JP5890504B2 - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
JP5890504B2
JP5890504B2 JP2014207746A JP2014207746A JP5890504B2 JP 5890504 B2 JP5890504 B2 JP 5890504B2 JP 2014207746 A JP2014207746 A JP 2014207746A JP 2014207746 A JP2014207746 A JP 2014207746A JP 5890504 B2 JP5890504 B2 JP 5890504B2
Authority
JP
Japan
Prior art keywords
light emitting
concentration
mass
compound
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014207746A
Other languages
Japanese (ja)
Other versions
JP2015029141A (en
Inventor
安田 英紀
英紀 安田
佐藤 祐
祐 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UDC Ireland Ltd
Original Assignee
UDC Ireland Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UDC Ireland Ltd filed Critical UDC Ireland Ltd
Priority to JP2014207746A priority Critical patent/JP5890504B2/en
Publication of JP2015029141A publication Critical patent/JP2015029141A/en
Application granted granted Critical
Publication of JP5890504B2 publication Critical patent/JP5890504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、有機電界発光素子(以下、「有機エレクトロルミネッセンス素子」、「有機EL素子」等と称することもある)に関する。   The present invention relates to an organic electroluminescent element (hereinafter also referred to as “organic electroluminescence element”, “organic EL element”, etc.).

有機電界発光素子は、自発光、高速応答などの特長を持ち、フラットパネルディスプレイへの適用が期待されており、特に、正孔輸送性の有機薄膜(正孔輸送層)と電子輸送性の有機薄膜(電子輸送層)とを積層した2層型(積層型)のものが報告されて以来、10V以下の低電圧で発光する大面積発光素子として関心を集めている。積層型の有機電界発光素子は、陽極、正孔輸送層、発光層、電子輸送層、及び陰極を基本構成とし、このうち前記発光層は、前記正孔輸送層又は前記電子輸送層にその機能を兼ねさせてもよい。   Organic electroluminescence devices have features such as self-emission and high-speed response, and are expected to be applied to flat panel displays. In particular, organic thin films (hole transport layer) that have a hole transport property and organic materials that have an electron transport property. Since a two-layer type (laminated type) in which a thin film (electron transport layer) is laminated is reported, it has attracted attention as a large-area light-emitting element that emits light at a low voltage of 10 V or less. A stacked organic electroluminescent element has an anode, a hole transport layer, a light-emitting layer, an electron transport layer, and a cathode as a basic configuration, and the light-emitting layer functions as the hole transport layer or the electron transport layer. May also be used.

このような有機電界発光素子は、電流密度が変化した際に、キャリアのバランスが崩れ、発光効率及び耐久性の低下、更に色度変化が生じるという課題があった。このうち色度変化が生じる主たる要因に、発光位置変化による光学干渉の影響がある。光学干渉により、電極に近いほど青色となり、電極から離れると赤色が強められる。この影響は発光層の厚みが大きいほど顕著である。
前記課題を解決するため、例えば特許文献1には、一対の電極間に発光層を含む有機層を挟持した有機電界発光素子であって、前記発光層が少なくともEa値(電子親和力)又はIp値(イオン化ポテンシャル)の異なる2種の発光材料と少なくとも1種のホスト材料とを含有し、前記2種の発光材料の内のEa値又はIp値が大きい方の発光材料の前記発光層における濃度が前記発光層の陰極側から陽極側に向けて漸減し、かつ、前記2種の発光材料の内のEa値又はIp値が小さい方の発光材料の前記発光層における濃度が前記陽極側から前記陰極側に向けて漸減している有機電界発光素子が提案される。
また、特許文献2には、陽極と陰極との間に発光領域を有する発光素子であって、前記発光領域は、発光に寄与する物質と該物質を含有するための媒体とからなり、前記発光に寄与する物質は、前記発光領域の前記陽極側から前記陰極側に向けて、略連続的に濃度分布をもつ構成である発光素子が提案されている。
しかしながら、前記先行技術文献に記載の発光材料の濃度制御は、キャリアバランス制御による発光効率及び耐久性の向上を目的としたものであり、電流密度変化による色度変化の抑制については考慮されていなかった。
Such an organic electroluminescent device has a problem that when the current density is changed, the balance of carriers is lost, the luminous efficiency and durability are lowered, and the chromaticity is changed. Among them, the main factor causing the change in chromaticity is the influence of optical interference due to the change in the light emission position. Due to optical interference, the closer to the electrode, the bluer the color, and the farther away from the electrode, the stronger the red color. This effect becomes more prominent as the thickness of the light emitting layer increases.
In order to solve the above-mentioned problem, for example, Patent Document 1 discloses an organic electroluminescent element in which an organic layer including a light emitting layer is sandwiched between a pair of electrodes, and the light emitting layer has at least an Ea value (electron affinity) or an Ip value. 2 types of light emitting materials having different (ionization potentials) and at least one type of host material, and the concentration of the light emitting material having the larger Ea value or Ip value of the two types of light emitting materials in the light emitting layer. The concentration of the light emitting material of the light emitting layer that gradually decreases from the cathode side to the anode side of the light emitting layer and has the smaller Ea value or Ip value of the two types of light emitting materials from the anode side to the cathode. An organic electroluminescent element that gradually decreases toward the side is proposed.
Patent Document 2 discloses a light emitting element having a light emitting region between an anode and a cathode, wherein the light emitting region includes a substance that contributes to light emission and a medium containing the substance, and the light emitting element. There has been proposed a light-emitting element having a structure in which the substance contributing to the above has a concentration distribution substantially continuously from the anode side to the cathode side of the light-emitting region.
However, the concentration control of the luminescent material described in the prior art document is intended to improve the light emission efficiency and durability by carrier balance control, and does not consider suppression of chromaticity change due to current density change. It was.

したがって光学干渉による色ずれのドーピング濃度変化による抑制により、電流密度変化時の色度変化を抑制できると共に、発光効率及び耐久性が向上した有機電界発光素子の速やかな提供が望まれているのが現状である。   Therefore, the suppression of color shift due to optical interference due to a change in doping concentration can suppress a change in chromaticity when a current density changes, and it is desired to provide an organic electroluminescent device with improved luminous efficiency and durability. Currently.

特開2009−55010号公報JP 2009-55010 A 特開2001−189193号公報JP 2001-189193 A

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、電流密度変化時の色度変化を抑制できると共に、発光効率及び耐久性が向上した有機電界発光素子を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, an object of the present invention is to provide an organic electroluminescence device capable of suppressing a change in chromaticity when a current density is changed and having improved luminous efficiency and durability.

前記課題を解決するため本発明者らが鋭意検討を重ねた結果、発光スペクトルの異なる二つの濃度比率、即ち、発光波長ピークの異なる2種以上の発光材料を含み、短波長側ピークの発光材料の濃度Aに対する長波長側ピークの発光材料の濃度Bの濃度比率、又は単量体に対する前記会合体の濃度比率を発光層内で変化させることにより、光学干渉による発光スペクトル変化を抑制することができ、電流密度変化時の色度変化を抑制できると共に、発光効率及び耐久性が向上した有機電界発光素子が得られることを知見した。   As a result of intensive studies by the present inventors in order to solve the above problems, the present invention includes two or more kinds of light emitting materials having different concentration ratios, that is, light emission wavelength peaks, which are different in emission spectrum, and has a short wavelength side peak light emitting material. By changing the concentration ratio of the concentration B of the light emitting material at the peak of the long wavelength with respect to the concentration A of the above, or the concentration ratio of the aggregate to the monomer in the light emitting layer, the change in the emission spectrum due to optical interference can be suppressed. It has been found that an organic electroluminescent device can be obtained in which the change in chromaticity when the current density changes can be suppressed and the luminous efficiency and durability are improved.

本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 陽極と陰極の間に、少なくとも発光層を含む有機電界発光素子であって、
前記発光層が発光波長ピークの異なる2種以上の発光材料を含み、短波長側ピークの発光材料の濃度Aに対する長波長側ピークの発光材料の濃度Bの濃度比率〔(B/A)×100〕が、前記陰極に近づくにつれて漸増しており、
前記濃度比率〔(B/A)×100〕が10%以下であることを特徴とする有機電界発光素子である。
<2> 長波長側ピークの発光材料の濃度が一定であり、短波長側ピークの発光材料の濃度が陰極に近づくにつれて減少する前記<1>に記載の有機電界発光素子である。
<3> 長波長側ピークの発光材料の濃度が陰極に近づくにつれて増加し、短波長側ピークの発光材料の濃度が一定である前記<1>に記載の有機電界発光素子である。
<4> 長波長側ピークの発光材料の濃度が陰極に近づくにつれて増加し、短波長側ピークの発光材料の濃度が陰極に近づくにつれて減少する前記<1>に記載の有機電界発光素子である。
<5> 短波長側ピークの発光材料の濃度に対する長波長側ピークの発光材料の濃度の比率を、発光層の陰極側でaとし、発光層の陽極側でbとすると、次式、a/b>1.05を満たす前記<1>から<4>のいずれかに記載の有機電界発光素子である。
<6> 陽極と陰極の間に、少なくとも発光層を含む有機電界発光素子であって、
前記発光層が発光材料を含み、該発光材料が単量体と会合体で異なる発光波長ピークを有し、
前記単量体の濃度に対する前記会合体の濃度の濃度比率(会合体の濃度/単量体の濃度)が、前記陰極に近づくにつれて漸増しており、
前記単量体の積分スペクトル強度Cに対する前記会合体の積分スペクトル強度Dの強度比率〔(D/C)×100〕が、20%以上であることを特徴とする有機電界発光素子である。
<7> 長波長側ピークの会合体の濃度が一定であり、短波長側ピークの単量体の濃度が陰極に近づくにつれて減少する前記<6>に記載の有機電界発光素子である。
<8> 長波長側ピークの会合体の濃度が陰極に近づくにつれて増加し、短波長側ピークの単量体の濃度が一定である前記<6>に記載の有機電界発光素子である。
<9> 長波長側ピークの会合体の濃度が陰極に近づくにつれて増加し、短波長側ピークの単量体の濃度が陰極に近づくにつれて減少する前記<6>に記載の有機電界発光素子である。
<10> 短波長側ピークの単量体の濃度に対する長波長側ピークの会合体の濃度の比率を、発光層の陰極側でaとし、発光層の陽極側でbとすると、次式、a/b>1.05を満たす前記<6>から<9>のいずれかに記載の有機電界発光素子である。
<11> 発光層の厚みが20nm以上である前記<1>から<10>のいずれかに記載の有機電界発光素子である。
<12> 陰極が反射電極であり、陽極が透明電極である前記<1>から<11>のいずれかに記載の有機電界発光素子である。
<13> 陰極が反射電極であり、陽極が半透過電極である前記<1>から<11>のいずれかに記載の有機電界発光素子である。
<14> 発光材料が燐光発光材料である前記<1>から<13>のいずれかに記載の有機電界発光素子である。
The present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is,
<1> An organic electroluminescent device comprising at least a light emitting layer between an anode and a cathode,
The light emitting layer includes two or more kinds of light emitting materials having different light emission wavelength peaks, and the concentration ratio of the concentration B of the light emitting material of the long wavelength side peak to the concentration A of the light emitting material of the short wavelength side peak [(B / A) × 100 Is gradually increased as it approaches the cathode,
The organic electroluminescence device, wherein the concentration ratio [(B / A) × 100] is 10% or less.
<2> The organic electroluminescence device according to <1>, wherein the concentration of the light emitting material having a long wavelength side peak is constant, and the concentration of the light emitting material having a short wavelength side peak decreases as it approaches the cathode.
<3> The organic electroluminescence device according to <1>, wherein the concentration of the light emitting material having a long wavelength side peak increases as the cathode approaches the cathode, and the concentration of the light emitting material having a short wavelength side peak is constant.
<4> The organic electroluminescence device according to <1>, wherein the concentration of the light emitting material having a long wavelength side peak increases as it approaches the cathode, and the concentration of the light emitting material having a short wavelength side peak decreases as it approaches the cathode.
<5> When the ratio of the concentration of the light emitting material of the long wavelength side peak to the concentration of the light emitting material of the short wavelength side peak is a on the cathode side of the light emitting layer and b on the anode side of the light emitting layer, It is an organic electroluminescent element in any one of said <1> to <4> which satisfy | fills b> 1.05.
<6> An organic electroluminescent device comprising at least a light emitting layer between an anode and a cathode,
The light-emitting layer contains a light-emitting material, and the light-emitting material has a different emission wavelength peak between the monomer and the aggregate,
The concentration ratio of the aggregate to the monomer concentration (aggregate concentration / monomer concentration) gradually increases as the cathode approaches.
The organic electroluminescent element is characterized in that an intensity ratio [(D / C) × 100] of the integrated spectral intensity D of the aggregate to the integrated spectral intensity C of the monomer is 20% or more.
<7> The organic electroluminescence device according to <6>, wherein the concentration of the aggregate of the long wavelength side peak is constant, and the concentration of the monomer of the short wavelength side peak decreases as it approaches the cathode.
<8> The organic electroluminescence device according to <6>, wherein the concentration of the aggregate of the long wavelength side peak increases as it approaches the cathode, and the concentration of the monomer of the short wavelength side peak is constant.
<9> The organic electroluminescence device according to <6>, wherein the concentration of the aggregate of the long wavelength side peak increases as it approaches the cathode, and the concentration of the monomer of the short wavelength side peak decreases as it approaches the cathode. .
<10> When the ratio of the concentration of the long wavelength side peak aggregate to the concentration of the short wavelength side peak monomer is a on the cathode side of the light emitting layer and b on the anode side of the light emitting layer, The organic electroluminescence device according to any one of <6> to <9>, wherein /b>1.05 is satisfied.
<11> The organic electroluminescent element according to any one of <1> to <10>, wherein the light emitting layer has a thickness of 20 nm or more.
<12> The organic electroluminescent element according to any one of <1> to <11>, wherein the cathode is a reflective electrode and the anode is a transparent electrode.
<13> The organic electroluminescent element according to any one of <1> to <11>, wherein the cathode is a reflective electrode and the anode is a transflective electrode.
<14> The organic electroluminescent element according to any one of <1> to <13>, wherein the light emitting material is a phosphorescent material.

本発明によると、従来における問題を解決することができ、電流密度変化時の色度変化を抑制できると共に、発光効率及び耐久性が向上した有機電界発光素子を提供することを目的とする。   According to the present invention, it is an object to provide an organic electroluminescent device that can solve the conventional problems, can suppress a change in chromaticity when a current density changes, and has improved luminous efficiency and durability.

図1は、本発明の有機電界発光素子の一例を示す概略図である。FIG. 1 is a schematic view showing an example of the organic electroluminescent element of the present invention. 図2は、実施例1の発光スペクトルを示す図である。2 is a diagram showing an emission spectrum of Example 1. FIG. 図3は、比較例1の発光スペクトルを示す図である。FIG. 3 is a diagram showing an emission spectrum of Comparative Example 1. 図4は、実施例2の発光スペクトルを示す図である。FIG. 4 is a diagram showing an emission spectrum of Example 2. 図5は、比較例2の発光スペクトルを示す図である。FIG. 5 is a diagram showing an emission spectrum of Comparative Example 2. 図6は、実施例3の発光スペクトルを示す図である。6 shows the emission spectrum of Example 3. FIG. 図7は、実施例4の発光スペクトルを示す図である。FIG. 7 is a graph showing an emission spectrum of Example 4. 図8は、実施例5の発光スペクトルを示す図である。FIG. 8 is a graph showing an emission spectrum of Example 5. 図9は、比較例5の発光スペクトルを示す図である。FIG. 9 is a diagram showing an emission spectrum of Comparative Example 5. 図10は、実施例6の発光スペクトルを示す図である。10 shows the emission spectrum of Example 6. FIG. 図11は、比較例6の発光スペクトルを示す図である。FIG. 11 is a diagram showing an emission spectrum of Comparative Example 6. 図12は、実施例7の発光スペクトルを示す図である。12 shows the emission spectrum of Example 7. FIG. 図13は、比較例7の発光スペクトルを示す図である。FIG. 13 is a diagram showing an emission spectrum of Comparative Example 7. 図14は、実施例8の発光スペクトルを示す図である。FIG. 14 is a graph showing an emission spectrum of Example 8. 図15は、比較例8の発光スペクトルを示す図である。FIG. 15 is a diagram showing an emission spectrum of Comparative Example 8. 図16は、実施例9の発光スペクトルを示す図である。FIG. 16 is a diagram showing an emission spectrum of Example 9. 図17は、比較例9の発光スペクトルを示す図である。FIG. 17 is a diagram showing an emission spectrum of Comparative Example 9.

(有機電界発光素子)
陽極と陰極の間に、少なくとも発光層を有してなり、電子輸送層、電子注入層、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層を有することが好ましく、更に必要に応じてその他の構成を有していてもよい。
(Organic electroluminescence device)
It preferably has at least a light emitting layer between the anode and the cathode, and preferably has an electron transport layer, an electron injection layer, a hole injection layer, a hole transport layer, a hole block layer, and an electron block layer. Depending on the, other configurations may be provided.

本発明の有機電界発光素子は、第1の形態では、前記発光層が発光波長ピークの異なる2種以上の発光材料を含み、短波長側ピークの発光材料の濃度Aに対する長波長側ピークの発光材料の濃度Bの濃度比率〔(B/A)×100〕が、前記陰極(反射電極)に近づくにつれて漸増しており、前記濃度比率〔(B/A)×100〕が10%以下である。   In the organic electroluminescence device of the present invention, in the first embodiment, the light emitting layer contains two or more kinds of light emitting materials having different light emission wavelength peaks, and the light emission of the long wavelength side peak with respect to the concentration A of the light emitting material of the short wavelength side peak The concentration ratio [(B / A) × 100] of the concentration B of the material gradually increases as it approaches the cathode (reflection electrode), and the concentration ratio [(B / A) × 100] is 10% or less. .

前記発光層は発光波長ピークの異なる2種以上の発光材料を含む。これにより、発光スペクトルの異なる2種以上の発光材料の濃度比率を発光層内で変化させることにより、光学干渉による発光スペクトル変化を抑制することができる。
前記発光波長ピークの異なる2種以上の発光材料としては、複数色の発光材料を混合することにより白色となるものが好ましく、赤色(R)、緑色(G)、及び青色(B)の3色の発光材料を用いることがより好ましい。
The light emitting layer includes two or more light emitting materials having different emission wavelength peaks. Thereby, the change in the emission spectrum due to optical interference can be suppressed by changing the concentration ratio of two or more kinds of light emitting materials having different emission spectra in the light emitting layer.
As the two or more kinds of light emitting materials having different emission wavelength peaks, those that become white by mixing light emitting materials of a plurality of colors are preferable, and three colors of red (R), green (G), and blue (B) are used. It is more preferable to use the light emitting material.

前記短波長側ピークの発光材料の濃度Aに対する長波長側ピークの発光材料の濃度Bの濃度比率〔(B/A)×100〕は、前記陰極(反射電極)に近づくにつれて漸増している。これにより、光学干渉の影響の位置依存性が軽減され、電流密度変化時の色度変化を抑制することができる。
前記濃度比率〔(B/A)×100〕を前記陰極に近づくにつれて漸増させる方法としては、例えば各成分の蒸着速度比を、陰極に近づけるにつれて変化させる方法などが挙げられる。
The concentration ratio [(B / A) × 100] of the concentration B of the light emitting material of the long wavelength side peak to the concentration A of the light emitting material of the short wavelength side peak gradually increases as the cathode (reflecting electrode) is approached. Thereby, the position dependence of the influence of optical interference is reduced, and the chromaticity change at the time of a current density change can be suppressed.
Examples of the method of gradually increasing the concentration ratio [(B / A) × 100] as it approaches the cathode include a method of changing the deposition rate ratio of each component as it approaches the cathode.

前記濃度比率〔(B/A)×100〕は、10%以下であり、0.1%〜2%が好ましい。
前記濃度比率〔(B/A)×100〕が10%を超えると、長波長ピーク成分のみの発光となることがある。
ここで、前記短波長側ピークの発光材料の濃度A及び前記長波長側ピークの発光材料の濃度Bは、例えばホスト材料の蒸着速度に対する各材料の蒸着速度により測定することができる。
The concentration ratio [(B / A) × 100] is 10% or less, preferably 0.1% to 2%.
When the concentration ratio [(B / A) × 100] exceeds 10%, only the long wavelength peak component may be emitted.
Here, the concentration A of the light emitting material having the short wavelength side peak and the concentration B of the light emitting material having the long wavelength side peak can be measured by, for example, the deposition rate of each material relative to the deposition rate of the host material.

前記長波長側ピークの発光材料の濃度が一定であり、前記短波長側ピークの発光材料の濃度が陰極(反射電極)に近づくにつれて減少することが、特に短波長側ピークの材料のみの濃度の変調により光学干渉の影響の位置依存性が軽減され、電流密度変化時の色度変化を抑制することができる点で好ましい。
前記長波長側ピークの発光材料の濃度が陰極(反射電極)に近づくにつれて増加し、前記短波長側ピークの発光材料の濃度が一定であることが、特に長波長側ピークの発光材料のみの濃度の変調により光学干渉の影響の位置依存性が軽減され、電流密度変化時の色度変化を抑制することができる点で好ましい。
前記長波長側ピークの発光材料の濃度が陰極(反射電極)に近づくにつれて増加し、前記短波長側ピークの発光材料の濃度が陰極(反射電極)に近づくにつれて減少することが、より精密に光学干渉の影響の位置依存性を軽減することができ、電流密度変化時の色度変化を抑制することができる点で好ましい。
前記短波長側ピークの発光材料の濃度に対する前記長波長側ピークの発光材料の濃度の比率を、発光層の陰極側でaとし、発光層の陽極側でbとすると、次式、a/b>1.05を満たすことが、電流密度変化時の色度変化を有効に抑制できる点で好ましい。前記比(a/b)は1.1〜2.0がより好ましい。
The concentration of the light emitting material of the long wavelength side peak is constant, and the concentration of the light emitting material of the short wavelength side peak decreases as it approaches the cathode (reflecting electrode). Modulation is preferable in that the position dependency of the influence of optical interference is reduced, and the change in chromaticity when the current density changes can be suppressed.
The concentration of the light emitting material at the long wavelength side peak increases as it approaches the cathode (reflecting electrode), and the concentration of the light emitting material at the short wavelength side peak is constant. This is preferable in that the position dependency of the influence of optical interference is reduced by this modulation, and the change in chromaticity when the current density changes can be suppressed.
It is more precise that the concentration of the light emitting material at the long wavelength side peak increases as it approaches the cathode (reflecting electrode) and decreases as the concentration of the light emitting material at the short wavelength side peak approaches the cathode (reflecting electrode). This is preferable in that the position dependency of the influence of interference can be reduced, and the change in chromaticity when the current density changes can be suppressed.
When the ratio of the concentration of the light emitting material of the long wavelength side peak to the concentration of the light emitting material of the short wavelength side peak is a on the cathode side of the light emitting layer and b on the anode side of the light emitting layer, It is preferable to satisfy> 1.05 in that the change in chromaticity when the current density changes can be effectively suppressed. The ratio (a / b) is more preferably 1.1 to 2.0.

本発明の有機電界発光素子は、第2の形態では、前記発光層が発光材料を含み、該発光材料が単量体と会合体で異なる発光波長ピークを有し、前記単量体の濃度に対する前記会合体の濃度の濃度比率(会合体の濃度/単量体の濃度)が、前記陰極(反射電極)に近づくにつれて漸増しており、
前記単量体の積分スペクトル強度Cに対する前記会合体の積分スペクトル強度Dの強度比率〔(D/C)×100〕は、20%以上である。
In the organic electroluminescence device of the present invention, in the second embodiment, the light emitting layer contains a light emitting material, the light emitting material has a different emission wavelength peak between the monomer and the aggregate, and the concentration of the monomer The concentration ratio of the concentration of the aggregate (aggregate concentration / monomer concentration) gradually increases as the cathode (reflecting electrode) approaches.
The intensity ratio [(D / C) × 100] of the integral spectrum intensity D of the aggregate to the integral spectrum intensity C of the monomer is 20% or more.

前記発光層が発光材料を含み、該発光材料が単量体と会合体で異なる発光波長ピークを有する。これにより、発光スペクトルの異なる1種の発光材料の濃度比率を発光層内で変化させることにより、光学干渉による発光スペクトル変化を抑制することができる。
前記発光材料としては、会合発光を示し1種で白色発光する燐光発光材料などが好適である。
前記第2の形態では、会合体は単量体よりもエネルギー的に安定であるため、単量体からの発光波長ピークは短波長側ピークとなり、会合体からの発光波長ピークは長波長側ピークとなる。
The light emitting layer contains a light emitting material, and the light emitting material has a light emission wavelength peak different between the monomer and the aggregate. Thereby, the emission spectrum change by optical interference can be suppressed by changing the density | concentration ratio of 1 type of luminescent material from which an emission spectrum differs in a light emitting layer.
As the light-emitting material, a phosphorescent light-emitting material that exhibits associative light emission and emits white light alone is suitable.
In the second embodiment, since the aggregate is more energetically more stable than the monomer, the emission wavelength peak from the monomer is a short wavelength peak, and the emission wavelength peak from the aggregate is a long wavelength peak. It becomes.

前記単量体の濃度に対する前記会合体の濃度の濃度比率(会合体の濃度/単量体の濃度)は、前記陰極(反射電極)に近づくにつれて漸増している。これにより、光学干渉の影響の位置依存性が軽減され、電流密度変化時の色度変化を抑制することができる。
前記濃度比率(会合体の濃度/単量体の濃度)を前記陰極に近づくにつれて漸増させる方法としては、例えばホスト材料に対する発光材料の蒸着速度を、陰極に近づけるにつれて大きくする方法、などが挙げられる。
The concentration ratio of the aggregate to the monomer concentration (aggregate concentration / monomer concentration) gradually increases as the cathode (reflecting electrode) is approached. Thereby, the position dependence of the influence of optical interference is reduced, and the chromaticity change at the time of a current density change can be suppressed.
Examples of the method of gradually increasing the concentration ratio (concentration of the aggregate / monomer concentration) as it approaches the cathode include a method of increasing the deposition rate of the luminescent material with respect to the host material as it approaches the cathode. .

前記長波長側ピークの会合体の濃度が一定であり、前記短波長側ピークの単量体の濃度が陰極(反射電極)に近づくにつれて減少することが、特に短波長側ピークの単量体のみの濃度の変調により光学干渉の影響の位置依存性が軽減され、電流密度変化時の色度変化を抑制することができる点で好ましい。
前記長波長側ピークの会合体の濃度が陰極(反射電極)に近づくにつれて増加し、前記短波長側ピークの単量体の濃度が一定であることが、特に長波長側ピークの会合体のみの濃度の変調により光学干渉の影響の位置依存性が軽減され、電流密度変化時の色度変化を抑制することができる点で好ましい。
前記長波長側ピークの会合体の濃度が陰極(反射電極)に近づくにつれて増加し、前記短波長側ピークの単量体の濃度が陰極に近づくにつれて減少することが、より精密に光学干渉の影響の位置依存性を軽減することができ、電流密度変化時の色度変化を抑制することができる点で好ましい。
前記短波長側ピークの単量体の濃度に対する前記長波長側ピークの会合体の濃度の比率を、発光層の陰極側でaとし、発光層の陽極側でbとすると、次式、a/b>1.05を満たすことが、電流密度変化時の色度変化を有効に抑制できる点で好ましい。前記比(a/b)は1.1〜2.0がより好ましい。
The concentration of the association of the long wavelength side peak is constant, and the concentration of the monomer of the short wavelength side peak decreases as it approaches the cathode (reflecting electrode). This is preferable in that the position dependency of the influence of optical interference is reduced by the modulation of the density, and the change in chromaticity when the current density changes can be suppressed.
The concentration of the aggregate of the long wavelength side peak increases as it approaches the cathode (reflecting electrode), and the concentration of the monomer of the short wavelength side peak is constant. Density modulation is preferable in that the position dependency of the influence of optical interference is reduced, and the change in chromaticity when the current density changes can be suppressed.
The effect of optical interference is more precisely that the concentration of the aggregate of the long wavelength side peak increases as it approaches the cathode (reflecting electrode) and decreases as the monomer concentration of the short wavelength side peak approaches the cathode. It is preferable in that it can reduce the position dependency of the chromaticity and can suppress a change in chromaticity when the current density changes.
When the ratio of the concentration of the aggregate of the long wavelength side peak to the concentration of the monomer of the short wavelength side peak is a on the cathode side of the light emitting layer and b on the anode side of the light emitting layer, It is preferable that b> 1.05 is satisfied in that the chromaticity change at the time of the current density change can be effectively suppressed. The ratio (a / b) is more preferably 1.1 to 2.0.

前記単量体の積分スペクトル強度Cに対する前記会合体の積分スペクトル強度Dの強度比率〔(D/C)×100〕は、20%以上であり、、25%〜400%が好ましく、50%〜200%がより好ましい。前記強度比率〔(D/C)×100〕が、20%未満であると、会合体の発光が観測されないことがある。
ここで、前記単量体の積分スペクトル強度及び前記会合体の積分スペクトル強度は、例えばEL発光スペクトルを測定後、フィッティングにより前記単量体と前記会合体のスペクトルの分離を行い、各成分の積分強度を求めることにより測定することができる。
The intensity ratio [(D / C) × 100] of the integrated spectral intensity D of the aggregate to the integrated spectral intensity C of the monomer is 20% or more, preferably 25% to 400%, preferably 50% to 200% is more preferable. If the intensity ratio [(D / C) × 100] is less than 20%, emission of the aggregate may not be observed.
Here, the integral spectral intensity of the monomer and the integral spectral intensity of the aggregate are measured by, for example, measuring the EL emission spectrum, and then separating the spectrum of the monomer and the aggregate by fitting to integrate each component. It can be measured by determining the strength.

<発光層>
前記発光層は、発光材料と、ホスト材料とを含み、更に必要に応じてその他の成分を含有してなる。
前記発光層は、以下の2つの態様のいずれかが好ましい。
(1)発光層が1種の発光材料を含み、該発光材料が単量体と会合体で異なる発光波長ピークを有する態様(会合発光を示し1種で白色発光する材料)
(2)発光層が発光波長ピークの異なる2種以上の発光材料を含む態様(少なくとも2種の発光材料を含み、該少なくとも2種の発光材料が異なる色で発光する材料)
<Light emitting layer>
The light emitting layer contains a light emitting material and a host material, and further contains other components as necessary.
The light emitting layer is preferably one of the following two aspects.
(1) A mode in which the light-emitting layer contains one kind of light-emitting material and the light-emitting material has different emission wavelength peaks between the monomer and the aggregate (a material that exhibits associated light emission and emits white light by one type)
(2) A mode in which the light emitting layer contains two or more kinds of light emitting materials having different emission wavelength peaks (a material that contains at least two kinds of light emitting materials and the at least two kinds of light emitting materials emit light in different colors)

<<発光材料>>
前記発光材料としては、燐光発光材料及び蛍光発光材料のいずれも用いることができるが、発光効率が大きいという点から燐光発光材料が特に好ましい。
<< Luminescent Material >>
As the light emitting material, either a phosphorescent light emitting material or a fluorescent light emitting material can be used, but a phosphorescent light emitting material is particularly preferable in terms of high luminous efficiency.

−(1)会合発光を示し1種で白色発光する材料−
前記会合発光を示し1種で白金発光する材料としては、燐光発光材料が好ましく、白金錯体がより好ましい。
-(1) A material that exhibits associative luminescence and emits white light of one kind-
A phosphorescent material is preferable as the material that exhibits associative light emission and emits platinum alone, and a platinum complex is more preferable.

前記白金錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry,Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and Photophysics of Coordination Compounds」Springer−Verlag社1987年発行、山本明夫著「有機金属化学−基礎と応用−」裳華房社、1982年発行等に記載の配位子などが挙げられる。
具体的な配位子としては、ハロゲン配位子(好ましくは塩素配位子)、芳香族炭素環配位子(例えば、シクロペンタジエニルアニオン、ベンゼンアニオン、又はナフチルアニオンなど)、含窒素ヘテロ環配位子(例えば、フェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、又はフェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)、カルボン酸配位子(例えば、酢酸配位子など)、アルコラト配位子(例えば、フェノラト配位子など)、一酸化炭素配位子、イソニトリル配位子、シアノ配位子などが挙げられる。これらの中でも、含窒素ヘテロ環配位子が特に好ましい。
Examples of the ligand of the platinum complex include G.I. Wilkinson et al., Comprehensive Coordination Chemistry, Pergamon Press, 1987, H.C. Listed by Yersin, "Photochemistry and Photophysics of Coordination Compounds", published by Springer-Verlag, 1987, Akio Yamamoto, "Organic Metal Chemistry-Fundamentals and Applications-" It is done.
Specific ligands include halogen ligands (preferably chlorine ligands), aromatic carbocyclic ligands (eg, cyclopentadienyl anion, benzene anion, naphthyl anion, etc.), nitrogen-containing hetero Ring ligands (eg, phenylpyridine, benzoquinoline, quinolinol, bipyridyl, or phenanthroline), diketone ligands (eg, acetylacetone, etc.), carboxylic acid ligands (eg, acetic acid ligands, etc.), alcoholates Examples include ligands (eg, phenolate ligands), carbon monoxide ligands, isonitrile ligands, cyano ligands, and the like. Among these, a nitrogen-containing heterocyclic ligand is particularly preferable.

前記錯体は、化合物中に遷移金属原子を1つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。これらの中でも、燐光発光材料としては、例えば下記のものが挙げられるが、これらに限定されるものではない。   The complex may have one transition metal atom in the compound, or may be a so-called binuclear complex having two or more. Different metal atoms may be contained at the same time. Among these, examples of the phosphorescent light emitting material include the following, but are not limited thereto.

前記白金錯体のドープ濃度は、前記ホスト材料に対して10質量%〜90質量%が好ましく、20質量%〜60質量%がより好ましく、30質量%〜50質量%が更に好ましい。   The dope concentration of the platinum complex is preferably 10% by mass to 90% by mass, more preferably 20% by mass to 60% by mass, and still more preferably 30% by mass to 50% by mass with respect to the host material.

−(2)少なくとも2種の発光材料を含み、該少なくとも2種の発光材料が異なる色で発光する材料−
前記(2)の発光材料としては、燐光発光材料及び蛍光発光材料のいずれも用いることができるが、燐光発光材料が特に好ましい。
-(2) A material containing at least two kinds of light emitting materials, and the at least two kinds of light emitting materials emit light in different colors-
As the light-emitting material (2), either a phosphorescent material or a fluorescent material can be used, and a phosphorescent material is particularly preferable.

−燐光発光材料−
前記燐光発光材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば遷移金属原子、ランタノイド原子を含む錯体などが挙げられる。
前記遷移金属原子としては、例えばルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、白金などが挙げられる。これらの中でも、レニウム、イリジウム、白金が好ましく、イリジウムが特に好ましい。
-Phosphorescent material-
There is no restriction | limiting in particular as said phosphorescence-emitting material, According to the objective, it can select suitably, For example, the complex etc. which contain a transition metal atom and a lanthanoid atom are mentioned.
Examples of the transition metal atom include ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, platinum, and the like. Among these, rhenium, iridium, and platinum are preferable, and iridium is particularly preferable.

前記錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry,Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and Photophysics of Coordination Compounds」Springer−Verlag社1987年発行、山本明夫著「有機金属化学−基礎と応用−」裳華房社、1982年発行等に記載の配位子などが挙げられる。
具体的な配位子としては、ハロゲン配位子(好ましくは塩素配位子)、芳香族炭素環配位子(例えば、シクロペンタジエニルアニオン、ベンゼンアニオン、又はナフチルアニオンなど)、含窒素ヘテロ環配位子(例えば、フェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、又はフェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)、カルボン酸配位子(例えば、酢酸配位子など)、アルコラト配位子(例えば、フェノラト配位子など)、一酸化炭素配位子、イソニトリル配位子、シアノ配位子などが挙げられる。これらの中でも、含窒素ヘテロ環配位子が特に好ましい。
Examples of the ligand of the complex include G.I. Wilkinson et al., Comprehensive Coordination Chemistry, Pergamon Press, 1987, H.C. Listed by Yersin, "Photochemistry and Photophysics of Coordination Compounds", published by Springer-Verlag, 1987, Akio Yamamoto, "Organic Metal Chemistry-Fundamentals and Applications-" It is done.
Specific ligands include halogen ligands (preferably chlorine ligands), aromatic carbocyclic ligands (eg, cyclopentadienyl anion, benzene anion, naphthyl anion, etc.), nitrogen-containing hetero Ring ligands (eg, phenylpyridine, benzoquinoline, quinolinol, bipyridyl, or phenanthroline), diketone ligands (eg, acetylacetone, etc.), carboxylic acid ligands (eg, acetic acid ligands, etc.), alcoholates Examples include ligands (eg, phenolate ligands), carbon monoxide ligands, isonitrile ligands, cyano ligands, and the like. Among these, a nitrogen-containing heterocyclic ligand is particularly preferable.

前記錯体は、化合物中に遷移金属原子を1つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。これらの中でも、燐光発光材料としては、例えば下記のものが挙げられるが、これらに限定されるものではない。   The complex may have one transition metal atom in the compound, or may be a so-called binuclear complex having two or more. Different metal atoms may be contained at the same time. Among these, examples of the phosphorescent light emitting material include the following, but are not limited thereto.

前記イリジウムを含む錯体である燐光発光材料としては、特に制限はなく、目的に応じて適宜選択することができるが、下記一般式(1)、(2)及び(3)のいずれかで表される化合物が好ましい。
ただし、前記一般式(1)、(2)及び(3)中、nは、1〜3の整数を表す。X−Yは、二座配位子を表す。環Aは、窒素原子、硫黄原子及び酸素原子のいずれかを含んでいてもよい環構造を表す。R11は、置換基を表し、m1は、0〜6の整数を表す。m1が2以上の場合には隣接するR11どうしが結合して窒素原子、硫黄原子及び酸素原子のいずれかを含んでいてもよい環を形成してもよく、該環は更に置換基により置換されていてもよい。R12は、置換基を表し、m2は、0〜4の整数を表す。m2が2以上の場合には隣接するR12どうしが結合して窒素原子、硫黄原子及び酸素原子のいずれかを含んでいてもよい環を形成してもよく、該環は更に置換基により置換されていてもよい。なお、R11とR12とが結合して窒素原子、硫黄原子及び酸素原子のいずれかを含んでいてもよい環を形成してもよく、該環は更に置換基により置換されていてもよい。
There is no restriction | limiting in particular as a phosphorescence-emitting material which is the said complex containing iridium, Although it can select suitably according to the objective, It is represented by either of following General formula (1), (2) and (3). Are preferred.
However, in said general formula (1), (2) and (3), n represents the integer of 1-3. XY represents a bidentate ligand. Ring A represents a ring structure that may contain any of a nitrogen atom, a sulfur atom, and an oxygen atom. R 11 represents a substituent, and m1 represents an integer of 0 to 6. When m1 is 2 or more, adjacent R 11 may be bonded to form a ring which may contain any of a nitrogen atom, a sulfur atom and an oxygen atom, and the ring is further substituted with a substituent. May be. R 12 represents a substituent, and m2 represents an integer of 0 to 4. When m2 is 2 or more, adjacent R 12 may be bonded to form a ring which may contain any of a nitrogen atom, a sulfur atom and an oxygen atom, and the ring is further substituted with a substituent. May be. R 11 and R 12 may combine to form a ring that may contain any of a nitrogen atom, a sulfur atom, and an oxygen atom, and the ring may be further substituted with a substituent. .

前記環Aは、窒素原子、硫黄原子及び酸素原子のいずれかを含んでいてもよい環構造を表し、5員環、6員環などが好適に挙げられる。該環は置換基で置換されていてもよい。   The ring A represents a ring structure that may contain any of a nitrogen atom, a sulfur atom, and an oxygen atom, and examples thereof include a 5-membered ring and a 6-membered ring. The ring may be substituted with a substituent.

X−Yは、二座配位子を表し、二座のモノアニオン性配位子などが好適に挙げられる。
前記二座のモノアニオン性配位子としては、例えば、ピコリナート(pic)、アセチルアセトナート(acac)、ジピバロイルメタナート(t−ブチルacac)などが挙げられる。
上記以外の配位子としては、例えば、Lamanskyらの国際公開第2002/15645号パンフレットの89頁〜91頁に記載の配位子が挙げられる。
XY represents a bidentate ligand, and a bidentate monoanionic ligand is preferably exemplified.
Examples of the bidentate monoanionic ligand include picolinate (pic), acetylacetonate (acac), dipivaloylmethanate (t-butyl acac), and the like.
Examples of ligands other than the above include the ligands described in pages 89 to 91 of Lamansky et al., International Publication No. 2002/15645 pamphlet.

前記R11及びR12における置換基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ハロゲン原子、アルコキシ基、アミノ基、アルキル基、シクロアルキル基、窒素原子又は硫黄原子を含んでいてもよいアリール基、窒素原子又は硫黄原子を含んでいてもよいアリールオキシ基を表し、これらは更に置換されていてもよい。
前記R11及びR12は、互いに隣接するものどうしで結合して、窒素原子、硫黄原子又は酸素原子を含んでいてもよい環を形成してもよく、5員環、6員環などが好適に挙げられる。該環は更に置換基で置換されていてもよい。
The substituent for R 11 and R 12 is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a halogen atom, an alkoxy group, an amino group, an alkyl group, a cycloalkyl group, a nitrogen atom or sulfur It represents an aryl group which may contain an atom, an aryloxy group which may contain a nitrogen atom or a sulfur atom, and these may be further substituted.
R 11 and R 12 may be bonded to each other adjacent to each other to form a ring that may contain a nitrogen atom, a sulfur atom, or an oxygen atom, and a 5-membered ring, a 6-membered ring, and the like are preferable. It is mentioned in. The ring may be further substituted with a substituent.

前記一般式(1)、(2)及び(3)のいずれかで表される具体的化合物としては、例えば下記のものが挙げられるが、これらに限定されるものではない。
Specific examples of the compound represented by any one of the general formulas (1), (2), and (3) include, but are not limited to, the following compounds.

前記燐光発光材料のその他の例としては、以下のような化合物が挙げられる。
Other examples of the phosphorescent material include the following compounds.

前記燐光発光材料の合計含有量は、発光層全量に対して、0.5質量%〜30質量%が好ましく、0.5質量%〜20質量%がより好ましく、3質量%〜10質量%が更に好ましい。   The total content of the phosphorescent material is preferably 0.5% by mass to 30% by mass, more preferably 0.5% by mass to 20% by mass, and more preferably 3% by mass to 10% by mass with respect to the total amount of the light emitting layer. Further preferred.

−−蛍光発光材料−−
前記蛍光発光材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えばベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ピラン、ペリノン、オキサジアゾール、アルダジン、ピラリジン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、芳香族ジメチリディン化合物、縮合多環芳香族化合物(アントラセン、フェナントロリン、ピレン、ペリレン、ルブレン、ペンタセンなど)、8−キノリノールの金属錯体、ピロメテン錯体、希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン又はこれらの誘導体、などが挙げられる。
--Fluorescent material--
The fluorescent light emitting material is not particularly limited and may be appropriately selected depending on the purpose. For example, benzoxazole, benzimidazole, benzothiazole, styrylbenzene, polyphenyl, diphenylbutadiene, tetraphenylbutadiene, naphthalimide, coumarin , Pyran, perinone, oxadiazole, aldazine, pyralidine, bisstyrylanthracene, quinacridone, pyrrolopyridine, thiadiazolopyridine, cyclopentadiene, styrylamine, aromatic dimethylidin compounds, condensed polycyclic aromatic compounds (anthracene, phenanthroline, pyrene) , Perylene, rubrene, pentacene, etc.), metal complexes of 8-quinolinol, pyromethene complexes, various metal complexes represented by rare earth complexes, polythiophene, polyphenylene, poly Polymeric compounds such as Enirenbiniren, organic silanes or derivatives, and the like.

これらの中でも、前記蛍光発光材料の具体例としては、例えば下記のものが挙げられるが、これらに限定されるものではない。
Among these, specific examples of the fluorescent light emitting material include the following, but are not limited thereto.

前記蛍光発光材料の合計含有量は、発光層全量に対して、0.1質量%〜30質量%が好ましく、0.2質量%〜15質量%がより好ましく、0.5質量%〜12質量%が更に好ましい。   The total content of the fluorescent light emitting material is preferably 0.1% by mass to 30% by mass, more preferably 0.2% by mass to 15% by mass, and more preferably 0.5% by mass to 12% by mass with respect to the total amount of the light emitting layer. % Is more preferable.

<<ホスト材料>>
前記ホスト材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば正孔輸送性に優れる正孔輸送性ホスト材料及び電子輸送性に優れる電子輸送性ホスト材料を用いることができる。
<< Host material >>
The host material is not particularly limited and may be appropriately selected depending on the purpose. For example, a hole transporting host material having excellent hole transportability and an electron transporting host material having excellent electron transportability may be used. it can.

−正孔輸送性ホスト材料−
前記正孔輸送性ホスト材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ピロール、インドール、カルバゾール、アザインドール、アザカルバゾール、ピラゾール、イミダゾール、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、又はそれらの誘導体、などが挙げられる。
これらの中でも、インドール誘導体、カルバゾール誘導体、アザインドール誘導体、アザカルバゾール誘導体、芳香族第三級アミン化合物、チオフェン誘導体が好ましく、分子内にインドール骨格、カルバゾール骨格、アザインドール骨格、アザカルバゾール骨格、又は芳香族第三級アミン骨格を有するものがより好ましく、カルバゾール骨格を有する化合物が特に好ましい。
また、本発明においては、前記ホスト材料の水素を一部又はすべて重水素に置換したホスト材料を用いることができる(特開2009−277790号公報、特表2004−515506号公報)。
-Hole-transporting host material-
The hole transporting host material is not particularly limited and may be appropriately selected depending on the intended purpose.For example, pyrrole, indole, carbazole, azaindole, azacarbazole, pyrazole, imidazole, polyarylalkane, pyrazoline, Pyrazolone, phenylenediamine, arylamine, amino-substituted chalcone, styrylanthracene, fluorenone, hydrazone, stilbene, silazane, aromatic tertiary amine compound, styrylamine compound, aromatic dimethylidin compound, porphyrin compound, polysilane compound, poly Examples thereof include (N-vinylcarbazole), aniline-based copolymers, thiophene oligomers, conductive polymer oligomers such as polythiophene, organic silanes, carbon films, or derivatives thereof.
Among these, indole derivatives, carbazole derivatives, azaindole derivatives, azacarbazole derivatives, aromatic tertiary amine compounds, and thiophene derivatives are preferable, and indole skeleton, carbazole skeleton, azaindole skeleton, azacarbazole skeleton, or aromatic in the molecule Those having an aromatic group tertiary amine skeleton are more preferred, and compounds having a carbazole skeleton are particularly preferred.
In the present invention, a host material obtained by substituting part or all of hydrogen of the host material with deuterium can be used (JP 2009-277790 A, JP 2004-515506 A).

このような正孔輸送性ホスト材料としての具体的化合物としては、例えば下記のものが挙げられるが、これらに限定されるものではない。
Specific examples of such a hole transporting host material include, but are not limited to, the following compounds.

前記正孔輸送性ホスト材料の含有量は、前記発光層全量に対して、10質量%〜99.9質量%が好ましく、20質量%〜99.5質量%がより好ましく、30質量%〜99質量%が更に好ましい。   The content of the hole transporting host material is preferably 10% by mass to 99.9% by mass, more preferably 20% by mass to 99.5% by mass with respect to the total amount of the light emitting layer, and 30% by mass to 99%. More preferred is mass%.

−電子輸送性ホスト材料−
前記電子輸送性ホスト材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えばピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾール、オキサゾール、オキサジアゾール、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、又はそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノール誘導体の金属錯体、メタルフタロシアニン、ベンゾオキサゾール、ベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、などが挙げられる。
-Electron transporting host material-
The electron transporting host material is not particularly limited and may be appropriately selected depending on the intended purpose. For example, pyridine, pyrimidine, triazine, imidazole, pyrazole, triazole, oxazole, oxadiazole, fluorenone, anthraquinodimethane , Anthrone, diphenylquinone, thiopyran dioxide, carbodiimide, fluorenylidenemethane, distyrylpyrazine, fluorine-substituted aromatic compounds, naphthaleneperylene, and other heterocyclic tetracarboxylic anhydrides, phthalocyanines, or derivatives thereof (other rings And a metal ring of an 8-quinolinol derivative, metal phthalocyanine, benzoxazole, various metal complexes represented by metal complexes having benzothiazole as a ligand, and the like.

前記電子輸送性ホスト材料としては、例えば金属錯体、アゾール誘導体(ベンズイミダゾール誘導体、イミダゾピリジン誘導体等)、アジン誘導体(ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体等)などが挙げられる。これらの中でも、本発明においては、耐久性の点から金属錯体化合物が好ましい。前記金属錯体化合物は、金属に配位する少なくとも1つの窒素原子又は酸素原子又は硫黄原子を有する配位子をもつ金属錯体がより好ましい。
前記金属錯体中の金属イオンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えばベリリウムイオン、マグネシウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、インジウムイオン、錫イオン、白金イオン、パラジウムイオンなどが挙げられる。これらの中でも、ベリリウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、白金イオン、又はパラジウムイオンが好ましく、アルミニウムイオン、亜鉛イオン、又はパラジウムイオンがより好ましい。
Examples of the electron transporting host material include metal complexes, azole derivatives (such as benzimidazole derivatives and imidazopyridine derivatives), and azine derivatives (such as pyridine derivatives, pyrimidine derivatives, and triazine derivatives). Among these, in the present invention, a metal complex compound is preferable from the viewpoint of durability. The metal complex compound is more preferably a metal complex having a ligand having at least one nitrogen atom, oxygen atom or sulfur atom coordinated to a metal.
The metal ion in the metal complex is not particularly limited and may be appropriately selected depending on the purpose. For example, beryllium ion, magnesium ion, aluminum ion, gallium ion, zinc ion, indium ion, tin ion, platinum ion And palladium ions. Among these, beryllium ions, aluminum ions, gallium ions, zinc ions, platinum ions, or palladium ions are preferable, and aluminum ions, zinc ions, or palladium ions are more preferable.

前記金属錯体中に含まれる配位子としては、特に制限はなく、種々の公知の配位子が有るが、例えば、「Photochemistry and Photophysics of Coordination Compounds」、Springer−Verlag社、H.Yersin著、1987年発行、「有機金属化学−基礎と応用−」、裳華房社、山本明夫著、1982年発行等に記載の配位子が挙げられる。   There are no particular limitations on the ligand contained in the metal complex, and there are various known ligands. For example, “Photochemistry and Photophysics of Coordination Compounds”, Springer-Verlag, H .; Examples include the ligands described in Yersin, published in 1987, “Organometallic Chemistry: Fundamentals and Applications”, Sakai Hanafusa, Yamamoto Akio, published in 1982, and the like.

前記配位子としては、例えば含窒素ヘテロ環配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数3〜15であり、単座配位子であっても2座以上の配位子であってもよい。好ましくは2座以上6座以下の配位子である。また、2座以上6座以下の配位子と単座の混合配位子も好ましい。
前記配位子としては、例えばアジン配位子(例えば、ピリジン配位子、ビピリジル配位子、ターピリジン配位子などが挙げられる)、ヒドロキシフェニルアゾール配位子(例えば、ヒドロキシフェニルベンズイミダゾール配位子、ヒドロキシフェニルベンズオキサゾール配位子、ヒドロキシフェニルイミダゾール配位子、ヒドロキシフェニルイミダゾピリジン配位子などが挙げられる)、アルコキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる)、アリールオキシ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ、2,4,6−トリメチルフェニルオキシ、4−ビフェニルオキシなどが挙げられる)、ヘテロアリールオキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる)、アルキルチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる)、アリールチオ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる)、ヘテロアリールチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、及び2−ベンズチアゾリルチオなどが挙げられる)、シロキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数3〜25、特に好ましくは炭素数6〜20であり、例えば、トリフェニルシロキシ基、トリエトキシシロキシ基、及びトリイソプロピルシロキシ基などが挙げられる。)、芳香族炭化水素アニオン配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜25、特に好ましくは炭素数6〜20であり、例えばフェニルアニオン、ナフチルアニオン、及びアントラニルアニオンなどが挙げられる)、芳香族ヘテロ環アニオン配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜25、特に好ましくは炭素数2〜20であり、例えばピロールアニオン、ピラゾールアニオン、トリアゾールアニオン、オキサゾールアニオン、ベンゾオキサゾールアニオン、チアゾールアニオン、ベンゾチアゾールアニオン、チオフェンアニオン、及びベンゾチオフェンアニオンなどが挙げられる)、インドレニンアニオン配位子などが挙げられ、好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、ヘテロアリールオキシ基、又はシロキシ配位子であり、更に好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、シロキシ配位子、芳香族炭化水素アニオン配位子、又は芳香族ヘテロ環アニオン配位子である。
Examples of the ligand include a nitrogen-containing heterocyclic ligand (preferably having 1 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 3 to 15 carbon atoms). It may be a bidentate or higher ligand, preferably a bidentate or higher and a hexadentate or lower ligand, or a bidentate or higher and a hexadentate ligand and a monodentate mixed ligand. preferable.
Examples of the ligand include an azine ligand (for example, pyridine ligand, bipyridyl ligand, terpyridine ligand, etc.), a hydroxyphenylazole ligand (for example, hydroxyphenylbenzimidazole coordination). , A hydroxyphenylbenzoxazole ligand, a hydroxyphenylimidazole ligand, a hydroxyphenylimidazopyridine ligand, etc.), an alkoxy ligand (preferably having 1 to 30 carbon atoms, more preferably 1 to 1 carbon atoms). 20, particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, 2-ethylhexyloxy and the like, aryloxy ligands (preferably 6 to 30 carbon atoms, more preferably carbon numbers) 6 to 20, particularly preferably 6 to 12 carbon atoms, for example phenylo , 1-naphthyloxy, 2-naphthyloxy, 2,4,6-trimethylphenyloxy, 4-biphenyloxy, etc.), heteroaryloxy ligands (preferably having 1 to 30 carbon atoms, more preferably C1-C20, Most preferably, it is C1-C12, for example, pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy etc. are mentioned, alkylthio ligand (preferably C1-C30, more preferably carbon number) 1 to 20, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio, and arylthio ligands (preferably 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms such as phenylthio), heteroarylthio coordination (Preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms. For example, pyridylthio, 2-benzimidazolylthio, 2-benzoxazolylthio, and 2-benz Thiazolylthio, etc.), siloxy ligands (preferably having 1 to 30 carbon atoms, more preferably 3 to 25 carbon atoms, particularly preferably 6 to 20 carbon atoms, such as triphenylsiloxy group, Ethoxysiloxy group, triisopropylsiloxy group, etc.), aromatic hydrocarbon anion ligand (preferably having 6 to 30 carbon atoms, more preferably 6 to 25 carbon atoms, and particularly preferably 6 to 20 carbon atoms). For example, phenyl anion, naphthyl anion, anthranyl anion, etc.), aromatic heterocyclic anion coordination (Preferably having 1 to 30 carbon atoms, more preferably 2 to 25 carbon atoms, particularly preferably 2 to 20 carbon atoms, such as pyrrole anion, pyrazole anion, triazole anion, oxazole anion, benzoxazole anion, thiazole anion, Benzothiazole anion, thiophene anion, benzothiophene anion, etc.), indolenine anion ligand, etc., preferably nitrogen-containing heterocyclic ligand, aryloxy ligand, heteroaryloxy group, or Siloxy ligands, more preferably nitrogen-containing heterocyclic ligands, aryloxy ligands, siloxy ligands, aromatic hydrocarbon anion ligands, or aromatic heterocyclic anion ligands.

前記金属錯体電子輸送性ホスト材料としては、例えば特開2002−235076号公報、特開2004−214179号公報、特開2004−221062号公報、特開2004−221065号公報、特開2004−221068号公報、特開2004−327313号公報などに記載の化合物が挙げられる。   Examples of the metal complex electron transporting host material include Japanese Patent Application Laid-Open No. 2002-235076, Japanese Patent Application Laid-Open No. 2004-214179, Japanese Patent Application Laid-Open No. 2004-221106, Japanese Patent Application Laid-Open No. 2004-221665, and Japanese Patent Application Laid-Open No. 2004-221068. And compounds described in JP-A No. 2004-327313.

このような電子輸送性ホスト材料としては、具体的には、以下の材料を挙げることができるが、これらに限定されるものではない。
Specific examples of such an electron transporting host material include, but are not limited to, the following materials.

前記電子輸送性ホスト材料の含有量は、前記発光層全量に対して、10質量%〜99.9質量%が好ましく、20質量%〜99.5質量%がより好ましく、30質量%〜99質量%が更に好ましい。   10 mass%-99.9 mass% are preferable with respect to the said light emitting layer whole quantity, as for content of the said electron transport host material, 20 mass%-99.5 mass% are more preferable, 30 mass%-99 mass%. % Is more preferable.

前記発光層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば抵抗加熱蒸着法、真空蒸着法、電子ビーム法、スパッタリング法、分子積層法、コーティング法(スピンコート法、キャスト法、ディップコート法など)などの方法が挙げられる。これらの中でも、真空蒸着法が特に好ましい。   There is no restriction | limiting in particular as a formation method of the said light emitting layer, According to the objective, it can select suitably, For example, resistance heating vapor deposition method, vacuum vapor deposition method, electron beam method, sputtering method, molecular lamination method, coating method (spin A coating method, a casting method, a dip coating method, etc.). Among these, the vacuum evaporation method is particularly preferable.

前記発光層の厚みは、特に制限はなく、目的に応じて適宜選択することができるが、20nm以上が好ましく、25nm〜100nmがより好ましい。前記厚みが20nm未満であると、電荷の漏れが生じ、発光効率の低下につながることがある。   There is no restriction | limiting in particular in the thickness of the said light emitting layer, Although it can select suitably according to the objective, 20 nm or more is preferable and 25 nm-100 nm are more preferable. If the thickness is less than 20 nm, charge leakage may occur, leading to a decrease in luminous efficiency.

<電子注入層、電子輸送層>
前記電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。
前記電子輸送層としては、前記電子輸送性ホスト材料、前記電子供与性ドーパント等の材料を含み形成される。
<Electron injection layer, electron transport layer>
The electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
The electron transport layer includes a material such as the electron transport host material and the electron donating dopant.

前記電子注入層、電子輸送層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、駆動電圧を下げるという観点から、各々500nm以下が好ましい。
前記電子輸送層の厚みとしては、1nm〜500nmが好ましく、5nm〜200nmがより好ましく、10nm〜100nmが更に好ましい。
前記電子注入層の厚みとしては、0.1nm〜200nmが好ましく、0.2nm〜100nmがより好ましく、0.5nm〜50nmが更に好ましい。
前記電子注入層、電子輸送層は、1種又は2種以上の材料からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
There is no restriction | limiting in particular as thickness of the said electron injection layer and an electron carrying layer, According to the objective, it can select suitably, From a viewpoint of reducing a drive voltage, 500 nm or less is respectively preferable.
The thickness of the electron transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm.
The thickness of the electron injection layer is preferably 0.1 nm to 200 nm, more preferably 0.2 nm to 100 nm, and still more preferably 0.5 nm to 50 nm.
The electron injection layer and the electron transport layer may have a single layer structure made of one or more materials, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.

<正孔注入層、正孔輸送層>
前記正孔注入層及び正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。該正孔注入層及び正孔輸送層は、単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
これらの層に用いられる正孔注入材料又は正孔輸送材料としては、低分子化合物であっても高分子化合物であってもよい。
前記正孔注入材料又は正孔輸送材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えばピロール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、チオフェン誘導体、有機シラン誘導体、カーボン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<Hole injection layer, hole transport layer>
The hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side. The hole injection layer and the hole transport layer may have a single layer structure or a multilayer structure composed of a plurality of layers having the same composition or different compositions.
The hole injection material or hole transport material used for these layers may be a low molecular compound or a high molecular compound.
The hole injection material or hole transport material is not particularly limited and may be appropriately selected depending on the purpose. For example, a pyrrole derivative, a carbazole derivative, a triazole derivative, an oxazole derivative, an oxadiazole derivative, an imidazole derivative, Polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine Examples thereof include compounds, aromatic dimethylidin compounds, phthalocyanine compounds, porphyrin compounds, thiophene derivatives, organosilane derivatives, and carbon. These may be used individually by 1 type and may use 2 or more types together.

前記正孔注入層及び正孔輸送層には、電子受容性ドーパントを含有させることができる。
前記電子受容性ドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用できる。
前記無機化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば塩化第二鉄、塩化アルミニウム、塩化ガリウム、塩化インジウム、五塩化アンチモン等のハロゲン化金属;五酸化バナジウム、三酸化モリブデン等の金属酸化物、などが挙げられる。
前記有機化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば置換基としてニトロ基、ハロゲン、シアノ基、トリフルオロメチル基等を有する化合物;キノン系化合物、酸無水物系化合物、フラーレン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記電子受容性ドーパントの使用量は、特に制限はなく、材料の種類によって異なるが、正孔輸送材料又は正孔注入材料に対して0.01質量%〜50質量%が好ましく、0.05質量%〜30質量%がより好ましく、0.1質量%〜30質量%が更に好ましい。
The hole injection layer and the hole transport layer may contain an electron accepting dopant.
As the electron-accepting dopant, an inorganic compound or an organic compound can be used as long as it has an electron-accepting property and oxidizes an organic compound.
The inorganic compound is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include metal halides such as ferric chloride, aluminum chloride, gallium chloride, indium chloride, and antimony pentachloride; vanadium pentoxide, And metal oxides such as molybdenum trioxide.
The organic compound is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a compound having a nitro group, a halogen, a cyano group, a trifluoromethyl group or the like as a substituent; a quinone compound, an acid anhydride Compounds, fullerenes, and the like. These may be used individually by 1 type and may use 2 or more types together.
The amount of the electron-accepting dopant used is not particularly limited and varies depending on the type of material, but is preferably 0.01% by mass to 50% by mass with respect to the hole transport material or the hole injection material, and 0.05% by mass. % To 30% by mass is more preferable, and 0.1% to 30% by mass is even more preferable.

前記正孔注入層及び正孔輸送層は、特に制限はなく、公知の方法に従って形成することができるが、例えば、蒸着法、スパッタ法等の乾式製膜法、湿式塗布法、転写法、印刷法、インクジェット方式、などにより好適に形成することができる。
前記正孔注入層及び正孔輸送層の厚みは、1nm〜500nmが好ましく、5nm〜250nmがより好ましく、10nm〜200nmが更に好ましい。
The hole injection layer and the hole transport layer are not particularly limited and can be formed according to a known method. For example, a dry film forming method such as a vapor deposition method and a sputtering method, a wet coating method, a transfer method, and a printing method. It can be suitably formed by a method, an ink jet method, or the like.
The thickness of the hole injection layer and the hole transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 250 nm, and still more preferably 10 nm to 200 nm.

<正孔ブロック層、電子ブロック層>
前記正孔ブロック層は、陽極側から発光層に輸送された正孔が陰極側に通り抜けることを防止する機能を有する層であり、通常、発光層と陰極側で隣接する有機化合物層として設けられる。
前記電子ブロック層は、陰極側から発光層に輸送された電子が陽極側に通り抜けることを防止する機能を有する層であり、通常、発光層と陽極側で隣接する有機化合物層として設けられる。
前記正孔ブロック層を構成する化合物としては、例えばBAlq等のアルミニウム錯体、トリアゾール誘導体、BCP等のフェナントロリン誘導体、などが挙げられる。
前記電子ブロック層を構成する化合物としては、例えば前述の正孔輸送材料として挙げたものが利用できる。
<Hole blocking layer, electron blocking layer>
The hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side, and is usually provided as an organic compound layer adjacent to the light emitting layer on the cathode side. .
The electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side, and is usually provided as an organic compound layer adjacent to the light emitting layer on the anode side.
Examples of the compound constituting the hole blocking layer include aluminum complexes such as BAlq, triazole derivatives, and phenanthroline derivatives such as BCP.
As a compound which comprises the said electronic block layer, what was mentioned, for example as the above-mentioned hole transport material can be utilized.

前記電子ブロック層及び正孔ブロック層は、特に制限はなく、公知の方法に従って形成することができるが、例えば、蒸着法、スパッタ法等の乾式製膜法、湿式塗布法、転写法、印刷法、インクジェット方式、などにより好適に形成することができる。
前記正孔ブロック層及び電子ブロック層の厚みは、1nm〜200nmが好ましく、1nm〜50nmがより好ましく、3nm〜10nmが更に好ましい。また、正孔ブロック層及び電子ブロック層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
The electron block layer and the hole block layer are not particularly limited and can be formed according to a known method, for example, a dry film forming method such as a vapor deposition method and a sputtering method, a wet coating method, a transfer method, and a printing method. It can be suitably formed by an inkjet method or the like.
The thickness of the hole blocking layer and the electron blocking layer is preferably 1 nm to 200 nm, more preferably 1 nm to 50 nm, and still more preferably 3 nm to 10 nm. In addition, the hole blocking layer and the electron blocking layer may have a single-layer structure made of one or more of the materials described above, or may have a multilayer structure made up of a plurality of layers having the same composition or different compositions. Good.

<電極>
本発明の有機電界発光素子は、一対の電極、即ち陽極と陰極とを含む。前記有機電界発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は透明が好ましく、陽極が透明電極又は半透明電極であり、陰極が反射電極がより好ましい。通常、陽極は有機化合物層に正孔を供給する電極としての機能を有していればよく、陰極は有機化合物層に電子を注入する電極としての機能を有していればよい。
前記電極としては、その形状、構造、大きさ等については特に制限はなく、有機電界発光素子の用途、目的に応じて公知の電極材料の中から適宜選択することができる。
前記電極を構成する材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物等が好適に挙げられる。
<Electrode>
The organic electroluminescent element of the present invention includes a pair of electrodes, that is, an anode and a cathode. From the nature of the organic electroluminescent device, at least one of the anode and the cathode is preferably transparent, the anode is a transparent electrode or a semitransparent electrode, and the cathode is more preferably a reflective electrode. Usually, the anode only needs to have a function as an electrode for supplying holes to the organic compound layer, and the cathode only needs to have a function as an electrode for injecting electrons into the organic compound layer.
There is no restriction | limiting in particular about the shape, a structure, a magnitude | size, etc. as said electrode, According to the use and objective of an organic electroluminescent element, it can select suitably from well-known electrode materials.
As a material which comprises the said electrode, a metal, an alloy, a metal oxide, a conductive compound, or a mixture thereof etc. are mentioned suitably, for example.

−陽極−
前記陽極を構成する材料としては、例えば、アンチモン、フッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、クロム、ニッケル等の金属;これらの金属と導電性金属酸化物との混合物又は積層物;ヨウ化銅、硫化銅等の無機導電性物質;ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料、又はこれらとITOとの積層物、などが挙げられる。これらの中でも、導電性金属酸化物が好ましく、生産性、高導電性、透明性等の点からはITOが特に好ましい。
-Anode-
Examples of the material constituting the anode include tin oxide doped with antimony and fluorine (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO). Conductive metal oxides; metals such as gold, silver, chromium and nickel; mixtures or laminates of these metals and conductive metal oxides; inorganic conductive materials such as copper iodide and copper sulfide; polyaniline, polythiophene, Examples thereof include organic conductive materials such as polypyrrole, and laminates of these with ITO. Among these, conductive metal oxides are preferable, and ITO is particularly preferable in terms of productivity, high conductivity, transparency, and the like.

−陰極−
前記陰極を構成する材料としては、例えば、アルカリ金属(例えばLi、Na、K、Cs等)、アルカリ土類金属(例えばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、イッテルビウム等の希土類金属、などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。
これらの中でも、電子注入性の点で、アルカリ金属、アルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料がより好ましい。
前記アルミニウムを主体とする材料としては、アルミニウム単独、アルミニウムと0.01質量%〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)が挙げられる。
-Cathode-
Examples of the material constituting the cathode include alkali metals (eg, Li, Na, K, Cs, etc.), alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, lead, aluminum, sodium-potassium alloys, Examples thereof include lithium-aluminum alloys, magnesium-silver alloys, rare earth metals such as indium and ytterbium. These may be used alone, but two or more can be suitably used in combination from the viewpoint of achieving both stability and electron injection.
Among these, alkali metals and alkaline earth metals are preferable from the viewpoint of electron injecting property, and materials mainly composed of aluminum are more preferable from the viewpoint of excellent storage stability.
Examples of the material mainly composed of aluminum include aluminum alone, an alloy of aluminum and 0.01% by mass to 10% by mass of alkali metal or alkaline earth metal, or a mixture thereof (for example, lithium-aluminum alloy, magnesium-aluminum). Alloys).

前記電極の形成方法については、特に制限はなく、公知の方法に従って行うことができ、例えば印刷方式、コーティング方式等の湿式方式;真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式;CVD、プラズマCVD法等の化学的方式、などが挙げられる。これらの中でも、前記電極を構成する材料との適性を考慮し、適宜選択した方法に従って前記基板上に形成することができる。例えば、陽極の材料としてITOを選択する場合には、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って形成することができる。陰極の材料として金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って形成することができる。   The method for forming the electrode is not particularly limited and can be performed according to a known method. For example, a wet method such as a printing method or a coating method; a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method; Examples include chemical methods such as CVD and plasma CVD. Among these, it can be formed on the substrate in accordance with an appropriately selected method in consideration of suitability with the material constituting the electrode. For example, when ITO is selected as the anode material, it can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like. When a metal or the like is selected as the cathode material, one or more of them can be formed simultaneously or sequentially according to a sputtering method or the like.

なお、前記電極を形成する際にパターニングを行う場合は、フォトリソグラフィー等による化学的エッチングによって行ってもよいし、レーザー等による物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着、スパッタ等をして行ってもよいし、リフトオフ法、印刷法によって行ってもよい。   In addition, when performing patterning when forming the electrode, it may be performed by chemical etching such as photolithography, or may be performed by physical etching using a laser or the like. It may be performed by sputtering or the like, or may be performed by a lift-off method or a printing method.

<基板>
本発明の有機電界発光素子は、基板上に設けられていることが好ましく、電極と基板とが直接接する形で設けられていてもよいし、中間層を介在する形で設けられていてもよい。
前記基板の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えばイットリア安定化ジルコニア(YSZ)、ガラス(無アルカリガラス、ソーダライムガラス等)等の無機材料;ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル;ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の有機材料、などが挙げられる。
<Board>
The organic electroluminescent element of the present invention is preferably provided on a substrate, and may be provided in such a manner that the electrode and the substrate are in direct contact with each other, or may be provided in an intermediate layer. .
The material for the substrate is not particularly limited and may be appropriately selected depending on the intended purpose. For example, inorganic materials such as yttria-stabilized zirconia (YSZ) and glass (such as alkali-free glass and soda lime glass); polyethylene terephthalate And polyesters such as polybutylene phthalate and polyethylene naphthalate; organic materials such as polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, and poly (chlorotrifluoroethylene).

前記基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状が好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。基板は透明でも不透明でもよく、透明な場合は無色透明でも有色透明でもよい。   There is no restriction | limiting in particular about the shape of the said board | substrate, a structure, a magnitude | size, It can select suitably according to the use, purpose, etc. of a light emitting element. In general, the shape of the substrate is preferably a plate shape. The structure of the substrate may be a single layer structure, a laminated structure, may be formed of a single member, or may be formed of two or more members. The substrate may be transparent or opaque, and if transparent, it may be colorless and transparent or colored and transparent.

前記基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
前記透湿防止層(ガスバリア層)の材料としては、例えば窒化珪素、酸化珪素等の無機物などが挙げられる。
前記透湿防止層(ガスバリア層)は、例えば高周波スパッタリング法などにより形成することができる。
The substrate may be provided with a moisture permeation preventing layer (gas barrier layer) on the front surface or the back surface.
Examples of the material of the moisture permeation preventive layer (gas barrier layer) include inorganic substances such as silicon nitride and silicon oxide.
The moisture permeation preventing layer (gas barrier layer) can be formed by, for example, a high frequency sputtering method.

−その他の構成−
前記その他の構成としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、保護層、封止容器、樹脂封止層、封止接着剤などを挙げることができる。
前記保護層、前記封止容器、前記樹脂封止層、前記封止接着剤などの内容としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2009−152572号公報等に記載の事項を適用することができる。
-Other configurations-
There is no restriction | limiting in particular as said other structure, According to the objective, it can select suitably, For example, a protective layer, a sealing container, a resin sealing layer, a sealing adhesive etc. can be mentioned.
There is no restriction | limiting in particular as contents, such as the said protective layer, the said sealing container, the said resin sealing layer, and the said sealing adhesive agent, According to the objective, it can select suitably, for example, Unexamined-Japanese-Patent No. 2009-152572. The matters described in the gazette can be applied.

図1は、本発明の有機電界発光素子の層構成の一例を示す概略図である。有機電界発光素子10は、ガラス基板1上に形成された陽極2(例えばITO電極)と、正孔注入層3と、正孔輸送層4と、発光層5と、第一電子輸送層6と、第二電子輸送層7と、電子注入層(不図示)、陰極8(例えばAl−Li電極)とをこの順に積層してなる層構成を有する。なお、陽極2(例えばITO電極)と陰極8(例えばAl−Li電極)とは電源を介して互いに接続されている。   FIG. 1 is a schematic view showing an example of the layer structure of the organic electroluminescent element of the present invention. The organic electroluminescent element 10 includes an anode 2 (for example, an ITO electrode) formed on the glass substrate 1, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, and a first electron transport layer 6. The second electron transport layer 7, an electron injection layer (not shown), and a cathode 8 (for example, an Al—Li electrode) are stacked in this order. The anode 2 (for example, ITO electrode) and the cathode 8 (for example, Al-Li electrode) are connected to each other via a power source.

−駆動−
本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
本発明の有機電界発光素子は、薄膜トランジスタ(TFT)によりアクティブマトリックスへ適用することができる。薄膜トランジスタの活性層としてアモルファスシリコン、高温ポリシリコン、低温ポリシリコン、微結晶シリコン、酸化物半導体、有機半導体、カーボンナノチューブ等を適用することができる。
本発明の有機電界発光素子は、例えば国際公開2005/088726号パンフレット、特開2006−165529号公報、米国特許出願公開2008/0237598号明細書などに記載の薄膜トランジスタを適用することができる。
-Drive-
The organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. Can be obtained.
The organic electroluminescent element of the present invention can be applied to an active matrix by a thin film transistor (TFT). As the active layer of the thin film transistor, amorphous silicon, high temperature polysilicon, low temperature polysilicon, microcrystalline silicon, oxide semiconductor, organic semiconductor, carbon nanotube, or the like can be used.
The organic electroluminescent element of the present invention can be applied with the thin film transistor described in, for example, International Publication No. 2005/088726 pamphlet, Japanese Patent Application Laid-Open No. 2006-165529, US Patent Application Publication No. 2008/0237598.

本発明の有機電界発光素子は、特に制限はなく、種々の公知の工夫により、光取り出し効率を向上させることができる。例えば、基板表面形状を加工する(例えば微細な凹凸パターンを形成する)、基板、ITO層、有機層の屈折率を制御する、基板、ITO層、有機層の厚みを制御すること等により、光の取り出し効率を向上させ、外部量子効率を向上させることが可能である。
本発明の有機電界発光素子からの光取り出し方式は、トップエミッション方式であってもボトムエミッション方式であってもよい。
There is no restriction | limiting in particular in the organic electroluminescent element of this invention, Light extraction efficiency can be improved by various well-known devices. For example, by processing the substrate surface shape (for example, forming a fine concavo-convex pattern), controlling the refractive index of the substrate, ITO layer, organic layer, controlling the thickness of the substrate, ITO layer, organic layer, etc. It is possible to improve the external quantum efficiency.
The light extraction method from the organic electroluminescence device of the present invention may be a top emission method or a bottom emission method.

本発明の有機電界発光素子は、共振器構造を有してもよい。例えば、第1の態様では、透明基板上に、屈折率の異なる複数の積層膜よりなる多層膜ミラー、透明又は半透明電極、発光層、及び金属電極を重ね合わせて有する。発光層で生じた光は多層膜ミラーと金属電極を反射板としてその間で反射を繰り返し共振する。
第2の態様では、透明基板上に、透明又は半透明電極と金属電極がそれぞれ反射板として機能して、発光層で生じた光はその間で反射を繰り返し共振する。
共振構造を形成するためには、2つの反射板の有効屈折率、反射板間の各層の屈折率と厚みから決定される光路長を所望の共振波長を得るのに最適な値となるよう調整される。
前記第1の態様の場合の計算式は、特開平9−180883号公報に記載されている。
前記第2の態様の場合の計算式は、特開2004−127795号公報に記載されている。
The organic electroluminescent element of the present invention may have a resonator structure. For example, in the first aspect, a multilayer mirror composed of a plurality of laminated films having different refractive indexes, a transparent or translucent electrode, a light emitting layer, and a metal electrode are superimposed on a transparent substrate. The light generated in the light emitting layer resonates repeatedly with the multilayer mirror and the metal electrode as a reflection plate.
In the second aspect, a transparent or translucent electrode and a metal electrode function as a reflecting plate on the transparent substrate, respectively, and light generated in the light emitting layer repeats reflection and resonates between them.
In order to form a resonant structure, the optical path length determined from the effective refractive index of the two reflectors and the refractive index and thickness of each layer between the reflectors is adjusted to the optimum value to obtain the desired resonant wavelength. Is done.
The calculation formula in the case of the first aspect is described in JP-A-9-180883.
The calculation formula in the case of the second aspect is described in Japanese Patent Application Laid-Open No. 2004-127795.

−用途−
本発明の有機電界発光素子は、特に制限はなく、目的に応じて適宜選択することができるが、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信等に好適に利用できる。
前記有機電界発光ディスプレイをフルカラータイプのものとする方法としては、例えば「月刊ディスプレイ」、2000年9月号、33〜37ページに記載されているように、色の3原色(青色(B)、緑色(G)、赤色(R))に対応する光をそれぞれ発光する有機電界発光素子を基板上に配置する3色発光法、白色発光用の有機電界発光素子による白色発光をカラーフィルターを通して3原色に分ける白色法、青色発光用の有機電界発光素子による青色発光を蛍光色素層を通して赤色(R)及び緑色(G)に変換する色変換法、などが知られている。
-Application-
The organic electroluminescent element of the present invention is not particularly limited and may be appropriately selected depending on the intended purpose. However, the display element, display, backlight, electrophotography, illumination light source, recording light source, exposure light source, reading light source, label It can be suitably used for signboards, interiors, optical communications, and the like.
As a method for making the organic electroluminescent display of a full color type, for example, as described in “Monthly Display”, September 2000, pages 33 to 37, the three primary colors (blue (B), Three-color light emission method in which organic electroluminescent elements that emit light corresponding to green (G) and red (R) are arranged on a substrate, and white light emitted by an organic electroluminescent element for white light emission through a color filter. There are known a white method, a color conversion method for converting blue light emitted by an organic electroluminescent element for blue light emission into red (R) and green (G) through a fluorescent dye layer, and the like.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

<有機電界発光素子の作製方法>
酸化インジウム錫(以下、ITOと略記する)を100nmの厚みに蒸着した0.5mm厚み、2.5cm角のITO電極付きガラス基板を洗浄容器に入れ、2−プロパノール中で超音波洗浄した後、30分間UV−オゾン処理を行った。この透明陽極上に真空蒸着装置を用いて各例の有機層及び金属層を蒸着した。なお、以下の実施例及び比較例における真空蒸着法は、全て同条件で行い、蒸着速度は、特に断りのない場合は0.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。圧力は、1×10−4Paである。
2種類以上の物質を共蒸着している層においては、濃度の小さい物質の蒸着速度を調整し、所望の濃度となるようにした。
また、発光層内での濃度が変化している物質については、蒸着速度を線形に変化させて調整し、所望の濃度分布となる発光層を得た。
<Method for producing organic electroluminescent element>
A 0.5 mm thick, 2.5 cm square glass substrate with an ITO electrode deposited with indium tin oxide (hereinafter abbreviated as ITO) to a thickness of 100 nm was placed in a cleaning container, and ultrasonically cleaned in 2-propanol. UV-ozone treatment was performed for 30 minutes. The organic layer and metal layer of each example were vapor-deposited on this transparent anode using the vacuum vapor deposition apparatus. In addition, all the vacuum evaporation methods in a following example and a comparative example are performed on the same conditions, and a vapor deposition rate is 0.2 nm / sec unless there is particular notice. The deposition rate was measured using a quartz resonator. The pressure is 1 × 10 −4 Pa.
In the layer in which two or more kinds of substances are co-deposited, the deposition rate of the substance having a low concentration is adjusted so as to obtain a desired concentration.
In addition, the substance whose concentration in the light emitting layer was changed was adjusted by linearly changing the deposition rate to obtain a light emitting layer having a desired concentration distribution.

(実施例1)
−白色会合発光素子の作製−
厚み0.5mm、2.5cm角のガラス基板を洗浄容器に入れ、中性洗剤中で超音波洗浄した後、純水中で超音波洗浄し、120℃で120分間熱処理を行った。その後、30分間UV−オゾン処理を行った。このガラス基板上に真空蒸着法にて以下の各層を蒸着した。なお、以下の実施例及び比較例における蒸着速度は、特に断りのない場合は0.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。また、以下の各層の厚みは水晶振動子を用いて測定した。
Example 1
-Fabrication of white associative light emitting device-
A glass substrate having a thickness of 0.5 mm and a square of 2.5 cm was placed in a cleaning container, ultrasonically cleaned in a neutral detergent, then ultrasonically cleaned in pure water, and heat-treated at 120 ° C. for 120 minutes. Thereafter, UV-ozone treatment was performed for 30 minutes. The following layers were deposited on this glass substrate by vacuum deposition. In addition, the vapor deposition rate in the following examples and comparative examples is 0.2 nm / second unless otherwise specified. The deposition rate was measured using a quartz resonator. The thickness of each layer below was measured using a quartz resonator.

まず、ガラス基板上に、陽極としてITO(Indium Tin Oxide)を厚み100nmにスパッタ蒸着した。
次に、前記陽極(ITO)上に、下記構造式で表される4,4’,4”−トリス(N,N−(2−ナフチル)−フェニルアミノ)トリフェニルアミン(2−TNATA)に、下記構造式で表されるF4−TCNQを1質量%ドープした正孔注入層を厚みが45nmになるように真空蒸着法にて形成した。
First, ITO (Indium Tin Oxide) as a positive electrode was sputter-deposited on a glass substrate to a thickness of 100 nm.
Next, on the anode (ITO), 4,4 ′, 4 ″ -tris (N, N- (2-naphthyl) -phenylamino) triphenylamine (2-TNATA) represented by the following structural formula A hole injection layer doped with 1% by mass of F4-TCNQ represented by the following structural formula was formed by a vacuum deposition method so as to have a thickness of 45 nm.

次に、前記正孔注入層上に、正孔輸送層としてα−NPD(Bis[N−(1−naphthyl)−N−phenyl]benzidine)を厚みが7nmとなるように真空蒸着法にて形成した。
次に、前記正孔輸送層上に、下記構造式で表される化合物1を真空蒸着して、厚み3nmの第二正孔輸送層を形成した。
Next, α-NPD (Bis [N- (1-naphthyl) -N-phenyl] benzidine)) is formed on the hole injection layer as a hole transport layer by a vacuum deposition method so as to have a thickness of 7 nm. did.
Next, the compound 1 represented by the following structural formula was vacuum deposited on the hole transport layer to form a second hole transport layer having a thickness of 3 nm.

次に、前記第二正孔輸送層の上に、ホスト材料としてmCP(1,3-bis(carbazol-9-yl)benzene)と、該mCPに対して40質量%(化合物1側)から50質量%(Balq側)へと連続的に変化させて燐光発光材料である下記構造式で表される化合物2をドープした発光層を30nmの厚みに真空蒸着した。
Next, on the second hole transport layer, mCP (1,3-bis (carbazol-9-yl) benzene) is used as a host material, and 40% by mass (compound 1 side) to 50% with respect to the mCP. A light-emitting layer doped with compound 2 represented by the following structural formula, which is a phosphorescent material, was continuously vacuum-deposited to a thickness of 30 nm while continuously changing to mass% (Balq side).

次に、前記発光層上に、第一電子輸送層としてBalq(Bis−(2−methyl−8−quinolinolato)−4−(phenyl−phenolate)−aluminium(III))を厚みが39nmとなるように真空蒸着した。
Next, Balq (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminum (III)) is formed as a first electron transporting layer on the light emitting layer so as to have a thickness of 39 nm. Vacuum deposited.

次に、前記第一電子輸送層上に、第二電子輸送層としてBCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)を厚みが1nmとなるように真空蒸着した。
次に、前記第二電子輸送層上に、電子注入層としてLiFを厚みが0.5nmとなるように真空蒸着した。
次に、前記電子注入層上に、パターニングしたマスク(発光領域が2mm×2mmとなるマスク)を設置し、金属アルミニウムを厚みが100nmとなるように真空蒸着し、陰極とした。
作製した積層体を、窒素ガスで置換したグローブボックス内に入れ、ガラス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ株式会社製)を用いて封止した。以上により、実施例1の有機電界発光素子を作製した。
この実施例1の有機電界発光素子の層構成は、以下に示す通りである。( )内は厚みを表す。
<ITO(100nm)/2−TNATA+1質量%F4−TCNQ(45nm)/NPD(7nm)/化合物1(3nm)/mCP+XX質量%化合物2(30nm)/Balq(39nm)/BCP(1nm)/LiF(0.5nm)/Al(100nm)>
Next, BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) as a second electron transport layer was vacuum deposited on the first electron transport layer so as to have a thickness of 1 nm.
Next, LiF was vacuum-deposited as an electron injection layer on the second electron transport layer so as to have a thickness of 0.5 nm.
Next, a patterned mask (a mask having a light emitting region of 2 mm × 2 mm) was placed on the electron injection layer, and metal aluminum was vacuum evaporated to a thickness of 100 nm to form a cathode.
The produced laminate was put in a glove box substituted with nitrogen gas, and sealed with a glass sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.). Thus, the organic electroluminescent element of Example 1 was produced.
The layer structure of the organic electroluminescent element of Example 1 is as shown below. () Represents thickness.
<ITO (100 nm) / 2-TNATA + 1 mass% F4-TCNQ (45 nm) / NPD (7 nm) / Compound 1 (3 nm) / mCP + XX mass% Compound 2 (30 nm) / Balq (39 nm) / BCP (1 nm) / LiF ( 0.5 nm) / Al (100 nm)>

(比較例1)
実施例1において、ホスト材料であるmCPに対して40質量%の燐光発光材料である上記構造式で表される化合物2をドープした以外は、実施例1と同様にして、比較例1の有機電界発光素子を作製した。
この比較例1の有機電界発光素子の層構成は、以下に示す通りである。( )内は厚みを表す。
<ITO(100nm)/2−TNATA+1質量%F4−TCNQ(45nm)/NPD(7nm)/化合物1(3nm)/mCP+40質量%化合物2(30nm)/Balq(39nm)/BCP(1nm)/LiF(0.5nm)/Al(100nm)>
(Comparative Example 1)
In Example 1, the organic material of Comparative Example 1 was prepared in the same manner as in Example 1 except that the compound 2 represented by the above structural formula, which is a phosphorescent material of 40% by mass, was doped with respect to mCP as the host material. An electroluminescent element was produced.
The layer structure of the organic electroluminescent element of Comparative Example 1 is as shown below. () Represents thickness.
<ITO (100 nm) / 2-TNATA + 1 mass% F4-TCNQ (45 nm) / NPD (7 nm) / Compound 1 (3 nm) / mCP + 40 mass% Compound 2 (30 nm) / Balq (39 nm) / BCP (1 nm) / LiF ( 0.5 nm) / Al (100 nm)>

次に、作製した実施例1及び比較例1について、以下のようにして、単量体の積分スペクトル強度C、会合体の積分スペクトル強度D、外部量子効率、耐久性(相対輝度半減時間)、CIEx、CIEy、及び色度変化(ΔE)を評価した。結果を表1に示す。   Next, for the produced Example 1 and Comparative Example 1, the integral spectral intensity C of the monomer, the integral spectral intensity D of the aggregate, the external quantum efficiency, durability (relative luminance half time), CIEx, CIEy, and chromaticity change (ΔE) were evaluated. The results are shown in Table 1.

<単量体の積分スペクトル強度C及び会合体の積分スペクトル強度Dの測定>
東陽テクニカ株式会社製ソースメジャーユニット2400を用いて、直流電流を各素子に通電し、発光させた。そのときの発光スペクトルを、トプコン社製分光放射輝度計SR−3を用いて測定した。得られた発光スペクトルを、単量体のスペクトルと会合体の発光スペクトルを用いて最小2乗法によるフィッティングを行い、単量体の積分スペクトル強度C及び会合体の積分スペクトル強度Dを算出した。0.25mA/cmで通電時の実施例1の発光スペクトルを図2、比較例1の発光スペクトルを図3に示す。
<Measurement of Monomer Integral Spectral Strength C and Aggregate Integral Spectral Strength D>
Using a source measure unit 2400 manufactured by Toyo Technica Co., Ltd., a direct current was applied to each element to emit light. The emission spectrum at that time was measured using a spectral radiance meter SR-3 manufactured by Topcon Corporation. The obtained emission spectrum was fitted by the least square method using the monomer spectrum and the aggregate emission spectrum, and the integral spectral intensity C of the monomer and the integral spectrum intensity D of the aggregate were calculated. The emission spectrum of Example 1 when energized at 0.25 mA / cm 2 is shown in FIG. 2, and the emission spectrum of Comparative Example 1 is shown in FIG.

<外部量子効率>
各有機電界発光素子の電流密度が0.25mA/cmにおける外部量子効率を、波長ごとの強度換算法により算出した。
<External quantum efficiency>
The external quantum efficiency when the current density of each organic electroluminescent element is 0.25 mA / cm 2 was calculated by an intensity conversion method for each wavelength.

<耐久性>
各有機電界発光素子の耐久性は、定電流1,000cd/mでの輝度半減時間を測定し、対応する比較例1に対する相対的な輝度半減時間を導出して求めた。
<Durability>
The durability of each organic electroluminescent element was determined by measuring the luminance half time at a constant current of 1,000 cd / m 2 and deriving the relative luminance half time with respect to the corresponding Comparative Example 1.

<色差の評価>
東陽テクニカ株式会社製ソースメジャーユニット2400を用いて、直流電流を各素子に通電し、発光させた。そのときの発光スペクトルを、トプコン社製分光放射輝度計SR−3を用いて測定した。得られた発光スペクトルをもとに、有機電界発光素子の電流密度が0.25mA/cm、及び25mA/cmにおけるCIE色度座標(x,y)を、スペクトルを換算することで得た。更に、色度座標の変換により、Lab色立体における色差(ΔE)を得た。
<Evaluation of color difference>
Using a source measure unit 2400 manufactured by Toyo Technica Co., Ltd., a direct current was applied to each element to emit light. The emission spectrum at that time was measured using a spectral radiance meter SR-3 manufactured by Topcon Corporation. Based on the obtained emission spectrum, the CIE chromaticity coordinates (x, y) at the current density of the organic electroluminescence device of 0.25 mA / cm 2 and 25 mA / cm 2 were obtained by converting the spectrum. . Furthermore, the color difference (ΔE) in the Lab color solid was obtained by converting the chromaticity coordinates.

(実施例2)
−白色単層発光素子の作製−
実施例1において、mCPに対して15質量%の下記構造式で表される化合物3と、mCPに対して0.13質量%の下記構造式で表される化合物4と、mCPに対して0.13質量%(化合物1側)から0.2質量%(Balq側)へと連続的に変化させて下記構造式で表される化合物5をドープした以外は、実施例1と同様にして、実施例2の有機電界発光素子を作製した。
(Example 2)
-Production of white single layer light emitting element-
In Example 1, 15 mass% of the compound 3 represented by the following structural formula with respect to mCP, 0.13 mass% of the compound 4 represented by the following structural formula with respect to mCP, and 0 with respect to mCP. In the same manner as in Example 1, except that the compound 5 represented by the following structural formula was doped by continuously changing from 13% by mass (compound 1 side) to 0.2% by mass (Balq side). The organic electroluminescent element of Example 2 was produced.

この実施例2の有機電界発光素子の層構成は、以下に示す通りである。( )内は厚みを表す。
<ITO(100nm)/2−TNATA+1質量%F4−TCNQ(45nm)/NPD(7nm)/化合物1(3nm)/mCP+xx質量%化合物3+yy質量%化合物4+zz質量%化合物5(30nm)/Balq(39nm)/BCP(1nm)/LiF(0.5nm)/Al(100nm)>
The layer structure of the organic electroluminescent element of Example 2 is as shown below. () Represents thickness.
<ITO (100 nm) / 2-TNATA + 1 mass% F4-TCNQ (45 nm) / NPD (7 nm) / Compound 1 (3 nm) / mCP + xx mass% Compound 3 + yy mass% Compound 4 + zz mass% Compound 5 (30 nm) / Balq (39 nm) / BCP (1 nm) / LiF (0.5 nm) / Al (100 nm)>

(比較例2)
実施例1において、mCPに対して15質量%の上記構造式で表される化合物3と、mCPに対して0.13質量%の上記構造式で表される化合物4と、mCPに対して0.13質量%の上記構造式で表される化合物5をドープした以外は、実施例1と同様にして、比較例2の有機電界発光素子を作製した。
この比較例2の有機電界発光素子の層構成は、以下に示す通りである。( )内は厚みを表す。
<ITO(100nm)/2−TNATA+1質量%F4−TCNQ(45nm)/NPD(7nm)/化合物1(3nm)/mCP+15質量%化合物3+0.13質量%化合物4+0.13質量%化合物5(30nm)/Balq(39nm)/BCP(1nm)/LiF(0.5nm)/Al(100nm)>
(Comparative Example 2)
In Example 1, 15% by mass of the compound 3 represented by the above structural formula with respect to mCP, 0.13% by mass of the compound 4 represented by the above structural formula with respect to mCP, and 0 with respect to mCP. An organic electroluminescent element of Comparative Example 2 was produced in the same manner as in Example 1 except that the compound 5 represented by the above structural formula was doped with 13% by mass.
The layer structure of the organic electroluminescent element of Comparative Example 2 is as shown below. () Represents thickness.
<ITO (100 nm) / 2-TNATA + 1 mass% F4-TCNQ (45 nm) / NPD (7 nm) / Compound 1 (3 nm) / mCP + 15 mass% Compound 3 + 0.13 mass% Compound 4 + 0.13 mass% Compound 5 (30 nm) / Balq (39 nm) / BCP (1 nm) / LiF (0.5 nm) / Al (100 nm)>

次に、実施例2及び比較例2について、以下のようにして、短波長ピークの発光材料の濃度A、長波長ピークの発光材料の濃度Bを測定した。また、実施例1及び比較例1と同様にして、外部量子効率、耐久性(相対輝度半減時間)、CIEx、CIEy、及び色度変化(ΔE)を評価した。結果を表1に示す。実施例1及び比較例1と同様にして測定した実施例2の発光スペクトルを図4、比較例2の発光スペクトルを図5に示す。   Next, for Example 2 and Comparative Example 2, the concentration A of the light emitting material having a short wavelength peak and the concentration B of the light emitting material having a long wavelength peak were measured as follows. Further, in the same manner as in Example 1 and Comparative Example 1, external quantum efficiency, durability (relative luminance half time), CIEx, CIEy, and chromaticity change (ΔE) were evaluated. The results are shown in Table 1. The emission spectrum of Example 2 measured in the same manner as Example 1 and Comparative Example 1 is shown in FIG. 4, and the emission spectrum of Comparative Example 2 is shown in FIG.

<短波長ピークの発光材料の濃度A、及び長波長ピークの発光材料の濃度Bの測定>
蒸着時の水晶振動子の値から、短波長ピークの発光材料の濃度A、及び長波長ピークの発光材料の濃度Bを測定した。
<Measurement of concentration A of the light emitting material having a short wavelength peak and concentration B of the light emitting material having a long wavelength peak>
The concentration A of the light emitting material having the short wavelength peak and the concentration B of the light emitting material having the long wavelength peak were measured from the value of the crystal resonator during the deposition.

(実施例3)
−白色単層発光素子の作製−
実施例1において、mCPに対して15質量%(化合物1側)から13質量%(Balq側)へと連続的に変化させて上記構造式で表される化合物3と、mCPに対して0.13質量%の上記構造式で表される化合物4と、mCPに対して0.13質量%の上記構造式で表される化合物5をドープした以外は、実施例1と同様にして、実施例3の有機電界発光素子を作製した。
この実施例3の有機電界発光素子の層構成は、以下に示す通りである。( )内は厚みを表す。
<ITO(100nm)/2−TNATA+1質量%F4−TCNQ(45nm)/NPD(7nm)/化合物1(3nm)/mCP+xx質量%化合物3+yy質量%化合物4+zz質量%化合物5(30nm)/Balq(39nm)/BCP(1nm)/LiF(0.5nm)/Al(100nm)>
(Example 3)
-Production of white single layer light emitting element-
In Example 1, the compound 3 represented by the above structural formula was continuously changed from 15% by mass (compound 1 side) to 13% by mass (Balq side) with respect to mCP, and 0. Example 1 was carried out in the same manner as in Example 1 except that 13% by mass of Compound 4 represented by the above structural formula and 0.13% by mass of Compound 5 represented by the above structural formula with respect to mCP were doped. 3 organic electroluminescent elements were produced.
The layer structure of the organic electroluminescent element of Example 3 is as shown below. () Represents thickness.
<ITO (100 nm) / 2-TNATA + 1 mass% F4-TCNQ (45 nm) / NPD (7 nm) / Compound 1 (3 nm) / mCP + xx mass% Compound 3 + yy mass% Compound 4 + zz mass% Compound 5 (30 nm) / Balq (39 nm) / BCP (1 nm) / LiF (0.5 nm) / Al (100 nm)>

(比較例3)
比較例2と同じ有機電界発光素子を比較例3として用いた。
(Comparative Example 3)
The same organic electroluminescent element as Comparative Example 2 was used as Comparative Example 3.

次に、実施例3及び比較例3について、実施例2及び比較例2と同様にして、短波長ピークの発光材料の濃度A、長波長ピークの発光材料の濃度B、外部量子効率、耐久性(相対輝度半減時間)、CIEx、CIEy、及び色度変化(ΔE)を評価した。結果を表1に示す。実施例1及び比較例1と同様にして測定した実施例3の発光スペクトルを図6に示す。比較例3の発光スペクトルは図5と同じである。   Next, for Example 3 and Comparative Example 3, as in Example 2 and Comparative Example 2, the concentration A of the light emitting material having the short wavelength peak, the concentration B of the light emitting material having the long wavelength peak, the external quantum efficiency, and the durability (Relative luminance half-life), CIEx, CIEy, and chromaticity change (ΔE) were evaluated. The results are shown in Table 1. The emission spectrum of Example 3 measured in the same manner as Example 1 and Comparative Example 1 is shown in FIG. The emission spectrum of Comparative Example 3 is the same as FIG.

(実施例4)
−白色単層発光素子の作製−
実施例1において、mCPに対して15質量%(化合物1側)から14質量%(Balq側)へと連続的に変化させて上記構造式で表される化合物3と、mCPに対して0.13質量%の上記構造式で表される化合物4と、mCPに対して0.13質量%(化合物1側)から0.18質量%(Balq側)へと連続的に変化させて上記構造式で表される化合物5をドープした以外は、実施例1と同様にして、実施例4の有機電界発光素子を作製した。
この実施例4の有機電界発光素子の層構成は、以下に示す通りである。( )内は厚みを表す。
<ITO(100nm)/2−TNATA+1質量%F4−TCNQ(45nm)/NPD(7nm)/化合物1(3nm)/mCP+xx質量%化合物3+yy質量%化合物4+zz質量%化合物5(30nm)/Balq(39nm)/BCP(1nm)/LiF(0.5nm)/Al(100nm)>
Example 4
-Production of white single layer light emitting element-
In Example 1, the compound 3 represented by the above structural formula was continuously changed from 15% by mass (compound 1 side) to 14% by mass (Balq side) with respect to mCP, and 0. 13% by mass of the compound 4 represented by the above structural formula and 0.13% by mass (compound 1 side) to 0.18% by mass (Balq side) with respect to mCP An organic electroluminescent element of Example 4 was produced in the same manner as in Example 1 except that the compound 5 represented by
The layer structure of the organic electroluminescent element of Example 4 is as shown below. () Represents thickness.
<ITO (100 nm) / 2-TNATA + 1 mass% F4-TCNQ (45 nm) / NPD (7 nm) / Compound 1 (3 nm) / mCP + xx mass% Compound 3 + yy mass% Compound 4 + zz mass% Compound 5 (30 nm) / Balq (39 nm) / BCP (1 nm) / LiF (0.5 nm) / Al (100 nm)>

(比較例4)
比較例2と同じ有機電界発光素子を比較例4として用いた。
(Comparative Example 4)
The same organic electroluminescent element as Comparative Example 2 was used as Comparative Example 4.

次に、実施例4及び比較例4について、実施例2及び比較例2と同様にして、短波長ピークの発光材料の濃度A、長波長ピークの発光材料の濃度B、外部量子効率、耐久性(相対輝度半減時間)、CIEx、CIEy、及び色度変化(ΔE)を評価した。結果を表1に示す。実施例1及び比較例1と同様にして測定した実施例4の発光スペクトルを図7に示す。比較例4の発光スペクトルは図5と同じである。   Next, for Example 4 and Comparative Example 4, as in Example 2 and Comparative Example 2, the concentration A of the light emitting material having the short wavelength peak, the concentration B of the light emitting material having the long wavelength peak, the external quantum efficiency, and the durability (Relative luminance half-life), CIEx, CIEy, and chromaticity change (ΔE) were evaluated. The results are shown in Table 1. The emission spectrum of Example 4 measured in the same manner as in Example 1 and Comparative Example 1 is shown in FIG. The emission spectrum of Comparative Example 4 is the same as FIG.

(実施例5)
−イリジウム系単層発光素子の作製−
厚み0.5mm、2.5cm角のガラス基板を洗浄容器に入れ、中性洗剤中で超音波洗浄した後、純水中で超音波洗浄し、120℃で120分間熱処理を行った。その後、30分間UV−オゾン処理を行った。このガラス基板上に真空蒸着法にて以下の各層を蒸着した。なお、以下の実施例及び比較例における蒸着速度は、特に断りのない場合は0.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。また、以下の各層の厚みは水晶振動子を用いて測定した。
(Example 5)
-Fabrication of iridium-based single layer light emitting devices-
A glass substrate having a thickness of 0.5 mm and a square of 2.5 cm was placed in a cleaning container, ultrasonically cleaned in a neutral detergent, then ultrasonically cleaned in pure water, and heat-treated at 120 ° C. for 120 minutes. Thereafter, UV-ozone treatment was performed for 30 minutes. The following layers were deposited on this glass substrate by vacuum deposition. In addition, the vapor deposition rate in the following examples and comparative examples is 0.2 nm / second unless otherwise specified. The deposition rate was measured using a quartz resonator. The thickness of each layer below was measured using a quartz resonator.

まず、ガラス基板上に、陽極としてITO(Indium Tin Oxide)を厚み100nmにスパッタ蒸着した。
次に、前記陽極(ITO)上に、上記構造式で表される4,4’,4”−トリス(N,N−(2−ナフチル)−フェニルアミノ)トリフェニルアミン(2−TNATA)に、上記構造式で表されるF4−TCNQを1質量%ドープした正孔注入層を厚みが160nmになるように真空蒸着法にて形成した。
First, ITO (Indium Tin Oxide) as a positive electrode was sputter-deposited on a glass substrate to a thickness of 100 nm.
Next, the 4,4 ′, 4 ″ -tris (N, N- (2-naphthyl) -phenylamino) triphenylamine (2-TNATA) represented by the above structural formula is formed on the anode (ITO). A hole injection layer doped with 1% by mass of F4-TCNQ represented by the above structural formula was formed by vacuum deposition so that the thickness was 160 nm.

次に、前記正孔注入層上に、正孔輸送層としてα−NPD(Bis[N−(1−naphthyl)−N−phenyl]benzidine)を厚みが10nmとなるように真空蒸着法にて形成した。   Next, α-NPD (Bis [N- (1-naphthyl) -N-phenyl] benzidine) is formed as a hole transport layer on the hole injection layer by a vacuum deposition method so as to have a thickness of 10 nm. did.

次に、前記正孔輸送層の上に、ホスト材料として下記構造式で表される化合物11に対して10質量%の下記構造式で表される化合物6と、下記構造式で表される化合物11に対して0.10質量%の下記構造式で表される化合物7と、下記構造式で表される化合物11に対して0.10質量%(NPD側)から0.16質量%(Balq側)へと連続的に変化させて下記構造式で表される化合物8をドープした発光層を30nmの厚みに真空蒸着した。
Next, on the hole transport layer, 10% by mass of the compound 6 represented by the following structural formula with respect to the compound 11 represented by the following structural formula as a host material, and the compound represented by the following structural formula The compound 7 represented by the following structural formula of 0.10% by mass with respect to 11 and the compound 11 represented by the following structural formula with 0.10% by mass (NPD side) to 0.16% by mass (Balq The light emitting layer doped continuously with the compound 8 represented by the following structural formula was vacuum-deposited to a thickness of 30 nm.

前記発光層上に、第一電子輸送層としてBalqを厚みが39nmとなるように真空蒸着した。
次に、前記第一電子輸送層上に、第二電子輸送層としてBCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)を厚みが1nmとなるように真空蒸着した。
次に、前記第二電子輸送層上に、電子注入層としてLiFを厚みが1nmとなるように真空蒸着した。
次に、前記電子注入層上に、パターニングしたマスク(発光領域が2mm×2mmとなるマスク)を設置し、金属アルミニウムを厚みが100nmとなるように真空蒸着し、陰極とした。
作製した積層体を、窒素ガスで置換したグローブボックス内に入れ、ガラス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ株式会社製)を用いて封止した。以上により、実施例5の有機電界発光素子を作製した。
この実施例5の有機電界発光素子の層構成は、以下に示す通りである。( )内は厚みを表す。
<ITO(100nm)/2−TNATA+1質量%F4−TCNQ(160nm)/NPD(10nm)/化合物11+xx質量%化合物6+yy質量%化合物7+zz質量%化合物8(30nm)/Balq(39nm)/BCP(1nm)/LiF(1nm)/Al(100nm)>
On the light emitting layer, Balq was vacuum-deposited as a first electron transport layer so as to have a thickness of 39 nm.
Next, BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) as a second electron transport layer was vacuum deposited on the first electron transport layer so as to have a thickness of 1 nm.
Next, LiF was vacuum-deposited as an electron injection layer on the second electron transport layer so as to have a thickness of 1 nm.
Next, a patterned mask (a mask having a light emitting region of 2 mm × 2 mm) was placed on the electron injection layer, and metal aluminum was vacuum evaporated to a thickness of 100 nm to form a cathode.
The produced laminate was put in a glove box substituted with nitrogen gas, and sealed with a glass sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.). Thus, an organic electroluminescent element of Example 5 was produced.
The layer structure of the organic electroluminescent element of Example 5 is as shown below. () Represents thickness.
<ITO (100 nm) / 2-TNATA + 1 mass% F4-TCNQ (160 nm) / NPD (10 nm) / Compound 11 + xx mass% Compound 6 + yy mass% Compound 7 + zz mass% Compound 8 (30 nm) / Balq (39 nm) / BCP (1 nm) / LiF (1 nm) / Al (100 nm)>

(比較例5)
実施例5において、ホスト材料として上記構造式で表される化合物11に対して10質量%の上記構造式で表される化合物6と、上記構造式で表される化合物11に対して0.10質量%の上記構造式で表される化合物7と、上記構造式で表される化合物11に対して0.10質量%の上記構造式で表される化合物8をドープした以外は、実施例5と同様にして、比較例5の有機電界発光素子を作製した。
この比較例5の有機電界発光素子の層構成は、以下に示す通りである。( )内は厚みを表す。
<ITO(100nm)/2−TNATA+1質量%F4−TCNQ(160nm)/NPD(10nm)/化合物11+10質量%化合物6+0.10質量%化合物7+0.10質量%化合物8(30nm)/Balq(39nm)/BCP(1nm)/LiF(1nm)/Al(100nm)>
(Comparative Example 5)
In Example 5, 10 mass% of the compound 6 represented by the above structural formula with respect to the compound 11 represented by the above structural formula as a host material, and 0.10 with respect to the compound 11 represented by the above structural formula. Example 5 except that 7% by mass of the compound 7 represented by the above structural formula and 0.10% by mass of the compound 8 represented by the above structural formula were doped with respect to the compound 11 represented by the above structural formula. In the same manner, an organic electroluminescent element of Comparative Example 5 was produced.
The layer structure of the organic electroluminescent element of Comparative Example 5 is as shown below. () Represents thickness.
<ITO (100 nm) / 2-TNATA + 1 mass% F4-TCNQ (160 nm) / NPD (10 nm) / Compound 11 + 10 mass% Compound 6 + 0.10 mass% Compound 7 + 0.10 mass% Compound 8 (30 nm) / Balq (39 nm) / BCP (1 nm) / LiF (1 nm) / Al (100 nm)>

次に、実施例5及び比較例5について、実施例2及び比較例2と同様にして、短波長ピークの発光材料の濃度A、長波長ピークの発光材料の濃度B、外部量子効率、耐久性(相対輝度半減時間)、CIEx、CIEy、及び色度変化(ΔE)を評価した。結果を表1に示す。実施例1及び比較例1と同様にして測定した実施例5の発光スペクトルを図8、比較例5の発光スペクトルを図9に示す。   Next, for Example 5 and Comparative Example 5, as in Example 2 and Comparative Example 2, the concentration A of the light emitting material having the short wavelength peak, the concentration B of the light emitting material having the long wavelength peak, the external quantum efficiency, and the durability (Relative luminance half-life), CIEx, CIEy, and chromaticity change (ΔE) were evaluated. The results are shown in Table 1. The emission spectrum of Example 5 measured in the same manner as Example 1 and Comparative Example 1 is shown in FIG. 8, and the emission spectrum of Comparative Example 5 is shown in FIG.

(実施例6)
実施例5において、ホスト材料として上記構造式で表される化合物11に対して10質量%の下記構造式で表される化合物9と、上記構造式で表される化合物11に対して0.10質量%の下記構造式で表される化合物10と、上記構造式で表される化合物11に対して0.10質量%(NPD側)から0.16質量%(Balq側)へと連続的に変化させて上記構造式で表される化合物5をドープした以外は、実施例5と同様にして、実施例6の有機電界発光素子を作製した。
(Example 6)
In Example 5, 10% by mass of the compound 9 represented by the following structural formula with respect to the compound 11 represented by the above structural formula as a host material, and 0.10 with respect to the compound 11 represented by the above structural formula. Continuously from 0.10% by mass (NPD side) to 0.16% by mass (Balq side) with respect to 10% by mass of the compound 10 represented by the following structural formula and the compound 11 represented by the above structural formula. An organic electroluminescent element of Example 6 was produced in the same manner as in Example 5 except that the compound 5 represented by the above structural formula was doped.

(比較例6)
実施例6において、ホスト材料として上記構造式で表される化合物11に対して10質量%の上記構造式で表される化合物9と、上記構造式で表される化合物11に対して0.10質量%の上記構造式で表される化合物10と、上記構造式で表される化合物11に対して0.10質量%の上記構造式で表される化合物5をドープした以外は、実施例6と同様にして、比較例6の有機電界発光素子を作製した。
(Comparative Example 6)
In Example 6, 10% by mass of the compound 9 represented by the structural formula with respect to the compound 11 represented by the structural formula as a host material, and 0.10 with respect to the compound 11 represented by the structural formula. Example 6 except that 10% by mass of the compound 10 represented by the above structural formula and 0.10% by mass of the compound 5 represented by the above structural formula were doped with respect to the compound 11 represented by the above structural formula. In the same manner, an organic electroluminescent element of Comparative Example 6 was produced.

次に、実施例6及び比較例6について、実施例2及び比較例2と同様にして、短波長ピークの発光材料の濃度A、長波長ピークの発光材料の濃度B、外部量子効率、耐久性(相対輝度半減時間)、CIEx、CIEy、及び色度変化(ΔE)を評価した。結果を表1に示す。実施例1及び比較例1と同様にして測定した実施例6の発光スペクトルを図10、比較例6の発光スペクトルを図11に示す。   Next, for Example 6 and Comparative Example 6, as in Example 2 and Comparative Example 2, the concentration A of the light emitting material having the short wavelength peak, the concentration B of the light emitting material having the long wavelength peak, the external quantum efficiency, and the durability (Relative luminance half-life), CIEx, CIEy, and chromaticity change (ΔE) were evaluated. The results are shown in Table 1. The emission spectrum of Example 6 measured in the same manner as Example 1 and Comparative Example 1 is shown in FIG. 10, and the emission spectrum of Comparative Example 6 is shown in FIG.

(実施例7)
厚み0.5mm、2.5cm角のガラス基板を洗浄容器に入れ、中性洗剤中で超音波洗浄した後、純水中で超音波洗浄し、120℃で120分間熱処理を行った。その後、30分間UV−オゾン処理を行った。このガラス基板上に真空蒸着法にて以下の各層を蒸着した。なお、以下の実施例及び比較例における蒸着速度は、特に断りのない場合は0.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。また、以下の各層の厚みは水晶振動子を用いて測定した。
(Example 7)
A glass substrate having a thickness of 0.5 mm and a square of 2.5 cm was placed in a cleaning container, ultrasonically cleaned in a neutral detergent, then ultrasonically cleaned in pure water, and heat-treated at 120 ° C. for 120 minutes. Thereafter, UV-ozone treatment was performed for 30 minutes. The following layers were deposited on this glass substrate by vacuum deposition. In addition, the vapor deposition rate in the following examples and comparative examples is 0.2 nm / second unless otherwise specified. The deposition rate was measured using a quartz resonator. The thickness of each layer below was measured using a quartz resonator.

まず、ガラス基板上に、陽極としてITO(Indium Tin Oxide)を厚み100nmにスパッタ蒸着した。
次に、前記陽極(ITO)上に、上記構造式で表される4,4’,4”−トリス(N,N−(2−ナフチル)−フェニルアミノ)トリフェニルアミン(2−TNATA)に、上記構造式で表されるF4−TCNQを1質量%ドープした正孔注入層を厚みが45nmになるように真空蒸着法にて形成した。
First, ITO (Indium Tin Oxide) as a positive electrode was sputter-deposited on a glass substrate to a thickness of 100 nm.
Next, the 4,4 ′, 4 ″ -tris (N, N- (2-naphthyl) -phenylamino) triphenylamine (2-TNATA) represented by the above structural formula is formed on the anode (ITO). A hole injection layer doped with 1% by mass of F4-TCNQ represented by the above structural formula was formed by a vacuum deposition method so as to have a thickness of 45 nm.

次に、前記正孔注入層上に、正孔輸送層としてα−NPD(Bis[N−(1−naphthyl)−N−phenyl]benzidine)を厚みが7nmとなるように真空蒸着法にて形成した。
次に、前記正孔輸送層上に、上記構造式で表される化合物1を真空蒸着して、厚み3nmの第二正孔輸送層を形成した。
Next, α-NPD (Bis [N- (1-naphthyl) -N-phenyl] benzidine)) is formed on the hole injection layer as a hole transport layer by a vacuum deposition method so as to have a thickness of 7 nm. did.
Next, the compound 1 represented by the above structural formula was vacuum deposited on the hole transport layer to form a second hole transport layer having a thickness of 3 nm.

次に、前記第二正孔輸送層の上に、ホスト材料としてmCP(1,3-bis(carbazol-9-yl)benzene)と、該mCPに対して40質量%(化合物1側)から50質量%(Balq側)へと連続的に変化させて燐光発光材料である上記構造式で表される化合物2をドープした発光層を30nmの厚みに真空蒸着した。   Next, on the second hole transport layer, mCP (1,3-bis (carbazol-9-yl) benzene) is used as a host material, and 40% by mass (compound 1 side) to 50% with respect to the mCP. A light-emitting layer doped with the compound 2 represented by the above structural formula, which is a phosphorescent material, was continuously vacuum-deposited to a thickness of 30 nm while continuously changing to mass% (Balq side).

前記発光層上に、第一電子輸送層としてBalqを厚みが10nmとなるように真空蒸着した。
次に、前記第一電子輸送層上に、BCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)に対し1質量%のLiをドープした第二電子輸送層を厚みが230nmとなるように真空蒸着した。
次に、前記電子注入層上に、パターニングしたマスク(発光領域が2mm×2mmとなるマスク)を設置し、金属アルミニウムを厚みが100nmとなるように真空蒸着し、陰極とした。
作製した積層体を、窒素ガスで置換したグローブボックス内に入れ、ガラス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ株式会社製)を用いて封止した。以上により、実施例7の有機電界発光素子を作製した。
この実施例7の有機電界発光素子の層構成は、以下に示す通りである。( )内は厚みを表す。
<ITO(100nm)/2−TNATA+1質量%F4−TCNQ(45nm)/NPD(7nm)/化合物1(3nm)/mCP+XX質量%化合物2(30nm)/Balq(10nm)/BCP+1質量%Li(230nm)/Al(100nm)>
Balq was vacuum-deposited as a first electron transport layer on the light emitting layer so as to have a thickness of 10 nm.
Next, a second electron transport layer doped with 1% by mass of Li with respect to BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) is formed on the first electron transport layer. Vacuum deposition was performed so that the thickness was 230 nm.
Next, a patterned mask (a mask having a light emitting region of 2 mm × 2 mm) was placed on the electron injection layer, and metal aluminum was vacuum evaporated to a thickness of 100 nm to form a cathode.
The produced laminate was put in a glove box substituted with nitrogen gas, and sealed with a glass sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.). Thus, an organic electroluminescent element of Example 7 was produced.
The layer structure of the organic electroluminescent element of Example 7 is as shown below. () Represents thickness.
<ITO (100 nm) / 2-TNATA + 1 mass% F4-TCNQ (45 nm) / NPD (7 nm) / Compound 1 (3 nm) / mCP + XX mass% Compound 2 (30 nm) / Balq (10 nm) / BCP + 1 mass% Li (230 nm) / Al (100 nm)>

(比較例7)
実施例7において、mCPに対し上記構造式で表される化合物2を40質量%ドープした以外は、実施例7と同様にして、比較例7の有機電界発光素子を作製した。
この比較例7の有機電界発光素子の層構成は、以下に示す通りである。( )内は厚みを表す。
<ITO(100nm)/2−TNATA+1質量%F4−TCNQ(45nm)/NPD(7nm)/化合物1(3nm)/mCP+40質量%化合物2(30nm)/Balq(10nm)/BCP+1質量%Li(230nm)/Al(100nm)>
(Comparative Example 7)
In Example 7, an organic electroluminescent element of Comparative Example 7 was produced in the same manner as in Example 7 except that 40% by mass of Compound 2 represented by the above structural formula was doped with respect to mCP.
The layer structure of the organic electroluminescent element of Comparative Example 7 is as shown below. () Represents thickness.
<ITO (100 nm) / 2-TNATA + 1 mass% F4-TCNQ (45 nm) / NPD (7 nm) / Compound 1 (3 nm) / mCP + 40 mass% Compound 2 (30 nm) / Balq (10 nm) / BCP + 1 mass% Li (230 nm) / Al (100 nm)>

次に、実施例7及び比較例7について、実施例1及び比較例1と同様にして、単量体の積分スペクトル強度C、会合体の積分スペクトル強度D、外部量子効率、耐久性(相対輝度半減時間)、CIEx、CIEy、及び色度変化(ΔE)を評価した。結果を表1に示す。実施例1及び比較例1と同様にして測定した実施例7の発光スペクトルを図12、比較例7の発光スペクトルを図13に示す。   Next, for Example 7 and Comparative Example 7, as in Example 1 and Comparative Example 1, the integrated spectral intensity C of the monomer, the integrated spectral intensity D of the aggregate, the external quantum efficiency, and the durability (relative luminance) Half time), CIEx, CIEy, and chromaticity change (ΔE) were evaluated. The results are shown in Table 1. The emission spectrum of Example 7 measured in the same manner as Example 1 and Comparative Example 1 is shown in FIG. 12, and the emission spectrum of Comparative Example 7 is shown in FIG.

(実施例8)
実施例1において、mCPに対して30質量%(化合物1側)から50質量%(Balq側)へと連続的に変化させて上記構造式で表される化合物2をドープした発光層を60nmの厚みに真空蒸着した以外は、実施例1と同様にして、実施例8の有機電界発光素子を作製した。
この実施例8の有機電界発光素子の層構成は、以下に示す通りである。( )内は厚みを表す。
<ITO(100nm)/2−TNATA+1質量%F4−TCNQ(45nm)/NPD(7nm)/化合物1(3nm)/mCP+XX質量%化合物2(60nm)/Balq(39nm)/BCP(1nm)/LiF(0.5nm)/Al(100nm)>
(Example 8)
In Example 1, the light emitting layer doped with the compound 2 represented by the above structural formula by changing continuously from 30% by mass (compound 1 side) to 50% by mass (Balq side) with respect to mCP is 60 nm. An organic electroluminescent device of Example 8 was produced in the same manner as Example 1 except that the thickness was vacuum deposited.
The layer structure of the organic electroluminescent element of Example 8 is as shown below. () Represents thickness.
<ITO (100 nm) / 2-TNATA + 1 mass% F4-TCNQ (45 nm) / NPD (7 nm) / Compound 1 (3 nm) / mCP + XX mass% Compound 2 (60 nm) / Balq (39 nm) / BCP (1 nm) / LiF ( 0.5 nm) / Al (100 nm)>

(比較例8)
実施例8において、ホスト材料としてのmCPに対して40質量%に上記構造式で表される化合物2をドープした発光層を60nmの厚みに真空蒸着した以外は、実施例1と同様にして、比較例8の有機電界発光素子を作製した。
この比較例8の有機電界発光素子の層構成は、以下に示す通りである。( )内は厚みを表す。
<ITO(100nm)/2−TNATA+1質量%F4−TCNQ(45nm)/NPD(7nm)/化合物1(3nm)/mCP+40質量%化合物2(60nm)/Balq(39nm)/BCP(1nm)/LiF(0.5nm)/Al(100nm)>
(Comparative Example 8)
In Example 8, except that the light emitting layer doped with the compound 2 represented by the above structural formula at 40% by mass with respect to mCP as the host material was vacuum-deposited to a thickness of 60 nm, the same as in Example 1, An organic electroluminescent element of Comparative Example 8 was produced.
The layer structure of the organic electroluminescent element of Comparative Example 8 is as shown below. () Represents thickness.
<ITO (100 nm) / 2-TNATA + 1 mass% F4-TCNQ (45 nm) / NPD (7 nm) / Compound 1 (3 nm) / mCP + 40 mass% Compound 2 (60 nm) / Balq (39 nm) / BCP (1 nm) / LiF ( 0.5 nm) / Al (100 nm)>

次に、実施例8及び比較例8について、実施例1及び比較例1と同様にして、単量体の積分スペクトル強度C、会合体の積分スペクトル強度D、外部量子効率、耐久性(相対輝度半減時間)、CIEx、CIEy、及び色度変化(ΔE)を評価した。結果を表1に示す。実施例1及び比較例1と同様にして測定した実施例8の発光スペクトルを図14、比較例8の発光スペクトルを図15に示す。   Next, for Example 8 and Comparative Example 8, as in Example 1 and Comparative Example 1, the integral spectral intensity C of the monomer, the integral spectral intensity D of the aggregate, the external quantum efficiency, and durability (relative luminance) Half time), CIEx, CIEy, and chromaticity change (ΔE) were evaluated. The results are shown in Table 1. The emission spectrum of Example 8 measured in the same manner as Example 1 and Comparative Example 1 is shown in FIG. 14, and the emission spectrum of Comparative Example 8 is shown in FIG.

(実施例9)
実施例1において、mCPに対して40質量%(化合物1側)から50質量%(Balq側)へと連続的に変化させて上記構造式で表される化合物2をドープした発光層を15nmの厚みに真空蒸着した以外は、実施例1と同様にして、実施例9の有機電界発光素子を作製した。
この実施例9の有機電界発光素子の層構成は、以下に示す通りである。( )内は厚みを表す。
<ITO(100nm)/2−TNATA+1質量%F4−TCNQ(45nm)/NPD(7nm)/化合物1(3nm)/mCP+XX質量%化合物2(15nm)/Balq(39nm)/BCP(1nm)/LiF(0.5nm)/Al(100nm)>
Example 9
In Example 1, the emission layer doped with the compound 2 represented by the above structural formula by changing continuously from 40% by mass (compound 1 side) to 50% by mass (Balq side) with respect to mCP is 15 nm. An organic electroluminescent element of Example 9 was produced in the same manner as Example 1 except that the thickness was vacuum deposited.
The layer structure of the organic electroluminescent element of Example 9 is as shown below. () Represents thickness.
<ITO (100 nm) / 2-TNATA + 1 mass% F4-TCNQ (45 nm) / NPD (7 nm) / Compound 1 (3 nm) / mCP + XX mass% Compound 2 (15 nm) / Balq (39 nm) / BCP (1 nm) / LiF ( 0.5 nm) / Al (100 nm)>

(比較例9)
実施例9において、ホスト材料としてのmCPに対して40質量%に上記構造式で表される化合物2をドープした発光層を15nmの厚みに真空蒸着した以外は、実施例9と同様にして、比較例9の有機電界発光素子を作製した。
この比較例9の有機電界発光素子の層構成は、以下に示す通りである。( )内は厚みを表す。
<ITO(100nm)/2−TNATA+1質量%F4−TCNQ(45nm)/NPD(7nm)/化合物1(3nm)/mCP+40質量%化合物2(15nm)/Balq(39nm)/BCP(1nm)/LiF(0.5nm)/Al(100nm)>
(Comparative Example 9)
In Example 9, except that the light emitting layer doped with the compound 2 represented by the above structural formula in 40% by mass with respect to mCP as the host material was vacuum-deposited to a thickness of 15 nm, the same as in Example 9, An organic electroluminescent element of Comparative Example 9 was produced.
The layer structure of the organic electroluminescent element of Comparative Example 9 is as shown below. () Represents thickness.
<ITO (100 nm) / 2-TNATA + 1 mass% F4-TCNQ (45 nm) / NPD (7 nm) / Compound 1 (3 nm) / mCP + 40 mass% Compound 2 (15 nm) / Balq (39 nm) / BCP (1 nm) / LiF ( 0.5 nm) / Al (100 nm)>

次に、実施例9及び比較例9について、実施例1及び比較例1と同様にして、単量体の積分スペクトル強度C、会合体の積分スペクトル強度D、外部量子効率、耐久性(相対輝度半減時間)、CIEx、CIEy、及び色度変化(ΔE)を評価した。結果を表1に示す。実施例1及び比較例1と同様にして測定した実施例9の発光スペクトルを図16、比較例9の発光スペクトルを図17に示す。   Next, for Example 9 and Comparative Example 9, as in Example 1 and Comparative Example 1, the integrated spectral intensity C of the monomer, the integrated spectral intensity D of the aggregate, the external quantum efficiency, and the durability (relative luminance) Half time), CIEx, CIEy, and chromaticity change (ΔE) were evaluated. The results are shown in Table 1. The emission spectrum of Example 9 measured in the same manner as Example 1 and Comparative Example 1 is shown in FIG. 16, and the emission spectrum of Comparative Example 9 is shown in FIG.

*スペクトル強度は0.25mA/cmで通電時の値である。
*濃度は発光層での陽極(透明電極)側での濃度である。
* Spectral intensity is 0.25 mA / cm 2 and is the value when energized.
* Concentration is the concentration on the anode (transparent electrode) side in the light emitting layer.

表1の結果から、実施例1〜9は、比較例1〜9に比べて、電流変化時の色度変化(ΔE)が小さくなった。また、発光効率及び耐久性にも改善効果が認められた。 From the results of Table 1, in Examples 1 to 9, the chromaticity change (ΔE) at the time of current change was smaller than in Comparative Examples 1 to 9. Moreover, the improvement effect was recognized also in luminous efficiency and durability.

本発明の有機電界発光素子は、例えば表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信などに好適に用いられる。   The organic electroluminescent element of the present invention is suitably used for display elements, displays, backlights, electrophotography, illumination light sources, recording light sources, exposure light sources, reading light sources, signs, signboards, interiors, optical communications, and the like.

1 基板
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 第一電子輸送層
7 第二電子輸送層
8 陰極
10 有機電界発光素子
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 First electron transport layer 7 Second electron transport layer 8 Cathode 10 Organic electroluminescent element

Claims (5)

陽極と陰極の間に、少なくとも発光層を含む有機電界発光素子であって、
前記発光層が発光材料を含み、該発光材料が単量体と会合体で異なる発光波長ピークを有し、前記単量体が短波長側発光波長ピークを有し、前記会合体が長波長側発光波長ピークを有しており、
前記単量体の濃度に対する前記会合体の濃度の濃度比率(会合体の濃度/単量体の濃度)が、前記陰極に近づくにつれて漸増しており、
前記単量体の積分スペクトル強度Cに対する前記会合体の積分スペクトル強度Dの強度比率〔(D/C)×100〕が、20%以上であることを特徴とする有機電界発光素子。
An organic electroluminescent element including at least a light emitting layer between an anode and a cathode,
The light emitting layer contains a light emitting material, the light emitting material has a different emission wavelength peak between the monomer and the aggregate, the monomer has a short wavelength side emission wavelength peak, and the aggregate is on the long wavelength side. Has an emission wavelength peak,
The concentration ratio of the aggregate to the monomer concentration (aggregate concentration / monomer concentration) gradually increases as the cathode approaches.
An organic electroluminescence device, wherein an intensity ratio [(D / C) × 100] of an integral spectrum intensity D of the aggregate to an integral spectrum intensity C of the monomer is 20% or more.
長波長側ピークの会合体の濃度が一定であり、短波長側ピークの単量体の濃度が陰極に近づくにつれて減少する請求項1に記載の有機電界発光素子。   2. The organic electroluminescence device according to claim 1, wherein the concentration of the aggregate of the long wavelength side peak is constant, and the concentration of the monomer of the short wavelength side peak decreases as it approaches the cathode. 長波長側ピークの会合体の濃度が陰極に近づくにつれて増加し、短波長側ピークの単量体の濃度が一定である請求項1に記載の有機電界発光素子。   2. The organic electroluminescent device according to claim 1, wherein the concentration of the long-wavelength-side peak aggregate increases as it approaches the cathode, and the monomer concentration of the short-wavelength-side peak is constant. 長波長側ピークの会合体の濃度が陰極に近づくにつれて増加し、短波長側ピークの単量体の濃度が陰極に近づくにつれて減少する請求項1に記載の有機電界発光素子。   2. The organic electroluminescence device according to claim 1, wherein the concentration of the aggregate of the long wavelength side peak increases as it approaches the cathode, and the concentration of the monomer of the short wavelength side peak decreases as it approaches the cathode. 短波長側ピークの単量体の濃度に対する長波長側ピークの会合体の濃度の比率を、発光層の陰極側でaとし、発光層の陽極側でbとすると、次式、a/b>1.05を満たす請求項1から4のいずれかに記載の有機電界発光素子。   When the ratio of the concentration of the long wavelength side peak to the concentration of the short wavelength side peak monomer is a on the cathode side of the light emitting layer and b on the anode side of the light emitting layer, the following equation is given: a / b> The organic electroluminescent element according to claim 1, which satisfies 1.05.
JP2014207746A 2010-03-17 2014-10-09 Organic electroluminescence device Active JP5890504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014207746A JP5890504B2 (en) 2010-03-17 2014-10-09 Organic electroluminescence device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010061097 2010-03-17
JP2010061097 2010-03-17
JP2014207746A JP5890504B2 (en) 2010-03-17 2014-10-09 Organic electroluminescence device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011044166A Division JP5670223B2 (en) 2010-03-17 2011-03-01 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2015029141A JP2015029141A (en) 2015-02-12
JP5890504B2 true JP5890504B2 (en) 2016-03-22

Family

ID=52492599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014207746A Active JP5890504B2 (en) 2010-03-17 2014-10-09 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP5890504B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6863997B2 (en) * 2001-12-28 2005-03-08 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
US6869695B2 (en) * 2001-12-28 2005-03-22 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
JP2007073620A (en) * 2005-09-05 2007-03-22 Fujifilm Corp Organic electroluminescent element
JP5497259B2 (en) * 2007-07-27 2014-05-21 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
JP5478818B2 (en) * 2007-09-18 2014-04-23 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
JP5008584B2 (en) * 2008-02-15 2012-08-22 富士フイルム株式会社 Organic electroluminescent device and display device

Also Published As

Publication number Publication date
JP2015029141A (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5497284B2 (en) White organic electroluminescence device
JP5324513B2 (en) Organic electroluminescence device
JP5210187B2 (en) Organic electroluminescence device
JP5441654B2 (en) Organic electroluminescence device
KR102238719B1 (en) Organic electroluminescence element
JP2009016184A (en) Organic electroluminescent element
JP2010278354A (en) Organic electroluminescent element
JP2011199174A (en) Light-emitting layer forming solid material, organic electroluminescent element, and method for producing the same
WO2011021433A1 (en) Organic electroluminescent element
JP5833322B2 (en) Organic electroluminescent device and manufacturing method thereof
JP5497510B2 (en) Organic electroluminescence device
JP5670223B2 (en) Organic electroluminescence device
JP5649327B2 (en) Organic electroluminescence device
JP5572004B2 (en) White organic electroluminescence device
JP2011192829A (en) Organic electroluminescent element
JP5761962B2 (en) Organic electroluminescence device
KR101989746B1 (en) White organic electroluminescence element
JP4554721B1 (en) Organic electroluminescence device and evaluation method thereof
JP4516624B1 (en) Inspection method for organic electroluminescence device and inspection method for material for organic electroluminescence device
JP5890504B2 (en) Organic electroluminescence device
JP5568410B2 (en) Organic thin film, method for selecting the same, method for measuring the number of trap carriers in the organic thin film, and electronic device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160218

R150 Certificate of patent or registration of utility model

Ref document number: 5890504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250