JP5889663B2 - Method for polishing quartz wafer end face and rotating grindstone - Google Patents

Method for polishing quartz wafer end face and rotating grindstone Download PDF

Info

Publication number
JP5889663B2
JP5889663B2 JP2012027426A JP2012027426A JP5889663B2 JP 5889663 B2 JP5889663 B2 JP 5889663B2 JP 2012027426 A JP2012027426 A JP 2012027426A JP 2012027426 A JP2012027426 A JP 2012027426A JP 5889663 B2 JP5889663 B2 JP 5889663B2
Authority
JP
Japan
Prior art keywords
grindstone
bond grindstone
metal bond
resin
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012027426A
Other languages
Japanese (ja)
Other versions
JP2013163241A (en
Inventor
俊行 柳川
俊行 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2012027426A priority Critical patent/JP5889663B2/en
Publication of JP2013163241A publication Critical patent/JP2013163241A/en
Application granted granted Critical
Publication of JP5889663B2 publication Critical patent/JP5889663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

本発明は, 水晶ウェハ端面を研磨加工する方法及びそれに用いる回転砥石に関する。   The present invention relates to a method for polishing a quartz wafer end face and a rotating grindstone used therefor.

従来の水晶ウェハ端面の研磨加工は,まず,砥粒の粒径が比較的大きい番手の小さい砥石(例えば#400〜#1200程度)にて粗研磨した後,特許文献1に開示されるごとく,仕上げ加工として,複数の水晶ウェハを既知のワックス材で貼り合わせて重ね,複数の水晶ウェハを一括して,複数の水晶ウェハの端面と研磨ブラシの間に遊離砥粒スラリーを注ぎ込みながら,回転する研磨ブラシを水晶ウェハ端面に接触させ,遊離砥粒スラリーによって,水晶ウェハ端面の鏡面研磨を行っている。   In the conventional polishing process of the crystal wafer end face, first, after coarsely polishing with a small grindstone (for example, about # 400 to # 1200) having a relatively large abrasive grain size, as disclosed in Patent Document 1, As a finishing process, multiple quartz wafers are bonded together with a known wax material and stacked, and the quartz wafers are rotated together while pouring loose abrasive slurry between the end faces of the quartz wafers and the polishing brush. A polishing brush is brought into contact with the end face of the crystal wafer, and the end face of the crystal wafer is mirror-polished with loose abrasive slurry.

特開2006−231496号公報JP 2006-231396 A

しかしながら,仕上げ加工として遊離砥粒スラリーによる鏡面研磨を行う場合,仕上げ加工に長時間を要するともに,研磨工程の途中で粗研磨から仕上げ加工へ研磨方法を変更することから端面加工の工程全体が長期化し,非効率化を招く。また,複数の研磨方式が必要なことから,端面加工のコスト増の要因ともなっている。   However, when mirror polishing with loose abrasive slurry is performed as a finishing process, the finishing process takes a long time and the entire polishing process is long because the polishing method is changed from rough polishing to finishing process during the polishing process. Resulting in inefficiency. In addition, since a plurality of polishing methods are required, it is also a factor in increasing the cost of end face processing.

さらに,仕上げ加工に遊離砥粒スラリーを用いることから,その廃液処理も端面加工工程の長期化,非効率化,コスト増を招いている。   Furthermore, since the loose abrasive slurry is used for finishing, the waste liquid treatment also leads to longer end face processing, inefficiency, and higher costs.

そこで,本発明の目的は,効率的且つ低コストの新規な水晶ウェハ端面の研磨加工方法及びそれに用いる回転砥石を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a novel quartz wafer end face polishing method that is efficient and low-cost, and a rotating grindstone used therefor.

上記目的を達成するための本発明の回転砥石の第1の構成は,水晶ウェハの端面を研磨加工するための回転砥石において,砥粒をメタルボンドで結合させた円環状のメタルボンド砥石部と,砥粒をレジンボンドで結合させた円環状のレジンボンド砥石部とを備え,メタルボンド砥石部とレジンボンド砥石部は同軸に積層されて固定され,レジンボンド砥石部の円環幅は,メタルボンド砥石部の円環幅より広いことを特徴とする。 In order to achieve the above object, a first configuration of a rotating grindstone according to the present invention is a rotating grindstone for polishing an end face of a crystal wafer. , A ring-shaped resin bond grindstone part in which abrasive grains are bonded by resin bond, and the metal bond grindstone part and the resin bond grindstone part are coaxially laminated and fixed. The ring width of the resin bond grindstone part is metal It is characterized by being wider than the ring width of the bond grindstone .

本発明の第2の回転砥石の構成は,上記第1の構成において,本発明の回転砥石は,さらに,回転中心軸に第一の貫通孔を有する第一の円盤プレートと,回転中心軸に第二の貫通孔を有し且つ第一の円盤プレートに同軸に交換可能に連結固定される第二の円盤プレートとを備え,メタルボンド砥石部及びレジンボンド砥石部は,それぞれ前記第一の円盤プレート及び前記第二の円盤プレートのいずれか一方及び他方の外周面に接合されることを特徴とする。   The configuration of the second rotating grindstone of the present invention is the same as that of the first configuration described above. The rotating grindstone of the present invention further includes a first disk plate having a first through hole in the rotation center axis, and a rotation center axis. A second disk plate having a second through hole and coaxially and interchangeably connected to the first disk plate, wherein the metal bond grindstone part and the resin bond grindstone part are respectively the first disk It is joined to either one of the plate and the second disk plate and the other outer peripheral surface.

本発明の第3の回転砥石の構成は,上記第2の構成において,第一の円盤プレートは第一の貫通孔を取り囲む突出部を有し,第二の円盤プレートの第二の貫通孔は当該突出部に嵌合可能であることを特徴とする。   The configuration of the third rotating grindstone of the present invention is that in the second configuration, the first disk plate has a protruding portion surrounding the first through hole, and the second through hole of the second disk plate is It can be fitted to the protrusion.

本発明の第4の回転砥石の構成は,上記第1乃至第3の構成のいずれか一つにおいて,メタルボンド砥石部及び/又はレジンボンド砥石部の外周端面は,それぞれ周方向に延びる溝部を有することを特徴とする。   The configuration of the fourth rotary grindstone of the present invention is any one of the first to third configurations described above, wherein the outer peripheral end surfaces of the metal bond grindstone portion and / or the resin bond grindstone portion are each provided with a groove portion extending in the circumferential direction. It is characterized by having.

本発明の第5の回転砥石の構成は,上記第1乃至第4の構成のいずれか一つにおいて,メタルボンド砥石部は,粒径が異なる砥粒を含む複数の砥石層から構成されることを特徴とする。   In the fifth rotary grindstone of the present invention, in any one of the first to fourth configurations, the metal bond grindstone portion is composed of a plurality of grindstone layers including abrasive grains having different particle diameters. It is characterized by.

本発明の第6の回転砥石の構成は,上記第5の構成において,メタルボンド砥石部の外周端面は,各砥石層毎に周方向に延びる溝部を有することを特徴とする。   The configuration of the sixth rotating grindstone of the present invention is characterized in that, in the fifth configuration, the outer peripheral end surface of the metal bond grindstone portion has a groove portion extending in the circumferential direction for each grindstone layer.

本発明によれば,粗研磨に適したメタルボンド砥石部と鏡面研磨に適したレジンボンド砥石部とが同軸に積層された回転砥石が提供されるので,水晶ウェハの端面加工を,遊離砥粒を用いることなく,粗研磨から鏡面研磨まで一つの回転砥石で連続して行うことができる。これにより,水晶ウェハの端面加工が効率化され,低コスト化を図ることができる。また,本発明の水晶ウェハ端面の研磨加工方法によれば,メタルボンド砥石及びレジンボンド砥石により水晶ウェハ端面が研磨され,遊離砥粒スラリーを用いた研磨を行わないため,廃液処理が不要となる。   According to the present invention, there is provided a rotating grindstone in which a metal bond grindstone portion suitable for rough polishing and a resin bond grindstone portion suitable for mirror polishing are coaxially laminated. Can be performed continuously from rough polishing to mirror polishing with a single rotating grindstone. As a result, the end face processing of the quartz wafer is made more efficient, and the cost can be reduced. Further, according to the polishing method of the crystal wafer end face of the present invention, the crystal wafer end face is polished by the metal bond grindstone and the resin bond grindstone, and the polishing using the free abrasive slurry is not performed. .

本実施の形態における回転砥石の全体及び一部斜視図である。It is the whole and partial perspective view of the rotating grindstone in this Embodiment. 本実施の形態における回転砥石の全体及び一部断面図である。It is the whole and a partial sectional view of a rotating grindstone in this embodiment. 本実施の形態における回転砥石を用いた端面加工を模式的に示す図である。It is a figure which shows typically the end surface process using the rotary grindstone in this Embodiment.

以下,図面を参照して本発明の実施の形態について説明する。しかしながら,かかる実施の形態例が,本発明の技術的範囲を限定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, this embodiment does not limit the technical scope of the present invention.

図1及び図2は,本発明の実施の形態における回転砥石の構成を示す図であり,図1は回転砥石の全体及び一部斜視図,図2は回転砥石の全体及び一部断面図である。   1 and 2 are diagrams showing a configuration of a rotating grindstone according to an embodiment of the present invention. FIG. 1 is an overall and partial perspective view of the rotating grindstone, and FIG. 2 is an entire and partial sectional view of the rotating grindstone. is there.

回転砥石10は,同軸に連結固定可能な2つの円盤プレート11,12と,砥粒をメタルボンドで結合させたメタルボンド砥石部13と,砥粒をレジンボンドで結合させたレジンボンド砥石部14と有し,図1(b)に示されるように,メタルボンド砥石部13は円盤プレート11の外周面に接合され,図1(a)に示されるように,レジンボンド砥石部14は円盤プレート12の外周面に接合されている。メタルボンド砥石部13及びレジンボンド砥石部14は,それぞれ円盤プレート11及び円盤プレート12の外周面に接着剤で接合される。なお,円盤プレート11の外周面にレジンボンド砥石部14が接合され,円盤プレート12の外周面にメタルボンド砥石部13が接合されてもよい。円盤プレート11,12は,アルミニウム又はステンレス鋼などの金属で形成される。   The rotating grindstone 10 includes two disk plates 11 and 12 that can be connected and fixed coaxially, a metal bond grindstone portion 13 in which abrasive grains are bonded with metal bonds, and a resin bond grindstone portion 14 in which abrasive grains are bonded with resin bonds. As shown in FIG. 1B, the metal bond grindstone portion 13 is joined to the outer peripheral surface of the disc plate 11, and as shown in FIG. 1A, the resin bond grindstone portion 14 is a disc plate. 12 are joined to the outer peripheral surface. The metal bond grindstone portion 13 and the resin bond grindstone portion 14 are joined to the outer peripheral surfaces of the disc plate 11 and the disc plate 12 with an adhesive, respectively. The resin bond grindstone portion 14 may be joined to the outer peripheral surface of the disk plate 11, and the metal bond grindstone portion 13 may be joined to the outer peripheral surface of the disc plate 12. The disc plates 11 and 12 are made of a metal such as aluminum or stainless steel.

円盤プレート11は,回転中心軸に第一の貫通孔11aと,当該第一の貫通孔11aを取り囲んで軸方向に突出する突出部11bとを有する。円盤プレート12は,回転中心軸に第二の貫通孔12aを有し,当該第二の貫通孔12aは,第一の円盤プレートの突出部11bの外周形状に合うように形状決めされ,当該突出部11bと嵌合し,図1(c)に示されるように,両者は同軸に重ねられてネジやビスなどの固定手段により連結固定される。円盤プレート11,12には,それぞれ重ねると互いに合う位置にネジ穴11c,12cが設けられている。   The disk plate 11 has a first through hole 11a on the rotation center axis and a protruding portion 11b that surrounds the first through hole 11a and protrudes in the axial direction. The disk plate 12 has a second through-hole 12a on the rotation center axis, and the second through-hole 12a is shaped to match the outer peripheral shape of the protrusion 11b of the first disk plate, and the protrusion As shown in FIG. 1 (c), they are fitted to the portion 11b, and both are overlapped on the same axis and connected and fixed by fixing means such as screws and screws. The disk plates 11 and 12 are provided with screw holes 11c and 12c at positions where they overlap each other when overlapped.

これにより,円盤プレート11,12は,同軸に一体化されるので,両砥石部13,14も同軸に配置され,メタルボンド砥石部13からレジンボンド砥石部14に研磨が移行する際にもアライアンス調整(軸合わせ)を不要とし,加工時間を短縮でき,高い加工精度を確保することができる。   Thereby, since the disk plates 11 and 12 are integrated coaxially, both the grindstone portions 13 and 14 are also coaxially arranged, and the alliance is also provided when polishing is transferred from the metal bond grindstone portion 13 to the resin bond grindstone portion 14. Adjustment (axis alignment) is unnecessary, machining time can be shortened, and high machining accuracy can be secured.

図1(c)に示されるように,2つの円盤プレート11,12の連結により,レジンボンド砥石部14は,メタルボンド砥石部13と軸方向に積層されて配設される。メタルボンド砥石部13は,後述するように,粗研磨を行うための相対的に大きな粒径(小さい番手)の砥粒を有し,レジンボンド砥石部14は,鏡面研磨(仕上げ加工)を行うための相対的に小さな粒径(大きい番手)の砥粒を有する。   As shown in FIG. 1 (c), the resin bond grindstone portion 14 is disposed so as to be laminated in the axial direction with the metal bond grindstone portion 13 by connecting the two disk plates 11 and 12. As will be described later, the metal bond grindstone 13 has abrasive grains having a relatively large particle size (small count) for rough polishing, and the resin bond grindstone 14 performs mirror polishing (finishing). For having relatively small grain size (large count).

粗研磨においては,端面のR加工も含めて固くもろい水晶ウェハを大きく研削するため,形状加工に適した硬い結合剤であるメタルボンドが好ましく,メタルボンドと大きな粒径の砥粒を組み合わせたメタルボンド砥石部13が用いられる。メタルボンドへの砥粒の埋まり込みも少なく,目詰まりを起こしにくいため,砥石交換頻度を少なくすることができる。また,鏡面研磨においては,微細加工に適した柔らかい結合剤を用いるのが好ましく,メタルボンドよりも柔らかいレジンボンドと小さな粒径の砥粒を組み合わせたレジンボンド砥石部14が用いられる。また,水晶ウェハの鏡面加工においては,研磨加工時の温度が高いため,フェノール系のレジンボンドよりも耐熱性の高いポリミド系のレジンボンドを用いるのが好ましい。   In rough polishing, hard and brittle quartz wafers including the R-finishing of the end face are ground to a large extent. Therefore, metal bonds, which are hard binders suitable for shape processing, are preferred. Metals that combine metal bonds and abrasive grains with large grain sizes A bond grindstone 13 is used. Since there is little embedding of abrasive grains in metal bonds and clogging is less likely to occur, the frequency of wheel replacement can be reduced. In mirror polishing, it is preferable to use a soft binder suitable for fine processing, and a resin bond grindstone portion 14 in which a resin bond softer than a metal bond and abrasive grains having a small particle diameter are used. Further, in mirror processing of a quartz wafer, since a temperature during polishing is high, it is preferable to use a polyamide resin bond having higher heat resistance than a phenol resin bond.

円盤プレート11,12は,図示されないネジやビスなどにより交換可能に連結固定されるので,メタルボンド砥石部13とレジンボンド砥石部14のいずれか一方を交換することができる。特に,レジンボンド砥石部14は,メタルボンド砥石部13よりも摩耗速度が速く,寿命が短いため,交換頻度が高い。円盤プレート11,12を交換可能に連結固定することで,交換頻度の異なるメタルボンド砥石部13とレジンボンド砥石部14とを単一に積層しても,それぞれの寿命に応じて交換可能となり,砥石を無駄なく活用することができる。   Since the disk plates 11 and 12 are connected and fixed in a replaceable manner with screws or screws (not shown), either the metal bond grindstone portion 13 or the resin bond grindstone portion 14 can be exchanged. In particular, the resin bond grindstone portion 14 has a faster wear rate and a shorter life than the metal bond grindstone portion 13, and therefore has a high replacement frequency. By connecting and fixing the disk plates 11 and 12 so that they can be exchanged, even if the metal bond grindstone part 13 and the resin bond grindstone part 14 having different exchange frequencies are laminated in a single layer, they can be exchanged according to their respective lifetimes. The grindstone can be used without waste.

また,メタルボンド砥石部13とレジンボンド砥石部14の外径は同一であるが,レジンボンド砥石部14の円環幅は,メタルボンド砥石部13の円環幅よりも広く形成され,その幅差に合わせて,レジンボンド砥石部14が接合される円盤プレート12の外径は,メタルボンド砥石部13が接合される円盤プレート11の外径よりも小さく形成される。すなわち,外径が異なる円盤プレート11と円盤プレート12は,同軸に重ねられて連結固定されることで一体化され,相対的に小さい外径の円盤プレート12の外周面にレジンボンド砥石部14が接合され,相対的に長い外径の円盤プレート11の外周面にメタルボンド砥石13が接合される。レジンボンド砥石部14は,メタルボンド砥石部13よりも摩耗速度が速いため,レジンボンド砥石部14の円環幅をメタルボンド砥石部13の円環幅よりも広くすることで,レジンボンド砥石部14の交換頻度を少なくできるなどメンテナンス効率が向上する。もちろん,両砥石部13,14の円環幅が同じであってもかまわない。その場合は,円盤プレート11,12の外径は同一であってもよい。   Further, the outer diameters of the metal bond grindstone portion 13 and the resin bond grindstone portion 14 are the same, but the ring width of the resin bond grindstone portion 14 is formed wider than the ring width of the metal bond grindstone portion 13. In accordance with the difference, the outer diameter of the disc plate 12 to which the resin bond grindstone portion 14 is joined is formed smaller than the outer diameter of the disc plate 11 to which the metal bond grindstone portion 13 is joined. That is, the disk plate 11 and the disk plate 12 having different outer diameters are integrated by being coaxially stacked and connected and fixed, and the resin bond grindstone portion 14 is formed on the outer peripheral surface of the disk plate 12 having a relatively small outer diameter. The metal bond grindstone 13 is joined to the outer peripheral surface of the disk plate 11 having a relatively long outer diameter. Since the resin bond grindstone 14 has a faster wear rate than the metal bond grindstone 13, the resin bond grindstone 14 is made wider than the ring width of the metal bond grindstone 13. Maintenance efficiency is improved, for example, the replacement frequency of 14 can be reduced. Of course, the ring widths of both the grindstone portions 13 and 14 may be the same. In that case, the outer diameters of the disk plates 11 and 12 may be the same.

図2に示されるように,メタルボンド砥石部13及びレジンボンド砥石部14は,それぞれ軸方向に粒径が異なる複数層から構成される。図2(b)は,図2(a)の点線囲み部分の拡大図である。図2(b)に示される例では,メタルボンド砥石部13は3層から構成され,例えば図面下から#400,#800,#1200の順に積層される。また,レジンボンド砥石部14は2層から構成され,例えば図面下から#1500,#3000の順に積層される。レジンボンド砥石部14とメタルボンド砥石部13を通して,砥石は番手の小さいものから番手の大きいものの順に積層されている。両砥石部13,14における層数は任意であり適宜設計可能であるが,大きな加工量が発生する粗研磨では,砥石の負担が大きいので,本実施の形態例のように,メタルボンド砥石部13の層数を,レジンボンド砥石部14の層数よりも多くし細分化することが好ましい。   As shown in FIG. 2, the metal bond grindstone portion 13 and the resin bond grindstone portion 14 are each composed of a plurality of layers having different particle sizes in the axial direction. FIG. 2B is an enlarged view of a portion surrounded by a dotted line in FIG. In the example shown in FIG. 2B, the metal bond grindstone 13 is composed of three layers, for example, stacked in the order of # 400, # 800, and # 1200 from the bottom of the drawing. Moreover, the resin bond grindstone part 14 is comprised from two layers, for example, is laminated | stacked in order of # 1500 and # 3000 from the bottom of the drawing. Through the resin bond grindstone portion 14 and the metal bond grindstone portion 13, the grindstones are stacked in order from the smallest count to the largest count. The number of layers in both the grindstone portions 13 and 14 is arbitrary and can be designed as appropriate. However, in rough polishing in which a large amount of processing is generated, the burden on the grindstone is large, so that the metal bond grindstone portion as in this embodiment is used. It is preferable to subdivide the number of layers 13 to be larger than the number of layers of the resin bond grindstone 14.

なお,上述の粒径の組み合わせ例においては,例えば,#1500までメタルボンド砥石部13として形成することも可能である。すなわち,レジンボンド砥石部14は,鏡面仕上げに適した最も粒径の小さい砥粒を有する少なくとも1層を有していればよい。一方,レジンボンド砥石部14は,摩耗速度が速いため,交換頻度の観点からも,上述の組み合わせ例のように複数層設けられてもよい。   In the above combination example of particle diameters, for example, up to # 1500 can be formed as the metal bond grindstone 13. That is, the resin bond grindstone part 14 should just have at least 1 layer which has an abrasive grain with the smallest particle size suitable for mirror surface finishing. On the other hand, since the resin bond grindstone portion 14 has a high wear rate, a plurality of layers may be provided as in the above combination example from the viewpoint of replacement frequency.

また,レジンボンド砥石部14における最小粒径を#3000とすることで,表面粗さを表す指標Ra(算術平均粗さ)を約1〜3nm程度にまで仕上げることができ,端面のクラック発生を防止し,歩留まりの向上に大きく貢献する。   In addition, by setting the minimum particle size in the resin bond grindstone portion 14 to # 3000, the index Ra (arithmetic average roughness) indicating the surface roughness can be finished to about 1 to 3 nm, and cracks on the end face can be generated. And greatly contribute to the improvement of yield.

粒径が異なる複数層のメタルボンド砥石部13は,各層毎にそれぞれの粒径の砥粒(ダイヤモンドやCBN(立法晶窒化ホウ素)など),結合剤(メタルボンド),充填剤を混合した混合物を生成し,成型工程において,各層に対応する混合物を順に型に流し込み,積層させて成型し,その後,その成型物を所定温度で焼成することで作製される。砥粒,結合剤,充填剤の配合量及び配合比は適宜調整可能である。粒径が異なる複数層のレジンボンド砥石部14も,メタルボンド砥石部13と同様に,各層毎にそれぞれの粒径の砥粒,結合剤(レジンボンド),充填剤を混合した混合物を生成し,成型工程において,各層に対応する混合物を順に型に流し込み,積層させて成型した後,所定温度で焼成することで作製される。ただし,メタルボンド砥石部13とレジンボンド砥石14は,焼成温度など所定の作製条件が異なるため,メタルボンド砥石部13とレジンボンド砥石部14は別々に作製され,上述のように,両砥石部13,14がそれぞれが外周面に接続された円盤プレート11,12を同軸に重ねて固定させる。また,複数層のメタルボンド砥石部14を,成型工程で積層するのではなく,焼成工程までの別々に作製した後,各層を積層して接着剤などで接合してもよい。レジンボンド砥石部14についても同様に各層毎に焼成工程まで別々に作製してもよい。   A plurality of layers of metal bond grindstones 13 having different particle diameters are a mixture of abrasive grains (diamonds, CBN (regular crystal boron nitride), etc.), binders (metal bonds), and fillers for each layer. In the molding step, the mixture corresponding to each layer is poured into a mold in order, laminated and molded, and then the molded product is fired at a predetermined temperature. The blending amount and blending ratio of the abrasive grains, the binder and the filler can be adjusted as appropriate. Similarly to the metal bond grindstone 13, the resin bond grindstone 14 having a plurality of layers having different particle sizes also generates a mixture in which abrasive grains, binders (resin bonds), and fillers having respective particle sizes are mixed for each layer. In the molding process, the mixture corresponding to each layer is poured into a mold in order, laminated and molded, and then fired at a predetermined temperature. However, since the metal bond grindstone portion 13 and the resin bond grindstone 14 are different in predetermined production conditions such as the firing temperature, the metal bond grindstone portion 13 and the resin bond grindstone portion 14 are produced separately, as described above. Reference numerals 13 and 14 denote disk plates 11 and 12 that are connected to the outer peripheral surface and are coaxially stacked and fixed. Further, the plurality of layers of metal bond grindstones 14 may be formed separately up to the firing step, instead of being laminated in the molding process, and then each layer may be laminated and bonded with an adhesive or the like. Similarly, the resin bond grindstone portion 14 may be separately manufactured for each layer up to the firing step.

また,図2(b),(c)に示されるように,メタルボンド砥石部13及びレジンボンド砥石14それぞれの各層の外周端面には,周方向に延びる溝部20が形成される。図2(c)は溝部20の拡大断面図である。溝部20は,水晶ウェハの端面の面取り加工(R加工又はC加工)を行うためのものであり,その深さ,幅,角度などの寸法は,適宜決定される。   Further, as shown in FIGS. 2B and 2C, a groove 20 extending in the circumferential direction is formed on the outer peripheral end face of each layer of the metal bond grindstone 13 and the resin bond grindstone 14. FIG. 2C is an enlarged cross-sectional view of the groove 20. The groove 20 is used for chamfering (R processing or C processing) of the end face of the crystal wafer, and dimensions such as depth, width, and angle are appropriately determined.

レジンボンド砥石部14の各層にも面取り加工用の溝部20が形成されるので,遊離砥粒スラリーを用いずとも,水晶ウェハ端面の面取り加工された部分を砥石により鏡面研磨することができ,端面のクラックの発生を防止できる。   Since the chamfering groove 20 is formed in each layer of the resin bond grindstone 14, the chamfered portion of the crystal wafer end face can be mirror-polished by the grindstone without using the free abrasive slurry. The generation of cracks can be prevented.

このように,本実施の形態では,固くもろい水晶ウェハの端面を形状加工(面取り加工)しさらに鏡面研磨するために,メタルボンド砥石部13とレジンボンド砥石部14とが積層されて一体化された単一の回転砥石を用いて,まず,比較的大きな粒径の砥粒と硬い結合剤であるメタルボンドを用いた砥石による粗研磨により形状(例えばR形状)を作り,その後,連続した工程により,比較的小さな粒径の砥粒と柔らかい結合剤であるレジンボンドを用いた砥石による研磨により鏡面仕上げを行う。   As described above, in the present embodiment, the metal bond grindstone portion 13 and the resin bond grindstone portion 14 are laminated and integrated in order to shape-process (chamfer chamfering) the end surface of the hard and brittle crystal wafer and further polish the mirror surface. Using a single rotating grindstone, first, a shape (for example, R shape) is formed by rough grinding with a grindstone using a relatively large grain size abrasive and a hard bond metal bond, and then a continuous process. Thus, mirror finishing is performed by polishing with a grindstone using a relatively small grain size abrasive grain and a resin bond which is a soft binder.

図3は,本実施の形態における回転砥石を用いた端面加工を模式的に示す図である。回転砥石10は,円盤プレート11の中心に形成された貫通孔11aを介して、回転軸に同軸に連結され、この回転軸が、例えばベルト機構を介してモーターなどの図示されない駆動源の作動により駆動されることによって,回転砥石10は周回転する。   FIG. 3 is a diagram schematically showing end face processing using the rotating grindstone in the present embodiment. The rotating grindstone 10 is coaxially connected to a rotating shaft through a through hole 11a formed at the center of the disk plate 11, and this rotating shaft is operated by a driving source (not shown) such as a motor via a belt mechanism. By being driven, the rotating grindstone 10 rotates.

回転砥石10におけるメタルボンド砥石部13及びレジンボンド砥石部14の各層は,上述したように,最下層より上層に向かって順に砥粒の粒径が細かくなっていくように積層されており,例えばねじ機構など図示しない移動手段により研磨対象の水晶ウェハを回転軸方向へ移動させて,回転砥石10の外周面にある溝部20に,水晶ウェハの端面を接触させ,研磨を行う。まず,水晶ウェハの端面を最下層(メタルボンド砥石部13の最も粒径の大きい砥粒を有する砥石層)に接触させて研磨を行い,その後最下層から積層順に隣接する各層で順次研磨を行っていき,最後に最上層(レジンボンド砥石部14の最も粒径の小さい砥粒を有する砥石層)での研磨加工を行う。こうして,粗研磨から鏡面研磨までを一つの回転砥石による同軸での研磨工程で行うことができるようになり,そのため,高い真円度を含め加工精度が格段に向上する。また,メタルボンド砥石部13とレジンボンド砥石部14とにより粗研磨から鏡面研磨まで行うことで,遊離砥粒スラリーを用いずに研磨加工が可能なことから,廃液処理も不要となる。さらに,メタルボンド砥石部13による研磨からレジンボンド砥石部14による研磨への移行の際,メタルボンド砥石部とレジンボンド砥石部14とが同一の回転軸に配設されていることから,アライメント調整を必要としないため,研磨工程の時間が大幅に短縮され,高い真円度を含め加工精度が格段に向上する。   As described above, each layer of the metal bond grindstone portion 13 and the resin bond grindstone portion 14 in the rotary grindstone 10 is laminated so that the grain size of the abrasive grains becomes finer in order from the lowermost layer to the upper layer. Polishing is performed by moving the quartz wafer to be polished in the direction of the rotation axis by a moving means (not shown) such as a screw mechanism, and bringing the end face of the quartz wafer into contact with the groove 20 on the outer peripheral surface of the rotating grindstone 10. First, polishing is performed by bringing the end face of the quartz wafer into contact with the lowermost layer (the grindstone layer having the largest grain size of the metal bond grindstone 13), and then polishing is sequentially performed on each layer adjacent to the stacking order from the lowermost layer. Finally, polishing is performed with the uppermost layer (the grindstone layer having the smallest grain size of the resin bond grindstone portion 14). In this way, rough polishing to mirror polishing can be performed in a coaxial polishing process using a single rotating grindstone, which significantly improves processing accuracy, including high roundness. Further, since the metal bond grindstone portion 13 and the resin bond grindstone portion 14 perform rough polishing to mirror polishing, polishing can be performed without using the free abrasive slurry, so that waste liquid treatment is also unnecessary. Furthermore, since the metal bond grindstone portion and the resin bond grindstone portion 14 are disposed on the same rotating shaft during the transition from the polishing by the metal bond grindstone portion 13 to the polishing by the resin bond grindstone portion 14, alignment adjustment is performed. Therefore, the polishing process time is greatly shortened and the processing accuracy including high roundness is greatly improved.

各層での研磨における回転砥石の回転速度及びステップ数(接触回数)などは,水晶ウェハのサイズや切削量などの諸条件を考慮して適宜最適な値に設定する。   The rotational speed and the number of steps (number of times of contact) of the grinding wheel in polishing in each layer are appropriately set to optimum values in consideration of various conditions such as the size of the crystal wafer and the cutting amount.

本発明は、前記実施の形態に限定されるものではなく、本発明の分野における通常の知識を有する者であれば想到し得る各種変形、修正を含む要旨を逸脱しない範囲の設計変更があっても、本発明に含まれることは勿論である。   The present invention is not limited to the above-described embodiment, and there are design changes within a range that does not depart from the gist including various modifications and corrections that can be conceived by those having ordinary knowledge in the field of the present invention. Of course, it is included in the present invention.

10:回転砥石,11:円盤プレート,11a:第一の貫通孔,11b:突出部,11c:ネジ穴,12:円盤プレート,12a:第二の貫通孔,12c:ネジ穴,13:メタルボンド砥石部,14:レジンボンド砥石部,20:溝部   10: Rotating whetstone, 11: Disk plate, 11a: First through hole, 11b: Projection, 11c: Screw hole, 12: Disk plate, 12a: Second through hole, 12c: Screw hole, 13: Metal bond Grinding wheel, 14: Resin bond grinding wheel, 20: Groove

Claims (6)

水晶ウェハの端面を研磨加工するための回転砥石において,
砥粒をメタルボンドで結合させた円環状のメタルボンド砥石部と,
砥粒をレジンボンドで結合させた円環状のレジンボンド砥石部とを備え,
前記メタルボンド砥石部と前記レジンボンド砥石部は同軸に積層されて固定され
前記レジンボンド砥石部の円環幅は,前記メタルボンド砥石部の円環幅より広いことを特徴とする回転砥石。
In a rotating grindstone for polishing the end face of a quartz wafer,
An annular metal bond whetstone with abrasive grains bonded with metal bonds;
An annular resin bond grindstone unit with abrasive grains bonded with resin bonds,
The metal bond grindstone portion and the resin bond grindstone portion are coaxially laminated and fixed ,
The rotating grindstone is characterized in that an annular width of the resin bond grindstone portion is wider than an annular width of the metal bond grindstone portion .
請求項1において,
回転中心軸に第一の貫通孔を有する第一の円盤プレートと,回転中心軸に第二の貫通孔を有し且つ前記第一の円盤プレートに同軸に交換可能に連結固定される第二の円盤プレートとを備え,
前記メタルボンド砥石部及び前記レジンボンド砥石部は,それぞれ前記第一の円盤プレート及び前記第二の円盤プレートのいずれか一方及び他方の外周面に接合されることを特徴とする回転砥石。
In claim 1,
A first disk plate having a first through-hole in the rotation center axis, and a second disk plate having a second through-hole in the rotation center axis and connected and fixed coaxially to the first disk plate. A disk plate,
The rotating grindstone is characterized in that the metal bond grindstone portion and the resin bond grindstone portion are joined to either one of the first disc plate and the second disc plate and the other outer peripheral surface, respectively.
請求項2において,
前記第一の円盤プレートは前記第一の貫通孔を取り囲む突出部を有し,前記第二の円盤プレートの前記第二の貫通孔は当該突出部に嵌合可能であることを特徴とする回転砥石。
In claim 2,
The first disc plate has a protrusion surrounding the first through hole, and the second through hole of the second disc plate can be fitted into the protrusion. Whetstone.
請求項1乃至3のいずれか一つにおいて,
前記メタルボンド砥石部及び/又は前記レジンボンド砥石部の外周端面は,それぞれ周方向に延びる溝部を有することを特徴とする回転砥石。
In any one of Claims 1 thru | or 3,
The rotating grindstone is characterized in that each of the outer peripheral end surfaces of the metal bond grindstone and / or the resin bond grindstone has grooves extending in the circumferential direction.
請求項1乃至4のいずれか一つにおいて,
前記メタルボンド砥石部の外周端面は,粒径が異なる砥粒を含む複数の砥石層から構成されることを特徴とする回転砥石。
In any one of Claims 1 thru | or 4,
An outer peripheral end face of the metal bond grindstone portion is composed of a plurality of grindstone layers including abrasive grains having different particle diameters.
請求項5において,
前記メタルボンド砥石部は,各砥石層毎に周方向に延びる溝部を有することを特徴とする回転砥石。
In claim 5,
The said metal bond grindstone part has a groove part extended in the circumferential direction for every grindstone layer, The rotary grindstone characterized by the above-mentioned.
JP2012027426A 2012-02-10 2012-02-10 Method for polishing quartz wafer end face and rotating grindstone Active JP5889663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012027426A JP5889663B2 (en) 2012-02-10 2012-02-10 Method for polishing quartz wafer end face and rotating grindstone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012027426A JP5889663B2 (en) 2012-02-10 2012-02-10 Method for polishing quartz wafer end face and rotating grindstone

Publications (2)

Publication Number Publication Date
JP2013163241A JP2013163241A (en) 2013-08-22
JP5889663B2 true JP5889663B2 (en) 2016-03-22

Family

ID=49174954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012027426A Active JP5889663B2 (en) 2012-02-10 2012-02-10 Method for polishing quartz wafer end face and rotating grindstone

Country Status (1)

Country Link
JP (1) JP5889663B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624699A (en) * 2013-12-05 2014-03-12 湖南大学 Combined grinding wheel for carrying out rough and fine centerless grinding on bar part
CN104589175A (en) * 2014-11-26 2015-05-06 安庆潜山永大木业有限公司 Sliding plate face edge polishing machine
CN106808379A (en) * 2015-12-01 2017-06-09 曾贵华 Multifunctional combination emery wheel
JP7298100B2 (en) * 2019-08-29 2023-06-27 株式会社ノリタケカンパニーリミテド Multi-layer whetstone for gear grinding
KR102643072B1 (en) * 2022-05-03 2024-03-06 제일연마공업 주식회사 Grinding and super-finishing composite hybrid grinding wheel for gear processing and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207565A (en) * 1987-02-18 1988-08-26 Shuji Shimamoto Composite stone for grinding
JPH11347953A (en) * 1998-06-10 1999-12-21 Tokyo Seimitsu Co Ltd Wafer chamfering grinding wheel
JP2001334469A (en) * 2000-05-29 2001-12-04 Allied Material Corp Diamond wheel for glass substrate work and working method of glass substrate

Also Published As

Publication number Publication date
JP2013163241A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP5844455B2 (en) Multi polishing tool
JP5889663B2 (en) Method for polishing quartz wafer end face and rotating grindstone
WO2008056539A1 (en) Grindwheel with sloping groove and process for fabricating the same
JP2012066365A (en) Cubic boron nitride grinding wheel
JP6528527B2 (en) Method of manufacturing truer, method of manufacturing semiconductor wafer, and chamfering apparatus for semiconductor wafer
JP2011025382A (en) Rotary grinding wheel
JP2003300165A (en) Segment type grinding wheel
JP6554960B2 (en) Grinding wheel
TWI684494B (en) Grinding stone
JP2024024111A (en) Three layer grinding wheel
WO2016098398A1 (en) Processing tool for optical element and method for manufacturing optical element
JP2012143852A (en) Apparatus for manufacturing glass disc
JPH11207636A (en) Cup-like grinding wheel
JP2010036303A (en) Grinding wheel for semiconductor wafer back-surface and grinding method for semiconductor wafer back-surface
JP4352588B2 (en) Grinding wheel
JP2016087719A (en) Grinding wheel and manufacturing method of grinding wheel
JP4374740B2 (en) Grinding wheel and method for manufacturing the same
JP6627634B2 (en) Grinding equipment
JP2006082197A (en) Grinding wheel
JP2006205330A (en) Grinding wheel
JP2004181575A (en) Manufacturing method of resinoid bonded super-abrasive grain grinding wheel
JPH11207635A (en) Cup-like grinding wheel and wafer surface grinding method
JP2004243465A (en) Diamond lapping surface plate
JP2001009733A (en) Diamond tool
KR20140086128A (en) Wheel for grinding

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160217

R150 Certificate of patent or registration of utility model

Ref document number: 5889663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350