JP5888112B2 - Method for producing room temperature curable organopolysiloxane composition and article - Google Patents

Method for producing room temperature curable organopolysiloxane composition and article Download PDF

Info

Publication number
JP5888112B2
JP5888112B2 JP2012116145A JP2012116145A JP5888112B2 JP 5888112 B2 JP5888112 B2 JP 5888112B2 JP 2012116145 A JP2012116145 A JP 2012116145A JP 2012116145 A JP2012116145 A JP 2012116145A JP 5888112 B2 JP5888112 B2 JP 5888112B2
Authority
JP
Japan
Prior art keywords
component
parts
mass
group
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012116145A
Other languages
Japanese (ja)
Other versions
JP2013241533A (en
Inventor
晃嗣 藤原
晃嗣 藤原
坂本 隆文
隆文 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2012116145A priority Critical patent/JP5888112B2/en
Publication of JP2013241533A publication Critical patent/JP2013241533A/en
Application granted granted Critical
Publication of JP5888112B2 publication Critical patent/JP5888112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、末端にシラノール基を有するオルガノポリシロキサンを出発原料として、保存安定性、接着性等に優れる室温硬化性オルガノポリシロキサン組成物を製造する方法、及びこの方法により得られた室温硬化性オルガノポリシロキサン組成物で接着又はコーティングされた物品に関する。   The present invention relates to a method for producing a room temperature curable organopolysiloxane composition having excellent storage stability, adhesiveness, etc., starting from an organopolysiloxane having a silanol group at the terminal, and room temperature curable obtained by this method The present invention relates to an article bonded or coated with an organopolysiloxane composition.

湿気により架橋する室温硬化性(RTV)シリコーンゴム組成物は、その取り扱いが容易な上、耐候性や電気特性に優れているため、建材用のシーリング材、電気・電子分野での接着剤など様々な分野で使用されている。これらのRTVシリコーンゴム組成物は、末端にシラノール基を有するオルガノポリシロキサンを出発原料として設計される場合が多く、反応性などの点から錫触媒が使用される頻度が高かった。しかし近年、欧州のREACHに代表されるように、環境調和型の材料設計が必要になってきている。   Room temperature curable (RTV) silicone rubber composition that crosslinks with moisture is easy to handle and has excellent weather resistance and electrical properties, so it can be used as a sealing material for building materials and adhesives in the electrical and electronic fields. Used in various fields. These RTV silicone rubber compositions are often designed using organopolysiloxane having a silanol group at the terminal as a starting material, and tin catalysts are frequently used from the viewpoint of reactivity. In recent years, however, environmentally conscious material design has become necessary, as represented by REACH in Europe.

錫触媒の代替となる硬化触媒としては、チタンやアルミニウムなどの硬いルイス酸が考えられるが、末端にシラノール基を有するオルガノポリシロキサンを出発原料とした場合、RTVシリコーンゴム組成物を調製するのが難しく、ゲル化してしまうなどの問題があった。予めアルコキシシリル基で末端封鎖されたオルガノポリシロキサンを使用することで、このような問題を回避することができるが、コストが高くなるなどの欠点を孕んでいる。   As a curing catalyst that can replace the tin catalyst, a hard Lewis acid such as titanium or aluminum can be considered. When an organopolysiloxane having a silanol group at the terminal is used as a starting material, an RTV silicone rubber composition is prepared. There were problems such as difficulty and gelation. By using an organopolysiloxane that has been end-capped with an alkoxysilyl group in advance, such a problem can be avoided, but there are disadvantages such as an increase in cost.

末端にシラノール基を有するオルガノポリシロキサンを製造工程中で末端封鎖すれば、錫触媒以外の有機金属触媒でも使用でき、安価でかつ環境負荷を低減したRTVシリコーンゴム組成物を調製することが可能となる。   If an organopolysiloxane having a silanol group at the end is end-capped during the production process, an organometallic catalyst other than a tin catalyst can be used, and it is possible to prepare an RTV silicone rubber composition that is inexpensive and has a reduced environmental impact. Become.

このような技術として、特開昭61−21157号公報、特開昭63−83166号公報及び特開昭63−83167号公報(特許文献1〜3)には、末端にシラノール基を有するオルガノポリシロキサンに、アルコキシ基含有シランと特定のアミノ基含有シランを末端封鎖触媒として配合することで、製造工程中に末端封鎖し、錫触媒以外の硬化触媒を使用した室温硬化性オルガノポリシロキサン組成物が得られることが開示されている。   As such a technique, JP-A-61-211157, JP-A-63-83166, and JP-A-63-83167 (Patent Documents 1 to 3) disclose an organopolysiloxane having a silanol group at its terminal. By blending siloxane with an alkoxy group-containing silane and a specific amino group-containing silane as an end-capping catalyst, a room-temperature-curable organopolysiloxane composition that is end-capped during the manufacturing process and uses a curing catalyst other than a tin catalyst is obtained. It is disclosed that it can be obtained.

また、特開昭63−99236号公報(特許文献4)には、末端にシラノール基を有するオルガノポリシロキサンに、末端封鎖剤及び末端封鎖触媒から成る混合物を反応させ、これにチタン触媒を混合することで、機械的特性に優れた室温硬化性オルガノポリシロキサン組成物を製造する方法が開示されている。   In JP-A-63-99236 (Patent Document 4), an organopolysiloxane having a silanol group at a terminal is reacted with a mixture of a terminal blocking agent and a terminal blocking catalyst, and a titanium catalyst is mixed therewith. Thus, a method for producing a room temperature curable organopolysiloxane composition having excellent mechanical properties is disclosed.

アミノ基含有シランを、末端にシラノール基を有するオルガノポリシロキサンと事前に混合する方法としては、特開2000−129130号公報(特許文献5)に、微粉末シリカと共存条件下で混合することで、流動性、セルフレベリング性などに優れる室温硬化性オルガノポリシロキサン組成物を製造する方法が開示されている。   As a method of previously mixing an amino group-containing silane with an organopolysiloxane having a silanol group at the terminal, it is possible to mix in Japanese Patent Application Laid-Open No. 2000-129130 (Patent Document 5) with fine powder silica under coexistence conditions. , A method for producing a room temperature-curable organopolysiloxane composition excellent in fluidity, self-leveling property and the like is disclosed.

本発明に記述されたアミノ基含有シランの先行技術としては、特開2002−121385号公報(特許文献6)に記載されており、接着付与剤として使用されている。末端にシラノール基を有するオルガノポリシロキサンに、アルコキシシランと有機錫を混合した後、アミノ基含有シランを混合することで、接着性に優れた室温硬化性オルガノポリシロキサン組成物を得ることが開示されている。   The prior art of the amino group-containing silane described in the present invention is described in JP-A No. 2002-121385 (Patent Document 6) and is used as an adhesion-imparting agent. It is disclosed that an alkoxysilane and organotin are mixed with an organopolysiloxane having a silanol group at the terminal, and then an amino group-containing silane is mixed to obtain a room temperature curable organopolysiloxane composition having excellent adhesion. ing.

これら従来の方法は、室温硬化性オルガノポリシロキサン組成物の製造工程において末端封鎖できるため、コスト面等で非常に有用な手段であるが、反応により発生するアルコールが系中に残存することにより保存安定性が問題となる場合がある。また末端封鎖触媒として酸触媒を使用する場合は、塩基性の接着付与剤が中和されるため、接着性が不良となる可能性がある。また、末端封鎖触媒として使用した特定の有機化合物の効果は、あくまで末端封鎖に対する触媒作用のみであり、他の機能を発現させるための効果は発揮しない。   These conventional methods can be end-capped in the production process of a room temperature curable organopolysiloxane composition, and thus are very useful means in terms of cost, etc., but are preserved when alcohol generated by the reaction remains in the system. Stability may be an issue. Further, when an acid catalyst is used as the end-capping catalyst, the basic adhesion-imparting agent is neutralized, which may result in poor adhesion. Moreover, the effect of the specific organic compound used as the end-capping catalyst is only a catalytic action for end-capping, and does not exhibit the effect for expressing other functions.

特開昭61−21157号公報JP-A-61-211157 特開昭63−83166号公報JP-A 63-83166 特開昭63−83167号公報JP 63-83167 A 特開昭63−99236号公報JP-A 63-99236 特開2000−129130号公報JP 2000-129130 A 特開2002−121385号公報JP 2002-121385 A

本発明は、上記事情に鑑みなされたもので、末端にシラノール基を有するオルガノポリシロキサンを出発原料として、特定のアミノ基含有シランを末端封鎖触媒に使用することで、保存安定性、接着性等に優れる室温硬化性オルガノポリシロキサン組成物を製造する方法、及びこの方法により得られた室温硬化性オルガノポリシロキサン組成物で接着又はコーティングされた物品を提供することを目的とする。   The present invention was made in view of the above circumstances, and by using an organopolysiloxane having a silanol group at the terminal as a starting material and using a specific amino group-containing silane as a terminal blocking catalyst, storage stability, adhesiveness, etc. It is an object of the present invention to provide a method for producing a room temperature curable organopolysiloxane composition having excellent resistance and an article bonded or coated with the room temperature curable organopolysiloxane composition obtained by this method.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、末端にシラノール基を有するオルガノポリシロキサンと、下記一般式(2)で示されるシラン化合物又はその部分加水分解縮合物の一部又は全部と、アミノ基含有シラン又はその部分加水分解物とを事前に混合して末端封鎖を行う工程を経ることで、保存安定性、接着性等に優れる室温硬化性オルガノポリシロキサン組成物が得られることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that an organopolysiloxane having a silanol group at the terminal and a silane compound represented by the following general formula (2) or a partially hydrolyzed condensate thereof. The room temperature-curable organopolysiloxane composition having excellent storage stability, adhesiveness, etc. is obtained through a step of performing end-capping by mixing part or all of the amino group-containing silane or a partial hydrolyzate thereof in advance. As a result, the inventors have found that the present invention can be obtained and have made the present invention.

即ち、本発明は、下記に示す室温硬化性オルガノポリシロキサン組成物の製造方法及び接着又はコーティングする方法を提供する。
〔1〕
(A)下記一般式(1)

Figure 0005888112
(式中、R1は独立に炭素数1〜10の非置換又は置換の一価の炭化水素基であり、mは10以上の整数である。)
で示されるオルガノポリシロキサン、
(B)下記一般式(2)
Figure 0005888112
(式中、R2は炭素数1〜10の非置換又はハロゲン置換一価炭化水素基であり、R3は独立に炭素数1〜10の非置換の一価炭化水素基であり、aは3又は4である。)
で示されるシラン化合物又はその部分加水分解縮合物、
(C)下記一般式(3)
Figure 0005888112
(式中、R4は芳香環を含む炭素数7〜10の二価の炭化水素基であり、R5は炭素数1〜10の二価の炭化水素基であり、R6及びR7はそれぞれ独立に炭素数1〜10の非置換又はハロゲン置換一価炭化水素基であり、bは2又は3である。但し、1級及び2級アミンの少なくとも一方はR4の芳香環に直結していない。)
で示されるアミノ基含有シラン又はその部分加水分解物、
(D)無機充填剤、
(E)硬化触媒
を必須成分とする室温硬化性オルガノポリシロキサン組成物の製造方法であって、(D)成分、(E)成分を混合する前に、(A)成分と(B)成分の一部又は全部と(C)成分を事前混合することを特徴とする室温硬化性オルガノポリシロキサン組成物の製造方法。
〔2〕
(E)成分が、有機チタン化合物である〔1〕に記載の室温硬化性オルガノポリシロキサン組成物の製造方法。
〔3〕
(B)成分の配合量が(A)成分100質量部に対して0.2〜30質量部であり、(C)成分の配合量が(A)成分100質量部に対して0.1〜10質量部であり、(D)成分の配合量が(A)成分100質量部に対して1〜800質量部であり、(E)成分の配合量が(A)成分100質量部に対して0.1〜10質量部である〔1〕又は〔2〕に記載の室温硬化性オルガノポリシロキサン組成物の製造方法。
〔4〕
〔1〕〜〔3〕のいずれかに記載された製造方法により室温硬化性オルガノポリシロキサン組成物を製造した後、該組成物を物品に塗布し、該組成物を硬化して、該物品に該組成物の硬化物を接着又はコーティングする方法。
〔5〕
物品が電源部品である〔4〕に記載の方法
That is, this invention provides the manufacturing method of the room temperature curable organopolysiloxane composition shown below, and the method of adhere | attaching or coating .
[1]
(A) The following general formula (1)
Figure 0005888112
(In the formula, R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and m is an integer of 10 or more.)
An organopolysiloxane represented by
(B) The following general formula (2)
Figure 0005888112
Wherein R 2 is an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, R 3 is independently an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and a is 3 or 4)
Or a partially hydrolyzed condensate thereof,
(C) The following general formula (3)
Figure 0005888112
(Wherein R 4 is a C 7-10 divalent hydrocarbon group containing an aromatic ring, R 5 is a C 1-10 divalent hydrocarbon group, and R 6 and R 7 are Each independently an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and b is 2 or 3. However, at least one of the primary and secondary amines is directly connected to the aromatic ring of R 4. Not.)
An amino group-containing silane represented by or a partial hydrolyzate thereof,
(D) inorganic filler,
(E) A method for producing a room temperature curable organopolysiloxane composition having a curing catalyst as an essential component, and before mixing (D) component and (E) component, (A) component and (B) component A method for producing a room temperature-curable organopolysiloxane composition, wherein a part or all of the component (C) is premixed.
[2]
(E) The manufacturing method of the room temperature curable organopolysiloxane composition as described in [1] whose component is an organic titanium compound.
[3]
(B) The compounding quantity of component is 0.2-30 mass parts with respect to 100 mass parts of (A) component, and the compounding quantity of (C) component is 0.1-0.1 with respect to 100 mass parts of (A) component. 10 parts by mass, the amount of component (D) is 1 to 800 parts by mass with respect to 100 parts by mass of component (A), and the amount of component (E) is 100 parts by mass of component (A). The method for producing a room temperature-curable organopolysiloxane composition according to [1] or [2], which is 0.1 to 10 parts by mass.
[4]
After producing a room temperature-curable organopolysiloxane composition by the production method described in any one of [1] to [3] , the composition is applied to an article, the composition is cured, and the article is applied. A method of bonding or coating a cured product of the composition.
[5]
The method according to [4], wherein the article is a power supply component.

本発明の製造方法によれば、保存安定性、接着性等に優れる室温硬化性オルガノポリシロキサン組成物を得ることができる。   According to the production method of the present invention, a room temperature-curable organopolysiloxane composition excellent in storage stability, adhesiveness, and the like can be obtained.

以下、本発明について詳しく説明する。
本発明の室温硬化性オルガノポリシロキサン組成物の製造方法は、
(A)一般式(1)で示されるオルガノポリシロキサン、
(B)一般式(2)で示されるシラン化合物又はその部分加水分解縮合物、
(C)アミノ基含有シラン又はその部分加水分解物、
(D)無機充填剤、
(E)硬化触媒
を必須成分とする組成物において、上記(D)成分、(E)成分を混合する前に、(A)成分と(B)成分の一部又は全部と(C)成分とを事前混合することを特徴とするものである。
The present invention will be described in detail below.
The method for producing the room temperature curable organopolysiloxane composition of the present invention comprises:
(A) an organopolysiloxane represented by the general formula (1),
(B) the silane compound represented by the general formula (2) or a partially hydrolyzed condensate thereof,
(C) an amino group-containing silane or a partial hydrolyzate thereof,
(D) inorganic filler,
(E) In the composition containing a curing catalyst as an essential component, before mixing the component (D) and the component (E), the component (A) and a part or all of the component (B) and the component (C) Is premixed.

[(A)成分]
本発明のオルガノポリシロキサン組成物の(A)成分は、下記一般式(1)で示されるものである。

Figure 0005888112
[(A) component]
The component (A) of the organopolysiloxane composition of the present invention is represented by the following general formula (1).
Figure 0005888112

式中、R1は炭素数1〜10の非置換又は置換の一価炭化水素基であり、例えば、メチル基、エチル基、プロピル基などのアルキル基;シクロヘキシル基などの環状アルキル基;ビニル基、アリル基などのアルケニル基;フェニル基、トリル基などのアリール基;及びこれらの基の水素原子が部分的にハロゲン原子などで置換された基、例えば、3,3,3−トリフルオロプロピル基等である。これらの中で、メチル基、フェニル基、3,3,3−トリフルオロプロピル基が好ましく、特にメチル基が好ましい。R1は同一の基であっても異種の基であってもよい。 In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, for example, an alkyl group such as a methyl group, an ethyl group, or a propyl group; a cyclic alkyl group such as a cyclohexyl group; a vinyl group An alkenyl group such as an allyl group; an aryl group such as a phenyl group and a tolyl group; and a group in which the hydrogen atom of these groups is partially substituted with a halogen atom, for example, a 3,3,3-trifluoropropyl group Etc. Among these, a methyl group, a phenyl group, and a 3,3,3-trifluoropropyl group are preferable, and a methyl group is particularly preferable. R 1 may be the same group or different groups.

また、mは10以上の整数であり、オルガノポリシロキサンの25℃における粘度が25〜500,000mm2/sの範囲が好ましく、より好ましくは500〜100,000mm2/sの範囲となる整数である。なお、粘度は、オストワルド粘度計により測定することができる(以下、同じ)。 M is an integer of 10 or more, and the viscosity of the organopolysiloxane at 25 ° C. is preferably in the range of 25 to 500,000 mm 2 / s, more preferably in the range of 500 to 100,000 mm 2 / s. is there. The viscosity can be measured with an Ostwald viscometer (hereinafter the same).

[(B)成分]
(B)成分は、下記一般式(2)で示されるシラン化合物又はその部分加水分解縮合物であり、(A)成分の末端封止及び架橋剤として作用するものである。

Figure 0005888112
[Component (B)]
The component (B) is a silane compound represented by the following general formula (2) or a partially hydrolyzed condensate thereof, and acts as a terminal blocking and crosslinking agent for the component (A).
Figure 0005888112

式中、R2は、炭素数1〜10の非置換又はハロゲン置換一価炭化水素基であり、例えば、メチル基、エチル基、プロピル基などのアルキル基;シクロヘキシル基などの環状アルキル基;ビニル基、アリル基などのアルケニル基;フェニル基、トリル基などのアリール基;及びこれらの基の水素原子が部分的にハロゲン原子で置換された基、例えば、3,3,3−トリフルオロプロピル基等である。これらの中では、メチル基、エチル基、プロピル基、ビニル基、フェニル基、3,3,3−トリフルオロプロピル基が好ましく、より好ましくはメチル基、ビニル基、フェニル基である。R3は、独立に炭素数1〜10の非置換の一価炭化水素基であり、R2からハロゲン置換一価炭化水素基を除いたものが例示され、メチル基、エチル基が好ましく、特にメチル基が好ましい。なお、R2、R3は、R2、R3のそれぞれが同一であっても異なっていてもよく、またR2とR3が同一の基であっても異なっていてもよい。
また、aは3又は4である。
In the formula, R 2 is an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, for example, an alkyl group such as a methyl group, an ethyl group, or a propyl group; a cyclic alkyl group such as a cyclohexyl group; vinyl Groups, alkenyl groups such as allyl groups; aryl groups such as phenyl groups and tolyl groups; and groups in which the hydrogen atoms of these groups are partially substituted with halogen atoms, for example, 3,3,3-trifluoropropyl groups Etc. Among these, a methyl group, an ethyl group, a propyl group, a vinyl group, a phenyl group, and a 3,3,3-trifluoropropyl group are preferable, and a methyl group, a vinyl group, and a phenyl group are more preferable. R 3 is independently an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and examples thereof include those obtained by removing a halogen-substituted monovalent hydrocarbon group from R 2 , preferably a methyl group or an ethyl group, A methyl group is preferred. Incidentally, R 2, R 3 is, R 2, each R 3 is may be the same or different and also R 2 and R 3 may be different even for the same group.
A is 3 or 4.

(B)成分の具体例としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン等のアルコキシシラン、並びにこれらのシランの部分加水分解縮合物が挙げられる。これらの中では、テトラメトキシシラン、メチルトリメトキシシランが好ましい。   Specific examples of the component (B) include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, and other alkoxysilanes, and these Examples thereof include partial hydrolysis condensates of silane. Among these, tetramethoxysilane and methyltrimethoxysilane are preferable.

(B)成分の配合量は、(A)成分100質量部に対して好ましくは0.2〜30質量部、より好ましくは0.5〜20質量部、特に好ましくは1〜15質量部の範囲が望ましい。(B)成分の配合量が少なすぎると、末端封鎖率が悪く、保存安定性が低下することがあり、(B)成分の配合量が多すぎると、得られる硬化物は機械的特性が低下し易く、硬化速度も遅くなるなどの欠点が発生する場合がある。   The amount of component (B) is preferably 0.2 to 30 parts by weight, more preferably 0.5 to 20 parts by weight, and particularly preferably 1 to 15 parts by weight with respect to 100 parts by weight of component (A). Is desirable. When the blending amount of the component (B) is too small, the terminal blocking ratio is poor and the storage stability may be lowered. When the blending amount of the component (B) is too large, the obtained cured product has reduced mechanical properties. In some cases, such a drawback may occur that the curing rate is low and the curing rate is low.

[(C)成分]
(C)成分のアミノ基含有シラン又はその部分加水分解物は、(A)成分である末端にシラノール基を有するオルガノポリシロキサンの末端封鎖触媒、並びに接着付与剤として重要な効果を発揮するものであり、アミノ基含有シランカップリング剤が例示され、下記一般式(3)で示されるアミノ基含有シランが好ましい。
[Component (C)]
The (C) component amino group-containing silane or its partial hydrolyzate exhibits an important effect as an endblocking catalyst for organopolysiloxane having a silanol group at the terminal, which is the (A) component, and as an adhesion-imparting agent. Yes, an amino group-containing silane coupling agent is exemplified, and an amino group-containing silane represented by the following general formula (3) is preferable.

Figure 0005888112
(式中、R4は芳香環を含む炭素数7〜10の二価の炭化水素基であり、R5は炭素数1〜10の二価の炭化水素基であり、R6及びR7はそれぞれ独立に炭素数1〜10の非置換又はハロゲン置換一価炭化水素基であり、bは2又は3である。但し、1級及び2級アミンの少なくとも一方はR4の芳香環に直結していない。)
Figure 0005888112
(Wherein R 4 is a C 7-10 divalent hydrocarbon group containing an aromatic ring, R 5 is a C 1-10 divalent hydrocarbon group, and R 6 and R 7 are Each independently an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and b is 2 or 3. However, at least one of the primary and secondary amines is directly connected to the aromatic ring of R 4. Not.)

このアミノ基含有シランは、1級アミンと2級アミンの間に芳香環を含み、更に少なくとも一方が芳香環に直結していない構造をしており、詳しくは特開平5−105689号公報に記載されている。   This amino group-containing silane has a structure in which an aromatic ring is included between a primary amine and a secondary amine, and at least one of them is not directly connected to the aromatic ring. Details are described in JP-A-5-105689. Has been.

式中、R4は芳香環を含む炭素数7〜10の二価の炭化水素基であり、フェニレン基とアルキレン基とが結合した基が好ましく、例えば、下記式(4)〜(12)で示されるものが挙げられる。
−CH2−C64− (4)
−CH2−C64−CH2− (5)
−CH2−C64−CH2−CH2− (6)
−CH2−C64−CH2−CH2−CH2− (7)
−CH2−CH2−C64− (8)
−CH2−CH2−C64−CH2− (9)
−CH2−CH2−C64−CH2−CH2− (10)
−CH2−CH2−CH2−C64− (11)
−CH2−CH2−CH2−C64−CH2− (12)
これらの中で、特に好ましくは式(5)で示される基である。
なお、フェニレン基に結合するアルキレン基の配向は、オルト位、メタ位、パラ位のいずれであってもよい。特に好ましくはメタ位である。
In the formula, R 4 is a divalent hydrocarbon group having 7 to 10 carbon atoms including an aromatic ring, and is preferably a group in which a phenylene group and an alkylene group are bonded. For example, in the following formulas (4) to (12) What is shown.
—CH 2 —C 6 H 4 — (4)
—CH 2 —C 6 H 4 —CH 2 — (5)
—CH 2 —C 6 H 4 —CH 2 —CH 2 — (6)
—CH 2 —C 6 H 4 —CH 2 —CH 2 —CH 2 — (7)
—CH 2 —CH 2 —C 6 H 4 — (8)
—CH 2 —CH 2 —C 6 H 4 —CH 2 — (9)
—CH 2 —CH 2 —C 6 H 4 —CH 2 —CH 2 — (10)
—CH 2 —CH 2 —CH 2 —C 6 H 4 — (11)
—CH 2 —CH 2 —CH 2 —C 6 H 4 —CH 2 — (12)
Of these, a group represented by the formula (5) is particularly preferable.
The orientation of the alkylene group bonded to the phenylene group may be any of ortho, meta, and para positions. Particularly preferred is the meta position.

5は炭素数1〜10の二価の炭化水素基であり、例えば、メチレン基、エチレン基、プロピレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基、2−メチルプロピレン基等のアルキレン基、フェニレン基等のアリーレン基、これらアルキレン基とアリーレン基とが結合した基などが挙げられるが、好ましくは炭素数1〜4のアルキレン基である。
また、R6、R7はそれぞれ独立に炭素数1〜10の非置換又はハロゲン置換一価炭化水素基であり、前記式(2)におけるR2で例示したものと同様のものを例示することができる。R6としては、メチル基、ビニル基、フェニル基が好ましく、より好ましくはメチル基であり、R7としては、炭素数1〜4のアルキル基が好ましく、より好ましくはメチル基、エチル基である。
R 5 is a divalent hydrocarbon group having 1 to 10 carbon atoms, such as methylene group, ethylene group, propylene group, tetramethylene group, hexamethylene group, octamethylene group, decamethylene group, 2-methylpropylene group, etc. An alkylene group, an arylene group such as a phenylene group, a group in which these alkylene groups and an arylene group are bonded, and the like, preferably an alkylene group having 1 to 4 carbon atoms.
R 6 and R 7 are each independently an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and examples are the same as those exemplified for R 2 in the formula (2). Can do. R 6 is preferably a methyl group, a vinyl group or a phenyl group, more preferably a methyl group, and R 7 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group or an ethyl group. .

(C)成分の配合量は、(A)成分100質量部に対して好ましくは0.1〜10質量部、より好ましくは0.2〜5質量部、特に好ましくは0.5〜3質量部である。(C)成分の配合量が少なすぎると、末端封鎖率が低下したり、接着性も低下する場合がある。多すぎると価格的に不利になる場合や、組成物の保存安定性が低下したりする場合がある。   The amount of component (C) is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, and particularly preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of component (A). It is. When the blending amount of the component (C) is too small, the terminal blocking ratio may be lowered or the adhesiveness may be lowered. If the amount is too large, it may be disadvantageous in price, or the storage stability of the composition may be lowered.

[(D)成分]
(D)成分は、無機充填剤であり、例えば、粉砕シリカ、煙霧質シリカ、湿式シリカ、結晶性シリカ、水酸化アルミニウム、アルミナ、ベーマイト、水酸化マグネシウム、酸化マグネシウム、水酸化カルシウム、炭酸カルシウム、炭酸亜鉛、塩基性炭酸亜鉛、酸化亜鉛、酸化チタン、カーボンブラック、ガラスビーズ、ガラスバルーン、樹脂ビーズ、樹脂バルーンなどが挙げられ、これらは1種単独で使用してもよく、また2種類以上を組み合わせて使用してもよい。これらの中で、煙霧質シリカ、炭酸カルシウムが好ましい。これらの無機充填剤は、表面処理されていなくても、クロロシラン、アルコキシシラン、シラザン、オルガノポリシロキサンや脂肪酸、脂肪酸誘導体等の公知の処理剤で表面処理されていてもよい。
[(D) component]
The component (D) is an inorganic filler, such as pulverized silica, fumed silica, wet silica, crystalline silica, aluminum hydroxide, alumina, boehmite, magnesium hydroxide, magnesium oxide, calcium hydroxide, calcium carbonate, Examples include zinc carbonate, basic zinc carbonate, zinc oxide, titanium oxide, carbon black, glass beads, glass balloons, resin beads, resin balloons, etc. These may be used alone or in combination of two or more. You may use it in combination. Of these, fumed silica and calcium carbonate are preferred. Even if these inorganic fillers are not surface-treated, they may be surface-treated with a known treating agent such as chlorosilane, alkoxysilane, silazane, organopolysiloxane, fatty acid, and fatty acid derivative.

(D)成分の配合量は、(A)成分100質量部に対して好ましくは1〜800質量部、より好ましくは2〜500質量部、特に好ましくは3〜300質量部である。(D)成分の配合量が少なすぎると、機械的特性が乏しくなる場合があり、多すぎると、硬化物のゴム弾性が低下することがある。   (D) The compounding quantity of a component becomes like this. Preferably it is 1-800 mass parts with respect to 100 mass parts of (A) component, More preferably, it is 2-500 mass parts, Most preferably, it is 3-300 mass parts. If the blending amount of the component (D) is too small, the mechanical properties may be poor, and if it is too large, the rubber elasticity of the cured product may decrease.

[(E)成分]
(E)成分の硬化触媒は、縮合触媒作用を有するものであれば特に制限されないが、環境的に有機錫化合物触媒を用いることが好ましくない用途では、有機錫化合物以外のものであることが好ましい。このような硬化触媒として、具体的には、テトライソプロポキシチタン、テトラ−n−ブトキシチタン、テトラキス(2−エチルヘキソキシ)チタン、イソプロポキシチタンビス(エチルアセトアセテート)、イソプロポキシビス(アセチルアセトナート)チタン、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル又はチタンキレート化合物;アルミニウムイソプロピレート、アルミニウムsec−ブチレート、アルミニウムエチレート、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート等のアルミニウムアルコレート又はアルミニウムキレート化合物;テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン又はシロキサン;オクチル酸鉛やその他の酸性触媒もしくは塩基性触媒等の従来公知の触媒が例示される。これらの中で、有機チタン化合物が好ましく、特にチタンキレート化合物が好ましく、イソプロポキシチタンビス(エチルアセトアセテート)、イソプロポキシビス(アセチルアセトナート)チタンが特に好ましい。
(E)成分の硬化触媒は、1種を単独で使用しても2種以上の混合物として使用してもよい。
[(E) component]
The component (E) curing catalyst is not particularly limited as long as it has a condensation catalyst action, but in applications in which it is not preferable to use an organic tin compound catalyst, it is preferably other than the organic tin compound. . Specific examples of such a curing catalyst include tetraisopropoxy titanium, tetra-n-butoxy titanium, tetrakis (2-ethylhexoxy) titanium, isopropoxy titanium bis (ethyl acetoacetate), isopropoxy bis (acetylacetonate) titanium. , Titanic acid esters or titanium chelate compounds such as titanium isopropoxyoctylene glycol; aluminum isopropylate, aluminum sec-butylate, aluminum ethylate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum Aluminum alcoholate or aluminum chelate compound such as diisopropylate; tetramethylguanidylpropyltrimeth Silanes or siloxanes containing guanidyl groups such as silane, tetramethylguanidylpropylmethyldimethoxysilane, tetramethylguanidylpropyltris (trimethylsiloxy) silane; conventional octylate and other acidic or basic catalysts Known catalysts are exemplified. Among these, an organic titanium compound is preferable, a titanium chelate compound is particularly preferable, and isopropoxy titanium bis (ethyl acetoacetate) and isopropoxy bis (acetylacetonate) titanium are particularly preferable.
As the curing catalyst for component (E), one kind may be used alone, or two or more kinds may be used as a mixture.

(E)成分の配合量は、(A)成分100質量部に対して好ましくは0.1〜10質量部、より好ましくは0.2〜8質量部、特に好ましくは0.5〜5質量部である。(E)成分の配合量が少なすぎると、十分な架橋性が得られない場合があり、多すぎると、価格的に不利になる場合や硬化速度が低下するなどの欠点が発生する場合がある。   The amount of component (E) is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 8 parts by weight, and particularly preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of component (A). It is. If the amount of component (E) is too small, sufficient crosslinkability may not be obtained, and if it is too large, disadvantages such as a disadvantage in price and a decrease in curing speed may occur. .

[その他の成分]
また、本発明の組成物には、本発明の目的を損なわない範囲において上記成分以外に、添加剤等を配合してもよい。
[Other ingredients]
Moreover, you may mix | blend an additive etc. with the composition of this invention in addition to the said component in the range which does not impair the objective of this invention.

例えば、ウェッターやチキソトロピー向上剤としてのポリエーテル、可塑剤としての非反応性ジメチルシリコーンオイル、イソパラフィン、架橋密度向上剤としてのトリメチルシロキシ単位〔(CH33SiO1/2単位〕とSiO2単位とからなる網状ポリシロキサン等が挙げられる。これらの中で非反応性ジメチルシリコーンオイル(両末端がトリメチルシリル基で封鎖されたジメチルポリシロキサン)は、硬さの調整や作業性の調整のために好適に用いることができ、配合する場合の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して1〜100質量部であることが好ましく、より好ましくは2〜50質量部である。 For example, polyether as a wetter and thixotropy improver, non-reactive dimethyl silicone oil as plasticizer, isoparaffin, trimethylsiloxy unit [(CH 3 ) 3 SiO 1/2 unit] and SiO 2 unit as crosslink density improver And the like, and the like. Among these, non-reactive dimethyl silicone oil (dimethylpolysiloxane having both ends blocked with trimethylsilyl groups) can be suitably used for adjusting hardness and workability. It is preferable that it is 1-100 mass parts with respect to 100 mass parts of organopolysiloxane of (A) component, More preferably, it is 2-50 mass parts.

更に、必要に応じて、顔料、染料、蛍光増白剤等の着色剤、防かび剤、抗菌剤、ブリードオイルとしての非反応性フェニルシリコーンオイル、フルオロシリコーンオイル、シリコーンと非相溶の有機液体等の表面改質剤、トルエン、キシレン、溶剤揮発油、シクロヘキサン、メチルシクロヘキサン、低沸点イソパラフィン等の溶剤を添加してもよい。
これらの成分は、本発明の製造方法のどの工程で配合してもよい。
Furthermore, if necessary, colorants such as pigments, dyes, fluorescent brighteners, fungicides, antibacterial agents, non-reactive phenyl silicone oils as bleed oil, fluorosilicone oils, organic liquids incompatible with silicones A solvent such as a surface modifier such as toluene, xylene, solvent volatile oil, cyclohexane, methylcyclohexane, and low boiling point isoparaffin may be added.
These components may be blended in any step of the production method of the present invention.

本発明の室温硬化性オルガノポリシロキサン組成物の製造方法は、上述した各成分において、(D)成分、(E)成分を混合する前に、(A)成分と(B)成分の一部又は全部と(C)成分とを事前に混合することを特徴とする。好ましくは、(A)成分と(B)成分を混合した後(C)成分を混合するか、(A)成分、(B)成分、(C)成分を同時に混合する。(A)成分と(B)成分と(C)成分を事前混合しないと(A)成分の末端が、(B)成分のアルコキシ基で十分封鎖されず、保存性が悪くなる。なお、ここで配合する(B)成分は、(A)成分の末端を封鎖するのに十分な量である必要がある。ここで、(A)成分と(B)成分と(C)成分の混合は、実質的に無水の条件下にて、室温(通常0〜40℃、好ましくは10〜30℃)で行えばよく、時間は、通常10分〜5時間、好ましくは20分〜3時間程度である。また、混合は、常圧下又は加圧下で行うことが好ましい。
その後、(A)成分と(B)成分と(C)成分の混合物と、(D)成分、(E)成分を混合する。この場合の混合は、常温で行えばよいが、必要に応じて加熱してもよい。混合時間は、上記成分が均一となるのに十分な時間であればよく、通常5分〜2時間、好ましくは10分〜1時間程度である。また、混合は、常圧下又は減圧下で行うことが好ましい。
In the method for producing the room temperature curable organopolysiloxane composition of the present invention, before mixing (D) component and (E) component in each component described above, a part of (A) component and (B) component or All and (C) component are mixed beforehand. Preferably, (C) component is mixed after mixing (A) component and (B) component, or (A) component, (B) component, and (C) component are mixed simultaneously. If the (A) component, the (B) component, and the (C) component are not premixed, the terminal of the (A) component will not be sufficiently blocked with the alkoxy group of the (B) component, resulting in poor storage stability. In addition, the (B) component mix | blended here needs to be sufficient quantity to block the terminal of (A) component. Here, the mixing of the component (A), the component (B), and the component (C) may be performed at room temperature (usually 0 to 40 ° C., preferably 10 to 30 ° C.) under substantially anhydrous conditions. The time is usually about 10 minutes to 5 hours, preferably about 20 minutes to 3 hours. Further, the mixing is preferably performed under normal pressure or under pressure.
Thereafter, the mixture of the component (A), the component (B), and the component (C), the component (D), and the component (E) are mixed. The mixing in this case may be performed at room temperature, but may be heated as necessary. The mixing time may be a time sufficient for the above components to be uniform, and is usually about 5 minutes to 2 hours, preferably about 10 minutes to 1 hour. Further, the mixing is preferably performed under normal pressure or reduced pressure.

なお、(B)成分は、好ましくは一部を(A)、(C)成分と共に事前混合し、残部は事前混合後に混合するが、この場合、事前混合に用いられる(B)成分は、(A)成分の末端を封鎖するのに十分な量であればよい。
また、上記(A)〜(E)成分以外の成分を配合する場合は、どの工程で配合してもよいが、(A)〜(C)成分を事前混合した後に混合することが望ましい。
The component (B) is preferably partly premixed with the components (A) and (C) and the remainder is mixed after premixing. In this case, the component (B) used for premixing is ( A) The amount may be sufficient to block the end of the component.
Moreover, when mix | blending components other than the said (A)-(E) component, you may mix | blend in any process, However, It is desirable to mix, after previously mixing (A)-(C) component.

得られた室温硬化性オルガノポリシロキサン組成物は、湿分を避けた雰囲気で保存することができ、これを室温に放置することにより、空気中の水分存在下で通常5分〜1週間程度で硬化する。   The obtained room temperature curable organopolysiloxane composition can be stored in an atmosphere avoiding moisture, and by leaving it at room temperature, it usually takes about 5 minutes to 1 week in the presence of moisture in the air. Harden.

本発明の室温硬化性オルガノポリシロキサン組成物は、電気・電子部品や建築用部材等の接着、コーティング用、特に各種コンデンサやトランス等の電源部品の接着、コーティング用として有用である。   The room temperature curable organopolysiloxane composition of the present invention is useful for adhesion and coating of electric / electronic parts and building members, and particularly for adhesion and coating of power supply parts such as various capacitors and transformers.

以下、本発明を具体的に説明する実施例及び比較例を示すが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, examples and comparative examples for specifically explaining the present invention will be shown, but the present invention is not limited to the following examples.

[実施例1]
分子鎖両末端がシラノール基であり、25℃における粘度が5,000mm2/sのポリジメチルシロキサン30質量部と、分子鎖両末端がシラノール基であり、25℃における粘度が20,000mm2/sのポリジメチルシロキサン70質量部と、分子鎖両末端がトリメチルシリル基であり、25℃における粘度が300mm2/sのポリジメチルシロキサン20質量部と、テトラメトキシシラン4質量部と、下記式(13)で示されるアミノ基含有シラン1質量部を常圧下にて60分混合した。次いで、煙霧質シリカ10質量部と、重質炭酸カルシウム150質量部を減圧下にて40分混合した。減圧混合後、メチルトリメトキシシラン8質量部と、イソプロポキシチタンビス(エチルアセトアセテート)2質量部を加え、減圧条件下15分混合して組成物1を得た。

Figure 0005888112
[Example 1]
30 parts by mass of polydimethylsiloxane having both ends of the molecular chain are silanol groups and a viscosity at 25 ° C. of 5,000 mm 2 / s, and both ends of the molecular chain are silanol groups and have a viscosity at 25 ° C. of 20,000 mm 2 / 70 parts by mass of polydimethylsiloxane of s, 20 parts by mass of polydimethylsiloxane having a molecular chain both ends of a trimethylsilyl group and a viscosity at 25 ° C. of 300 mm 2 / s, 4 parts by mass of tetramethoxysilane, and the following formula (13 ) 1 mass part of an amino group-containing silane represented by) was mixed for 60 minutes under normal pressure. Next, 10 parts by mass of fumed silica and 150 parts by mass of heavy calcium carbonate were mixed under reduced pressure for 40 minutes. After mixing under reduced pressure, 8 parts by mass of methyltrimethoxysilane and 2 parts by mass of isopropoxytitanium bis (ethylacetoacetate) were added and mixed for 15 minutes under reduced pressure to obtain Composition 1.
Figure 0005888112

[実施例2]
分子鎖両末端がシラノール基であり、25℃における粘度が5,000mm2/sのポリジメチルシロキサン30質量部と、分子鎖両末端がシラノール基であり、25℃における粘度が20,000mm2/sのポリジメチルシロキサン70質量部と、分子鎖両末端がトリメチルシリル基であり、25℃における粘度が300mm2/sのポリジメチルシロキサン20質量部と、メチルトリメトキシシラン4質量部と、上記式(13)で示されるアミノ基含有シラン1質量部を常圧下にて60分混合した。次いで、煙霧質シリカ10質量部と、重質炭酸カルシウム150質量部を減圧下にて40分混合した。減圧混合後、メチルトリメトキシシラン8質量部と、イソプロポキシチタンビス(エチルアセトアセテート)2質量部を加え、減圧条件下15分混合して組成物2を得た。
[Example 2]
30 parts by mass of polydimethylsiloxane having both ends of the molecular chain are silanol groups and a viscosity at 25 ° C. of 5,000 mm 2 / s, and both ends of the molecular chain are silanol groups and have a viscosity at 25 ° C. of 20,000 mm 2 / 70 parts by weight of polydimethylsiloxane of s, 20 parts by weight of polydimethylsiloxane having a molecular chain both ends of a trimethylsilyl group and a viscosity at 25 ° C. of 300 mm 2 / s, 4 parts by weight of methyltrimethoxysilane, and the above formula ( 13 parts of an amino group-containing silane represented by 13) was mixed for 60 minutes under normal pressure. Next, 10 parts by mass of fumed silica and 150 parts by mass of heavy calcium carbonate were mixed under reduced pressure for 40 minutes. After mixing under reduced pressure, 8 parts by mass of methyltrimethoxysilane and 2 parts by mass of isopropoxytitanium bis (ethylacetoacetate) were added and mixed for 15 minutes under reduced pressure to obtain Composition 2.

[実施例3]
分子鎖両末端がシラノール基であり、25℃における粘度が5,000mm2/sのポリジメチルシロキサン30質量部と、分子鎖両末端がシラノール基であり、25℃における粘度が20,000mm2/sのポリジメチルシロキサン70質量部と、分子鎖両末端がトリメチルシリル基であり、25℃における粘度が300mm2/sのポリジメチルシロキサン20質量部と、テトラメトキシシラン4質量部と、上記式(13)で示されるアミノ基含有シラン1質量部を常圧下にて60分混合した。次いで、煙霧質シリカ10質量部と、重質炭酸カルシウム150質量部を減圧下にて40分混合した。減圧混合後、ビニルトリメトキシシラン8質量部と、イソプロポキシチタンビス(エチルアセトアセテート)2質量部を加え、減圧条件下15分混合して組成物3を得た。
[Example 3]
30 parts by mass of polydimethylsiloxane having both ends of the molecular chain are silanol groups and a viscosity at 25 ° C. of 5,000 mm 2 / s, and both ends of the molecular chain are silanol groups and have a viscosity at 25 ° C. of 20,000 mm 2 / 70 parts by mass of polydimethylsiloxane of s, 20 parts by mass of polydimethylsiloxane having a molecular chain both ends of a trimethylsilyl group and a viscosity of 300 mm 2 / s at 25 ° C., 4 parts by mass of tetramethoxysilane, and the above formula (13 ) 1 mass part of an amino group-containing silane represented by) was mixed for 60 minutes under normal pressure. Next, 10 parts by mass of fumed silica and 150 parts by mass of heavy calcium carbonate were mixed under reduced pressure for 40 minutes. After mixing under reduced pressure, 8 parts by mass of vinyltrimethoxysilane and 2 parts by mass of isopropoxytitanium bis (ethylacetoacetate) were added and mixed for 15 minutes under reduced pressure to obtain Composition 3.

[実施例4]
分子鎖両末端がシラノール基であり、25℃における粘度が5,000mm2/sのポリジメチルシロキサン30質量部と、分子鎖両末端がシラノール基であり、25℃における粘度が20,000mm2/sのポリジメチルシロキサン70質量部と、分子鎖両末端がトリメチルシリル基であり、25℃における粘度が300mm2/sのポリジメチルシロキサン20質量部と、メチルトリメトキシシラン4質量部と、上記式(13)で示されるアミノ基含有シラン1質量部を常圧下にて60分混合した。次いで、煙霧質シリカ10質量部と、重質炭酸カルシウム150質量部を減圧下にて40分混合した。減圧混合後、ビニルトリメトキシシラン8質量部と、イソプロポキシチタンビス(エチルアセトアセテート)2質量部を加え、減圧条件下15分混合して組成物4を得た。
[Example 4]
30 parts by mass of polydimethylsiloxane having both ends of the molecular chain are silanol groups and a viscosity at 25 ° C. of 5,000 mm 2 / s, and both ends of the molecular chain are silanol groups and have a viscosity at 25 ° C. of 20,000 mm 2 / 70 parts by weight of polydimethylsiloxane of s, 20 parts by weight of polydimethylsiloxane having a molecular chain both ends of a trimethylsilyl group and a viscosity at 25 ° C. of 300 mm 2 / s, 4 parts by weight of methyltrimethoxysilane, and the above formula ( 13 parts of an amino group-containing silane represented by 13) was mixed for 60 minutes under normal pressure. Next, 10 parts by mass of fumed silica and 150 parts by mass of heavy calcium carbonate were mixed under reduced pressure for 40 minutes. After mixing under reduced pressure, 8 parts by mass of vinyltrimethoxysilane and 2 parts by mass of isopropoxytitanium bis (ethylacetoacetate) were added and mixed for 15 minutes under reduced pressure to obtain Composition 4.

[比較例1]
分子鎖両末端がシラノール基であり、25℃における粘度が5,000mm2/sのポリジメチルシロキサン30質量部と、分子鎖両末端がシラノール基であり、25℃における粘度が20,000mm2/sのポリジメチルシロキサン70質量部と、分子鎖両末端がトリメチルシリル基であり、25℃における粘度が300mm2/sのポリジメチルシロキサン20質量部と、テトラメトキシシラン4質量部を常圧下にて60分混合した。次いで、煙霧質シリカ10質量部と、重質炭酸カルシウム150質量部を減圧下にて40分混合した。減圧混合後、上記式(13)で示されるアミノ基含有シラン1質量部とメチルトリメトキシシラン8質量部と、イソプロポキシチタンビス(エチルアセトアセテート)2質量部を加え、減圧条件下15分混合して組成物5を得た。
[Comparative Example 1]
30 parts by mass of polydimethylsiloxane having both ends of the molecular chain are silanol groups and a viscosity at 25 ° C. of 5,000 mm 2 / s, and both ends of the molecular chain are silanol groups and have a viscosity at 25 ° C. of 20,000 mm 2 / 70 parts by mass of polydimethylsiloxane of s, 20 parts by mass of polydimethylsiloxane having a molecular chain at both ends of a trimethylsilyl group and a viscosity of 300 mm 2 / s at 25 ° C., and 4 parts by mass of tetramethoxysilane under normal pressure. Mixed for minutes. Next, 10 parts by mass of fumed silica and 150 parts by mass of heavy calcium carbonate were mixed under reduced pressure for 40 minutes. After mixing under reduced pressure, 1 part by mass of the amino group-containing silane represented by the above formula (13), 8 parts by mass of methyltrimethoxysilane and 2 parts by mass of isopropoxytitanium bis (ethylacetoacetate) are added and mixed for 15 minutes under reduced pressure. Thus, composition 5 was obtained.

[比較例2]
分子鎖両末端がシラノール基であり、25℃における粘度が5,000mm2/sのポリジメチルシロキサン30質量部と、分子鎖両末端がシラノール基であり、25℃における粘度が20,000mm2/sのポリジメチルシロキサン70質量部と、分子鎖両末端がトリメチルシリル基であり、25℃における粘度が300mm2/sのポリジメチルシロキサン20質量部と、メチルトリメトキシシラン4質量部を常圧下にて60分混合した。次いで、煙霧質シリカ10質量部と、重質炭酸カルシウム150質量部を減圧下にて40分混合した。減圧混合後、上記式(13)で示されるアミノ基含有シラン1質量部と、メチルトリメトキシシラン8質量部と、イソプロポキシチタンビス(エチルアセトアセテート)2質量部を加え、減圧条件下15分混合して組成物6を得た。
[Comparative Example 2]
30 parts by mass of polydimethylsiloxane having both ends of the molecular chain are silanol groups and a viscosity at 25 ° C. of 5,000 mm 2 / s, and both ends of the molecular chain are silanol groups and have a viscosity at 25 ° C. of 20,000 mm 2 / 70 parts by mass of polydimethylsiloxane of s, 20 parts by mass of polydimethylsiloxane having a molecular chain both ends of a trimethylsilyl group and a viscosity of 300 mm 2 / s at 25 ° C., and 4 parts by mass of methyltrimethoxysilane under normal pressure Mix for 60 minutes. Next, 10 parts by mass of fumed silica and 150 parts by mass of heavy calcium carbonate were mixed under reduced pressure for 40 minutes. After mixing under reduced pressure, 1 part by mass of the amino group-containing silane represented by the above formula (13), 8 parts by mass of methyltrimethoxysilane, and 2 parts by mass of isopropoxytitanium bis (ethylacetoacetate) are added and mixed under reduced pressure for 15 minutes. Thus, a composition 6 was obtained.

[比較例3]
分子鎖両末端がシラノール基であり、25℃における粘度が5,000mm2/sのポリジメチルシロキサン30質量部と、分子鎖両末端がシラノール基であり、25℃における粘度が20,000mm2/sのポリジメチルシロキサン70質量部と、分子鎖両末端がトリメチルシリル基であり、25℃における粘度が300mm2/sのポリジメチルシロキサン20質量部と、メチルトリメトキシシラン4質量部を常圧下にて60分混合した。次いで、煙霧質シリカ10質量部と、重質炭酸カルシウム150質量部を減圧下にて40分混合した。減圧混合後、上記式(13)で示されるアミノ基含有シラン1質量部と、メチルトリメトキシシラン8質量部を加えて常圧で15分混合後、イソプロポキシチタンビス(エチルアセトアセテート)2質量部を加え、減圧条件下15分混合して組成物7を得た。
[Comparative Example 3]
30 parts by mass of polydimethylsiloxane having both ends of the molecular chain are silanol groups and a viscosity at 25 ° C. of 5,000 mm 2 / s, and both ends of the molecular chain are silanol groups and have a viscosity at 25 ° C. of 20,000 mm 2 / 70 parts by mass of polydimethylsiloxane of s, 20 parts by mass of polydimethylsiloxane having a molecular chain both ends of a trimethylsilyl group and a viscosity of 300 mm 2 / s at 25 ° C., and 4 parts by mass of methyltrimethoxysilane under normal pressure Mix for 60 minutes. Next, 10 parts by mass of fumed silica and 150 parts by mass of heavy calcium carbonate were mixed under reduced pressure for 40 minutes. After mixing under reduced pressure, 1 part by mass of the amino group-containing silane represented by the above formula (13) and 8 parts by mass of methyltrimethoxysilane were added and mixed at normal pressure for 15 minutes, and then 2 parts by mass of isopropoxy titanium bis (ethylacetoacetate). And mixed under reduced pressure for 15 minutes to obtain a composition 7.

[比較例4]
分子鎖両末端がシラノール基であり、25℃における粘度が5,000mm2/sのポリジメチルシロキサン30質量部と、分子鎖両末端がシラノール基であり、25℃における粘度が20,000mm2/sのポリジメチルシロキサン70質量部と、分子鎖両末端がトリメチルシリル基であり、25℃における粘度が300mm2/sのポリジメチルシロキサン20質量部と、テトラメトキシシラン4質量部を常圧下にて60分混合した。次いで、煙霧質シリカ10質量部と、重質炭酸カルシウム150質量部を減圧下にて40分混合した。減圧混合後、上記式(13)で示されるアミノ基含有シラン1質量部と、メチルトリメトキシシラン8質量部を加えて常圧で15分混合後、イソプロポキシチタンビス(エチルアセトアセテート)2質量部を加え、減圧条件下15分混合して組成物8を得た。
[Comparative Example 4]
30 parts by mass of polydimethylsiloxane having both ends of the molecular chain are silanol groups and a viscosity at 25 ° C. of 5,000 mm 2 / s, and both ends of the molecular chain are silanol groups and have a viscosity at 25 ° C. of 20,000 mm 2 / 70 parts by mass of polydimethylsiloxane of s, 20 parts by mass of polydimethylsiloxane having a molecular chain at both ends of a trimethylsilyl group and a viscosity of 300 mm 2 / s at 25 ° C., and 4 parts by mass of tetramethoxysilane under normal pressure. Mixed for minutes. Next, 10 parts by mass of fumed silica and 150 parts by mass of heavy calcium carbonate were mixed under reduced pressure for 40 minutes. After mixing under reduced pressure, 1 part by mass of the amino group-containing silane represented by the above formula (13) and 8 parts by mass of methyltrimethoxysilane were added and mixed at normal pressure for 15 minutes, and then 2 parts by mass of isopropoxy titanium bis (ethylacetoacetate). Was added and mixed for 15 minutes under reduced pressure to obtain Composition 8.

調製した組成物1〜8を用いて、以下の特性を確認した。得られた結果を表1に示す。   The following characteristics were confirmed using the prepared compositions 1-8. The obtained results are shown in Table 1.

・初期硬化性
調製した組成物1〜8を、23℃/50%RH環境下にて厚さが3mmになるように7日間放置して硬化させ、JIS K 6249に従い、硬さを測定した。
Initial Curability The prepared compositions 1 to 8 were allowed to stand for 7 days in a 23 ° C./50% RH environment so as to have a thickness of 3 mm, and the hardness was measured according to JIS K 6249.

・簡易接着性
調製した組成物1〜8を、エタノールで表面を洗浄した被着体に、厚さが3mmになるように塗布し、23℃/50%RH環境下にて7日間硬化させた。7日後、被着体からゴム(組成物の硬化物)を剥がし、接着性を確認し、下記の基準で評価した。
○:被着体とゴム界面に1cm程度の切込みを入れ、手でせん断方向に引っ張った際に、
ゴムが被着体から剥離しない
×:被着体とゴム界面に1cm程度の切込みを入れ、手でせん断方向に引っ張った際に、
ゴムが被着体から剥離する
Simple adhesiveness The prepared compositions 1 to 8 were applied to an adherend whose surface was washed with ethanol so that the thickness was 3 mm, and cured for 7 days in a 23 ° C./50% RH environment. . Seven days later, the rubber (cured product of the composition) was peeled off from the adherend, the adhesiveness was confirmed, and evaluation was performed according to the following criteria.
○: When a cut of about 1 cm is made at the adherend and rubber interface and pulled by hand in the shear direction,
The rubber does not peel off from the adherend ×: When a cut of about 1 cm is made at the adherend and rubber interface and pulled by hand in the shearing direction,
Rubber peels off the adherend

・保存性
調製した組成物1〜8を密閉可能容器に入れ、70℃のオーブンに7日間放置した。70℃/7日経過した組成物1〜8を、23℃/50%RH環境下にて厚さが3mmになるように7日間放置して硬化させ、JIS K 6249に従い、硬さを測定し、初期硬度と比較して±5の値であれば良好、±5を外れた場合は不良として判断した。
-Preservability The prepared compositions 1-8 were put in a sealable container and left in an oven at 70 ° C for 7 days. The compositions 1-8 after 70 ° C./7 days have passed and cured for 7 days in a 23 ° C./50% RH environment to a thickness of 3 mm, and the hardness was measured according to JIS K 6249. When the value was ± 5 compared to the initial hardness, it was judged as good, and when it was outside ± 5, it was judged as bad.

Figure 0005888112
Figure 0005888112

以下、難燃特性を有する室温硬化性オルガノポリシロキサン組成物の製造方法でも有用であることを、実施例及び比較例にて説明する。   Hereinafter, the usefulness of the method for producing a room temperature curable organopolysiloxane composition having flame retardancy will be described in Examples and Comparative Examples.

[実施例5]
分子鎖両末端がシラノール基であり、25℃における粘度が5,000mm2/sのポリジメチルシロキサン20質量部と、分子鎖両末端がシラノール基であり、25℃における粘度が20,000mm2/sのポリジメチルシロキサン80質量部と、分子鎖両末端がトリメチルシリル基であり、25℃における粘度が300mm2/sのポリジメチルシロキサン20質量部と、テトラメトキシシラン4質量部と、上記式(13)で示されるアミノ基含有シラン1質量部を常圧下にて60分混合した。次いで、煙霧質シリカ10質量部と、重質炭酸カルシウム30質量部と、水酸化アルミニウム150質量部を減圧下にて40分混合した。減圧混合後、メチルトリメトキシシラン10質量部と、イソプロポキシチタンビス(エチルアセトアセテート)3質量部を加え、減圧条件下15分混合して組成物9を得た。
[Example 5]
The molecular chain both ends are silanol groups, and 20 parts by mass of polydimethylsiloxane having a viscosity of 5,000 mm 2 / s at 25 ° C. The molecular chain both ends are silanol groups and the viscosity at 25 ° C. is 20,000 mm 2 / s. 80 parts by mass of polydimethylsiloxane of s, 20 parts by mass of polydimethylsiloxane having a molecular chain both ends of a trimethylsilyl group and a viscosity of 300 mm 2 / s at 25 ° C., 4 parts by mass of tetramethoxysilane, and the above formula (13 ) 1 mass part of an amino group-containing silane represented by) was mixed for 60 minutes under normal pressure. Next, 10 parts by mass of fumed silica, 30 parts by mass of heavy calcium carbonate, and 150 parts by mass of aluminum hydroxide were mixed under reduced pressure for 40 minutes. After mixing under reduced pressure, 10 parts by mass of methyltrimethoxysilane and 3 parts by mass of isopropoxytitanium bis (ethylacetoacetate) were added and mixed for 15 minutes under reduced pressure to obtain Composition 9.

[実施例6]
分子鎖両末端がシラノール基であり、25℃における粘度が5,000mm2/sのポリジメチルシロキサン20質量部と、分子鎖両末端がシラノール基であり、25℃における粘度が20,000mm2/sのポリジメチルシロキサン80質量部と、分子鎖両末端がトリメチルシリル基であり、25℃における粘度が300mm2/sのポリジメチルシロキサン20質量部と、メチルトリメトキシシラン4質量部と、上記式(13)で示されるアミノ基含有シラン1質量部を常圧下にて60分混合した。次いで、煙霧質シリカ10質量部と、重質炭酸カルシウム30質量部と、水酸化アルミニウム150質量部を減圧下にて40分混合した。減圧混合後、メチルトリメトキシシラン10質量部と、イソプロポキシチタンビス(エチルアセトアセテート)3質量部を加え、減圧条件下15分混合して組成物10を得た。
[Example 6]
The molecular chain both ends are silanol groups, and 20 parts by mass of polydimethylsiloxane having a viscosity of 5,000 mm 2 / s at 25 ° C. The molecular chain both ends are silanol groups and the viscosity at 25 ° C. is 20,000 mm 2 / s. 80 parts by mass of polydimethylsiloxane of s, trimethylsilyl groups at both ends of the molecular chain, and 20 parts by mass of polydimethylsiloxane having a viscosity of 300 mm 2 / s at 25 ° C., 4 parts by mass of methyltrimethoxysilane, and the above formula ( 13 parts of an amino group-containing silane represented by 13) was mixed for 60 minutes under normal pressure. Next, 10 parts by mass of fumed silica, 30 parts by mass of heavy calcium carbonate, and 150 parts by mass of aluminum hydroxide were mixed under reduced pressure for 40 minutes. After mixing under reduced pressure, 10 parts by mass of methyltrimethoxysilane and 3 parts by mass of isopropoxytitanium bis (ethylacetoacetate) were added and mixed for 15 minutes under reduced pressure to obtain composition 10.

[比較例5]
分子鎖両末端がシラノール基であり、25℃における粘度が5,000mm2/sのポリジメチルシロキサン20質量部と、分子鎖両末端がシラノール基であり、25℃における粘度が20,000mm2/sのポリジメチルシロキサン80質量部と、分子鎖両末端がトリメチルシリル基であり、25℃における粘度が300mm2/sのポリジメチルシロキサン20質量部と、テトラメトキシシラン4質量部を常圧下にて60分混合した。次いで、煙霧質シリカ10質量部と、重質炭酸カルシウム30質量部と、水酸化アルミニウム150質量部を減圧下にて40分混合した。減圧混合後、上記式(13)で示されるアミノ基含有シラン1質量部と、メチルトリメトキシシラン10質量部と、イソプロポキシチタンビス(エチルアセトアセテート)3質量部を加え、減圧条件下15分混合して組成物11を得た。
[Comparative Example 5]
The molecular chain both ends are silanol groups, and 20 parts by mass of polydimethylsiloxane having a viscosity of 5,000 mm 2 / s at 25 ° C. The molecular chain both ends are silanol groups and the viscosity at 25 ° C. is 20,000 mm 2 / s. 80 parts by mass of polydimethylsiloxane of s, 20 parts by mass of polydimethylsiloxane having a molecular chain both ends of a trimethylsilyl group and a viscosity of 300 mm 2 / s at 25 ° C., and 4 parts by mass of tetramethoxysilane under normal pressure. Mixed for minutes. Next, 10 parts by mass of fumed silica, 30 parts by mass of heavy calcium carbonate, and 150 parts by mass of aluminum hydroxide were mixed under reduced pressure for 40 minutes. After mixing under reduced pressure, 1 part by mass of the amino group-containing silane represented by the above formula (13), 10 parts by mass of methyltrimethoxysilane and 3 parts by mass of isopropoxytitanium bis (ethylacetoacetate) are added and mixed under reduced pressure for 15 minutes. Thus, a composition 11 was obtained.

[比較例6]
分子鎖両末端がシラノール基であり、25℃における粘度が5,000mm2/sのポリジメチルシロキサン20質量部と、分子鎖両末端がシラノール基であり、25℃における粘度が20,000mm2/sのポリジメチルシロキサン80質量部と、分子鎖両末端がトリメチルシリル基であり、25℃における粘度が300mm2/sのポリジメチルシロキサン20質量部と、メチルトリメトキシシラン4質量部を常圧下にて60分混合した。次いで、煙霧質シリカ10質量部と、重質炭酸カルシウム30質量部と、水酸化アルミニウム150質量部を減圧下にて40分混合した。減圧混合後、上記式(13)で示されるアミノ基含有シラン1質量部と、メチルトリメトキシシラン10質量部と、イソプロポキシチタンビス(エチルアセトアセテート)3質量部を加え、減圧条件下15分混合して組成物12を得た。
[Comparative Example 6]
The molecular chain both ends are silanol groups, and 20 parts by mass of polydimethylsiloxane having a viscosity of 5,000 mm 2 / s at 25 ° C. The molecular chain both ends are silanol groups and the viscosity at 25 ° C. is 20,000 mm 2 / s. 80 parts by mass of polydimethylsiloxane of s, 20 parts by mass of polydimethylsiloxane having both ends of a molecular chain of a trimethylsilyl group and a viscosity of 300 mm 2 / s at 25 ° C., and 4 parts by mass of methyltrimethoxysilane under normal pressure Mix for 60 minutes. Next, 10 parts by mass of fumed silica, 30 parts by mass of heavy calcium carbonate, and 150 parts by mass of aluminum hydroxide were mixed under reduced pressure for 40 minutes. After mixing under reduced pressure, 1 part by mass of the amino group-containing silane represented by the above formula (13), 10 parts by mass of methyltrimethoxysilane and 3 parts by mass of isopropoxytitanium bis (ethylacetoacetate) are added and mixed under reduced pressure for 15 minutes. Thus, a composition 12 was obtained.

[比較例7]
分子鎖両末端がシラノール基であり、25℃における粘度が5,000mm2/sのポリジメチルシロキサン20質量部と、分子鎖両末端がシラノール基であり、25℃における粘度が20,000mm2/sのポリジメチルシロキサン80質量部と、分子鎖両末端がトリメチルシリル基であり、25℃における粘度が300mm2/sのポリジメチルシロキサン20質量部と、メチルトリメトキシシラン4質量部を常圧下にて60分混合した。次いで、煙霧質シリカ10質量部と、重質炭酸カルシウム30質量部と、水酸化アルミニウム150質量部を減圧下にて40分混合した。減圧混合後、上記式(13)で示されるアミノ基含有シラン1質量部と、メチルトリメトキシシラン10質量部を加えて常圧で15分混合後、イソプロポキシチタンビス(エチルアセトアセテート)3質量部を加え、減圧条件下15分混合して組成物13を得た。
[Comparative Example 7]
The molecular chain both ends are silanol groups, and 20 parts by mass of polydimethylsiloxane having a viscosity of 5,000 mm 2 / s at 25 ° C. The molecular chain both ends are silanol groups and the viscosity at 25 ° C. is 20,000 mm 2 / s. 80 parts by mass of polydimethylsiloxane of s, 20 parts by mass of polydimethylsiloxane having both ends of a molecular chain of a trimethylsilyl group and a viscosity of 300 mm 2 / s at 25 ° C., and 4 parts by mass of methyltrimethoxysilane under normal pressure Mix for 60 minutes. Next, 10 parts by mass of fumed silica, 30 parts by mass of heavy calcium carbonate, and 150 parts by mass of aluminum hydroxide were mixed under reduced pressure for 40 minutes. After mixing under reduced pressure, 1 part by mass of the amino group-containing silane represented by the above formula (13) and 10 parts by mass of methyltrimethoxysilane were added and mixed at normal pressure for 15 minutes, and then 3 parts by mass of isopropoxy titanium bis (ethylacetoacetate). And mixed under reduced pressure for 15 minutes to obtain a composition 13.

[比較例8]
分子鎖両末端がシラノール基であり、25℃における粘度が5,000mm2/sのポリジメチルシロキサン20質量部と、分子鎖両末端がシラノール基であり、25℃における粘度が20,000mm2/sのポリジメチルシロキサン80質量部と、分子鎖両末端がトリメチルシリル基であり、25℃における粘度が300mm2/sのポリジメチルシロキサン20質量部と、テトラメトキシシラン4質量部を常圧下にて60分混合した。次いで、煙霧質シリカ10質量部と、重質炭酸カルシウム30質量部と、水酸化アルミニウム150質量部を減圧下にて40分混合した。減圧混合後、上記式(13)で示されるアミノ基含有シラン1質量部と、メチルトリメトキシシラン10質量部を加えて常圧で15分混合後、イソプロポキシチタンビス(エチルアセトアセテート)3質量部を加え、減圧条件下15分混合して組成物14を得た。
[Comparative Example 8]
The molecular chain both ends are silanol groups, and 20 parts by mass of polydimethylsiloxane having a viscosity of 5,000 mm 2 / s at 25 ° C. The molecular chain both ends are silanol groups and the viscosity at 25 ° C. is 20,000 mm 2 / s. 80 parts by mass of polydimethylsiloxane of s, 20 parts by mass of polydimethylsiloxane having a molecular chain both ends of a trimethylsilyl group and a viscosity of 300 mm 2 / s at 25 ° C., and 4 parts by mass of tetramethoxysilane under normal pressure. Mixed for minutes. Next, 10 parts by mass of fumed silica, 30 parts by mass of heavy calcium carbonate, and 150 parts by mass of aluminum hydroxide were mixed under reduced pressure for 40 minutes. After mixing under reduced pressure, 1 part by mass of the amino group-containing silane represented by the above formula (13) and 10 parts by mass of methyltrimethoxysilane were added and mixed at normal pressure for 15 minutes, and then 3 parts by mass of isopropoxy titanium bis (ethylacetoacetate). And mixed under reduced pressure for 15 minutes to obtain a composition 14.

調製した組成物9〜14を用いて、以下の特性を確認した。得られた結果を表2に示す。   The following characteristics were confirmed using the prepared compositions 9-14. The obtained results are shown in Table 2.

・初期硬化性
調製した組成物9〜14を、23℃/50%RH環境下にて厚さが3mmになるように7日間放置して硬化させ、JIS K 6249に従い、硬さを測定した。
Initial Curability The prepared compositions 9 to 14 were allowed to cure for 7 days so as to have a thickness of 3 mm in a 23 ° C./50% RH environment, and the hardness was measured according to JIS K 6249.

・簡易接着性
調製した組成物9〜14を、エタノールで表面を洗浄した被着体に、厚さが3mmになるように塗布し、23℃/50%RH環境下にて7日間硬化させた。7日後、被着体からゴム(組成物の硬化物)を剥がし、接着性を確認し、下記の基準で評価した。
○:被着体とゴム界面に1cm程度の切込みを入れ、手でせん断方向に引っ張った際に、
ゴムが被着体から剥離しない
×:被着体とゴム界面に1cm程度の切込みを入れ、手でせん断方向に引っ張った際に、
ゴムが被着体から剥離する
Simple adhesiveness The prepared compositions 9 to 14 were applied to an adherend whose surface was washed with ethanol so as to have a thickness of 3 mm, and cured for 7 days in a 23 ° C./50% RH environment. . Seven days later, the rubber (cured product of the composition) was peeled off from the adherend, the adhesiveness was confirmed, and evaluation was performed according to the following criteria.
○: When a cut of about 1 cm is made at the adherend and rubber interface and pulled by hand in the shear direction,
The rubber does not peel off from the adherend ×: When a cut of about 1 cm is made at the adherend and rubber interface and pulled by hand in the shearing direction,
Rubber peels off the adherend

・難燃性
調製した組成物9〜14を、23℃/50%RH環境下にて7日間放置して厚み2mmの試験体を作製し、UL−94に規定された方法により難燃性を確認した。
・ Flame retardance The prepared compositions 9 to 14 were allowed to stand in a 23 ° C./50% RH environment for 7 days to prepare a test specimen having a thickness of 2 mm, and flame retardancy was achieved by the method prescribed in UL-94. confirmed.

・保存性
調製した組成物9〜14を密閉可能容器に入れ、70℃のオーブンに7日間放置した。70℃/7日経過した組成物9〜14を、23℃/50%RH環境下にて厚さが3mmになるように7日間放置して硬化させ、JIS K 6249に従い、硬さを測定し、初期硬度と比較して±5の値であれば良好、±5を外れた場合は不良として判断した。
-Preservability The prepared compositions 9 to 14 were put in a sealable container and left in an oven at 70 ° C for 7 days. The compositions 9 to 14 after 70 ° C./7 days were allowed to cure for 7 days so as to have a thickness of 3 mm in a 23 ° C./50% RH environment, and the hardness was measured in accordance with JIS K 6249. When the value was ± 5 compared to the initial hardness, it was judged as good, and when it was outside ± 5, it was judged as bad.

Figure 0005888112
Figure 0005888112

表2の結果から明らかなように、難燃性を有する室温硬化性オルガノポリシロキサン組成物の製造方法としても有用であることが分かった。無機充填剤の種類、量を変えることにより、放熱特性や難燃放熱特性など種々の特性を有する室温硬化性オルガノポリシロキサン組成物も調製可能である。   As is apparent from the results in Table 2, it was found that the method was also useful as a method for producing a room temperature curable organopolysiloxane composition having flame retardancy. By changing the kind and amount of the inorganic filler, a room temperature curable organopolysiloxane composition having various characteristics such as heat dissipation characteristics and flame retardant heat dissipation characteristics can also be prepared.

Claims (5)

(A)下記一般式(1)
Figure 0005888112
(式中、R1は独立に炭素数1〜10の非置換又は置換の一価の炭化水素基であり、mは10以上の整数である。)
で示されるオルガノポリシロキサン、
(B)下記一般式(2)
Figure 0005888112
(式中、R2は炭素数1〜10の非置換又はハロゲン置換一価炭化水素基であり、R3は独立に炭素数1〜10の非置換の一価炭化水素基であり、aは3又は4である。)
で示されるシラン化合物又はその部分加水分解縮合物、
(C)下記一般式(3)
Figure 0005888112
(式中、R4は芳香環を含む炭素数7〜10の二価の炭化水素基であり、R5は炭素数1〜10の二価の炭化水素基であり、R6及びR7はそれぞれ独立に炭素数1〜10の非置換又はハロゲン置換一価炭化水素基であり、bは2又は3である。但し、1級及び2級アミンの少なくとも一方はR4の芳香環に直結していない。)
で示されるアミノ基含有シラン又はその部分加水分解物、
(D)無機充填剤、
(E)硬化触媒
を必須成分とする室温硬化性オルガノポリシロキサン組成物の製造方法であって、(D)成分、(E)成分を混合する前に、(A)成分と(B)成分の一部又は全部と(C)成分を事前混合することを特徴とする室温硬化性オルガノポリシロキサン組成物の製造方法。
(A) The following general formula (1)
Figure 0005888112
(In the formula, R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and m is an integer of 10 or more.)
An organopolysiloxane represented by
(B) The following general formula (2)
Figure 0005888112
Wherein R 2 is an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, R 3 is independently an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and a is 3 or 4)
Or a partially hydrolyzed condensate thereof,
(C) The following general formula (3)
Figure 0005888112
(Wherein R 4 is a C 7-10 divalent hydrocarbon group containing an aromatic ring, R 5 is a C 1-10 divalent hydrocarbon group, and R 6 and R 7 are Each independently an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and b is 2 or 3. However, at least one of the primary and secondary amines is directly connected to the aromatic ring of R 4. Not.)
An amino group-containing silane represented by or a partial hydrolyzate thereof,
(D) inorganic filler,
(E) A method for producing a room temperature curable organopolysiloxane composition having a curing catalyst as an essential component, and before mixing (D) component and (E) component, (A) component and (B) component A method for producing a room temperature-curable organopolysiloxane composition, wherein a part or all of the component (C) is premixed.
(E)成分が、有機チタン化合物である請求項1に記載の室温硬化性オルガノポリシロキサン組成物の製造方法。   The method for producing a room temperature curable organopolysiloxane composition according to claim 1, wherein the component (E) is an organic titanium compound. (B)成分の配合量が(A)成分100質量部に対して0.2〜30質量部であり、(C)成分の配合量が(A)成分100質量部に対して0.1〜10質量部であり、(D)成分の配合量が(A)成分100質量部に対して1〜800質量部であり、(E)成分の配合量が(A)成分100質量部に対して0.1〜10質量部である請求項1又は2に記載の室温硬化性オルガノポリシロキサン組成物の製造方法。   (B) The compounding quantity of component is 0.2-30 mass parts with respect to 100 mass parts of (A) component, and the compounding quantity of (C) component is 0.1-0.1 with respect to 100 mass parts of (A) component. 10 parts by mass, the amount of component (D) is 1 to 800 parts by mass with respect to 100 parts by mass of component (A), and the amount of component (E) is 100 parts by mass of component (A). It is 0.1-10 mass parts, The manufacturing method of the room temperature curable organopolysiloxane composition of Claim 1 or 2. 請求項1〜3のいずれか1項に記載された製造方法により室温硬化性オルガノポリシロキサン組成物を製造した後、該組成物を物品に塗布し、該組成物を硬化して、該物品に該組成物の硬化物を接着又はコーティングする方法。 After producing a room temperature curable organopolysiloxane composition by the production method according to any one of claims 1 to 3, the composition is applied to an article, the composition is cured, and the article is applied. A method of bonding or coating a cured product of the composition. 物品が電源部品である請求項4に記載の方法The method of claim 4, wherein the article is a power supply component.
JP2012116145A 2012-05-22 2012-05-22 Method for producing room temperature curable organopolysiloxane composition and article Active JP5888112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012116145A JP5888112B2 (en) 2012-05-22 2012-05-22 Method for producing room temperature curable organopolysiloxane composition and article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012116145A JP5888112B2 (en) 2012-05-22 2012-05-22 Method for producing room temperature curable organopolysiloxane composition and article

Publications (2)

Publication Number Publication Date
JP2013241533A JP2013241533A (en) 2013-12-05
JP5888112B2 true JP5888112B2 (en) 2016-03-16

Family

ID=49842748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012116145A Active JP5888112B2 (en) 2012-05-22 2012-05-22 Method for producing room temperature curable organopolysiloxane composition and article

Country Status (1)

Country Link
JP (1) JP5888112B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230088263A (en) 2021-12-10 2023-06-19 신에쓰 가가꾸 고교 가부시끼가이샤 A method for preparing a room temperature curable organopolysiloxane composition and a room temperature curable organopolysiloxane composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180016475A1 (en) * 2015-01-21 2018-01-18 Shin-Etsu Chemical Co., Ltd. Room temperature-curable organopolysiloxane composition
JP6922917B2 (en) * 2016-08-26 2021-08-18 信越化学工業株式会社 Dealcohol-type room temperature curable organopolysiloxane composition and articles sealed with the cured product of the composition
JPWO2019069706A1 (en) * 2017-10-06 2020-11-05 信越化学工業株式会社 Method for Producing Room Temperature Curable Organopolysiloxane Composition, Room Temperature Curable Organopolysiloxane Composition and Articles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177032A (en) * 2005-12-27 2007-07-12 Momentive Performance Materials Japan Kk Room temperature-curable polyorganosiloxane composition
JP4781810B2 (en) * 2005-12-27 2011-09-28 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Room temperature curable polyorganosiloxane composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230088263A (en) 2021-12-10 2023-06-19 신에쓰 가가꾸 고교 가부시끼가이샤 A method for preparing a room temperature curable organopolysiloxane composition and a room temperature curable organopolysiloxane composition

Also Published As

Publication number Publication date
JP2013241533A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JP5997778B2 (en) Novel alkoxysilyl-ethylene group-terminated silicon-containing compound, room temperature curable organopolysiloxane composition, and molded product obtained by curing the composition
KR102207422B1 (en) Multicomponent room temperature-curable organopolysiloxane composition, cured product of said composition, and molded product comprising said cured product
KR102326223B1 (en) Room-temperature-curable organopolysiloxane composition, and moulded product comprising cured product of said room- temperature-curable organopolysiloxane composition
JP5960843B2 (en) Process for producing alkoxysilyl-ethylene group-terminated organosiloxane polymer, room temperature curable composition and molded product which is cured product thereof
JP2006265529A (en) Room temperature curable organopolysiloxane composition
JP2009007553A (en) Room temperature-curable organopolysiloxane composition
JPWO2019069706A1 (en) Method for Producing Room Temperature Curable Organopolysiloxane Composition, Room Temperature Curable Organopolysiloxane Composition and Articles
JP4912754B2 (en) Room temperature curable organopolysiloxane composition
JP5500037B2 (en) Flame retardant organopolysiloxane composition
JP5888112B2 (en) Method for producing room temperature curable organopolysiloxane composition and article
JP6760223B2 (en) Room temperature curable organopolysiloxane composition, and sealants, coating agents, adhesives, molded articles containing the same.
JP4522816B2 (en) Adhesive polyorganosiloxane composition having flame retardancy
JP2006131824A (en) Room temperature curable organopolysiloxane composition
JP6319168B2 (en) Method for producing condensation reaction product, method for producing room temperature curable organopolysiloxane composition containing the condensation reaction product
JP2010132865A (en) Flame-retardant organopolysiloxane composition
JP3846571B2 (en) Organopolysiloxane composition
JP6915551B2 (en) A method for improving heat-resistant adhesiveness in flame-retardant room-temperature-curable organopolysiloxane compositions, electrical or electronic components, and electrical or electronic components.
JP6589572B2 (en) Condensation curable room temperature curable silicone rubber composition and electronic circuit
WO2023068094A1 (en) Room temperature-curable organopolysiloxane composition, adhesive, sealing agent, and coating agent
JP5482698B2 (en) Two-component mixed room temperature curable organopolysiloxane composition
CN106795182B (en) Organic titanium compound, method for producing same, and room-temperature-curable resin composition
JP4954785B2 (en) Room temperature curable polyorganosiloxane composition
JP4466846B2 (en) Room temperature curable organopolysiloxane composition
JP2005213487A (en) Room temperature-curing polyorganosiloxane composition
JPH03287664A (en) Room temperature curable organopolysiloxane composition and curing product prepared therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5888112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150