない。   In a preferred embodiment, the object to be measured is a tube or a rod-like object, and the thickness t of the object to be measured is obtained by processing an image of the object to be measured that has entered the imaging spectrometer. A method for obtaining the birefringence Δn by obtaining both the phase difference Rm and the thickness t will be specifically described. FIG. 8 is an example of a captured image of an imaging spectrometer when measuring a tube-shaped object, and there is a portion that does not transmit measurement light but is shaded, and light is actually transmitted through the tube diameter. The central part of the direction. Further, since only the central portion in the tube radial direction corresponds to twice the wall thickness t of the tube, it is not necessary to measure the phase difference in the shaded portion of FIG.

イメージング分光器の取込み画像から画像処理によって、被測定物の径方向の中央部を決定し、さらにチューブの肉厚tあるいは棒状の直径Dを求める方法について説明する。   A method of determining the central portion in the radial direction of the object to be measured by image processing from the captured image of the imaging spectroscope and further obtaining the tube thickness t or the rod-shaped diameter D will be described.

チューブ状の被測定物は図8に示されるように4本の黒い帯状の画像が得られる。この4本の帯状の暗から明もしくは明から暗への変化点を求め、Y座標の小さい方からY1〜Y8とする。   As shown in FIG. 8, the tube-like object to be measured provides four black belt-like images. The four belt-like dark-to-light or light-to-dark transition points are obtained and are designated as Y1 to Y8 from the smaller Y coordinate.

外径はY1からY8までの距離である。被測定物が棒状の場合はこの距離が直径Dとなるので、画像処理部110はイメージング分光器の取込み画像から棒状物の直径Dを算出することができる。   The outer diameter is the distance from Y1 to Y8. Since this distance is the diameter D when the object to be measured is a rod, the image processing unit 110 can calculate the diameter D of the rod from the captured image of the imaging spectrometer.

チューブ状の被測定物の内径Dinは、曲面のため内側2本の黒い帯状のエッジとして検出される位置Y4及びY5より、その帯幅の(1/K)外側にある。   The inner diameter Din of the tube-shaped object to be measured is (1 / K) outside the band width from the positions Y4 and Y5 detected as the two inner black band-like edges because of the curved surface.

したがって、外径Dout、内径Dinおよびチューブの肉厚tは次式で表される。
Dout=Y8−Y1 (6)
Din=Y5−Y4+(Y4−Y3)/K+(Y6−Y5)/K (7)
t=(Dout−Din)/2 (8)
Therefore, the outer diameter Dout, the inner diameter Din, and the wall thickness t of the tube are expressed by the following equations.
Dout = Y8−Y1 (6)
Din = Y5-Y4 + (Y4-Y3) / K + (Y6-Y5) / K (7)
t = (Dout−Din) / 2 (8)

(7)式におけるKはチューブ材質の屈折率により異なるが、本発明者らの測定により、Kは概ね「3」であることが分かった。要求される測定精度にもよるが、複屈折の概略値でよい場合はK=3として上記(6)〜(8)式によりチューブの肉厚tを算出することができる。   Although K in the formula (7) varies depending on the refractive index of the tube material, it has been found by the inventors that K is approximately “3”. Although depending on the required measurement accuracy, if the approximate value of birefringence is acceptable, the wall thickness t of the tube can be calculated by the above equations (6) to (8) with K = 3.

高精度の複屈折値が求められる場合はKをチューブの材質ごとに求めれはよい。Kは屈折率から計算により求めることもできるが、実用的な方法として測定対象の材質のチューブについて、図8のようにイメージング分光器の取込み画像を測定するとともに、そのチューブの内径を機械的に測定してKを決定することができる。測定対象となるチューブの各材質についてKを予め求めたら画像処理部110に記憶させておくことにより、画像処理部110はイメージング分光器の取込み画像から上記(6)〜(8)式によりチューブの肉厚tを算出することができる。   If a highly accurate birefringence value is required, K may be determined for each tube material. K can also be obtained by calculation from the refractive index, but as a practical method, for the tube of the material to be measured, the captured image of the imaging spectrometer is measured as shown in FIG. K can be determined by measurement. When K is obtained in advance for each material of the tube to be measured, it is stored in the image processing unit 110 so that the image processing unit 110 can obtain the tube from the captured image of the imaging spectroscope by the above formulas (6) to (8). The wall thickness t can be calculated.

また、他の方法で被測定物の厚さt又は直径Dが測定されている場合は、本装置の測定開始時にその値を入力できるようにすればよい。   Further, when the thickness t or the diameter D of the object to be measured is measured by another method, the value may be input at the start of the measurement of this apparatus.

チューブの肉厚t又は棒状の直径Dが求まれば、複屈折算出部112は複屈折Δnを次式により算出することができる。
Δn=Rm(λo)/2t又は
Δn=Rm(λo)/D (9)
If the tube thickness t or the rod-shaped diameter D is obtained, the birefringence calculating unit 112 can calculate the birefringence Δn by the following equation.
Δn = Rm (λo) / 2t or Δn = Rm (λo) / D (9)

図6は上記に示した複屈折Δnの決定手順で最も好ましい方法をまとめて示したフローチャートである。   FIG. 6 is a flowchart summarizing the most preferable method in the procedure for determining the birefringence Δn described above.

本発明によれば、偏光子と検光子を平行ニコルに配置するとともに、偏光子・検光子の透過軸を一軸配向をもつ被測定物の配向軸に対して特定の方位角θで固定し、被測定物がない状態での透過光の検出光強度I0(θ)と被測定物があるときの透過光の検出光強度I(θ)とからなる透過率スペクトル(=I(θ)/I0(θ))を用い、複数の位相差について予め求めて用意した計算透過率スペクトルTcal(λ)と実測の透過率スペクトルTobs(λ)とを比較して、実測の透過率スペクトルTobs(λ)にもっとも近い計算透過率スペクトルTcal(λ)に該当する位相差Rmをその被測定物の位相差とするようにしたので、位相差範囲が数千nmになる高位相差の被測定物であってもその位相差を容易に測定することができる。 According to the present invention, the polarizer and the analyzer are arranged in parallel Nicols, and the transmission axis of the polarizer / analyzer is fixed at a specific azimuth angle θ with respect to the orientation axis of the object to be measured having a uniaxial orientation. A transmittance spectrum (= I (θ) /) consisting of the detected light intensity I 0 (θ) of transmitted light in the absence of the object to be measured and the detected light intensity I (θ) of transmitted light when the object to be measured is present. I 0 (θ)) is used to compare the calculated transmittance spectrum Tcal (λ) obtained in advance and prepared for a plurality of phase differences with the actually measured transmittance spectrum Tobs (λ). Since the phase difference Rm corresponding to the calculated transmittance spectrum Tcal (λ) closest to λ) is set as the phase difference of the object to be measured, the object having a high phase difference whose phase difference range is several thousand nm. Even if it exists, the phase difference can be easily measured.

一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example. (A)はPETフィルムの位相差の波長依存性を示す図、(B)は同じく分散比率の波長依存性を示す図である。(A) is a figure which shows the wavelength dependence of phase difference of PET film, (B) is a figure which similarly shows the wavelength dependence of a dispersion ratio. 本発明で扱う透過率スペクトルの例を示す図である。It is a figure which shows the example of the transmittance | permeability spectrum handled by this invention. 計算透過率スペクトルに対する被測定物の振幅透過率比αの影響を示す図である。It is a figure which shows the influence of the amplitude transmittance | permeability ratio (alpha) of a to-be-measured object with respect to a calculated transmittance spectrum. 一実施例における演算処理部を示すブロック図である。It is a block diagram which shows the arithmetic processing part in one Example. 一実施例における複屈折Δnの決定手順を示すフローチャートである。It is a flowchart which shows the determination procedure of birefringence (DELTA) n in one Example. イメージング分光器を示す概略図である。It is the schematic which shows an imaging spectroscope. イメージング分光器の取込み画像の一例である。It is an example of the captured image of an imaging spectroscope.

図1は、本発明の複屈折測定装置をチューブ又は棒状物の測定用に適用した一実施例の概略構成図である。この複屈折測定装置は、主な構成部分なとして、試料台5、分光スペクトル測定部、及び演算処理部10を備えている。   FIG. 1 is a schematic configuration diagram of an embodiment in which the birefringence measuring apparatus of the present invention is applied for measuring a tube or a rod-like object. The birefringence measurement apparatus includes a sample stage 5, a spectral spectrum measurement unit, and an arithmetic processing unit 10 as main components.

試料台5は、被測定物6を分光スペクトル測定部の偏光子4と検光子7の間で測定視野の中央に保持し、被測定物6の配向軸が偏光子4・検光子7の透過軸に対して特定の方位角θとなるように位置決めする。好ましい例では特定の方位角θは45°である。   The sample stage 5 holds the object to be measured 6 in the center of the measurement field between the polarizer 4 and the analyzer 7 of the spectroscopic measurement unit, and the orientation axis of the object to be measured 6 is transmitted through the polarizer 4 and the analyzer 7. Positioning is performed with respect to the axis so as to have a specific azimuth angle θ. In a preferred example, the specific azimuth angle θ is 45 °.

分光スペクトル測定部は平行ニコルに配置された偏光子4と検光子7の組と、多波長成分を含む測定光を偏光子4に入射させる光学系1,2,3と、検光子7を透過した測定光をレンズ8を経て受光して透過光分光スペクトルを測定するイメージング分光器9とを備えている。   The spectroscopic spectrum measurement unit transmits a set of a polarizer 4 and an analyzer 7 arranged in parallel Nicols, optical systems 1, 2 and 3 for allowing measurement light including multi-wavelength components to enter the polarizer 4, and the analyzer 7. And an imaging spectroscope 9 for measuring the transmitted light spectrum by receiving the measured light through the lens 8.

多波長成分を含む測定光を偏光子4に入射させる光学系は、光源1、ライトガイド2及び集光レンズ3を備えている。光源1は例えばハロゲンランプであり、多波長成分を含む測定光として白色光を供給するものである。光源1としては白色LED(発光ダイオード)を用いた光源であってもよい。光源1からの光はライトガイド2によって集光レンズ3に導かれる。   The optical system that allows measurement light including multi-wavelength components to enter the polarizer 4 includes a light source 1, a light guide 2, and a condenser lens 3. The light source 1 is, for example, a halogen lamp, and supplies white light as measurement light including multiple wavelength components. The light source 1 may be a light source using a white LED (light emitting diode). Light from the light source 1 is guided to the condenser lens 3 by the light guide 2.

偏光子4は被測定物6に直線偏光の測定光を照射するためのものであり、被測定物6の一方の面と集光レンズ3の間に配置されている。被測定物6を挟んで被測定物6の他方の面側には偏光子4に対向して検光子7が配置されている。偏光子4と検光子7は平行ニコルの状態に固定されて配置されている。被測定物6の長手方向を基準方位として、好ましい形態として偏光方位(θ)が45°となるように、被測定物6が試料台5により位置決めされる。   The polarizer 4 is for irradiating the object to be measured 6 with linearly polarized measurement light, and is disposed between one surface of the object to be measured 6 and the condenser lens 3. An analyzer 7 is disposed opposite to the polarizer 4 on the other surface side of the measurement object 6 with the measurement object 6 interposed therebetween. The polarizer 4 and the analyzer 7 are fixedly arranged in a parallel Nicols state. The measurement object 6 is positioned by the sample stage 5 so that the longitudinal direction of the measurement object 6 is the reference azimuth and the polarization azimuth (θ) is 45 ° as a preferred form.

検光子7を透過した測定光はレンズ8を経てイメージング分光器9に取り込まれる。レンズ8は顕微鏡を構成する1組のレンズ、又はカメラ(例えはCCDカメラ)用のレンズである。レンズ8の倍率と、イメージング分光器9に含まれる受光素子(例えばCCD素子)の大きさ及びそのY方向画素数とによって、取り込めるY方向の視野寸法と空間分解能が定まる。ここでは、被測定物6の長手方向をX方向、それに直交する方向、すなわち被測定物6の径方向をY方向としている。   The measurement light transmitted through the analyzer 7 is taken into the imaging spectroscope 9 through the lens 8. The lens 8 is a set of lenses constituting a microscope or a lens for a camera (for example, a CCD camera). The size of the visual field and the spatial resolution that can be captured are determined by the magnification of the lens 8, the size of the light receiving element (for example, CCD element) included in the imaging spectroscope 9, and the number of pixels in the Y direction. Here, the longitudinal direction of the DUT 6 is defined as the X direction, and the direction orthogonal thereto, that is, the radial direction of the DUT 6 is defined as the Y direction.

イメージング分光器9は、例えば図7のような構成になっており、スリット9aを介してY方向の線状の光を受光し、グレーティング9bで分光してモノクロCCDカメラ9dで受光する。グレーティング9bはY方向の線上の各位置の光をX方向に分光する。イメージング分光器9としては、具体的には、ImSpector V8(JFEテクノリサーチ株式会社の製品)が利用できる。   The imaging spectroscope 9 has a configuration as shown in FIG. 7, for example, and receives linear light in the Y direction through the slit 9a, splits it with the grating 9b, and receives it with the monochrome CCD camera 9d. The grating 9b splits the light at each position on the line in the Y direction in the X direction. Specifically, ImSpector V8 (a product of JFE Techno-Research Corporation) can be used as the imaging spectrometer 9.

演算処理部10は分光スペクトル測定部で測定された透過光分光スペクトルから被測定物の複屈折を算出するものであり、すでに説明した図5に示された構成をしている。   The arithmetic processing unit 10 calculates the birefringence of the measured object from the transmitted light spectrum measured by the spectrum measuring unit, and has the configuration shown in FIG. 5 already described.

演算処理部10と試料台5及び被測定物6を除く部分が分光スペクトル測定部を構成している。   A portion excluding the arithmetic processing unit 10, the sample stage 5 and the DUT 6 constitutes a spectral spectrum measurement unit.

イメージング分光器9によって分光され検出された透過光強度は演算処理部10に取り込まれて、上に述べたように、被測定物6の位相差Rm(λ)が算出される。演算処理部10は専用のコンピュータ又は汎用のパーソナルコンピュータにより実現される。   The transmitted light intensity separated and detected by the imaging spectroscope 9 is taken into the arithmetic processing unit 10 and the phase difference Rm (λ) of the device under test 6 is calculated as described above. The arithmetic processing unit 10 is realized by a dedicated computer or a general-purpose personal computer.

1 光源
2 ライトガイド
3 集光レンズ
4 偏光子
5 試料台
6 被測定物
7 検光子
8 レンズ
9 イメージング分光器
9a スリット
9b グレーティング
9c CCD素子
9d CCDカメラ
10 演算処理部
100 分散比率算出部
102 透過率スペクトル保持部
104 透過率スペクトル算出部
106 透過率スペクトル補正部
108 位相差算出部
110 画像処理部
DESCRIPTION OF SYMBOLS 1 Light source 2 Light guide 3 Condensing lens 4 Polarizer 5 Sample stand 6 Measured object 7 Analyzer 8 Lens 9 Imaging spectrometer 9a Slit 9b Grating 9c CCD element 9d CCD camera 10 Arithmetic processing part 100 Dispersion ratio calculation part 102 Transmittance Spectrum holding unit 104 Transmission spectrum calculation unit 106 Transmission spectrum correction unit 108 Phase difference calculation unit 110 Image processing unit

Claims (10)

一軸配向をもつ光透過性物品からなる被測定物を挟んで偏光子と検光子を平行ニコルに配置するとともに、偏光子・検光子の透過軸を被測定物の配向軸に対して特定の方位角θで固定した状態で、偏光子を通して被測定物に多波長成分を含む測定光を照射し、被測定物を透過した測定光を検光子を通してイメージング分光器に入射させて透過光分光スペクトルを取り込む位相差測定装置を用い、以下のステップを備えて被測定物の複屈折を測定する複屈折測定方法。
(S1)計算透過率スペクトルTcal(λ)(=I(θ)/I0(θ))を複数の位相差について予め求めて用意しておくステップ、
(S2)前記位相差測定装置を用いて被測定物の透過光分光スペクトルから透過率スペクトルTobs(λ)(=I(θ)/I0(θ))を求めるステップ、
(S3)ステップS1で用意された計算透過率スペクトルTcal(λ)のうちで透過率スペクトルTobs(λ)に最も近い計算透過率スペクトルTcal(λ)に該当する位相差として位相差Rmを求めるステップ、及び
(S4)ステップS3で求められた位相差Rmを被測定物の厚さtで割り算することにより複屈折Δnを
Δn=Rm/t
として求めるステップ。
ここで、I0は被測定物がないときの検出光強度、Iは被測定物があるときの検出光強度、λは測定光の波長である。
The polarizer and analyzer are arranged in parallel Nicols across the object to be measured that consists of a light-transmitting article having uniaxial orientation, and the transmission axis of the polarizer / analyzer is in a specific orientation with respect to the alignment axis of the object to be measured. In a state where the angle θ is fixed, the measurement light containing multi-wavelength components is irradiated to the object to be measured through the polarizer, and the measurement light that has passed through the object to be measured is incident on the imaging spectroscope through the analyzer. A birefringence measuring method for measuring birefringence of an object to be measured by using a phase difference measuring apparatus to be taken in and including the following steps.
(S1) calculating and preparing a calculated transmittance spectrum Tcal (λ) (= I (θ) / I 0 (θ)) in advance for a plurality of phase differences;
(S2) obtaining a transmittance spectrum Tobs (λ) (= I (θ) / I 0 (θ)) from the transmitted light spectrum of the object to be measured using the phase difference measuring device;
(S3) A step of obtaining the phase difference Rm as a phase difference corresponding to the calculated transmittance spectrum Tcal (λ) closest to the transmittance spectrum Tobs (λ) among the calculated transmittance spectra Tcal (λ) prepared in step S1. (S4) The birefringence Δn is obtained by dividing the phase difference Rm obtained in step S3 by the thickness t of the object to be measured. Δn = Rm / t
Asking for steps.
Here, I 0 is the detection light intensity when there is no measurement object, I is the detection light intensity when there is a measurement object, and λ is the wavelength of the measurement light.
被測定物がチューブ又は棒状物であり、
被測定物の厚さtはイメージング分光器に入射した被測定物の画像を処理して得ることにより、一台の位相差測定装置で位相差Rmと厚さtをともに得て複屈折Δnを求める請求項1に記載の複屈折測定方法。
The object to be measured is a tube or a rod-like object,
The thickness t of the object to be measured is obtained by processing the image of the object to be measured that has entered the imaging spectroscope, so that both the phase difference Rm and the thickness t are obtained with a single phase difference measuring device, and the birefringence Δn is obtained. The birefringence measuring method according to claim 1 to be obtained.
被測定物の配向軸に対する偏光子・検光子の透過軸の方位角θを45°とし、計算透過率スペクトルTcal(λ)と透過率スペクトルTobs(λ)を
(1+C)/2
として求める請求項1又は2に記載の複屈折測定方法。
ここで、C=cos(2πR/λ)(R:位相差)である。
The azimuth angle θ of the transmission axis of the polarizer / analyzer with respect to the orientation axis of the object to be measured is 45 °, and the calculated transmittance spectrum Tcal (λ) and transmittance spectrum Tobs (λ) are (1 + C) / 2
The birefringence measuring method according to claim 1 or 2, which is obtained as follows.
Here, C = cos (2πR / λ) (R: phase difference).
前記ステップ(S2)と(S3)の間に、前記ステップ(S2)で求められた透過率スペクトルTobs(λ)と前記ステップ(S1)で用意されている計算透過率スペクトルTcal(λ)それぞれの最大値と最小値が一致するように透過率スペクトルTobs(λ)を補正して補正透過率スペクトルT'obs(λ)を算出するステップをさらに備え、
前記ステップ(S3)では透過率スペクトルTobs(λ)に替えて補正透過率スペクトルT'obs(λ)を使用して位相差Rmを求める請求項1から3のいずれか一項に記載の複屈折測定方法。
Between the steps (S2) and (S3), the transmittance spectrum Tobs (λ) obtained in the step (S2) and the calculated transmittance spectrum Tcal (λ) prepared in the step (S1). A step of calculating a corrected transmittance spectrum T′obs (λ) by correcting the transmittance spectrum Tobs (λ) so that the maximum value and the minimum value coincide;
The birefringence according to any one of claims 1 to 3, wherein in the step (S3), the phase difference Rm is obtained by using the corrected transmittance spectrum T'obs (λ) instead of the transmittance spectrum Tobs (λ). Measuring method.
前記ステップ(S1)での計算透過率スペクトルTcal(λ)は、被測定物についての位相差R(λ)の波長分散式に基づいて基準波長λ0での位相差R(λ0)を複数に変化させたときの対応する位相差R(λ)から算出したものである請求項1から4のいずれかに記載の複屈折測定方法。 The calculated transmittance spectrum Tcal (λ) in the step (S1) has a plurality of phase differences R (λ 0 ) at the reference wavelength λ 0 based on the wavelength dispersion formula of the phase difference R (λ) for the object to be measured. The birefringence measurement method according to claim 1, wherein the birefringence measurement method is calculated from a corresponding phase difference R (λ) when changed to. 偏光子と検光子が平行ニコルに配置され、多波長成分を含む測定光が偏光子から検光子を通してイメージング分光器に入射して透過光分光スペクトルを測定する分光スペクトル測定部と、
偏光子と検光子の間に被測定物を保持し、被測定物の配向軸が偏光子・検光子の透過軸に対して特定の方位角θとなるように位置決めする試料台と、
前記分光スペクトル測定部で測定された透過光分光スペクトルから被測定物の複屈折を算出する演算処理部と、を備え、
前記演算処理部は、計算透過率スペクトルTcal(λ)を複数の位相差について予め求めて保持しておく透過率スペクトル保持部と、
前記分光スペクトル測定部により測定された被測定物の透過光分光スペクトルから透過率スペクトルTobs(λ)を算出する透過率スペクトル算出部と、
前記透過率スペクトル保持部に保持された計算透過率スペクトルTcal(λ)のうちで前記透過率スペクトル算出部で算出された透過率スペクトルTobs(λ)に最も近い計算透過率スペクトルTcal(λ)に該当する位相差Rmを求める位相差算出部と、
前記位相差算出部で求められた位相差Rmを被測定物の厚さtで割り算することにより複屈折Δnを
Δn=Rm/t
として求める複屈折算出部と
を備えている複屈折測定装置。
A spectroscopic spectrum measurement unit in which a polarizer and an analyzer are arranged in parallel Nicols, and measurement light including multi-wavelength components enters the imaging spectroscope through the analyzer through the analyzer and measures a transmitted light spectroscopic spectrum,
A sample stage that holds the object to be measured between the polarizer and the analyzer, and is positioned so that the orientation axis of the object to be measured is a specific azimuth angle θ with respect to the transmission axis of the polarizer / analyzer;
An arithmetic processing unit that calculates the birefringence of the object to be measured from the transmitted light spectrum measured by the spectrum measuring unit,
The arithmetic processing unit obtains and holds a calculated transmittance spectrum Tcal (λ) in advance for a plurality of phase differences, and a transmittance spectrum holding unit;
A transmittance spectrum calculating unit for calculating a transmittance spectrum Tobs (λ) from a transmitted light spectrum of the object measured by the spectrum measuring unit;
Of the calculated transmittance spectra Tcal (λ) held in the transmittance spectrum holding unit, the calculated transmittance spectrum Tcal (λ) closest to the transmittance spectrum Tobs (λ) calculated by the transmittance spectrum calculating unit A phase difference calculation unit for obtaining a corresponding phase difference Rm;
By dividing the phase difference Rm obtained by the phase difference calculation unit by the thickness t of the object to be measured, birefringence Δn is obtained as follows: Δn = Rm / t
A birefringence measuring device comprising: a birefringence calculating unit obtained as described above.
被測定物としてチューブ又は棒状物を測定したとき、前記イメージング分光器に入射した被測定物の画像を処理して被測定物の厚さtを算出する画像処理部をさらに備え、
前記複屈折算出部は被測定物の厚さtとして前記画像処理部で算出された被測定物の厚さtを使用する請求項6に記載の複屈折測定装置。
When a tube or a rod-like object is measured as the object to be measured, the image processing unit further includes an image processing unit that processes an image of the object to be measured incident on the imaging spectrometer and calculates a thickness t of the object to be measured.
The birefringence measuring apparatus according to claim 6, wherein the birefringence calculating unit uses the thickness t of the measurement object calculated by the image processing unit as the thickness t of the measurement object.
前記試料台は偏光子・検光子の透過軸に対する被測定物の配向軸の方位角θが45°となるように被測定物を保持するものであり、
前記演算処理部は計算透過率スペクトルTcal(λ)と透過率スペクトルTobs(λ)を
(1+C)/2
として処理する請求項6又は7に記載の複屈折測定装置。
The sample stage holds the measurement object such that the azimuth angle θ of the alignment axis of the measurement object with respect to the transmission axis of the polarizer / analyzer is 45 °,
The arithmetic processing unit calculates the calculated transmittance spectrum Tcal (λ) and the transmittance spectrum Tobs (λ) by (1 + C) / 2.
The birefringence measuring apparatus according to claim 6 or 7, which is processed as follows.
前記透過率スペクトル算出部で算出された透過率スペクトルTobs(λ)と前記透過率スペクトル保持部に保持された計算透過率スペクトルTcal(λ)それぞれの最大値と最小値が一致するように透過率スペクトルTobs(λ)を補正して補正透過率スペクトルT'obs(λ)を算出する透過率スペクトル補正部をさらに備え、
前記位相差算出部は透過率スペクトルTobs(λ)に替えて前記透過率スペクトル補正部で算出された補正透過率スペクトルT'obs(λ)を使用して位相差Rmを求める請求項6から8のいずれか一項に記載の複屈折測定装置。
The transmittance so that the maximum value and the minimum value of the transmittance spectrum Tobs (λ) calculated by the transmittance spectrum calculation unit and the calculated transmittance spectrum Tcal (λ) held by the transmittance spectrum holding unit coincide with each other. A transmittance spectrum correction unit that corrects the spectrum Tobs (λ) and calculates a corrected transmittance spectrum T′obs (λ);
The phase difference calculation unit obtains the phase difference Rm using the corrected transmittance spectrum T′obs (λ) calculated by the transmittance spectrum correction unit instead of the transmittance spectrum Tobs (λ). The birefringence measuring apparatus according to any one of the above.
前記演算処理部は被測定物についての位相差R(λ)の波長分散式から基準波長λ0に対する位相差の分散比率R(λ)/R(λ0)を計算する分散比率算出部をさらに備え、
前記透過率スペクトル保持部に保持されている透過率スペクトルTcal(λ)は、R(λ0)を複数に変化させたときの対応するR(λ)から算出されたものである請求項6から9のいずれか一項に記載の複屈折測定装置。
The arithmetic processing unit further includes a dispersion ratio calculating unit that calculates a dispersion ratio R (λ) / R (λ 0 ) of the phase difference with respect to the reference wavelength λ 0 from the wavelength dispersion formula of the phase difference R (λ) of the object to be measured. Prepared,
The transmittance spectrum Tcal (λ) held in the transmittance spectrum holding unit is calculated from the corresponding R (λ) when R (λ 0 ) is changed to a plurality of values. The birefringence measuring apparatus according to any one of claims 9 to 9.
JP2012197860A 2012-09-07 2012-09-07 Method and apparatus for measuring birefringence of articles having uniaxial orientation Active JP5892011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012197860A JP5892011B2 (en) 2012-09-07 2012-09-07 Method and apparatus for measuring birefringence of articles having uniaxial orientation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012197860A JP5892011B2 (en) 2012-09-07 2012-09-07 Method and apparatus for measuring birefringence of articles having uniaxial orientation

Publications (2)

Publication Number Publication Date
JP2014052317A JP2014052317A (en) 2014-03-20
JP5892011B2 true JP5892011B2 (en) 2016-03-23

Family

ID=50610904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012197860A Active JP5892011B2 (en) 2012-09-07 2012-09-07 Method and apparatus for measuring birefringence of articles having uniaxial orientation

Country Status (1)

Country Link
JP (1) JP5892011B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2898298B2 (en) * 1989-03-24 1999-05-31 シチズン時計株式会社 Liquid crystal layer thickness measuring apparatus and liquid crystal layer thickness measuring method using the liquid crystal layer thickness measuring apparatus
JP3474021B2 (en) * 1995-02-21 2003-12-08 積水化学工業株式会社 Birefringence measurement device
JP2000111472A (en) * 1998-09-30 2000-04-21 Mitsui Chemicals Inc Device for measuring birefringence and device for measuring orientation of film
US20090234329A1 (en) * 2005-10-17 2009-09-17 Kaneka Corporation Medical Catheter Tubes and Process for Production Thereof
JP5116345B2 (en) * 2007-04-06 2013-01-09 富士フイルム株式会社 Phase difference measuring method and apparatus
JP5115928B2 (en) * 2008-05-20 2013-01-09 王子計測機器株式会社 Phase difference distribution measuring device
JP4816817B2 (en) * 2009-12-17 2011-11-16 住友金属工業株式会社 Tubing inspection equipment

Also Published As

Publication number Publication date
JP2014052317A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
US10317334B2 (en) Achromatic rotating-element ellipsometer and method for measuring mueller-matrix elements of sample using the same
US8405836B2 (en) System and method for measuring an optical fiber
WO2018043438A1 (en) Optical measurement device, optical measurement method, and stress inspection method
KR20170042360A (en) Optical evaluation of lenses and lens molds
KR20130005244A (en) Optical property measuring method and apparatus
IL273041B2 (en) Method and metrology apparatus to determine a patterning process parameter
US9841372B2 (en) Unambiguous retardance measurement
EP3798608A1 (en) Normal incidence ellipsometer and method for measuring optical properties of sample by using same
CN109238659A (en) A kind of focal length of lens measurement technology and device based on experiment ray tracing principle
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
JP5115928B2 (en) Phase difference distribution measuring device
JP2018194455A (en) Polarization property measurement method and polarization property measurement device
JP5892011B2 (en) Method and apparatus for measuring birefringence of articles having uniaxial orientation
JP5548989B2 (en) Fourier coefficient measurement using an integrating photodetector
KR101619821B1 (en) Apparatus and method for measuring birefringence, and system and method for producing film
Bhattacharyya et al. Accuracy enhancement of dual rotating mueller matrix imaging polarimeter by diattenuation and retardance error calibration approach
JP2019020419A (en) Film thickness calculation method, film thickness calculation program, and film thickness calculation device
US9488568B2 (en) Polarization analysis apparatus
JP5060388B2 (en) Online phase difference measuring device
JP2000111472A (en) Device for measuring birefringence and device for measuring orientation of film
JP2014167392A (en) Phase difference measuring method and device
JP2014157108A (en) Polarization analyzer for evaluating depolarization effect
JP2006153503A (en) Birefrigence measuring device and stress distribution measuring device
Vorobiev et al. Design, fabrication and characterization of a polarization-sensitive focal plane array
JP2010008430A (en) Birefringence characteristic measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5892011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250