JP5885193B2 - Manufacturing method of heat and pressure resistant and corrosion resistant microelectrode - Google Patents
Manufacturing method of heat and pressure resistant and corrosion resistant microelectrode Download PDFInfo
- Publication number
- JP5885193B2 JP5885193B2 JP2012028274A JP2012028274A JP5885193B2 JP 5885193 B2 JP5885193 B2 JP 5885193B2 JP 2012028274 A JP2012028274 A JP 2012028274A JP 2012028274 A JP2012028274 A JP 2012028274A JP 5885193 B2 JP5885193 B2 JP 5885193B2
- Authority
- JP
- Japan
- Prior art keywords
- resistant
- corrosion
- pressure
- heat
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Description
本発明は、電極及びその製造方法に関し、特に、高温場、高圧場、高温高圧場での電気化学測定や電気化学反応の関与する分析装置、反応装置等に用いられるのに好適な耐熱耐圧耐食性マイクロ電極及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to an electrode and a method for producing the same, and in particular, high temperature field, high pressure field, high temperature and high pressure field, heat resistance, corrosion resistance suitable for use in an analytical apparatus, a reaction apparatus, etc. involved in electrochemical measurement and electrochemical reaction. The present invention relates to a microelectrode and a manufacturing method thereof.
高温高圧流体は、温度圧力操作により流体物性を大幅かつ連続的に変化させることができる。特に高温高圧水は、環境負荷が極めて低いことに加えて、有機溶媒の代替機能、酸塩基触媒機能を有する。そのため、ナノ材料の合成や有機合成・変換の新規な環境調和型反応場として期待できる。一方で、高温高圧水場は自然界において、地球内部でのマントル付近、海底の熱水噴出孔などに存在する。マントル付近での高温高圧水と鉱物の相互作用は地球活動と密接に関連している。熱水噴出孔付近の高温高圧水中では、初期生命が誕生した可能性が指摘されている。このように高温高圧流体場は、材料合成場としてだけでなく地球の活動から生命の起源に至る幅広い分野で興味深い場として古くから注目を集めている。高温高圧流体場での現象の定量的な理解や予測のためには、水溶液のpH、伝導度、相平衡に代表される物性データが不可欠となる。また、装置用金属の腐食挙動の把握においては腐食電位データなどが重要となる。これらデータの蓄積には、電気化学測定法が有効である。さらに、高温高圧流体と電気化学反応やプラズマなどとの融合は、新規な材料製造プロセスに繋がる可能性を秘めている。
流体操作におけるマイクロメートルサイズの空間(流路)の利用は、熱交換や混合の高速化、温度、滞在時間、流動状態の精密制御、耐圧性の向上という特徴を持つ。そのため、分析や反応の高速化、効率化が期待でき、その空間を利用するための装置(マイクロ流体デバイス)開発を含めて、積極的な研究が進められてきた。
The high-temperature and high-pressure fluid can change the physical properties of the fluid greatly and continuously by operating the temperature and pressure. In particular, high-temperature and high-pressure water has an extremely low environmental load, and also has an organic solvent alternative function and an acid-base catalyst function. Therefore, it can be expected as a new environment-friendly reaction field for synthesis of nanomaterials and organic synthesis / conversion. On the other hand, high-temperature and high-pressure water fields exist in nature, in the vicinity of the mantle inside the earth, in the hydrothermal vents on the seabed, and the like. The interaction between high-temperature and high-pressure water and minerals near the mantle is closely related to global activity. It is pointed out that early life was born in high-temperature and high-pressure water near the hydrothermal vent. Thus, the high-temperature and high-pressure fluid field has been attracting attention since ancient times as an interesting field not only as a material synthesis field but also in a wide range of fields ranging from activities of the earth to the origin of life. In order to quantitatively understand and predict phenomena in a high-temperature and high-pressure fluid field, physical property data represented by the pH, conductivity, and phase equilibrium of the aqueous solution is indispensable. Corrosion potential data is important for understanding the corrosion behavior of metal for equipment. Electrochemical measurement methods are effective for accumulating these data. Furthermore, the fusion of high-temperature and high-pressure fluids with electrochemical reactions and plasmas has the potential to lead to new material manufacturing processes.
The use of micrometer-sized spaces (flow paths) in fluid operations has the characteristics of heat exchange and high-speed mixing, precise control of temperature, residence time, flow state, and improvement of pressure resistance. Therefore, high speed and efficiency of analysis and reaction can be expected, and active research has been promoted including the development of devices (microfluidic devices) for using the space.
高温高圧流体場で電気化学的な測定や反応を実施するための電極としては、以下のようなものが知られている。なお、高温高圧流体中への電極の設置において、合金で作製される装置と電極間の絶縁と電極自体の耐圧シールが最大の課題である。300℃程度までの条件では絶縁性に優れたシール材としてテフロン(登録商標)などが一般的であり、高温高圧装置に直接固定・設置する方法が広く使用されている(非特許文献1参照)。
一方で300℃以上では、高温高圧装置に接続された高圧配管や冷却ジャケットなどを介して設けられる常温部で耐圧シールし、電極線の先端測定部を装置内高温部に挿入する方法が用いられている(非特許文献2、3、4参照)。
しかし、あくまで内容積や配管径の大きな特定の高温高圧装置への設置を目的としており、マイクロ流体デバイスへの設置は構造上不可能である。
The following are known as electrodes for performing electrochemical measurements and reactions in a high-temperature and high-pressure fluid field. In the installation of the electrode in the high-temperature and high-pressure fluid, the greatest problem is the insulation between the device made of the alloy and the electrode and the pressure-proof seal of the electrode itself. Under conditions up to about 300 ° C., Teflon (registered trademark) or the like is generally used as a sealing material excellent in insulation, and a method of directly fixing and installing in a high-temperature and high-pressure apparatus is widely used (see Non-Patent Document 1). .
On the other hand, at 300 ° C. or higher, a method is used in which pressure-resistant sealing is performed at a normal temperature portion provided via a high-pressure pipe or a cooling jacket connected to a high-temperature high-pressure device, and the tip measurement portion of the electrode wire is inserted into the high-temperature portion in the device. (See Non-Patent Documents 2, 3, and 4).
However, it is intended only for installation in a specific high-temperature and high-pressure apparatus having a large internal volume or pipe diameter, and it cannot be installed in a microfluidic device because of its structure.
高温高圧流体場で使用するマイクロ流体デバイスは、通常、マイクロメートルサイズの流路を有する継手や配管の接続により構成される。耐熱耐圧構造を有する継手としては、流路内径が0.3〜0.8mmのT型継手、中心衝突流利用型継手、旋回流利用型継手が広く知られている(非特許文献5、特許文献1、非特許文献6参照)。
また、耐食構造を有するマイクロ流体デバイスとしては、耐食材としてチタンを、耐熱耐圧材としてインコネル(NFC)625を用いた二重構造で、流路内径が0.5mm程度のT型継手やチタン内張管が知られている(特許文献2、3参照)。
マイクロ流体デバイスへの電極の設置については、マイクロ流路を加工したアクリル樹脂、ガラス、シリコン、ピーク製などからなる基板内に、白金などからなる薄膜電極を配置することで作製される(特許文献4、5参照)。
様々なタイプの電気化学測定や反応を可能とするマイクロ流路デバイスが提案されているが、あくまで常温常圧付近での使用を想定したものであり、高温高圧での使用は構造上不可能である。
A microfluidic device used in a high-temperature and high-pressure fluid field is usually configured by connecting a joint or a pipe having a micrometer-sized channel. As joints having a heat-resistant pressure-resistant structure, T-type joints having a flow path inner diameter of 0.3 to 0.8 mm, central collision flow-use joints, and swirl-flow-use joints are widely known (Non-Patent Document 5, Patents). Reference 1 and Non-Patent Document 6).
In addition, as a microfluidic device having a corrosion-resistant structure, a double structure using titanium as a corrosion-resistant material and Inconel (NFC) 625 as a heat-resistant and pressure-resistant material, and a T-type joint having a channel inner diameter of about 0.5 mm or titanium A tension tube is known (see Patent Documents 2 and 3).
The electrode is installed in the microfluidic device by placing a thin-film electrode made of platinum or the like in a substrate made of acrylic resin, glass, silicon, or peak made from a microchannel (Patent Document) 4, 5).
Microchannel devices that enable various types of electrochemical measurements and reactions have been proposed, but they are only supposed to be used at room temperature and normal pressure. is there.
本発明者らは、上記従来技術に鑑みて以下の事項を満たす新しい技術を提供することを目的として鋭意研究を重ねた。
(1)高温高圧流体中での電気化学測定や電気化学反応を正確に実施するために利用する温度、圧力、滞在時間などを厳密制御可能なマイクロ流体デバイス(流路内径1.0mm以下)に設置、接続可能なこと。
(2)高温高圧環境および酸塩基や塩などの共存した腐食性環境での使用が想定されるため、電極自体が耐熱耐圧耐食性構造を有すること。
(3)電極がマイクロ流体デバイスなどと絶縁環境に設置できること。また、その絶縁体は耐食性が高いこと。
(4)高温高圧運転時の安全性の確保やマイクロ流体デバイスの正確な温度制御において、電極を含むデバイス全体は極力小型であることが望ましいため、電極は、小型で、汎用性が高く、可能な限り簡易な構造を有すること。
その結果、耐熱耐圧耐食性合金配管内に、電極細線を配置し、配管内壁と電極細線の間の空間を絶縁耐食性酸化物を充填した構造のマイクロ電極を作製することにより、所期の目的を達成し得ることを見出し、本発明を完成するに至った。
本発明は、上記の問題点に着目してなされたもので、電極母体となる耐熱耐圧耐食性合金配管の外径が4mm以下好ましくは1.59mm以下、電極細線の直径が1.0mm以下であり、電極細線が配管から絶縁されている耐熱耐圧耐食性マイクロ電極とその製造方法を提供することを目的とするものである。
In view of the above-described conventional technology, the present inventors have conducted intensive research for the purpose of providing a new technology that satisfies the following matters.
(1) A microfluidic device (flow path inner diameter of 1.0 mm or less) that can strictly control the temperature, pressure, residence time, etc. used to accurately perform electrochemical measurements and electrochemical reactions in high-temperature and high-pressure fluids Installable and connectable.
(2) The electrode itself has a heat-resistant, pressure-resistant and corrosion-resistant structure because it is assumed to be used in a high-temperature and high-pressure environment and a corrosive environment where acid bases and salts coexist.
(3) The electrode can be installed in an insulating environment with a microfluidic device. The insulator must have high corrosion resistance.
(4) In order to ensure safety during high-temperature and high-pressure operation and to accurately control the temperature of microfluidic devices, it is desirable that the entire device including the electrode be as small as possible. Therefore, the electrode is small and highly versatile. Have a simple structure as much as possible.
As a result, the intended purpose is achieved by arranging the electrode thin wires in the heat-resistant, pressure-resistant and corrosion-resistant alloy piping, and producing a microelectrode with a structure filled with insulating corrosion-resistant oxide in the space between the inner wall of the piping and the electrode thin wires. As a result, the present invention has been completed.
The present invention has been made paying attention to the above-mentioned problems. The outer diameter of the heat-resistant, pressure-resistant and corrosion-resistant alloy pipe serving as the electrode base is 4 mm or less, preferably 1.59 mm or less, and the diameter of the electrode fine wire is 1.0 mm or less. An object of the present invention is to provide a heat-resistant, pressure-resistant and corrosion-resistant microelectrode in which an electrode fine wire is insulated from a pipe and a method for manufacturing the same.
上記課題を解決するために、本発明は、耐熱耐圧金属製管と、前記金属製管内中心軸上に設置された電極用細線と、前記金属製管内壁と前記電極細線の間に充填された耐食絶縁性セラミックスから構成され、電極用細線が管の両端から突出している耐熱耐圧耐食性マイクロ電極である。
また、本発明は、上記耐熱耐圧耐食性マイクロ電極において、前記電極細線の直径が1mm以下であることを特徴とする。
また、本発明は、上記耐熱耐圧耐食性マイクロ電極において、前記耐熱耐圧金属製管がニッケル、鉄、チタン、タンタルおよびそれらを主とする合金またはそれら合金内側にチタン、タンタルやアルミニウムの層またはそれらの酸化物層を有する管であることを特徴とする。
また、本発明は、上記耐熱耐圧耐食性マイクロ電極において、前記耐食絶縁性セラミックスが、チタニア、アルミナ、およびそれらの混合物を主とする耐食絶縁材であることを特徴とする。
また、本発明は、上記耐熱耐圧耐食性マイクロ電極において、前記電極用細線が、金、銀、銅、ロジウム、白金、パラジウム、ルテニウムおよびこれらの合金、鉄基合金、ニッケル基合金、チタン基合金、炭素であることを特徴とする。
また、本発明は、上記耐熱耐圧耐食性マイクロ電極において、前記耐熱耐圧金属製管の周囲に、管接続部に押圧されることにより耐圧シールするためのフェラルを固定したことを特徴とする。
また、本発明は、上記耐熱耐圧耐食性マイクロ電極において、前記耐熱耐圧金属製管の端面が、接続先に押圧されることにより耐圧シールするための、所定角度傾斜した円錐形状のテーパ面を有していることを特徴とする。
また、本発明は、耐熱耐圧性を有する金属製管に対して、中心部に電極細線を、前記電極細線と前記金属製管の間に耐食絶縁性セラミックス管を配置し、その後、金属製管周囲を加熱した状態で、耐食絶縁性セラミックスの粒子ゾルを、前記電極細線と前記耐食絶縁性セラミックス管の間の空間および前記耐食絶縁性セラミックス管と前記金属製管の間の空間に圧送充填し、その後常圧に戻して前記圧送充填された耐食絶縁性セラミックスの粒子ゾルをさらに加熱することで絶縁層として強固に結晶化させることを特徴とする耐熱耐圧耐食性マイクロ電極の製造方法である。
また、本発明は、耐熱耐圧性を有する金属製管に対して、中心部に電極細線を、前記電極細線と前記金属製管の間に耐食絶縁性セラミックス管を配置し、その後、金属製管周囲を加熱した状態で、耐食絶縁性セラミックスの原料となる金属塩溶液を、前記電極細線と前記耐食絶縁性セラミックス管の間の空間および前記耐食絶縁性セラミックス管と前記金属製管の間の空間に連続的に加圧供給し、空間内でセラミックス生成反応を進行させることで強固に結晶化した絶縁層を形成させることを特徴とする耐熱耐圧耐食性マイクロ電極の製造方法である。
また、本発明は、電極細線周囲に耐食絶縁性セラミックスの粒子ペーストを付着させた後に、耐熱耐圧性を有する金属製管の中心に挿入して、前記電極細線を前記金属製管中心に仮固定し、その後、耐食絶縁性セラミックスの粒子スラリを上部から導入し、前記金属製管と電極細線の間の空間に充填し、加圧し、その後常圧に戻して前記充填された耐食絶縁性セラミックスの粒子スラリを加熱することで絶縁層として強固に結晶化させることを特徴とする耐熱耐圧耐食性マイクロ電極の製造方法である。
また、本発明は、電極細線周囲に耐食絶縁性セラミックスの粒子ペーストを付着させた後に、耐熱耐圧性を有する金属製管の中心に挿入して、前記電極細線を前記金属製管中心に仮固定し、その後、金属製管周囲を加熱した状態で、耐食絶縁性セラミックスの原料となる金属塩溶液を、前記金属製管と電極細線の間の空間に連続的に加圧供給し、空間内でセラミックス生成反応を進行させ、その後常圧に戻し、さらに高温で加熱することで強固に結晶化した絶縁層を形成させることを特徴とする耐熱耐圧耐食性マイクロ電極の製造方法である。
In order to solve the above-mentioned problems, the present invention is filled with a heat resistant and pressure resistant metal tube, a thin electrode wire installed on the central axis in the metal tube, and a space between the inner wall of the metal tube and the thin electrode wire. This is a heat-resistant, pressure-resistant, corrosion-resistant microelectrode that is made of a corrosion-resistant insulating ceramic and in which fine wires for electrodes protrude from both ends of the tube.
Moreover, the present invention is characterized in that in the above heat-resistant pressure-resistant and corrosion-resistant microelectrode, the diameter of the electrode fine wire is 1 mm or less.
Further, the present invention provides the above heat-resistant pressure-resistant corrosion-resistant microelectrode, wherein the heat-resistant pressure-resistant metal tube is made of nickel, iron, titanium, tantalum, an alloy mainly containing them, or a layer of titanium, tantalum, or aluminum inside these alloys or their It is characterized by being a tube having an oxide layer.
Further, the present invention is characterized in that, in the heat-resistant and pressure-resistant corrosion-resistant microelectrode, the corrosion-resistant insulating ceramic is a corrosion-resistant insulating material mainly composed of titania, alumina, and a mixture thereof.
Further, the present invention is the above heat-resistant pressure-resistant corrosion-resistant microelectrode, wherein the electrode thin wire is gold, silver, copper, rhodium, platinum, palladium, ruthenium and alloys thereof, iron-based alloy, nickel-based alloy, titanium-based alloy, It is characterized by being carbon.
Further, the present invention is characterized in that, in the heat-resistant and pressure-resistant corrosion-resistant microelectrode, a ferrule for pressure-resistant sealing is fixed around the heat-resistant and pressure-resistant metal tube by being pressed by a pipe connecting portion.
Further, the present invention provides the above-mentioned heat and pressure resistant and corrosion resistant microelectrode, wherein the end face of the heat and pressure resistant metal tube has a conical tapered surface inclined at a predetermined angle for pressure-resistant sealing by being pressed against a connection destination. It is characterized by.
Further, according to the present invention, an electrode thin wire is disposed at the center of a metal tube having heat and pressure resistance, and a corrosion-resistant insulating ceramic tube is disposed between the electrode thin wire and the metal tube. With the surroundings heated, the corrosion-resistant insulating ceramic particle sol is pumped and filled into the space between the electrode wire and the corrosion-resistant insulating ceramic tube and the space between the corrosion-resistant insulating ceramic tube and the metal tube. Then, the pressure-corrosion-resistant microelectrode manufacturing method is characterized in that the pressure-filled corrosion-resistant insulating ceramic particle sol is returned to normal pressure and further heated to further crystallize as an insulating layer.
Further, according to the present invention, an electrode thin wire is disposed at the center of a metal tube having heat and pressure resistance, and a corrosion-resistant insulating ceramic tube is disposed between the electrode thin wire and the metal tube. In a state where the surroundings are heated, a metal salt solution that is a raw material of the corrosion-resistant insulating ceramic is treated with a space between the electrode thin wire and the corrosion-resistant insulating ceramic tube, and a space between the corrosion-resistant insulating ceramic tube and the metal tube. A method for producing a heat-resistant, pressure-resistant, and corrosion-resistant microelectrode is characterized in that an insulating layer that is strongly crystallized is formed by continuously supplying pressure to the substrate and allowing a ceramic formation reaction to proceed in the space.
In addition, the present invention attaches a corrosion-resistant insulating ceramic particle paste around the fine electrode wire, and then inserts the fine electrode wire into the center of the metal tube having heat and pressure resistance, and temporarily fixes the fine electrode wire to the center of the metal tube. Then, a particle slurry of corrosion-resistant insulating ceramic is introduced from above, filled in the space between the metal tube and the electrode fine wire, pressurized, and then returned to normal pressure to restore the filled corrosion-resistant insulating ceramic. A method for producing a heat-resistant, pressure-resistant and corrosion-resistant microelectrode characterized in that a particle slurry is heated to cause strong crystallization as an insulating layer.
In addition, the present invention attaches a corrosion-resistant insulating ceramic particle paste around the fine electrode wire, and then inserts the fine electrode wire into the center of the metal tube having heat and pressure resistance, and temporarily fixes the fine electrode wire to the center of the metal tube. Then, in a state where the periphery of the metal tube is heated, a metal salt solution as a raw material of the corrosion-resistant insulating ceramic is continuously pressurized and supplied to the space between the metal tube and the electrode thin wire. A method for producing a heat-resistant, pressure-resistant and corrosion-resistant microelectrode, wherein a ceramic formation reaction is allowed to proceed, and then the pressure is returned to normal pressure and then heated at a high temperature to form a strongly crystallized insulating layer.
本発明により、次のような格別の効果が奏される。
(1)高温高圧流体中での電気化学測定や電気化学反応を正確に実施するために利用する温度、圧力、滞在時間などを厳密制御可能なマイクロ流体デバイス(流路内径1.0mm以下)に容易に設置、接続できる。
(2)電極自体が耐熱耐圧耐食性構造を有するため、高温高圧環境および酸塩基や塩などの共存した腐食性環境で使用できる。
(3)電極がマイクロ流体デバイスなどと絶縁環境に設置できる。
(4)絶縁体は耐食性を維持できる。
(5)電極は、小型で、汎用性が高く、簡易な構造であるため、電極を含むデバイス全体を極力小型にすることができ、高温高圧運転時の安全性の確保やマイクロ流体デバイスの正確な温度制御が達成できる。
According to the present invention, the following special effects are achieved.
(1) A microfluidic device (flow path inner diameter of 1.0 mm or less) that can strictly control the temperature, pressure, residence time, etc. used to accurately perform electrochemical measurements and electrochemical reactions in high-temperature and high-pressure fluids Easy to install and connect.
(2) Since the electrode itself has a heat-resistant and pressure-resistant and corrosion-resistant structure, it can be used in a high-temperature and high-pressure environment and a corrosive environment in which acid-base, salt, or the like coexists.
(3) The electrode can be installed in an insulating environment with a microfluidic device.
(4) The insulator can maintain corrosion resistance.
(5) Since the electrode is small, versatile, and has a simple structure, the entire device including the electrode can be miniaturized as much as possible, ensuring safety during high-temperature and high-pressure operation, and accurate microfluidic devices. Temperature control can be achieved.
以下に、作製例1〜3に基づいて、本発明の耐熱耐圧耐食性マイクロ電極及びその製造方法について具体的に説明するが、本発明は、以下の作製例1〜3によって何ら限定されるものではない。 Hereinafter, the heat-resistant and pressure-resistant corrosion-resistant microelectrode of the present invention and the manufacturing method thereof will be specifically described on the basis of Preparation Examples 1 to 3, but the present invention is not limited to the following Preparation Examples 1 to 3. Absent.
(作製例1)
耐熱耐圧耐食性マイクロ電極作製の詳細を図1に示す。まず、耐熱性および耐圧性を有する鉄基(SUS316製)配管(外径1.59mm、内径1.1mm)に対して、中心部に電極線(直径0.4mm)を、電極線と配管の間に、電極線を中心部付近に仮固定するために耐食性および絶縁性を有するアルミナ絶縁管(外径1.0mm、内径0.5mm)を配置した(図中(A)参照)。
その後、SUS316製配管を継手を用いてポンプと接続し、SUS316製配管周囲を加熱器により400℃に加熱した状態で、結晶粒子径5nm程度のチタニアゾル(0.01mol/kg)を0.2g/minの流量で送液した。配管とアルミナ絶縁管およびアルミナ絶縁管と電極線の間の空間にチタニアゾルが充填され空間部が狭くなるのにともないポンプの吐出圧が徐々に上昇するため、45MPaに到達した時点で、ポンプを45MPaの定圧モードに切り替えて60分間運転した(図中(B)参照)。
常圧に戻した後、同加熱器により500℃に加熱することで絶縁層を強固に結晶化させて耐熱耐圧耐食性マイクロ電極を作製した。なお、作製後、電極が配管と絶縁環境にあることを確認した。
なお、本マイクロ電極は、周囲に固定される円錐形のテーパ面を有するフェラルを、電極接続部に押圧する構造により耐圧シールされる。用途に応じては、電極を構成するSUS316製管先端に所定角度傾斜した円錐形状のテーパ面を加工し、接続先に管端面を押圧する構造により耐圧シールすることも可能である。
(Production Example 1)
Details of the fabrication of the heat and pressure resistant and corrosion resistant microelectrode are shown in FIG. First, an iron wire (made of SUS316) pipe (outer diameter 1.59 mm, inner diameter 1.1 mm) having heat resistance and pressure resistance is provided with an electrode wire (diameter 0.4 mm) at the center, An alumina insulating tube (outer diameter: 1.0 mm, inner diameter: 0.5 mm) having corrosion resistance and insulating properties was disposed between the electrodes in order to temporarily fix the electrode wire near the center (see (A) in the figure).
Thereafter, the SUS316 pipe was connected to the pump using a joint, and the titania sol (0.01 mol / kg) having a crystal particle diameter of about 5 nm was 0.2 g / kg in a state where the periphery of the SUS316 pipe was heated to 400 ° C. by a heater. The liquid was fed at a flow rate of min. As titania sol is filled in the space between the piping and the alumina insulating tube and between the alumina insulating tube and the electrode wire, the discharge pressure of the pump gradually rises as the space portion becomes narrower. The operation was switched to the constant pressure mode and operated for 60 minutes (see (B) in the figure).
After returning to normal pressure, the insulating layer was strongly crystallized by heating to 500 ° C. with the same heater to produce a heat-resistant, pressure-resistant and corrosion-resistant microelectrode. After the production, it was confirmed that the electrode was in an insulating environment with the pipe.
In addition, this microelectrode is pressure-resistant sealed by the structure which presses the ferrule which has a conical taper surface fixed to circumference | surroundings to an electrode connection part. Depending on the application, it is also possible to process a conical tapered surface inclined at a predetermined angle at the tip of the SUS316 pipe making up the electrode and seal with pressure by a structure in which the pipe end face is pressed against the connection destination.
(作製例2)
耐熱耐圧耐食性マイクロ電極作製の詳細を図2に示す。まず、耐熱性および耐圧性を有するニッケル基(NCF625製)配管(1.59mm外径、0.8mm内径)に対して、電極線(直径0.4mm)周囲にアルミナペースト(アロンセラミック(登録商標)Dタイプ)を付着させた後に挿入して、電極線を配管中心に仮固定した(図中(A)参照)。
その後、チタニアスラリ(結晶粒子径100nm、0.5mol/kg)を上部から導入し、空隙部に充填した(図中(B)参照)。
その後、NCF625製配管を継手を用いてポンプと接続し、NCF625製配管周囲を加熱器により300℃に加熱した状態で、チタニアゾル(結晶粒子径5nm、0.01mol/kg)を45MPaの定圧モードで60分間運転した(図中(C)参照)。なお、配管と電極線の間の空間にチタニアゾルが充填され空間部が狭くなるのにともないポンプの吐出圧は徐々に設定値である45MPaまで上昇し、その後定圧に維持された。
常圧に戻した後、同加熱器により500℃に加熱することで絶縁層を強固に結晶化させて耐熱耐圧耐食性マイクロ電極を作製した。図3に全体の写真を、図4に断面の写真を示す。なお、作製後、電極が配管と絶縁環境にあることを確認した。
なお、本マイクロ電極は、周囲に固定される円錐形のテーパ面を有するフェラルを、電極接続部に押圧する構造により耐圧シールされる。用途に応じては、電極を構成するNCF625製管先端に所定角度傾斜した円錐形状のテーパ面を加工し、接続先に管端面を押圧する構造により耐圧シールすることも可能である。
(Production Example 2)
Details of the fabrication of the heat-resistant and pressure-resistant corrosion-resistant microelectrode are shown in FIG. First, a nickel base (made of NCF625) having heat resistance and pressure resistance (1.59 mm outer diameter, 0.8 mm inner diameter) is coated with alumina paste (Aron Ceramic (registered trademark)) around the electrode wire (0.4 mm diameter). ) D type) was attached and then inserted to temporarily fix the electrode wire at the center of the pipe (see (A) in the figure).
Thereafter, titania slurry (crystal particle diameter 100 nm, 0.5 mol / kg) was introduced from above and filled in the voids (see (B) in the figure).
Thereafter, the NCF625 pipe was connected to a pump using a joint, and the titania sol (crystal particle diameter 5 nm, 0.01 mol / kg) was heated in a constant pressure mode of 45 MPa while the periphery of the NCF625 pipe was heated to 300 ° C. by a heater. It was operated for 60 minutes (see (C) in the figure). Note that as the space between the pipe and the electrode wire was filled with titania sol and the space became narrow, the discharge pressure of the pump gradually increased to a set value of 45 MPa, and then maintained at a constant pressure.
After returning to normal pressure, the insulating layer was strongly crystallized by heating to 500 ° C. with the same heater to produce a heat-resistant, pressure-resistant and corrosion-resistant microelectrode. FIG. 3 shows an entire photograph, and FIG. 4 shows a sectional photograph. After the production, it was confirmed that the electrode was in an insulating environment with the pipe.
In addition, this microelectrode is pressure-resistant sealed by the structure which presses the ferrule which has a conical taper surface fixed to circumference | surroundings to an electrode connection part. Depending on the application, a conical tapered surface inclined at a predetermined angle may be processed at the tip of the NCF625 tube constituting the electrode, and pressure-resistant sealing may be performed by a structure in which the tube end surface is pressed against the connection destination.
(作製例3)
上記作製例1で作製した耐熱耐圧耐食性マイクロ電極の耐圧性を補うため、図4に示すように電極線の後部をPEEK製管(1.59mm外径、0.5mm内径))で覆い、Swagelok社製のレデューサやConax社製のテフロン(登録商標)シールグランドで、NCF625製管およびPEEK製管を固定、耐圧シールする構造の電極を作製した。
本構造は、上記作製例1および作製例2で示した耐熱耐圧耐食性マイクロ電極におけるアルミナやチタニアの絶縁層の破損により耐圧性が低下した場合の安全対策型である。
なお、本マイクロ電極は、周囲に固定される円錐形のテーパ面を有するフェラルを、電極接続部に押圧する構造により耐圧シールされる。用途に応じては、電極を構成するNCF625製管先端に所定角度傾斜した円錐形状のテーパ面を加工し、接続先に管端面を押圧する構造により耐圧シールすることも可能である。
(Production Example 3)
In order to supplement the pressure resistance of the heat-resistant, pressure-resistant, corrosion-resistant microelectrode produced in Production Example 1, the rear part of the electrode wire is covered with a PEEK tube (1.59 mm outer diameter, 0.5 mm inner diameter) as shown in FIG. An electrode having a structure in which an NCF625 tube and a PEEK tube were fixed and pressure-resistant sealed with a reducer manufactured by Co., Ltd. or a Teflon (registered trademark) seal ground manufactured by Conax.
This structure is a safety measure type in the case where the pressure resistance is lowered due to the breakage of the insulating layer of alumina or titania in the heat-resistant and pressure-resistant corrosion-resistant microelectrode shown in Production Example 1 and Production Example 2.
In addition, this microelectrode is pressure-resistant sealed by the structure which presses the ferrule which has a conical taper surface fixed to circumference | surroundings to an electrode connection part. Depending on the application, a conical tapered surface inclined at a predetermined angle may be processed at the tip of the NCF625 tube constituting the electrode, and pressure-resistant sealing may be performed by a structure in which the tube end surface is pressed against the connection destination.
本発明の耐熱耐圧耐食性マイクロ電極によれば、マイクロ流体デバイス(流路内径1.0mm以下)に容易に設置、接続でき、例えば、高温高圧流体中での電気化学測定や電気化学反応を正確に実施するための耐熱耐圧耐食性が要求される電極として好適であるが、耐熱耐圧耐食性電極としても適用可能である。 According to the heat-resistant pressure-resistant corrosion-resistant microelectrode of the present invention, it can be easily installed and connected to a microfluidic device (flow path inner diameter: 1.0 mm or less). For example, electrochemical measurement and electrochemical reaction in a high-temperature and high-pressure fluid can be accurately performed. Although it is suitable as an electrode for which heat resistance and corrosion resistance are required for implementation, it can also be applied as a heat and pressure resistance and corrosion resistance electrode.
Claims (2)
その後、前記金属製管の周囲を加熱した状態で、チタニア、アルミナ、およびそれらの混合物を主とする材料からなる耐食絶縁性セラミックスの粒子ゾルを、前記電極細線と前記耐食絶縁性セラミックス管の間の空間および前記耐食絶縁性セラミックス管と前記金属製管の間の空間に圧送充填し、
その後常圧に戻して前記圧送充填された前記耐食絶縁性セラミックスの粒子ゾルをさらに加熱することで絶縁層として強固に結晶化させることを特徴とする耐熱耐圧耐食性マイクロ電極の製造方法。 At the center of nickel, iron, titanium, tantalum with heat and pressure resistance and alloys mainly composed of them, or metal pipes having a titanium, tantalum, or aluminum layer or an oxide layer thereof inside these alloys An electrode thin wire having a diameter of 1 mm or less is disposed between the electrode thin wire and the metal tube with a corrosion-resistant insulating ceramic tube,
Then, during the while heating the surrounding metallic tube, titania, alumina, and the corrosion insulating ceramic particles sol comprising a mixture of them from material mainly, the said fine electrodes corrosion insulating ceramic tube And the space between the corrosion-resistant insulating ceramic tube and the metal tube are pressure-filled,
A method for producing a heat-resistant, pressure-resistant, corrosion-resistant microelectrode, wherein the particle sol of the corrosion-resistant insulating ceramic that has been pressure-filled and then returned to normal pressure is further heated to cause strong crystallization as an insulating layer.
その後、チタニア、アルミナ、およびそれらの混合物を主とする材料からなる耐食絶縁性セラミックスの粒子スラリを上部から導入し、前記金属製管と前記電極細線の間の空間に充填し、加圧し、
その後常圧に戻して前記充填された前記耐食絶縁性セラミックスの粒子スラリを加熱することで絶縁層として強固に結晶化させることを特徴とする耐熱耐圧耐食性マイクロ電極の製造方法。 Nickel, iron, titanium, tantalum having heat and pressure resistance, and the like after adhering a particle paste of corrosion-resistant insulating ceramics mainly composed of titania, alumina, and a mixture thereof around a thin electrode wire having a diameter of 1 mm or less Is inserted into the center of a metal tube having a titanium, tantalum or aluminum layer or an oxide layer thereof inside the alloy mainly or the alloy, and the electrode thin wire is temporarily fixed to the metal tube center,
Thereafter, titania, alumina, and by introducing a corrosion resistant insulating ceramic particles slurry comprising a mixture of them from material mainly from the top, filling the space between the fine electrodes and the metal tube is pressurized,
Method for producing a heat- and pressure-resistant corrosion microelectrode for causing then firmly crystallized as the insulating layer by returning to normal pressure to heat the particles slurry of the filled the corrosion insulating ceramic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012028274A JP5885193B2 (en) | 2012-02-13 | 2012-02-13 | Manufacturing method of heat and pressure resistant and corrosion resistant microelectrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012028274A JP5885193B2 (en) | 2012-02-13 | 2012-02-13 | Manufacturing method of heat and pressure resistant and corrosion resistant microelectrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013164375A JP2013164375A (en) | 2013-08-22 |
JP5885193B2 true JP5885193B2 (en) | 2016-03-15 |
Family
ID=49175794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012028274A Expired - Fee Related JP5885193B2 (en) | 2012-02-13 | 2012-02-13 | Manufacturing method of heat and pressure resistant and corrosion resistant microelectrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5885193B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116514051B (en) * | 2023-03-23 | 2024-05-28 | 清华大学 | Microelectrode preparation method and microelectrode |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5483897A (en) * | 1977-12-16 | 1979-07-04 | Nippon Soken | Gas component detector |
JPS5731656U (en) * | 1980-07-30 | 1982-02-19 | ||
JPH0672854B2 (en) * | 1984-12-19 | 1994-09-14 | 日本エステル株式会社 | Electrical conductivity measuring device |
JPS62283585A (en) * | 1986-01-13 | 1987-12-09 | 株式会社 岡崎製作所 | Sheath termination mechanism |
JPH0471163U (en) * | 1990-10-31 | 1992-06-24 | ||
JP2812455B2 (en) * | 1990-12-26 | 1998-10-22 | 日機装株式会社 | Measurement electrode |
US5238553A (en) * | 1992-05-11 | 1993-08-24 | Electric Power Research Institute | Reference electrode assembly and process for constructing |
JP2991712B1 (en) * | 1999-02-09 | 1999-12-20 | 株式会社岡崎製作所 | High temperature signal cable |
AU2002311951A1 (en) * | 2001-05-18 | 2002-12-03 | Regents Of The University Of Minnesota | Metal/metal oxide electrode as ph-sensor and methods of production |
JP4470402B2 (en) * | 2002-07-12 | 2010-06-02 | 東ソー株式会社 | Microchannel structure and fluid chemical operation method using the same |
JP2006073246A (en) * | 2004-08-31 | 2006-03-16 | Okazaki Mfg Co Ltd | Extra-fine insulated wire and signal line for robot using the extra-fine insulated wire |
JP2010069474A (en) * | 2008-08-22 | 2010-04-02 | National Institute Of Advanced Industrial Science & Technology | Method and apparatus for synthesizing nanoparticle by circulation type supercritical hydrothermal synthesis |
-
2012
- 2012-02-13 JP JP2012028274A patent/JP5885193B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013164375A (en) | 2013-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ghanei-Motlagh et al. | Non-enzymatic amperometric sensing of hydrogen peroxide based on vanadium pentoxide nanostructures | |
Yola et al. | Functionalized graphene quantum dots with bi-metallic nanoparticles composite: sensor application for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan | |
Yang et al. | Quantitatively relating diffusion and reaction for shaping particles | |
CN103650060A (en) | Electrical heating device for heating a liquid, method for producing same, and use in the electrical simulation of nuclear fuel rods | |
US20090050476A1 (en) | Zr/ZrO2 Electrode and Producing Method Thereof and Integrated High Temperature and High-Pressure Chemical Sensor Composed by the Same | |
CN111527282B (en) | Production of hydrogen by downhole electrolysis of reservoir brine for enhanced oil recovery | |
JP5885193B2 (en) | Manufacturing method of heat and pressure resistant and corrosion resistant microelectrode | |
CN106198374A (en) | A kind of High Temperature High Pressure galvanic corrosion use for electrochemical tests electrode and application thereof | |
WO2015017415A3 (en) | Electrochemical and thermal digestion of organic molecules | |
CN103398798B (en) | A kind of thermocouple temperature measuring apparatus for hyperbaric environment | |
CN102072873B (en) | Experiment device for couple corrosion | |
CN202580332U (en) | Bimetal composite pipe fitting with instrument joint | |
JP5885194B2 (en) | Heat-resistant and pressure-resistant electrochemical microcell | |
Lin et al. | A novel experimental device for electrochemical measurements in supercritical fluids up to 700° C/1000 bar and its application in the corrosion study of superalloy Inconel 740H | |
CN104383860A (en) | Microcapsule droplet generator and preparation method thereof | |
JP2013164377A (en) | Heat-resistant, pressure-resistant, and corrosion-resistant temperature measurement micro device | |
US20220418049A1 (en) | A heating system and method of manufacturing a heating system | |
CN101650268B (en) | Detection method of inorganic membrane assembly | |
CN202396009U (en) | Glass coating electric heating element | |
CN103792272B (en) | A kind of metal nano electrode and preparation method thereof | |
CN104514927B (en) | A kind of quick detachable differential pressure measurement structure | |
CN108387623A (en) | The detection method of X65 pipe line steels corrosion resistance under hot conditions | |
WO2016196702A1 (en) | Electrode | |
JP2007039737A (en) | Method for producing chemical substance by electrochemical reaction using ac power supply | |
CN204482056U (en) | A kind of electroplating device heating tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140911 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150701 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160203 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5885193 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |