JP5888286B2 - Manufacturing method of bonded wafer - Google Patents

Manufacturing method of bonded wafer Download PDF

Info

Publication number
JP5888286B2
JP5888286B2 JP2013133868A JP2013133868A JP5888286B2 JP 5888286 B2 JP5888286 B2 JP 5888286B2 JP 2013133868 A JP2013133868 A JP 2013133868A JP 2013133868 A JP2013133868 A JP 2013133868A JP 5888286 B2 JP5888286 B2 JP 5888286B2
Authority
JP
Japan
Prior art keywords
wafer
bonded
bond
base
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013133868A
Other languages
Japanese (ja)
Other versions
JP2015012009A5 (en
JP2015012009A (en
Inventor
徳弘 小林
徳弘 小林
阿賀 浩司
浩司 阿賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013133868A priority Critical patent/JP5888286B2/en
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to CN201480032979.9A priority patent/CN105283943B/en
Priority to EP14818587.9A priority patent/EP3016133B1/en
Priority to PCT/JP2014/002615 priority patent/WO2014207988A1/en
Priority to KR1020157036519A priority patent/KR102095383B1/en
Priority to SG11201510639QA priority patent/SG11201510639QA/en
Priority to US14/895,184 priority patent/US9859149B2/en
Priority to TW103120720A priority patent/TWI567833B/en
Publication of JP2015012009A publication Critical patent/JP2015012009A/en
Publication of JP2015012009A5 publication Critical patent/JP2015012009A5/ja
Application granted granted Critical
Publication of JP5888286B2 publication Critical patent/JP5888286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02032Preparing bulk and homogeneous wafers by reclaiming or re-processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • H01L21/7813Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate leaving a reusable substrate, e.g. epitaxial lift off
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Element Separation (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、イオン注入剥離法を用いた貼り合わせウェーハの製造方法に関し、特に、イオン注入剥離法によって貼り合わせウェーハを製造した際に副生される剥離ウェーハに再生加工を施して得られた再生ウェーハを用いてイオン注入剥離法によって貼り合わせウェーハを製造する方法に関する。   The present invention relates to a method for producing a bonded wafer using an ion implantation separation method, and in particular, a reproduction obtained by subjecting a separation wafer produced as a by-product when a bonded wafer is produced by an ion implantation separation method to a regeneration process. The present invention relates to a method for manufacturing a bonded wafer by ion implantation separation using a wafer.

SOIウェーハの製造方法、特に先端集積回路の高性能化を可能とする薄膜SOIウェーハの製造方法として、イオン注入したウェーハを貼り合わせ後に剥離してSOIウェーハを製造する方法(イオン注入剥離法:スマートカット法(登録商標)とも呼ばれる技術)が注目されている。   A method for manufacturing an SOI wafer, particularly a method for manufacturing a thin-film SOI wafer capable of improving the performance of advanced integrated circuits, is a method of manufacturing an SOI wafer by peeling an ion-implanted wafer after bonding (ion implantation separation method: smart). A technique called a cutting method (registered trademark) is attracting attention.

このイオン注入剥離法は、二枚のシリコンウェーハの内、少なくとも一方に酸化膜を形成すると共に、一方のシリコンウェーハ(ボンドウェーハ)の上面から水素イオンまたは希ガスイオン等のガスイオンを注入し、該ウェーハ内部にイオン注入層(微小気泡層又は封入層とも呼ぶ)を形成する。その後、イオンを注入した方の面を、酸化膜を介して他方のシリコンウェーハ(ベースウェーハ)と密着させ、その後熱処理(剥離熱処理)を加えて微小気泡層を劈開面として一方のウェーハ(ボンドウェーハ)を薄膜状に剥離する。さらに、熱処理(結合熱処理)を加えて強固に結合してSOIウェーハを製造する技術である(特許文献1参照)。この段階では、劈開面(剥離面)がSOI層の表面となっており、SOI膜厚が薄くてかつ均一性も高いSOIウェーハが比較的容易に得られている。   In this ion implantation separation method, an oxide film is formed on at least one of two silicon wafers, and gas ions such as hydrogen ions or rare gas ions are implanted from the upper surface of one silicon wafer (bond wafer), An ion implantation layer (also referred to as a microbubble layer or an encapsulation layer) is formed inside the wafer. After that, the surface into which the ions are implanted is brought into close contact with the other silicon wafer (base wafer) through an oxide film, and then a heat treatment (peeling heat treatment) is applied to form a microbubble layer as a cleaved surface on one wafer (bond wafer). ) In a thin film. Furthermore, it is a technique for manufacturing an SOI wafer by applying heat treatment (bond heat treatment) and bonding firmly (see Patent Document 1). At this stage, the cleaved surface (peeling surface) is the surface of the SOI layer, and an SOI wafer having a thin SOI film thickness and high uniformity can be obtained relatively easily.

このイオン注入剥離法は、絶縁膜を介して貼り合わせSOIウェーハを作製する場合に限らず、直接2枚のウェーハを貼り合わせて貼り合わせウェーハを作製する場合にも適用されている。   This ion implantation separation method is not limited to a case where a bonded SOI wafer is manufactured through an insulating film, but is also applied to a case where a bonded wafer is manufactured by directly bonding two wafers.

このイオン注入剥離法では、剥離後のボンドウェーハ(剥離ウェーハ)に対して、再度、研磨やエッチングなどの表面処理を含む再生加工(リフレッシュ加工)を施すことにより、未結合部に生じる段差や、剥離後の面粗さ、注入残存層の影響を減少もしくは除去し、ウェーハを繰り返し使用することができる。この再生加工の方法に関しては、例えば、特許文献2のように、面取り加工と研磨を組み合わせ、面取り部に存在するイオン注入残存層の影響を取り除く方法が提案されている。   In this ion implantation delamination method, the bond wafer after delamination (peeling wafer) is subjected to reprocessing (refresh processing) including surface treatment such as polishing and etching again, thereby causing a step generated in the unbonded portion, The surface roughness after peeling and the influence of the implanted residual layer are reduced or eliminated, and the wafer can be used repeatedly. With respect to this regeneration processing method, for example, as in Patent Document 2, a method is proposed in which chamfering and polishing are combined to remove the influence of an ion implantation residual layer existing in the chamfered portion.

剥離ウェーハに対して行う再生加工に関しては、特許文献3には、剥離ウェーハ表面の研磨代を2μm以上とすることや、剥離ウェーハを繰り返しボンドウェーハとして再利用することが記載されている。また、特許文献4には、剥離ウェーハの繰り返し再利用において、約5μmの研磨を最大10回繰り返すことができることが記載されている。更に、特許文献5には、剥離ウェーハ表面の研磨代を1〜5μm以上とすることや、剥離ウェーハを何回も再生加工することが記載されている。   Regarding the regeneration processing performed on the peeled wafer, Patent Document 3 describes that the polishing margin of the peeled wafer surface is set to 2 μm or more, and the peeled wafer is repeatedly reused as a bond wafer. Patent Document 4 describes that polishing of about 5 μm can be repeated up to 10 times in repeated reuse of a peeled wafer. Furthermore, Patent Document 5 describes that the polishing margin of the peeled wafer surface is 1 to 5 μm or more, and that the peeled wafer is reprocessed many times.

特開平5−211128号公報JP-A-5-211128 特開2001−155978号公報JP 2001-155978 A 特開2008−21892号公報JP 2008-21892 A 特開2006−140445号公報JP 2006-140445 A 特開2007−149907号公報JP 2007-149907 A

イオン注入剥離法により作製された貼り合わせSOIウェーハのSOI層の膜厚分布を測定すると、マーブル模様の膜厚ムラが見られる場合がある。この膜厚ムラは、ボンドウェーハ剥離後のSOI層表面の外観検査を行うと目視でも観察され、その膜厚ムラはmm単位のパターンを形成している。   When the film thickness distribution of the SOI layer of the bonded SOI wafer manufactured by the ion implantation separation method is measured, the film thickness unevenness of the marble pattern may be seen. This film thickness unevenness is also observed visually when visual inspection of the SOI layer surface after the bond wafer is peeled off, and the film thickness unevenness forms a pattern in mm units.

近年、SOI層の膜厚分布の規格が厳しくなっており、剥離時に発生する大きなパターンを持った膜厚ムラをなくすことが重要である。特に、ETSOI(Extremely Thin SOI、極めて薄いSOI)と呼ばれるSOI層膜厚が30nm以下の品種については、このような膜厚ムラは、製造歩留まりに大きな影響を与えるため、その発生を防止することが望まれている。   In recent years, the standard of the thickness distribution of the SOI layer has become strict, and it is important to eliminate the film thickness unevenness having a large pattern generated at the time of peeling. In particular, for a variety of SOI layer film thickness of 30 nm or less called ETSOI (Extremely Thin SOI), such film thickness unevenness has a great influence on the manufacturing yield. It is desired.

本発明は前述のような問題に鑑みてなされたもので、イオン注入剥離法により貼り合わせウェーハを製造する際に薄膜に発生するマーブル模様の膜厚ムラを抑制し、薄膜の膜厚均一性の高い貼り合わせウェーハを製造することを目的とする。   The present invention has been made in view of the above-described problems, and suppresses unevenness in the thickness of a marble pattern generated in a thin film when a bonded wafer is manufactured by an ion implantation separation method. The object is to produce a high bonded wafer.

上記目的を達成するために、本発明によれば、ボンドウェーハの表面に、水素イオン、希ガスイオンの少なくとも一種類のガスイオンをイオン注入してイオン注入層を形成し、前記ボンドウェーハのイオン注入した表面と、ベースウェーハの表面とを直接または絶縁膜を介して貼り合わせた後、熱処理を加えて前記イオン注入層で前記ボンドウェーハの一部を剥離させることにより、前記ベースウェーハ上に薄膜を有する貼り合わせウェーハを作製する貼り合わせウェーハの製造方法において、前記ボンドウェーハとベースウェーハを貼り合わせる前に、前記ボンドウェーハと前記ベースウェーハの厚さを測定し、両ウェーハの厚さの差が5μm未満である前記ボンドウェーハと前記ベースウェーハとなる組み合わせを選択して貼り合わせることを特徴とする貼り合わせウェーハの製造方法が提供される。   In order to achieve the above object, according to the present invention, an ion-implanted layer is formed by ion-implanting at least one kind of gas ions of hydrogen ions and rare gas ions on the surface of a bond wafer. After bonding the implanted surface and the surface of the base wafer directly or through an insulating film, a thin film is formed on the base wafer by applying a heat treatment to peel off part of the bond wafer with the ion implanted layer. In the method for manufacturing a bonded wafer, the thickness of the bond wafer and the base wafer is measured before bonding the bond wafer and the base wafer. A combination of the bond wafer and the base wafer that is less than 5 μm is selected and bonded. Method for producing a bonded wafer, wherein the door is provided.

このような貼り合わせウェーハの製造方法であれば、薄膜の膜厚ムラを抑制でき、薄膜の膜厚均一性の高い貼り合わせウェーハを製造できる。   With such a bonded wafer manufacturing method, it is possible to suppress the film thickness unevenness of the thin film and to manufacture a bonded wafer with high film thickness uniformity.

このとき、前記ボンドウェーハおよび/または前記ベースウェーハとして、前記貼り合わせウェーハの製造方法において貼り合わせウェーハを作製する際に副生された剥離ウェーハに、減厚を伴う再生加工を行った再生ウェーハを用いることができる。この再生ウェーハは、前記減厚を伴う再生加工が2回以上行われたもの、或いは、前記減厚を伴う再生加工として5μm以上の減厚が行われたものとすることができる。
このような、特に膜厚ムラが発生しやすい再生ウェーハを用いる場合に本発明を好適に適用でき、コストを低減しつつ、薄膜の膜厚均一性の高い貼り合わせウェーハを製造できる。
At this time, as the bond wafer and / or the base wafer, a reclaimed wafer that has been subjected to recycle processing accompanied by thickness reduction is applied to the peeled wafer produced as a by-product when the bonded wafer is produced in the method for producing a bonded wafer. Can be used. This reclaimed wafer can be one that has been subjected to reclaiming with the above-described thickness reduction twice or more, or one that has been subjected to a thickness reduction of 5 μm or more as the reclaiming with the above-mentioned thickness reduction.
The present invention can be suitably applied to such a regenerated wafer that tends to cause film thickness unevenness in particular, and a bonded wafer with high film thickness uniformity can be manufactured while reducing costs.

また、前記ボンドウェーハおよび前記ベースウェーハがシリコン単結晶ウェーハからなり、前記絶縁膜がシリコン酸化膜からなり、前記薄膜がSOI層とすることができる。
このようにすれば、SOI層の薄膜の膜厚均一性の高いSOIウェーハを製造できる。
Further, the bond wafer and the base wafer can be made of a silicon single crystal wafer, the insulating film can be made of a silicon oxide film, and the thin film can be an SOI layer.
In this way, it is possible to manufacture an SOI wafer with high uniformity of the thin film of the SOI layer.

本発明の貼り合わせウェーハの製造方法では、ボンドウェーハとベースウェーハを貼り合わせる前に、ボンドウェーハとベースウェーハの厚さを測定し、両ウェーハの厚さの差が5μm未満であるボンドウェーハとベースウェーハとなる組み合わせを選択して貼り合わせるので、薄膜の膜厚ムラを抑制でき、薄膜の膜厚均一性の高い貼り合わせウェーハを製造できる。   In the bonded wafer manufacturing method of the present invention, the thickness of the bond wafer and the base wafer is measured before bonding the bond wafer and the base wafer, and the difference between the thicknesses of both wafers is less than 5 μm. Since a combination to be a wafer is selected and bonded, the film thickness unevenness of the thin film can be suppressed, and a bonded wafer with high film thickness uniformity can be manufactured.

本発明の貼り合わせウェーハの製造方法の一例のフロー図である。It is a flowchart of an example of the manufacturing method of the bonded wafer of this invention. 実施例1−5の膜厚ムラのないSOIウェーハの代表例を示す図である。It is a figure which shows the typical example of the SOI wafer without the film thickness nonuniformity of Example 1-5. 比較例1−5の膜厚ムラのあるSOIウェーハの代表例を示す図である。It is a figure which shows the typical example of the SOI wafer with the film thickness nonuniformity of the comparative example 1-5.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
一般的に、イオン注入剥離法により貼り合わせSOIウェーハを作製する場合には、コスト削減のため、貼り合わせウェーハを作製する際に副生された剥離ウェーハに減厚を伴う再生加工を行った再生ウェーハをボンドウェーハまたはベースウェーハとして用いることが多い。或いは、ボンドウェーハおよびベースウェーハとして未使用のウェーハ(再生加工を行っていないウェーハ、以下、プライムウェーハと呼ぶ。)を用いる場合もある。
Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.
In general, when a bonded SOI wafer is manufactured by an ion implantation separation method, for the purpose of cost reduction, the regenerated processing with a reduction in thickness is performed on the separation wafer produced as a by-product when the bonded wafer is manufactured. The wafer is often used as a bond wafer or a base wafer. Alternatively, an unused wafer (a wafer that has not been reprocessed, hereinafter referred to as a prime wafer) may be used as the bond wafer and the base wafer.

上記したように、イオン注入剥離法により貼り合わせSOIウェーハを作製すると、貼り合わせSOIウェーハのSOI層にマーブル模様の膜厚ムラが発生するという問題があり、発明者らが詳細に調査したところ、以下のことが判明した。
ボンドウェーハおよびベースウェーハとしてプライムウェーハを用いる場合、両ウェーハが異なる製造ロットで製造されたものである場合にSOI層の膜厚ムラの発生頻度が高くなる。ボンドウェーハおよびベースウェーハの少なくとも一方に再生ウェーハを用いる場合には膜厚ムラの発生頻度がより高くなり、また、その再生回数が多いほど発生頻度が増加する傾向がある。そこで、発明者は、プライムウェーハと再生ウェーハを用いた下記の実験を行い、この発生頻度が高くなる傾向について以下のように考察した。
As described above, when a bonded SOI wafer is produced by the ion implantation delamination method, there is a problem that uneven thickness of the marble pattern occurs in the SOI layer of the bonded SOI wafer, and the inventors investigated in detail, The following was found.
When prime wafers are used as the bond wafer and the base wafer, the occurrence frequency of unevenness in the thickness of the SOI layer increases when both wafers are manufactured in different manufacturing lots. When a recycled wafer is used as at least one of a bond wafer and a base wafer, the occurrence frequency of film thickness unevenness is higher, and the frequency of occurrence tends to increase as the number of times of regeneration increases. Therefore, the inventor conducted the following experiment using a prime wafer and a recycled wafer, and considered the tendency of the occurrence frequency to increase as follows.

一般的に、ボンドウェーハとベースウェーハとして用いられるシリコン単結晶ウェーハのウェーハ厚は、±15μmの規格で製造される。実際には、同一の製造ロットであれば、ウェーハ間の厚さバラツキは±数μm程度の精度である。従って、特に同一の製造ロットで製造されたプライムウェーハを用いれば膜厚ムラが発生する可能性は低い。一方、製造ロットが異なり、ウェーハ厚の中央値がずれているような場合には、プライムウェーハ同士であっても両ウェーハの厚さの差が5μmを超える場合があり、膜厚ムラが発生する頻度が高くなる。   Generally, the wafer thickness of a silicon single crystal wafer used as a bond wafer and a base wafer is manufactured with a standard of ± 15 μm. Actually, in the same production lot, the thickness variation between wafers is accurate to about ± several μm. Therefore, the use of prime wafers manufactured in the same manufacturing lot is unlikely to cause film thickness unevenness. On the other hand, when the production lots are different and the median thickness of the wafers is shifted, even between prime wafers, the difference in thickness between both wafers may exceed 5 μm, resulting in film thickness unevenness. Increases frequency.

ボンドウェーハおよびベースウェーハの少なくとも一方に再生ウェーハを用いる場合には、ウェーハが減厚加工で薄くなっているため、両ウェーハの厚さの差が5μmを超える可能性が高まる。特に、ボンドウェーハまたはベースウェーハの一方にプライムウェーハを用い、他方に再生ウェーハを用いた場合には、この可能性は非常に高い。そのため、膜厚ムラが発生する頻度もより高くなる。   When a recycled wafer is used for at least one of the bond wafer and the base wafer, the wafer is thinned by a thickness reduction process, and therefore, the possibility that the difference in thickness between both wafers exceeds 5 μm increases. In particular, when a prime wafer is used as one of the bond wafer or the base wafer and a recycled wafer is used as the other, this possibility is very high. Therefore, the frequency of occurrence of film thickness unevenness is also increased.

(実験)
ボンドウェーハおよびベースウェーハとして、表1に示す厚さを有する直径300mm、結晶方位<100>のシリコン単結晶からなる4種類の鏡面研磨ウェーハを用意した。ウェーハ厚は、静電容量式の測定装置を用いてウェーハ全面を測定し、その平均値(小数点以下四捨五入)を採用した。
(Experiment)
As a bond wafer and a base wafer, four types of mirror-polished wafers made of a silicon single crystal having a thickness of 300 mm and a crystal orientation <100> having the thicknesses shown in Table 1 were prepared. For the wafer thickness, the entire surface of the wafer was measured using a capacitance type measuring device, and the average value (rounded off after the decimal point) was adopted.

Figure 0005888286
Figure 0005888286

これら4種類のウェーハをそれぞれボンドウェーハ、ベースウェーハとして使用し、下記の製造条件でイオン注入剥離法によって貼り合わせSOIウェーハを作製した。その後、SOI層の膜厚測定(測定装置:KLA−Tencor社製Acumap)を行って膜厚ムラの有無を評価した。その結果を表2に示す。   These four types of wafers were used as a bond wafer and a base wafer, respectively, and bonded SOI wafers were produced by an ion implantation separation method under the following manufacturing conditions. Thereafter, the thickness of the SOI layer was measured (measuring device: Acumap manufactured by KLA-Tencor) to evaluate the presence or absence of film thickness unevenness. The results are shown in Table 2.

このときの貼り合わせSOIウェーハ製造条件を以下に示す。
[貼り合わせSOIウェーハ製造条件]
(酸化膜)ボンドウェーハには55nmの熱酸化膜を形成、ベースウェーハには酸化膜なし、
(水素イオン注入条件)注入エネルギー:48.7keV、ドーズ量:5×1016/cm
(剥離熱処理)350℃で4時間+500℃で30分、Ar雰囲気、
(平坦化熱処理)1200℃で1時間、Ar雰囲気
(SOI膜厚調整)犠牲酸化処理によりSOI層を70nm程度まで減厚
The bonded SOI wafer manufacturing conditions at this time are shown below.
[Conditioning SOI wafer manufacturing conditions]
(Oxide film) A 55 nm thermal oxide film is formed on the bond wafer, the base wafer has no oxide film,
(Hydrogen ion implantation conditions) Injection energy: 48.7 keV, dose amount: 5 × 10 16 / cm 2 ,
(Peeling heat treatment) At 350 ° C. for 4 hours + 500 ° C. for 30 minutes, Ar atmosphere,
(Planarization heat treatment) Thickness of SOI layer to about 70 nm by sacrificial oxidation treatment at 1200 ° C for 1 hour in Ar atmosphere (SOI film thickness adjustment)

Figure 0005888286
Figure 0005888286

表2の結果より、ボンドウェーハとベースウェーハの厚さの差が5μm以上あるとSOI層の膜厚ムラが発生することが明らかとなった。ここで、表2中の○は膜厚ムラが発生しなかったことを表し、×は膜厚ムラが発生したことを表す。
ボンドウェーハとベースウェーハの厚さの差が膜厚ムラの発生にどのように関係しているかのメカニズムについては明らかではないが、厚さが異なると剥離熱処理で剥離する際に、剥離領域の固有振動数が異なることに起因するものと推定される。
From the results in Table 2, it was found that when the difference in thickness between the bond wafer and the base wafer is 5 μm or more, the film thickness unevenness of the SOI layer occurs. Here, ○ in Table 2 represents that no film thickness unevenness occurred, and x represents that film thickness unevenness occurred.
The mechanism of how the difference between the thickness of the bond wafer and the base wafer is related to the occurrence of film thickness unevenness is not clear, but when the thickness is different, the peeling area has a unique area when peeling. This is presumed to be due to the different frequencies.

以上のように、本発明者は、膜厚ムラの発生がボンドウェーハとベースウェーハの厚さの差が大きいことに起因していることを見出し、本発明を完成させた。   As described above, the present inventors have found that the occurrence of film thickness unevenness is caused by the large difference in thickness between the bond wafer and the base wafer, and have completed the present invention.

以下、本発明の貼り合わせウェーハの製造方法を図1を参照しながら説明する。
本発明では、ベースウェーハ上に薄膜を有する貼り合わせウェーハとして、例えば、シリコン単結晶ウェーハ上にシリコン酸化膜を介してSOI層が形成されたSOIウェーハを作製することができる。
Hereinafter, the manufacturing method of the bonded wafer of this invention is demonstrated, referring FIG.
In the present invention, as a bonded wafer having a thin film on a base wafer, for example, an SOI wafer in which an SOI layer is formed on a silicon single crystal wafer via a silicon oxide film can be manufactured.

まず、図1(a)に示すように、ボンドウェーハ10及びベースウェーハ11を準備する。このとき、事前に厚さを測定しておいた複数のウェーハの中から、両ウェーハの厚さの差が5μm未満、より好ましくは3μm以下であるボンドウェーハとベースウェーハとなる組み合わせを選択する。この選択工程は、ボンドウェーハとベースウェーハを貼り合わせる工程の前に行えば良く、その貼り合わせ工程の前の他の工程との間の実施順に特に限定されない。例えば、上記選択工程は、下記のボンドウェーハにイオン注入層を形成する工程の後に行っても良い。   First, as shown in FIG. 1A, a bond wafer 10 and a base wafer 11 are prepared. At this time, a combination of a bond wafer and a base wafer having a thickness difference of less than 5 μm, more preferably 3 μm or less is selected from a plurality of wafers whose thicknesses have been measured in advance. This selection step may be performed before the step of bonding the bond wafer and the base wafer, and is not particularly limited in the order of execution with respect to other steps before the bonding step. For example, the selection step may be performed after the step of forming an ion implantation layer on the bond wafer described below.

このように、両ウェーハの厚さの差が5μm未満であるボンドウェーハとベースウェーハとなる組み合わせを選択して後述のように貼り合わせれば、剥離後に薄膜の膜厚ムラの発生を抑制でき、薄膜の膜厚均一性の高い貼り合わせウェーハを製造できる。   In this way, if a combination of a bond wafer and a base wafer having a difference in thickness between the two wafers of less than 5 μm is selected and bonded as described later, the occurrence of film thickness unevenness of the thin film can be suppressed after peeling. A bonded wafer with high film thickness uniformity can be manufactured.

ここで、ボンドウェーハとベースウェーハの両方に、プライムウェーハ、または再生ウェーハを用いることができる。或いは、ボンドウェーハとベースウェーハのどちらか一方にプライムウェーハを、他方に再生ウェーハを用いることもできる。尚、再生ウェーハとは、上記のように、貼り合わせウェーハを作製する際に副生される剥離ウェーハに、減厚を伴う再生加工を行ったウェーハであり、再生ウェーハを用いればコストを削減できるので好ましい。特に、減厚を伴う再生加工が2回以上行われた、すなわち2回以上再利用された再生ウェーハや、減厚を伴う再生加工として5μm以上の減厚が行われた再生ウェーハのような、従来では薄膜の膜厚ムラが発生しやすい再生ウェーハを用いても、本発明の貼り合わせウェーハの製造方法によれば、薄膜の膜厚ムラを抑制できる。   Here, a prime wafer or a recycled wafer can be used for both the bond wafer and the base wafer. Alternatively, a prime wafer can be used for one of the bond wafer and the base wafer, and a recycled wafer can be used for the other. Incidentally, the reclaimed wafer is a wafer obtained by subjecting the peeled wafer produced as a by-product when the bonded wafer is produced as described above to a rework process accompanied by a reduction in thickness. If the reclaimed wafer is used, the cost can be reduced. Therefore, it is preferable. In particular, reclaimed processing with thickness reduction was performed twice or more, that is, reclaimed wafers that were reused twice or more, or reclaimed wafers with thickness reduction of 5 μm or more as reclaimed processing with thickness reduction, Conventionally, even if a recycled wafer that tends to cause film thickness unevenness of the thin film is used, the film thickness unevenness of the thin film can be suppressed according to the bonded wafer manufacturing method of the present invention.

次に、図1(b)に示すように、例えば熱酸化やCVD等によって、ボンドウェーハ10に、埋め込み酸化膜16となる酸化膜12を成長させる。或いは、この際形成する酸化膜12は、ベースウェーハ11のみに形成しても良いし、両ウェーハに形成しても良い。直接貼り合わせウェーハを製造する場合には、この酸化膜は形成しなくとも良い。   Next, as shown in FIG. 1B, an oxide film 12 to be a buried oxide film 16 is grown on the bond wafer 10 by, for example, thermal oxidation or CVD. Alternatively, the oxide film 12 formed at this time may be formed only on the base wafer 11 or may be formed on both wafers. When manufacturing a directly bonded wafer, this oxide film does not need to be formed.

次に、図1(c)に示すように、その酸化膜12の上からイオン注入機により、水素イオンと希ガスイオンのうちの少なくとも一種類のガスイオンを注入して、ボンドウェーハ10内にイオン注入層13を形成する。この際、目標とする剥離シリコン(薄膜15)の厚さを得ることができるように、イオン注入加速電圧を選択する。
次に、図1(d)に示すように、イオン注入したボンドウェーハ10を、注入面が接するように、ベースウェーハ11と密着させて貼り合わせる。
Next, as shown in FIG. 1C, at least one kind of gas ion of hydrogen ions and rare gas ions is implanted into the bond wafer 10 from above the oxide film 12 by an ion implanter. An ion implantation layer 13 is formed. At this time, the ion implantation acceleration voltage is selected so that the target thickness of the peeled silicon (thin film 15) can be obtained.
Next, as shown in FIG. 1D, the ion-implanted bond wafer 10 is adhered and bonded to the base wafer 11 so that the implantation surface is in contact.

そして、貼り合わせたウェーハを350℃〜500℃で保持してイオン注入層13に微小気泡層を発生させる熱処理を施し、微小気泡層にて剥離して、図1(i)に示すようなベースウェーハ11上に埋め込み酸化膜16と薄膜15が形成された貼り合わせウェーハ14を作製する。   Then, the bonded wafer is held at 350 ° C. to 500 ° C. and subjected to a heat treatment for generating a microbubble layer in the ion implantation layer 13 and is peeled off by the microbubble layer, and a base as shown in FIG. A bonded wafer 14 having a buried oxide film 16 and a thin film 15 formed on the wafer 11 is produced.

尚、貼り合わせる面に予めプラズマ処理を施して貼り合わせることによって、室温で密着されたウェーハの結合強度を高めることもできる。
そして、図1(j)に示すように、この貼り合わせウェーハ14に、平坦化熱処理、結合熱処理、研磨等を施して、剥離面を平坦化したり、結合強度を高めることもできる。
Note that the bonding strength of the wafers adhered at room temperature can be increased by performing plasma treatment on the surfaces to be bonded in advance and bonding them.
Then, as shown in FIG. 1 (j), the bonded wafer 14 can be subjected to planarization heat treatment, bonding heat treatment, polishing, or the like to flatten the peeled surface or increase the bonding strength.

上記の製造過程において、図1(e)に示すように、剥離後のボンドウェーハ10である剥離ウェーハ17が副生される。剥離ウェーハ17は、剥離面18の外周部に、ベースウェーハ11に移設されなかった段差部を有している。このような剥離ウェーハ17の段差部等を除去する再生加工して、次回の貼り合わせウェーハの製造時に再生ウェーハとして利用することができる。剥離ウェーハ17の再生加工は、例えば以下のように行うことができる。   In the above manufacturing process, as shown in FIG. 1E, a peeled wafer 17 which is the bond wafer 10 after peeling is by-produced. The separation wafer 17 has a step portion that has not been transferred to the base wafer 11 on the outer peripheral portion of the separation surface 18. Such reclaimed processing for removing the stepped portion of the peeled wafer 17 can be used as a reclaimed wafer at the time of manufacturing the next bonded wafer. The reclaiming process of the separation wafer 17 can be performed as follows, for example.

まず、図1(f)に示すように、例えばHF水溶液による洗浄を行うことにより、剥離面18とは反対の面の酸化膜以外の酸化膜を除去する。その後、剥離面を研磨することにより、図1(g)に示すように、剥離面を平坦化するとともに、イオン注入によるダメージ層を除去する。その後、図1(h)に示すように、通常のバッチ式HF液槽浸漬方式のようなHF洗浄を行うことで、裏面の酸化膜12を除去し、プライムウェーハと同等の表面および裏面品質を持つ再生ウェーハを作製することができる。この再生加工により再生ウェーハの厚さは当初のボンドウェーハの厚さより薄くなる。   First, as shown in FIG. 1F, the oxide film other than the oxide film on the surface opposite to the peeled surface 18 is removed by cleaning with, for example, an HF aqueous solution. Thereafter, the peeled surface is polished to flatten the peeled surface and remove the damage layer caused by ion implantation, as shown in FIG. Thereafter, as shown in FIG. 1 (h), the back surface oxide film 12 is removed by performing HF cleaning such as a normal batch type HF liquid bath immersion method, and the same surface and back surface quality as the prime wafer are obtained. A reclaimed wafer can be produced. By this reclaiming process, the thickness of the reclaimed wafer becomes thinner than that of the original bond wafer.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention, but the present invention is not limited to these.

(実施例1−5、比較例1−5)
直径300mm、結晶方位<100>のシリコン単結晶からなる鏡面研磨ウェーハをボンドウェーハおよびベースウェーハとして用いて貼り合わせSOIウェーハを作製し、SOI層の膜厚ムラの発生の有無を評価した。このとき実施例1−5、比較例1−5で用いたボンドウェーハ及びベースウェーハの種類、厚さ、再生条件を表3に示す。再生条件は、それまでに再生ウェーハとして利用した回数を再生回数として、再生研磨加工における研磨代を再生研磨代として示されている。実施例は、予め測定したボンドウェーハとベースウェーハの厚さの差が5μm未満となるものの組み合わせを選択し貼り合わせたものである。
(Example 1-5, Comparative Example 1-5)
A bonded SOI wafer was prepared using a mirror-polished wafer made of a silicon single crystal having a diameter of 300 mm and a crystal orientation <100> as a bond wafer and a base wafer, and the presence or absence of occurrence of film thickness unevenness in the SOI layer was evaluated. Table 3 shows the types, thicknesses, and regeneration conditions of the bond wafer and the base wafer used in Example 1-5 and Comparative Example 1-5. The regeneration condition indicates the number of times the wafer has been used as a recycled wafer so far as the number of times of regeneration, and the amount of polishing in the regeneration polishing process as the amount of regeneration polishing. In the example, a combination of those having a thickness difference between the bond wafer and the base wafer measured in advance of less than 5 μm is selected and bonded.

膜厚ムラの結果を表3に示す。ここで、表3中の○は膜厚ムラが発生しなかったこと、×は膜厚ムラが発生したことを表す。表3に示すように、実施例1−5のいずれにおいても膜厚ムラは発生しなかったのに対し、比較例1−5のいずれにおいても膜厚ムラが発生した。図2に膜厚ムラが発生しなかった実施例1−5のSOIウェーハ、図3に膜厚ムラが発生した比較例1−5のSOIウェーハのそれぞれの代表例を示す。
また、膜厚ムラが発生した比較例1−5のウェーハのSOI膜厚レンジ(面内膜厚の最大値から最小値を引いた値)は1.5〜2.5nm程度であったのに対し、膜厚ムラのない実施例1−5のウェーハのSOI膜厚レンジは1.2〜1.8nm程度と良好であった。
Table 3 shows the results of film thickness unevenness. Here, ○ in Table 3 indicates that no film thickness unevenness occurred, and x indicates that film thickness unevenness occurred. As shown in Table 3, film thickness unevenness did not occur in any of Examples 1-5, whereas film thickness unevenness occurred in any of Comparative Examples 1-5. FIG. 2 shows a representative example of the SOI wafer of Example 1-5 where no film thickness unevenness occurred, and FIG. 3 shows a representative example of the SOI wafer of Comparative Example 1-5 where film thickness unevenness occurred.
Further, the SOI film thickness range (the value obtained by subtracting the minimum value from the maximum value of the in-plane film thickness) of the wafer of Comparative Example 1-5 in which the film thickness unevenness occurred was about 1.5 to 2.5 nm. On the other hand, the SOI film thickness range of the wafer of Example 1-5 having no film thickness unevenness was as good as about 1.2 to 1.8 nm.

Figure 0005888286
Figure 0005888286

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
例えば、上記では、絶縁膜を介して貼り合わせSOIウェーハを作製する場合について説明しているが、直接2枚のウェーハを貼り合わせて貼り合わせウェーハを作製する場合にも本発明を適用可能である。
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
For example, in the above description, a case where a bonded SOI wafer is manufactured through an insulating film is described. However, the present invention can also be applied to a case where a bonded wafer is manufactured by directly bonding two wafers. .

10…ボンドウェーハ、 11…ベースウェーハ、 12…酸化膜、
13…イオン注入層、 14…貼り合わせウェーハ、 15…薄膜、
16…埋め込み酸化膜、 17…剥離ウェーハ、 18…剥離面。
10 ... Bond wafer, 11 ... Base wafer, 12 ... Oxide film,
13 ... ion implantation layer, 14 ... bonded wafer, 15 ... thin film,
16 ... Embedded oxide film, 17 ... Release wafer, 18 ... Release surface.

Claims (4)

ボンドウェーハの表面に、水素イオン、希ガスイオンの少なくとも一種類のガスイオンをイオン注入してイオン注入層を形成し、前記ボンドウェーハのイオン注入した表面と、ベースウェーハの表面とを直接または絶縁膜を介して貼り合わせた後、熱処理を加えて前記イオン注入層で前記ボンドウェーハの一部を剥離させることにより、前記ベースウェーハ上に薄膜を有する貼り合わせウェーハを作製する貼り合わせウェーハの製造方法において、
前記ボンドウェーハおよび/または前記ベースウェーハとして、前記貼り合わせウェーハの製造方法において貼り合わせウェーハを作製する際に副生された剥離ウェーハに、減厚を伴う再生加工を行った再生ウェーハを用い、
前記ボンドウェーハおよび前記ベースウェーハがシリコン単結晶ウェーハからなり、
前記ボンドウェーハとベースウェーハを貼り合わせる前に、前記ボンドウェーハと前記ベースウェーハの厚さを測定し、両ウェーハの厚さの差が5μm未満である前記ボンドウェーハと前記ベースウェーハとなる組み合わせを選択して貼り合わせることを特徴とする貼り合わせウェーハの製造方法。
At least one kind of gas ion of hydrogen ion or rare gas ion is ion-implanted on the surface of the bond wafer to form an ion implantation layer, and the surface of the bond wafer and the surface of the base wafer are directly or insulated from each other. A bonded wafer manufacturing method for manufacturing a bonded wafer having a thin film on the base wafer by attaching a heat treatment and separating a part of the bond wafer with the ion-implanted layer after bonding through a film In
As the bond wafer and / or the base wafer, using a reclaimed wafer that has been subjected to a regenerating process accompanied by a reduction in thickness, to a peeled wafer produced as a by-product when the bonded wafer is produced in the method for producing a bonded wafer,
The bond wafer and the base wafer are made of a silicon single crystal wafer,
Before bonding the bond wafer and the base wafer, measure the thickness of the bond wafer and the base wafer, and select the combination of the bond wafer and the base wafer in which the difference in thickness between the two wafers is less than 5 μm. And then bonding them together. A method for manufacturing a bonded wafer.
前記再生ウェーハは、前記減厚を伴う再生加工が2回以上行われたものであることを特徴とする請求項に記載された貼り合わせウェーハの製造方法。 The method for producing a bonded wafer according to claim 1 , wherein the reclaimed wafer is obtained by performing reclaiming with the thickness reduction twice or more. 前記再生ウェーハは、前記減厚を伴う再生加工として5μm以上の減厚が行われたものであることを特徴とする請求項または請求項に記載された貼り合わせウェーハの製造方法。 The method for producing a bonded wafer according to claim 1 or 2 , wherein the reclaimed wafer has been subjected to a thickness reduction of 5 µm or more as a reclaim process involving the thickness reduction. 前記絶縁膜がシリコン酸化膜からなり、前記薄膜がSOI層であることを特徴とする請求項1から請求項のいずれか一項に記載された貼り合わせウェーハの製造方法。
The method for manufacturing a bonded wafer according to any one of claims 1 to 3 , wherein the insulating film is made of a silicon oxide film, and the thin film is an SOI layer.
JP2013133868A 2013-06-26 2013-06-26 Manufacturing method of bonded wafer Active JP5888286B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2013133868A JP5888286B2 (en) 2013-06-26 2013-06-26 Manufacturing method of bonded wafer
EP14818587.9A EP3016133B1 (en) 2013-06-26 2014-05-19 Method of producing bonded wafer
PCT/JP2014/002615 WO2014207988A1 (en) 2013-06-26 2014-05-19 Method for manufacturing bonded wafer
KR1020157036519A KR102095383B1 (en) 2013-06-26 2014-05-19 Method for manufacturing bonded wafer
CN201480032979.9A CN105283943B (en) 2013-06-26 2014-05-19 It is bonded the manufacture method of wafer
SG11201510639QA SG11201510639QA (en) 2013-06-26 2014-05-19 Method of producing bonded wafer
US14/895,184 US9859149B2 (en) 2013-06-26 2014-05-19 Method of producing bonded wafer with uniform thickness distribution
TW103120720A TWI567833B (en) 2013-06-26 2014-06-16 Method of manufacturing wafers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133868A JP5888286B2 (en) 2013-06-26 2013-06-26 Manufacturing method of bonded wafer

Publications (3)

Publication Number Publication Date
JP2015012009A JP2015012009A (en) 2015-01-19
JP2015012009A5 JP2015012009A5 (en) 2016-02-04
JP5888286B2 true JP5888286B2 (en) 2016-03-16

Family

ID=52141364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133868A Active JP5888286B2 (en) 2013-06-26 2013-06-26 Manufacturing method of bonded wafer

Country Status (8)

Country Link
US (1) US9859149B2 (en)
EP (1) EP3016133B1 (en)
JP (1) JP5888286B2 (en)
KR (1) KR102095383B1 (en)
CN (1) CN105283943B (en)
SG (1) SG11201510639QA (en)
TW (1) TWI567833B (en)
WO (1) WO2014207988A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136786B2 (en) * 2013-09-05 2017-05-31 信越半導体株式会社 Manufacturing method of bonded wafer
CN107112205B (en) 2015-01-16 2020-12-22 住友电气工业株式会社 Semiconductor substrate and method of manufacturing the same, combined semiconductor substrate and method of manufacturing the same
US20180033609A1 (en) * 2016-07-28 2018-02-01 QMAT, Inc. Removal of non-cleaved/non-transferred material from donor substrate
JP6686962B2 (en) * 2017-04-25 2020-04-22 信越半導体株式会社 Method for manufacturing bonded wafer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963505A (en) * 1987-10-27 1990-10-16 Nippondenso Co., Ltd. Semiconductor device and method of manufacturing same
FR2681472B1 (en) 1991-09-18 1993-10-29 Commissariat Energie Atomique PROCESS FOR PRODUCING THIN FILMS OF SEMICONDUCTOR MATERIAL.
JP3943782B2 (en) 1999-11-29 2007-07-11 信越半導体株式会社 Reclaimed wafer reclaim processing method and reclaimed peeled wafer
JP4509488B2 (en) * 2003-04-02 2010-07-21 株式会社Sumco Manufacturing method of bonded substrate
WO2006042181A1 (en) 2004-10-11 2006-04-20 Meadwestvaco Corporation Blister card for child-resistant package
EP1962340A3 (en) 2004-11-09 2009-12-23 S.O.I. TEC Silicon Method for manufacturing compound material wafers
JP4715470B2 (en) 2005-11-28 2011-07-06 株式会社Sumco Release wafer reclaim processing method and release wafer regenerated by this method
JP5314838B2 (en) 2006-07-14 2013-10-16 信越半導体株式会社 Method for reusing peeled wafers
JP5799740B2 (en) * 2011-10-17 2015-10-28 信越半導体株式会社 Recycled wafer reclaim processing method

Also Published As

Publication number Publication date
US9859149B2 (en) 2018-01-02
SG11201510639QA (en) 2016-01-28
EP3016133A1 (en) 2016-05-04
KR20160023712A (en) 2016-03-03
TWI567833B (en) 2017-01-21
EP3016133B1 (en) 2020-01-15
KR102095383B1 (en) 2020-03-31
WO2014207988A1 (en) 2014-12-31
EP3016133A4 (en) 2017-03-01
JP2015012009A (en) 2015-01-19
CN105283943A (en) 2016-01-27
US20160118294A1 (en) 2016-04-28
TW201511141A (en) 2015-03-16
CN105283943B (en) 2018-05-08

Similar Documents

Publication Publication Date Title
JP5799740B2 (en) Recycled wafer reclaim processing method
WO2013102968A1 (en) Method for manufacturing bonded silicon-on-insulator (soi) wafer
KR101229760B1 (en) SOI Wafer Manufacturing Method and SOI Wafer Manufactured by Same
JP5888286B2 (en) Manufacturing method of bonded wafer
EP2924736B1 (en) Method for manufacturing soi wafer
JP6136786B2 (en) Manufacturing method of bonded wafer
WO2016059748A1 (en) Method for manufacturing bonded wafer
EP3029730B1 (en) Bonded wafer manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20151214

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5888286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250