JP5891844B2 - Insulating film and flat cable using the same - Google Patents

Insulating film and flat cable using the same Download PDF

Info

Publication number
JP5891844B2
JP5891844B2 JP2012038488A JP2012038488A JP5891844B2 JP 5891844 B2 JP5891844 B2 JP 5891844B2 JP 2012038488 A JP2012038488 A JP 2012038488A JP 2012038488 A JP2012038488 A JP 2012038488A JP 5891844 B2 JP5891844 B2 JP 5891844B2
Authority
JP
Japan
Prior art keywords
mass
resin
flame retardant
insulating film
flat cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012038488A
Other languages
Japanese (ja)
Other versions
JP2013175341A (en
Inventor
福田 豊
豊 福田
龍男 松田
龍男 松田
将栄 米沢
将栄 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012038488A priority Critical patent/JP5891844B2/en
Publication of JP2013175341A publication Critical patent/JP2013175341A/en
Application granted granted Critical
Publication of JP5891844B2 publication Critical patent/JP5891844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、フラットケーブルの被覆材として好適に用いることができる絶縁フィルム及びそれを用いたフレキシブルフラットケーブルに関する。   The present invention relates to an insulating film that can be suitably used as a covering material for a flat cable, and a flexible flat cable using the insulating film.

電子機器の内部配線用の電線として多心平型のフレキシブルフラットケーブルが使用されている。フラットケーブルは、2枚の絶縁フィルムの間に複数本の導体を並列して挟み、絶縁フィルム同士を熱融着して一体化することにより製造されている。この絶縁フィルムは、一般に、導体に接する接着層とその外側の樹脂フィルムを有している。樹脂フィルムとしては、機械的特性、電気的特性に優れた二軸延伸ポリエチレンテレフタレート(PET)フィルムが汎用されている。接着層のベースポリマーにはポリ塩化ビニル(PVC)や飽和共重合ポリエステル等が使用されている。   A multi-core flat flexible flat cable is used as an electric wire for internal wiring of electronic equipment. A flat cable is manufactured by sandwiching a plurality of conductors in parallel between two insulating films and fusing the insulating films together to integrate them. This insulating film generally has an adhesive layer in contact with a conductor and a resin film on the outside thereof. As the resin film, a biaxially stretched polyethylene terephthalate (PET) film having excellent mechanical properties and electrical properties is widely used. For the base polymer of the adhesive layer, polyvinyl chloride (PVC), saturated copolyester or the like is used.

フラットケーブルには高度な難燃性が要求される用途があり、米国UL規格の垂直難燃試験(VW−1試験)のような難燃性が規定されている。難燃性の規格を満足させるためには接着層中に難燃剤を含有させる必要があり、難燃剤として臭素系難燃剤、塩素系難燃剤等のハロゲン系難燃剤、又はリン系難燃剤、窒素系難燃剤、水酸化マグネシウム、水酸化アルミニウム等のノンハロゲン難燃剤が使用されている。このようなフラットケーブルとして、特許文献1には、ポリエステル樹脂に難燃剤及びフィラーを混合したヒートシール層(接着層)を有するフラットケーブル用のヒートシール性テープが開示されている。   Flat cables have applications that require a high degree of flame retardancy, and flame retardance such as the vertical flame test (VW-1 test) of the US UL standard is specified. In order to satisfy the flame retardant standard, it is necessary to contain a flame retardant in the adhesive layer. Non-halogen flame retardants such as flame retardants, magnesium hydroxide and aluminum hydroxide are used. As such a flat cable, Patent Document 1 discloses a heat-sealable tape for a flat cable having a heat seal layer (adhesive layer) in which a flame retardant and a filler are mixed in a polyester resin.

燃焼性の規格を満足させるためには、接着層に多量の難燃剤を添加する必要がある。特にリン系難燃剤、窒素系難燃剤等のノンハロゲン系難燃剤を使用する場合はハロゲン系難燃剤を使用する場合に比べてさらに多量の難燃剤の添加が必要であり、その結果接着層と樹脂フィルム又は導体との接着力が低下したり、フレキシブルフラットケーブルの柔軟性が低下する。また難燃剤を多量に添加すると接着層の誘電率が高くなりフラットケーブルの電気特性が低下する。しかしハロゲン系難燃剤を使用したフラットケーブルは焼却時にハロゲン化水素ガスなどの人体に有害な燃焼ガスを発生するため環境面で好ましくなく、近年はノンハロゲン系難燃剤を使用した材料が主に用いられている。   In order to satisfy the flammability standard, it is necessary to add a large amount of flame retardant to the adhesive layer. In particular, when using non-halogen flame retardants such as phosphorus flame retardants and nitrogen flame retardants, it is necessary to add a larger amount of flame retardant than when using halogen flame retardants. Adhesive force with a film or a conductor falls, or the softness | flexibility of a flexible flat cable falls. If a large amount of flame retardant is added, the dielectric constant of the adhesive layer increases and the electrical characteristics of the flat cable deteriorate. However, flat cables using halogen-based flame retardants are undesirable in terms of environment because they generate combustion gases harmful to the human body such as hydrogen halide gas during incineration. ing.

また特許文献2には、共重合ポリエステルにポリフェニレンエーテルとリン系難燃剤とを混合した樹脂組成物を難燃樹脂層(接着層)として用いたフラットケーブル用絶縁フィルムが開示されている。難燃性が高く、また誘電率が低い材料であるポリフェニレンエーテルを使用することで難燃剤の添加量を減らしてもUL規格のVW−1燃焼試験に合格できる難燃性を得ることができる、と記載されている。   Patent Document 2 discloses an insulating film for a flat cable using a resin composition in which polyphenylene ether and a phosphorus-based flame retardant are mixed in a copolyester as a flame retardant resin layer (adhesive layer). Even if the addition amount of the flame retardant is reduced by using polyphenylene ether which is a material having high flame retardancy and low dielectric constant, flame retardance that can pass the UL standard VW-1 combustion test can be obtained. It is described.

特許第4662511号公報Japanese Patent No. 4662511 特開2011−222371号公報JP 2011-222371 A

リン系難燃剤は水酸化マグネシウム、水酸化アルミニウム、窒素系難燃剤等の他のノンハロゲン系難燃剤と比べると少量でも難燃性向上効果が高く、また接着剤層の誘電率への影響も少ないためフラットケーブルの接着層の難燃剤として好ましく使用されている。   Phosphorus flame retardants are effective in improving flame retardancy even in small amounts compared to other non-halogen flame retardants such as magnesium hydroxide, aluminum hydroxide and nitrogen flame retardants, and have little effect on the dielectric constant of the adhesive layer Therefore, it is preferably used as a flame retardant for the adhesive layer of the flat cable.

特に耐熱性を重視したフラットケーブルでは、耐熱性の高い結晶性共重合ポリエステルが接着層の樹脂成分として主に使用されている。結晶性共重合ポリエステルは有機溶剤には溶けないため、リン系難燃剤を樹脂中に分散させるために、結晶系共重合ポリエステルの融点以上の温度に加熱して溶融混練を行っている。液状のリン系難燃剤は溶融混練でも良好に分散する。しかし、融点が高く混練時の温度において固体状のリン系難燃剤は一般的な溶融混練装置を用いて良好に分散させることが難しい。   In particular, in a flat cable that emphasizes heat resistance, a crystalline copolymer polyester having high heat resistance is mainly used as a resin component of the adhesive layer. Since the crystalline copolyester is not soluble in an organic solvent, in order to disperse the phosphorus flame retardant in the resin, it is heated and kneaded at a temperature equal to or higher than the melting point of the crystalline copolyester. The liquid phosphorus flame retardant disperses well even by melt kneading. However, it is difficult to satisfactorily disperse the solid phosphorus-based flame retardant using a general melt-kneading apparatus at a kneading temperature because of a high melting point.

フラットケーブルは絶縁フィルム厚みが100μm以下と薄く、接着剤層の厚みも数10μm〜数100μm程度であるため、リン系難燃剤が接着剤層中に良好に分散していない場合は接着剤層の表面が平滑とならず外観が良くない。またリン系難燃剤の分散性が悪いと難燃性や電気特性も悪化する。   Since the flat cable has a thin insulating film thickness of 100 μm or less and the thickness of the adhesive layer is about several tens of μm to several hundreds of μm, when the phosphorus flame retardant is not well dispersed in the adhesive layer, The surface is not smooth and the appearance is not good. In addition, when the dispersibility of the phosphorus-based flame retardant is poor, the flame retardancy and electrical characteristics are also deteriorated.

そこで本発明は結晶性共重合ポリエステルに対するリン系難燃剤の分散性を向上することができ、外観に優れると共に難燃性に優れる絶縁フィルム及びそれを用いたフラットケーブルを提供することを課題とする。   Then, this invention makes it a subject to provide the insulation cable which can improve the dispersibility of the phosphorus flame retardant with respect to crystalline copolyester, is excellent in an external appearance, and is excellent in a flame retardance, and a flat cable using the same. .

本発明は、樹脂フィルムに難燃樹脂層が積層された絶縁フィルムであって、前記難燃樹脂層は、結晶性共重合ポリエステルとポリオレフィンとを必須成分とし、前記結晶性共重合ポリエステルを樹脂成分全体の40質量%以上含有する樹脂成分100質量部に対して、前記結晶性共重合ポリエステルの融点において固体であるリン系難燃剤を20質量部以上100質量部以下含有する樹脂組成物からなるとともに、前記ポリオレフィンの含有量が、前記樹脂成分全体の5質量%以上40質量%以下である、絶縁フィルムである The present invention is an insulating film in which a flame retardant resin layer is laminated on a resin film, wherein the flame retardant resin layer includes a crystalline copolymer polyester and a polyolefin as essential components, and the crystalline copolymer polyester is a resin component. with respect to the total 100 parts by mass of the resin component containing 40 mass% or more of, together comprising the crystalline co-phosphorus-based flame retardant which is solid containing 100 parts by mass or less than 20 parts by weight in the polymerization polyester melting point of the resin composition The polyolefin film has an insulating film content of 5% by mass or more and 40% by mass or less of the entire resin component .

前述のようにリン系難燃剤を結晶性共重合ポリエステルに分散させる際には溶融混練を行っている。本発明者らが検討した結果、結晶性共重合ポリエステルは溶融時の粘度(溶融粘度)が低く、溶融混練時にリン系難燃剤に加わる剪断応力が小さいことがリン系難燃剤の分散性が悪い原因であると推測された。そこで、結晶性共重合ポリエステルと良好に混合すると共に溶融粘度が高いポリオレフィンを結晶性共重合ポリエステルと併用することで、結晶性共重合ポリエステルの特性を低下させることなく、溶融混練時に固体であるリン系難燃剤の分散性を向上できることを見いだした。なお樹脂成分は結晶性共重合ポリエステルとポリオレフィンとを必須成分とするが、本発明の趣旨を損ねない範囲でさらに他の樹脂を併用して使用しても良い。   As described above, melt-kneading is performed when the phosphorus-based flame retardant is dispersed in the crystalline copolyester. As a result of investigations by the present inventors, the crystalline copolyester has a low viscosity at the time of melting (melt viscosity), and a low shear stress applied to the phosphorus flame retardant during melt kneading has a poor dispersibility of the phosphorus flame retardant. Presumed to be the cause. Therefore, by mixing a polyolefin having a high melt viscosity with the crystalline copolymerized polyester in combination with the crystalline copolymerized polyester, the phosphorous that is solid at the time of melt-kneading without deteriorating the properties of the crystalline copolymerized polyester. It was found that the dispersibility of the flame retardant could be improved. The resin component includes crystalline copolyester and polyolefin as essential components, but other resins may be used in combination as long as the gist of the present invention is not impaired.

ポリオレフィンの含有量は、樹脂成分全体の5質量%以上40質量%以下とすることが好ましいポリオレフィンの含有量が5質量%よりも少ないとリン系難燃剤の分散性が低下する。一方ポリオレフィンの含有量が40質量%よりも多い場合は難燃性が低下する。 The polyolefin content is preferably 5% by mass or more and 40% by mass or less of the entire resin component . When the polyolefin content is less than 5% by mass, the dispersibility of the phosphorus-based flame retardant is lowered. On the other hand, when the polyolefin content is more than 40% by mass, the flame retardancy is lowered.

ポリオレフィンとしては任意の樹脂を使用することができるが、カルボニル基を含有するモノマーを1質量%以上20質量%以下共重合させた共重合ポリオレフィンを使用すると好ましいこのような共重合ポリオレフィンは分子内にカルボニル基を含有するためポリエステル樹脂との相容性が高く、良好に混合する。またそのメカニズムは不明であるが一定量の範囲でカルボニル基を有する共重合ポリオレフィンを使用することでリン系難燃剤の分散性がさらに向上する。 Although any resin can be used as the polyolefin, it is preferable to use a copolymerized polyolefin obtained by copolymerizing a carbonyl group-containing monomer in an amount of 1% by mass to 20% by mass . Such a copolymerized polyolefin contains a carbonyl group in the molecule, and therefore has high compatibility with the polyester resin and mixes well. Further, although the mechanism is unknown, the dispersibility of the phosphorus-based flame retardant is further improved by using a copolymerized polyolefin having a carbonyl group within a certain range.

結晶性共重合ポリエステルの融点は80℃以上170℃以下が好ましい融点が80℃未満であると、フラットケーブルの耐熱性が低下する。また融点が170℃を超えると溶融混練時の温度を高温にする必要がある。 The melting point of the crystalline copolyester is preferably 80 ° C. or higher and 170 ° C. or lower . When the melting point is less than 80 ° C., the heat resistance of the flat cable is lowered. If the melting point exceeds 170 ° C., the temperature during melt kneading needs to be increased.

樹脂成分として、さらに、非晶性共重合ポリエステルを樹脂成分全体の5質量%以上20質量%以下含有しても良い非晶性共重合ポリエステルを5質量%以上含有させることで難燃樹脂層の接着力を向上できる。しかし非晶性共重合ポリエステルは一般に結晶性共重合ポリエステルよりも軟化温度が低いため20質量%以上含有させると耐熱性が低下する。 As the resin component, an amorphous copolymer polyester may be further contained in an amount of 5% by mass or more and 20% by mass or less based on the entire resin component . By containing 5% by mass or more of the amorphous copolymer polyester, the adhesive force of the flame retardant resin layer can be improved. However, since the amorphous copolymer polyester generally has a softening temperature lower than that of the crystalline copolymer polyester, the heat resistance is lowered when it is contained in an amount of 20% by mass or more.

難燃樹脂層を構成する樹脂組成物に、難燃剤としてさらに窒素系難燃剤を併用しても良い。リン系難燃剤と窒素系難燃剤とを組み合わせて使用することでより難燃性が向上する。ただし難燃樹脂層中の窒素系難燃剤の含有量を多くしすぎると難燃樹脂層の誘電率が高くなる。また導体や樹脂フィルムとの接着力も低下する。したがって、窒素系難燃剤の量は樹脂成分100質量部に対して10質量部以上75質量部以下とすることが好ましい You may use together a nitrogen-type flame retardant as a flame retardant with the resin composition which comprises a flame retardant resin layer. Flame retardancy is improved by using a combination of a phosphorus-based flame retardant and a nitrogen-based flame retardant. However, if the content of the nitrogen-based flame retardant in the flame retardant resin layer is excessively increased, the dielectric constant of the flame retardant resin layer is increased. Moreover, the adhesive force with a conductor and a resin film also falls. Therefore, the amount of the nitrogen-based flame retardant is preferably 10 parts by mass or more and 75 parts by mass or less with respect to 100 parts by mass of the resin component .

前記樹脂フィルムと前記難燃樹脂層との間にアンカーコート層を有すると好ましいアンカーコート層を有することで、樹脂フィルムと難燃樹脂層との接着力が向上する。 It is preferable to have an anchor coat layer between the resin film and the flame retardant resin layer . By having the anchor coat layer, the adhesive force between the resin film and the flame retardant resin layer is improved.

また本発明は、上記の絶縁フィルムを被覆材として用いたフラットケーブルを提供するこのフラットケーブルはリン系難燃剤が良好に分散していることから外観に優れると共に難燃性も優れている。
The present invention also provides a flat cable using the above insulating film as a covering material . This flat cable has excellent appearance and flame retardancy because the phosphorus-based flame retardant is well dispersed.

本発明によれば、結晶性共重合ポリエステルに対するリン系難燃剤の分散性を向上することができ、難燃性及び外観が優れる絶縁フィルム及びそれを用いたフラットケーブルを得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the dispersibility of the phosphorus flame retardant with respect to crystalline copolyester can be improved, and the insulating film which is excellent in a flame retardance and an external appearance, and a flat cable using the same can be obtained.

本発明のフラットケーブルを示す図である。It is a figure which shows the flat cable of this invention. 本発明のフラットケーブルを示す図であり、図1のA−A’断面図である。It is a figure which shows the flat cable of this invention, and is A-A 'sectional drawing of FIG.

まず、本発明の絶縁フィルムを構成する各種材料について説明する。共重合ポリエステルとしては、ポリエチレンテレフタレート・セバケート、ポリブチレンテレフタレート・セバケート、ポリブチレンテレフタレート・アジペート、ポリエチレンテレフタレート・イソフタレートなどの飽和共重合ポリエステルを使用することができる。これらの樹脂はエチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール等のアルコール成分と、テレフタル酸、ナフタレンカルボン酸、アジピン酸、セバシン酸、イソフタル酸等の酸成分とを重合して得ることができる。また、フマル酸、イタコン酸等の分子内に炭素−炭素不飽和結合を有するモノマーを共重合させた不飽和ポリエステルを使用しても良い。   First, various materials constituting the insulating film of the present invention will be described. As the copolyester, saturated copolyesters such as polyethylene terephthalate / sebacate, polybutylene terephthalate / sebacate, polybutylene terephthalate / adipate, polyethylene terephthalate / isophthalate can be used. These resins are obtained by polymerizing alcohol components such as ethylene glycol, 1,4-butanediol and 1,6-hexanediol and acid components such as terephthalic acid, naphthalenecarboxylic acid, adipic acid, sebacic acid and isophthalic acid. Can be obtained. Moreover, you may use the unsaturated polyester which copolymerized the monomer which has a carbon-carbon unsaturated bond in molecules, such as fumaric acid and itaconic acid.

結晶性共重合ポリエステルとは、上記の共重合ポリエステルのうち、示差熱分析(DSC)測定で結晶に由来する融解熱量ピークが観察されるものをいう。結晶性共重合ポリエステルは、樹脂成分全体の40質量%以上含有させる。結晶性共重合ポリエステルの種類は必要とされる耐熱性や接着力に応じて任意に選択できる。融点が高い結晶性共重合ポリエステルを使用すると難燃樹脂層の耐熱性が良くなるが、融点が高すぎると導体との接着時に高温での加熱が必要となる。このため結晶性共重合ポリエステルの融点は80℃以上170℃以下とすることが好ましい。   The crystalline copolyester refers to the above copolyester in which a peak of heat of fusion derived from crystals is observed by differential thermal analysis (DSC) measurement. The crystalline copolyester is contained in an amount of 40% by mass or more based on the entire resin component. The kind of crystalline copolyester can be arbitrarily selected according to required heat resistance and adhesive strength. When a crystalline copolyester having a high melting point is used, the heat resistance of the flame retardant resin layer is improved. However, if the melting point is too high, heating at a high temperature is required at the time of adhesion to the conductor. For this reason, it is preferable that melting | fusing point of crystalline copolyester shall be 80 degreeC or more and 170 degrees C or less.

共重合ポリエステルとして非晶性共重合ポリエステルを併用しても良い。非晶性共重合ポリエステルのなかでも比較的ガラス転移温度(Tg)の低いものを併用すると、低温での接着性が良好となり難燃樹脂層の耐熱性と接着性とを両立可能となる。なお「非晶性」とは、JIS K 7122に基づく示差熱分析法を10℃/分の昇温条件において行った場合に、ガラス転移温度と分解温度の間に吸熱または融解ピークが認められないことをいう。   An amorphous copolymer polyester may be used in combination as the copolymer polyester. When an amorphous copolyester having a relatively low glass transition temperature (Tg) is used in combination, the adhesiveness at a low temperature is improved and the heat resistance and the adhesiveness of the flame-retardant resin layer can be compatible. “Amorphous” means that no endotherm or melting peak is observed between the glass transition temperature and the decomposition temperature when a differential thermal analysis method based on JIS K 7122 is performed at a temperature rising condition of 10 ° C./min. That means.

ポリオレフィンとしては、ポリエチレン樹脂(PE)、ポリプロピレン樹脂(PP)、酸変性ポリエチレン樹脂、酸変性ポリプロピレン樹脂、エチレン−酢酸ビニル共重合体(EVA)、エチレン−メチルメタクリレート共重合体(EMMA)、エチレン−エチルアクリレート共重合体(EEA)、エチレン−メタクリル酸共重合体(EMAA)、エチレン−エチルアクリレート−無水マレイン酸共重合体、およびアイオノマーが挙げられる。   Examples of polyolefins include polyethylene resin (PE), polypropylene resin (PP), acid-modified polyethylene resin, acid-modified polypropylene resin, ethylene-vinyl acetate copolymer (EVA), ethylene-methyl methacrylate copolymer (EMMA), ethylene- Examples include ethyl acrylate copolymer (EEA), ethylene-methacrylic acid copolymer (EMAA), ethylene-ethyl acrylate-maleic anhydride copolymer, and ionomer.

これらのうち、エチレン−メタクリル酸共重合体、エチレン−エチルアクリレート−無水マレイン酸共重合体など、カルボニル基を含有する共重合モノマーを共重合させた共重合ポリオレフィンを用いると好ましい。カルボニル基を含有するモノマーの共重合比率は、共重合モノマー全体の1質量%以上20質量%以下が好ましい。   Among these, it is preferable to use a copolymerized polyolefin obtained by copolymerizing a copolymerizable monomer containing a carbonyl group, such as an ethylene-methacrylic acid copolymer or an ethylene-ethyl acrylate-maleic anhydride copolymer. The copolymerization ratio of the monomer containing a carbonyl group is preferably 1% by mass or more and 20% by mass or less of the entire copolymerization monomer.

本発明の趣旨に鑑み、ポリオレフィンとしては、溶融粘度が高いものが好ましい。溶融粘度の指標として、メルトフローレート(MFR)が20g/10min以下のものが好ましい。なおメルトフローレートはJIS K 7210に準拠して、190℃及び荷重2.16kgの条件で測定した値である。   In view of the gist of the present invention, a polyolefin having a high melt viscosity is preferable. As an index of melt viscosity, a melt flow rate (MFR) of 20 g / 10 min or less is preferable. The melt flow rate is a value measured in accordance with JIS K 7210 under conditions of 190 ° C. and a load of 2.16 kg.

本発明に使用するリン系難燃剤としては、ホスフィン酸金属塩、リン酸メラミン化合物、リン酸アンモニウム化合物、環状有機リン系難燃剤等が挙げられる。本発明の趣旨に鑑みハロゲンフリーのリン系難燃剤が好ましい。リン酸エステル等、溶融混練の温度で液体状のリン系難燃剤を併用しても良い。しかし溶融混練の温度(結晶性共重合ポリエステルの融点以上の温度)で固体であるリン系難燃剤の方が難燃性向上効果が高いため、本発明では結晶性共重合ポリエステルの融点において固体であるリン系難燃剤を必須成分とする。リン系難燃剤の含有量は樹脂成分100質量部に対して20質量部以上100質量部以下とする。リン系難燃剤の含有量が20質量部未満であると必要とする難燃性が得られない。またリン系難燃剤の量が100質量部を超えるとリン系難燃剤の分散性が悪くなり、外観不良の原因となる。   Examples of the phosphorus flame retardant used in the present invention include phosphinic acid metal salts, melamine phosphate compounds, ammonium phosphate compounds, and cyclic organic phosphorus flame retardants. In view of the gist of the present invention, a halogen-free phosphorus-based flame retardant is preferable. A liquid phosphorus flame retardant such as phosphate ester may be used in combination at the temperature of melt kneading. However, since the phosphorus-based flame retardant that is solid at the melt kneading temperature (temperature higher than the melting point of the crystalline copolyester) has a higher effect of improving the flame retardancy, in the present invention, it is solid at the melting point of the crystalline copolyester. A certain phosphorus flame retardant is an essential component. Content of a phosphorus flame retardant shall be 20 to 100 mass parts with respect to 100 mass parts of resin components. The required flame retardancy cannot be obtained when the content of the phosphorus flame retardant is less than 20 parts by mass. On the other hand, when the amount of the phosphorus-based flame retardant exceeds 100 parts by mass, the dispersibility of the phosphorus-based flame retardant is deteriorated, resulting in poor appearance.

以上の材料を混合して樹脂組成物とする。さらに樹脂組成物には窒素系難燃剤を含有していても良い。リン系難燃剤と窒素系難燃剤とを併用することで更に難燃性を向上できる。ただし窒素系難燃剤の含有量を多くしすぎると導体との接着力が低下する。また誘電率も上がるので誘電率を低くする観点からは窒素系難燃剤を含有しない方が好ましい。さらに必要に応じて樹脂組成物には酸化防止剤、老化防止剤、滑剤、加工安定剤等を混合しても良い。これらの材料を短軸押出型混合機、加圧ニーダー、バンバリーミキサー等の既知の溶融混合機を用いて混合した後、押出成形加工等の方法で難燃樹脂層を作製する。また上記の樹脂組成物を溶剤に溶解した液を樹脂フィルム上に塗布した後乾燥させて難燃樹脂層を形成しても良い。   The above materials are mixed to obtain a resin composition. Furthermore, the resin composition may contain a nitrogen-based flame retardant. Flame retardancy can be further improved by using a phosphorus-based flame retardant and a nitrogen-based flame retardant in combination. However, if the content of the nitrogen-based flame retardant is excessively increased, the adhesive strength with the conductor is reduced. Further, since the dielectric constant increases, it is preferable not to contain a nitrogen-based flame retardant from the viewpoint of lowering the dielectric constant. Furthermore, you may mix antioxidant, an antioxidant, a lubricant, a processing stabilizer, etc. with a resin composition as needed. After these materials are mixed using a known melt mixer such as a short-shaft extrusion mixer, a pressure kneader, or a Banbury mixer, a flame-retardant resin layer is produced by a method such as extrusion molding. Alternatively, a liquid obtained by dissolving the above resin composition in a solvent may be applied on a resin film and then dried to form a flame retardant resin layer.

樹脂フィルムとしては柔軟性に優れた樹脂材料が使用され、例えばポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリイミド樹脂等が例示される。ポリエステル樹脂としてはポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンナフタレート樹脂、ポリトリメチレンテレフタレート樹脂、ポリトリメチレンナフタレート樹脂、ポリシクロヘキサンジメチルテレフタレート樹脂、ポリシクロヘキサンジメチルナフタレートポリアリレート樹脂等が挙げられる。これらの樹脂のうち、電気的特性、機械的特性、コスト等の観点からポリエチレンテレフタレート樹脂が樹脂フィルムとして好適に使用される。また樹脂フィルムの厚みは12〜50μmとすることが好ましい。   As the resin film, a resin material having excellent flexibility is used, and examples thereof include polyester resin, polyphenylene sulfide resin, and polyimide resin. Polyester resins include polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin, polytrimethylene terephthalate resin, polytrimethylene naphthalate resin, polycyclohexanedimethyl terephthalate resin, polycyclohexanedimethyl naphthalate polyarylate Examples thereof include resins. Among these resins, polyethylene terephthalate resin is preferably used as the resin film from the viewpoint of electrical characteristics, mechanical characteristics, cost, and the like. Moreover, it is preferable that the thickness of a resin film shall be 12-50 micrometers.

樹脂フィルムと難燃樹脂層の間にアンカーコート層を有すると樹脂フィルムと難燃樹脂層との接着力が向上して好ましい。アンカーコート層としては任意の材料を使用することができる。例えば主剤であるポリウレタン樹脂にイソシアネート系の硬化剤を混合したウレタン系のアンカーコート材料が好ましく使用できる。アンカーコート層の厚みは0.5〜5μmとすることが好ましい。以上の材料を積層して絶縁フィルムが得られる。   It is preferable to have an anchor coat layer between the resin film and the flame retardant resin layer because the adhesive force between the resin film and the flame retardant resin layer is improved. Any material can be used for the anchor coat layer. For example, a urethane-based anchor coat material in which an isocyanate-based curing agent is mixed with a polyurethane resin as a main component can be preferably used. The thickness of the anchor coat layer is preferably 0.5 to 5 μm. An insulating film can be obtained by laminating the above materials.

次に本発明のフラットケーブルについて説明する。図1は本発明の絶縁フィルムを用いたフラットケーブルの一例を示す図であり、図2は図1のA−A’断面図である。平角形状の導体1の両面を、難燃樹脂層2、樹脂フィルム3及びアンカーコート層4からなる絶縁フィルム5が被覆している。図1に示すように、フラットケーブルの端部は片面のみに絶縁フィルム5を被覆して導体1を露出させている。   Next, the flat cable of the present invention will be described. FIG. 1 is a view showing an example of a flat cable using the insulating film of the present invention, and FIG. 2 is a cross-sectional view taken along the line A-A 'of FIG. Both sides of the flat rectangular conductor 1 are covered with an insulating film 5 composed of a flame retardant resin layer 2, a resin film 3 and an anchor coat layer 4. As shown in FIG. 1, the end portion of the flat cable covers the insulating film 5 only on one side to expose the conductor 1.

フラットケーブルを製造する際は、複数の導体1の外側に2枚の絶縁フィルム5を樹脂フィルム3が外側となるように相対峙させて、既知の熱ラミネータや熱プレス装置を用いて加熱加圧処理を行って導体1と絶縁フィルム5及び絶縁フィルム5同士を接着させる。この際、フラットケーブル端部となる部分においては、絶縁フィルム5の一部に穴を開けておくことで、端部の導体1を露出させることができる。熱ラミネート又は熱プレスを連続して行うことで長尺のフラットケーブルが得られる。その後一定の長さに切断して任意の長さのフラットケーブルを得ることができる。さらにフラットケーブルの外側にシールド層を設けても良い。   When manufacturing a flat cable, two insulating films 5 are placed on the outside of a plurality of conductors 1 so that the resin film 3 faces outside, and heated and pressurized using a known thermal laminator or a hot press device. The conductor 1 is bonded to the insulating film 5 and the insulating film 5 by processing. At this time, in the portion to be the end portion of the flat cable, the conductor 1 at the end portion can be exposed by making a hole in a part of the insulating film 5. A long flat cable can be obtained by continuously performing thermal lamination or hot pressing. Thereafter, it can be cut to a certain length to obtain a flat cable having an arbitrary length. Further, a shield layer may be provided outside the flat cable.

導体としては、銅、錫メッキ軟銅、ニッケルメッキ軟銅等の導電性金属を使用することができる。導体は平角形状が好ましく、その厚みは使用する電流量に対応するが、フラットケーブルの柔軟性を考慮すると15μm〜100μmが好ましい。   As the conductor, a conductive metal such as copper, tin-plated annealed copper, or nickel-plated annealed copper can be used. The conductor preferably has a rectangular shape, and its thickness corresponds to the amount of current used, but is preferably 15 μm to 100 μm in consideration of the flexibility of the flat cable.

次に、本発明を実施例、比較例に基づいて説明する。なお実施例は本発明の範囲を限定するものではない。   Next, the present invention will be described based on examples and comparative examples. In addition, an Example does not limit the scope of the present invention.

(実施例1〜12、比較例1〜4)
(絶縁フィルムの作製)
ウレタン系接着剤(三井化学ポリウレタン(株)製、商品名タケラックA−310)とイソシアネート系硬化剤(三井化学ポリウレタン(株)製、商品名タケネートA−3)とを固形分換算で10:1の割合で混合したアンカーコート剤を準備し、表面にコロナ処理を行ったポリエチレンテレフタレート樹脂フィルム(東レ(株)製、厚さ12μm)の表面に塗布した後、乾燥して溶剤を除去することで樹脂フィルムの表面に厚さ約3μmのアンカーコート層を形成した。
(Examples 1-12, Comparative Examples 1-4)
(Preparation of insulation film)
Urethane adhesive (Mitsui Chemicals Polyurethane Co., Ltd., trade name Takelac A-310) and isocyanate curing agent (Mitsui Chemicals Polyurethane Co., Ltd., trade name Takenate A-3) in a solid content conversion of 10: 1. By preparing an anchor coating agent mixed at a ratio of 1 and applying it on the surface of a polyethylene terephthalate resin film (made by Toray Industries, Inc., thickness 12 μm) subjected to corona treatment on the surface, the solvent is removed by drying. An anchor coat layer having a thickness of about 3 μm was formed on the surface of the resin film.

(樹脂組成物の作製)
表1及び表2に示す種類及び量の材料を混合機(東芝機械(株)製、TEM26SS)を用いて溶融混合して樹脂組成物を作製した。なお混練時の温度は180℃である。
(Preparation of resin composition)
The types and amounts of materials shown in Tables 1 and 2 were melt mixed using a mixer (Toshiki Machine Co., Ltd., TEM26SS) to prepare a resin composition. The temperature at the time of kneading is 180 ° C.

Tダイ押出機を用い、上記の樹脂組成物を、アンカーコート層を形成したポリエチレンテレフタレート樹脂フィルムの上にフィルム状に押し出して絶縁フィルムを得た。この絶縁フィルムはポリエチレンテレフタレート樹脂フィルム、アンカーコート層、難燃樹脂層(樹脂組成物をフィルム状に押し出したもの)の順に積層されたものである。   Using a T-die extruder, the above resin composition was extruded into a film shape on a polyethylene terephthalate resin film on which an anchor coat layer had been formed to obtain an insulating film. This insulating film is laminated in the order of a polyethylene terephthalate resin film, an anchor coat layer, and a flame retardant resin layer (a resin composition extruded into a film).

(分散性評価)
絶縁フィルムの表面を顕微鏡で観察し、直径200μm以上の凝集塊が1mあたり10個未満であるものを◎、10個以上50個未満のものを○、50個以上のものを×とした。
(Dispersibility evaluation)
The surface of the insulating film was observed with a microscope. The number of aggregates having a diameter of 200 μm or more was less than 10 per 1 m 2 , the number of 10 or more and less than 50 was evaluated as ◯, and the number of 50 or more was evaluated as ×.

(フラットケーブルの作成)
導体である錫メッキ軟銅箔(厚さ35μm、幅0.3mm)40本を0.5mmピッチで平行に並べた状態で2枚の絶縁フィルムで挟み込み、150℃の加熱ローラを用いて導体の両面を絶縁フィルムで被覆した後、任意の長さに切断してフラットケーブルを作製した。
(Create flat cable)
40 conductors of tin-plated annealed copper foil (thickness 35μm, width 0.3mm) are sandwiched between two insulating films in parallel with a 0.5mm pitch, and both sides of the conductor using 150 ° C heating rollers Was covered with an insulating film, and then cut into an arbitrary length to produce a flat cable.

(難燃性評価)
作製したフラットケーブルに対して、UL規格1581のVW−1に規定される垂直燃焼試験を行った。より具体的には、フラットケーブルを10本準備し、着火後、10本中1本以上燃焼したもの、燃焼落下物によりフラットケーブルの下方に配置した脱脂綿が燃焼したもの、またはフラットケーブルの上部に取り付けたクラフト紙が燃焼したものを不合格とし、その他を合格とした。
(Flame retardance evaluation)
The manufactured flat cable was subjected to a vertical combustion test defined by VW-1 of UL standard 1581. More specifically, 10 flat cables are prepared, and after ignition, one or more of the 10 burned, the absorbent cotton placed under the flat cable burned by burning fallen objects, or the upper part of the flat cable The fired attached kraft paper was rejected, and the others were accepted.

(接着力評価)
作製したフラットケーブルを用いて導体接着力を測定した。具体的には、フラットケーブル端部に露出した導体(厚さ35μm、幅0.3mm)を引張速度100mm/minで180°方向に引っ張り、剥離強度を測定した。7N/cm以上が合格レベルである。
(Adhesive strength evaluation)
The conductor adhesive force was measured using the produced flat cable. Specifically, the conductor (thickness 35 μm, width 0.3 mm) exposed at the end of the flat cable was pulled in the 180 ° direction at a pulling speed of 100 mm / min, and the peel strength was measured. 7 N / cm or more is an acceptable level.

(実施例13〜14)
ポリエチレンテレフタレート樹脂フィルムの代わりにポリイミド樹脂フィルム(東レ・デュポン(株)製、厚さ12.5μm)を用いたこと以外は実施例1〜12と同様に絶縁フィルム及びフラットケーブルを作製し、一連の評価を行った。以上の結果を表1及び表2に示す。
(Examples 13 to 14)
An insulating film and a flat cable were prepared in the same manner as in Examples 1 to 12 except that a polyimide resin film (manufactured by Toray DuPont Co., Ltd., thickness 12.5 μm) was used instead of the polyethylene terephthalate resin film. Evaluation was performed. The above results are shown in Tables 1 and 2.

Figure 0005891844
Figure 0005891844

Figure 0005891844
Figure 0005891844

(脚注)
結晶性共重合ポリエステル:Tg19℃、融点143℃、分子量25000
非晶性共重合ポリエステル:Tg67℃、分子量17000
ポリオレフィン1:エチレン−メタクリル酸共重合体(メタクリル酸4質量%、MFR7)
ポリオレフィン2:エチレン−エチルアクリレート−無水マレイン酸共重合体(エチルアクリレート9質量%、無水マレイン酸2質量%、MFR5)
ポリオレフィン3:エチレン−エチルアクリレート−無水マレイン酸共重合体(エチルアクリレート15質量%、無水マレイン酸2質量%、MFR3)
ポリオレフィン4:エチレン−エチルアクリレート共重合体(エチルアクリレート10質量%、MFR3)
ポリオレフィン5:エチレン−エチルアクリレート−無水マレイン酸共重合体(エチルアクリレート32質量%、無水マレイン酸2質量%、MFR7)
ポリオレフィン6:エチレン−エチルアクリレート共重合体(エチルアクリレート20質量%、MFR20)
ポリオレフィン7:ポリエチレン
リン系難燃剤1:ホスフィン酸金属塩(クラリアント(株)製 EXOLIT OP930)
リン系難燃剤2:環状有機リン系難燃剤(三光(株)製 HCA−HQ−HS)
窒素系難燃剤1:メラミンシアヌレート(日産化学(株)製 MC6000)
(footnote)
Crystalline copolyester: Tg 19 ° C., melting point 143 ° C., molecular weight 25000
Amorphous copolymer polyester: Tg 67 ° C., molecular weight 17000
Polyolefin 1: Ethylene-methacrylic acid copolymer (methacrylic acid 4% by mass, MFR7)
Polyolefin 2: Ethylene-ethyl acrylate-maleic anhydride copolymer (ethyl acrylate 9% by mass, maleic anhydride 2% by mass, MFR5)
Polyolefin 3: Ethylene-ethyl acrylate-maleic anhydride copolymer (ethyl acrylate 15% by mass, maleic anhydride 2% by mass, MFR3)
Polyolefin 4: Ethylene-ethyl acrylate copolymer (10% by mass of ethyl acrylate, MFR3)
Polyolefin 5: Ethylene-ethyl acrylate-maleic anhydride copolymer (32% by mass of ethyl acrylate, 2% by mass of maleic anhydride, MFR7)
Polyolefin 6: Ethylene-ethyl acrylate copolymer (ethyl acrylate 20% by mass, MFR20)
Polyolefin 7: Polyethylene Phosphorus flame retardant 1: Metal phosphinate (EXOLIT OP930 manufactured by Clariant Co., Ltd.)
Phosphorus flame retardant 2: Cyclic organophosphorus flame retardant (HCA-HQ-HS manufactured by Sanko Co., Ltd.)
Nitrogen flame retardant 1: melamine cyanurate (MC6000 manufactured by Nissan Chemical Co., Ltd.)

実施例1〜14の絶縁フィルム、フラットケーブルは分散性、難燃性、接着力ともに合格レベルであり、リン系難燃剤が良好に分散している。なかでもメタクリル酸、エチルアクリレート、無水マレイン酸等の、カルボニル基を有するモノマーを1質量%〜20質量%共重合させた共重合ポリオレフィンを用いた実施例1〜6、13、14は特に分散性が優れている。なお実施例8で使用しているポリオレフィン6はエチルアクリレート共重合比率は20質量%であるが、MFRが大きく溶融混練時の粘度が低くなったため実施例1〜6と比較すると分散性が低下していると推測される。   The insulating films and flat cables of Examples 1 to 14 have acceptable levels of dispersibility, flame retardancy, and adhesive strength, and the phosphorus-based flame retardant is well dispersed. In particular, Examples 1 to 6, 13, and 14 using a copolymerized polyolefin obtained by copolymerizing 1% by mass to 20% by mass of a monomer having a carbonyl group such as methacrylic acid, ethyl acrylate, and maleic anhydride are particularly dispersible. Is excellent. In addition, although the polyolefin 6 used in Example 8 has an ethyl acrylate copolymerization ratio of 20% by mass, since the MFR is large and the viscosity at the time of melt kneading is low, the dispersibility is lowered compared with Examples 1 to 6. I guess that.

比較例1は結晶性ポリエステルのみを使用したものである。難燃性、接着力は良好であるがポリオレフィンを併用していないため分散性が劣っている。比較例2はポリオレフィンを樹脂成分全体の50質量%と多量に使用している。このため分散性は良好であるが難燃性が劣っている。比較例3はリン系難燃剤の添加量が多すぎるため分散性が悪い。   Comparative Example 1 uses only crystalline polyester. Although flame retardancy and adhesive strength are good, dispersibility is inferior because polyolefin is not used together. In Comparative Example 2, polyolefin is used in a large amount of 50% by mass of the entire resin component. For this reason, dispersibility is good, but flame retardancy is poor. Since the comparative example 3 has too much addition amount of a phosphorus flame retardant, dispersibility is bad.

1 導体
2 難燃樹脂層
3 樹脂フィルム
4 アンカーコート層
5 絶縁フィルム
1 Conductor 2 Flame Retardant Resin Layer 3 Resin Film 4 Anchor Coat Layer 5 Insulating Film

Claims (7)

樹脂フィルムに難燃樹脂層が積層された絶縁フィルムであって、
前記難燃樹脂層は、結晶性共重合ポリエステルとポリオレフィンとを必須成分とし、該結晶性共重合ポリエステルを樹脂成分全体の40質量%以上含有する樹脂成分100質量部に対して、前記結晶性共重合ポリエステルの融点において固体であるリン系難燃剤を20質量部以上100質量部以下含有する樹脂組成物からなるとともに
前記ポリオレフィンの含有量が、前記樹脂成分全体の5質量%以上40質量%以下である
絶縁フィルム。
An insulating film in which a flame retardant resin layer is laminated on a resin film,
The flame-retardant resin layer contains crystalline copolymer polyester and polyolefin as essential components, and the crystalline copolymer is contained in 100 parts by mass of the resin component containing 40% by mass or more of the crystalline copolymer polyester. with a phosphorus-based flame retardant is a solid comprising a resin composition containing 100 parts by mass or less than 20 parts by mass in the melting point of the polymerization polyester,
The insulating film whose content of the said polyolefin is 5 to 40 mass% of the whole said resin component .
前記ポリオレフィンは、カルボニル基を含有するモノマーを1質量%以上20質量%以下共重合させた共重合ポリオレフィンである、請求項1に記載の絶縁フィルム。   The insulating film according to claim 1, wherein the polyolefin is a copolymerized polyolefin obtained by copolymerizing a monomer containing a carbonyl group in an amount of 1% by mass to 20% by mass. 前記結晶性共重合ポリエステルの融点が80℃以上170℃以下である、請求項1又は2に記載の絶縁フィルム。 The insulating film of Claim 1 or 2 whose melting | fusing point of the said crystalline copolyester is 80 degreeC or more and 170 degrees C or less. 前記樹脂成分が、さらに非晶性共重合ポリエステルを、樹脂成分全体の5質量%以上20質量%以下含有する、請求項1〜のいずれか1項に記載の絶縁フィルム。 The insulating film according to any one of claims 1 to 3 , wherein the resin component further contains an amorphous copolyester in an amount of 5% by mass or more and 20% by mass or less based on the entire resin component. 前記樹脂組成物は、さらに、前記樹脂成分100質量部に対して窒素系難燃剤を10質量部以上75質量部以下含有する、請求項1〜のいずれか1項に記載の絶縁フィルム。 The insulating resin according to any one of claims 1 to 4 , wherein the resin composition further contains 10 parts by mass or more and 75 parts by mass or less of a nitrogen-based flame retardant with respect to 100 parts by mass of the resin component. 前記樹脂フィルムと前記難燃樹脂層との間にアンカーコート層を有する、請求項1〜のいずれか1項に記載の絶縁フィルム。 Wherein having an anchor coat layer between the resin film and the flame retardant resin layer, an insulating film according to any one of claims 1-5. 請求項1〜のいずれか1項に記載の絶縁フィルムを被覆材として用いたフラットケーブル。 The flat cable which used the insulating film of any one of Claims 1-6 as a coating | covering material.
JP2012038488A 2012-02-24 2012-02-24 Insulating film and flat cable using the same Active JP5891844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012038488A JP5891844B2 (en) 2012-02-24 2012-02-24 Insulating film and flat cable using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012038488A JP5891844B2 (en) 2012-02-24 2012-02-24 Insulating film and flat cable using the same

Publications (2)

Publication Number Publication Date
JP2013175341A JP2013175341A (en) 2013-09-05
JP5891844B2 true JP5891844B2 (en) 2016-03-23

Family

ID=49268083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012038488A Active JP5891844B2 (en) 2012-02-24 2012-02-24 Insulating film and flat cable using the same

Country Status (1)

Country Link
JP (1) JP5891844B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015123864A1 (en) * 2014-02-21 2015-08-27 Sumitomo Electric Industries, Ltd. Wiring member and manufacturing method thereof
JP6428028B2 (en) 2014-08-04 2018-11-28 住友電気工業株式会社 Adhesive composition, insulating film, method for producing insulating film, and flat cable
KR101947223B1 (en) * 2015-07-28 2019-04-22 주식회사 두산 Insulating film and flexible flat cable
JP7080920B2 (en) * 2020-04-28 2022-06-06 星和電機株式会社 Flame-retardant heat dissipation sheet
CN115820155A (en) * 2022-12-08 2023-03-21 广东莱尔新材料科技股份有限公司 Super-thick high-temperature-resistant and voltage-resistant polyester hot melt adhesive film and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320692A (en) * 1993-05-14 1994-11-22 Mitsubishi Plastics Ind Ltd Laminated film for flat cable
DE19614424A1 (en) * 1996-04-12 1997-10-16 Hoechst Ag Synergistic combination of flame retardants for polymers
JP2000351911A (en) * 1999-06-14 2000-12-19 Tosoh Corp Flame retardant auxiliary, composite flame retardant and flame-retardant resin composition using the same
JP4945880B2 (en) * 2002-12-16 2012-06-06 大日本印刷株式会社 Flat cable covering material and flat cable
KR101153132B1 (en) * 2004-02-18 2012-06-04 미쓰비시 쥬시 가부시끼가이샤 Adhesive agent and coating film for electric material using the same
JP2006083263A (en) * 2004-09-15 2006-03-30 Toyobo Co Ltd Thermoplastic adhesive composition and laminate using the same
WO2007029833A1 (en) * 2005-09-09 2007-03-15 Sumitomo Electric Industries, Ltd. Flame-retardant resin composition, and electric wire and insulating tube using same
TW200844281A (en) * 2006-11-15 2008-11-16 Shell Int Research Polymer fiber containing flame retardant, process for producing the same, and material containing such fibers
JP5308187B2 (en) * 2009-02-24 2013-10-09 株式会社カネカ Flame retardant high light resistance and high thermal conductivity thermoplastic resin composition and molded article thereof
JP5529551B2 (en) * 2009-10-06 2014-06-25 住友電気工業株式会社 Insulation tube and heat shrink tube
JP5556183B2 (en) * 2009-10-06 2014-07-23 住友電気工業株式会社 Flame retardant resin composition and insulated wire, flat cable, molded product using the same
JP2011230324A (en) * 2010-04-26 2011-11-17 Teijin Dupont Films Japan Ltd Flame retardant laminated polyester film and flame retardant flat cable constituted of this film

Also Published As

Publication number Publication date
JP2013175341A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
TWI501869B (en) Flame retardant resin sheet and flat cable using the same
JP5891844B2 (en) Insulating film and flat cable using the same
JP5578446B2 (en) Insulating film and flat cable using the same
JP5162838B2 (en) Adhesive film and flat cable manufacturing method using the adhesive film
CN104541334B (en) Dielectric film and flat cable
TWI661019B (en) Adhesive composition, insulating film, manufacturing method of insulating film, and flat cable
JP5412748B2 (en) Flat cable
JP2012119177A (en) Insulating film and flat cable using the same
JP5440948B2 (en) Insulating film and flat cable using the same
JP5530193B2 (en) Flame-retardant laminate adhesive and flat cable shield tape using the same
JP3593747B2 (en) Flat cable and manufacturing method
JP2014159516A (en) Flame-retardant resin composition, flame-retardant resin molding, insulated wire, and flat cable
JP2012036298A (en) Adhesive film and flat cable
JP4644918B2 (en) Insulating film with flame-retardant adhesive layer and flat cable using the same
JP5124983B2 (en) Insulating film and flexible flat cable including the same
JP2004146286A (en) Insulated flame resistant adhesive film
JP2002343144A (en) Non halogen flame retardant insulated electric wire excellent in wire stripping
KR100642284B1 (en) Non-halogen flame retardant adhesive film, and flat cable comprising the same
JP6786953B2 (en) Manufacturing method of insulating film for flat cable, flat cable and flat cable
JP2004130691A (en) Flame-retardant adhesive film and flat cable using this film
JP2010215758A (en) Flame-retardant adhesive sheet and sheet assembly
JPH05101716A (en) Tape cable
JPH05128918A (en) Flat cable
JP2007045947A (en) Flame retardant hotmelt adhesive
JP2005336381A (en) Flame retardant hot melt adhesive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5891844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250