JP2007039737A - Method for producing chemical substance by electrochemical reaction using ac power supply - Google Patents

Method for producing chemical substance by electrochemical reaction using ac power supply Download PDF

Info

Publication number
JP2007039737A
JP2007039737A JP2005224958A JP2005224958A JP2007039737A JP 2007039737 A JP2007039737 A JP 2007039737A JP 2005224958 A JP2005224958 A JP 2005224958A JP 2005224958 A JP2005224958 A JP 2005224958A JP 2007039737 A JP2007039737 A JP 2007039737A
Authority
JP
Japan
Prior art keywords
electrochemical reaction
reaction
electrode
chemical substance
electrochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005224958A
Other languages
Japanese (ja)
Other versions
JP4783598B2 (en
Inventor
Hiroshi Maekawa
前川  弘志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2005224958A priority Critical patent/JP4783598B2/en
Publication of JP2007039737A publication Critical patent/JP2007039737A/en
Application granted granted Critical
Publication of JP4783598B2 publication Critical patent/JP4783598B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a chemical substance which gives a high yield and does not cause a side reaction since it has been cleared that, when a distance between a working electrode and a counter electrode is made close for reducing the electric resistance of a solution in electrochemical reaction, by-products considered as a reactant with a supporting electrolyte is produced. <P>SOLUTION: In an electrochemical reaction apparatus provided with a working electrode and a counter electrode along a flow passage, an alternating current is made to flow, and an electrochemical reaction is carried out to produce a chemical substance by the method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、交流電流を用いた電気化学反応による化学物質の製造方法に関する。さらに詳しくは、化学、生化学、農業、林業、医療、食品工業、製薬工業、環境保全、などの分野、とりわけ、化学合成、化学分析および生化学用反応装置として有用な製造方法に関する。   The present invention relates to a method for producing a chemical substance by an electrochemical reaction using an alternating current. More specifically, the present invention relates to a production method useful as a reaction device for chemical synthesis, chemical analysis, and biochemistry, particularly in fields such as chemistry, biochemistry, agriculture, forestry, medicine, food industry, pharmaceutical industry, and environmental conservation.

電極間距離を短くした電気化学反応装置は、溶液抵抗が低下するので電力消費量の低下や、支持電解質の低減が期待できるため、いわゆるマイクロリアクターの分野で、近年盛んに研究されるようになった。マイクロリアクターとは、微小な流路を有する装置であり、化学反応、微小分析、薬品の開発、ゲノム・DNA解析ツールなどに利用されている。マイクロリアクターは、従来の反応器に比べ装置全体が小さいため熱交換効率が極めて高く、温度制御が精密に行なえるという特徴がある。従って、発熱が大きく暴走や爆発の危険性のある反応や、精密な温度制御を必要とする反応や、急激な加熱や冷却を必要とする反応でも、マイクロリアクターを利用すれば容易に精密制御が可能という利点がある。また、微小な流路に分岐を設け複数の相溶する液体あるいは気体を混合した場合、拡散距離が短いため瞬時に混合させることが可能である。そのため、より理想に近い混合比率での混合が可能で、好ましくない副反応を抑制することができる。また、微小空間の中で反応を行なうため、流体の単位体積あたりの界面、例えば、非水溶性溶剤と水との液・液界面や、液体と器壁との固・液界面の面積が、非常に大きくなる。それ故、界面を介した物質移動や、不均一触媒との接触面積が大きくなるため、反応を効率よく行なうことが出来る。さらに、リアクターの容積が微小であるので、反応に用いる試料(反応試薬、サンプルなど)の量およびコストを抑えることができ、生成物の分析能力の限界まで反応スケールを小さくすることができるため、廃棄物を抑制し、環境への負荷を低減させることができる。   Electrochemical reactors with short interelectrode distances have been actively researched in the field of so-called microreactors in the field of so-called microreactors because the solution resistance is lowered, so the power consumption and the supporting electrolyte can be reduced. It was. A microreactor is a device having a minute flow path, and is used for chemical reaction, minute analysis, drug development, genome / DNA analysis tool, and the like. A microreactor is characterized by extremely high heat exchange efficiency and precise temperature control since the entire apparatus is smaller than a conventional reactor. Therefore, even with reactions that generate a large amount of heat, there is a risk of runaway or explosion, reactions that require precise temperature control, or reactions that require rapid heating or cooling, precise control can be easily performed using a microreactor. There is an advantage that it is possible. In addition, when a plurality of compatible liquids or gases are mixed by providing a branch in a minute flow path, they can be mixed instantaneously because the diffusion distance is short. Therefore, mixing at a more ideal mixing ratio is possible, and undesirable side reactions can be suppressed. In addition, since the reaction is performed in a minute space, the area per unit volume of the fluid, for example, the liquid / liquid interface between the water-insoluble solvent and water, or the area of the solid / liquid interface between the liquid and the vessel wall, Become very large. Therefore, the mass transfer through the interface and the contact area with the heterogeneous catalyst are increased, so that the reaction can be performed efficiently. Furthermore, since the volume of the reactor is very small, the amount and cost of the sample (reaction reagent, sample, etc.) used for the reaction can be suppressed, and the reaction scale can be reduced to the limit of the analytical ability of the product. Waste can be suppressed and the burden on the environment can be reduced.

マイクロリアクターを用いた物質生産では、従来までのように反応器の大きさを大きくするスケールアップではなく、マイクロリアクターを多数並列させて生産する、いわゆるナンバリングアップを行なうことが検討されている。従来のスケールアップでは、実験室のフラスコで開発された物質を大量生産するためには、数リットルの小試験、数百リットルの中試験を行なった後、数立米規模の実機プラントの設計が行なわれる手順を踏んでおり、多大のコスト・労力・時間を労しており、また、スケールアップにより収率が悪化することも珍しくない。一方、マイクロリアクターにおけるナンバリングアップでは、同一のマイクロリアクターを多数並列して生産するため、増産が容易であり、同様の品質の製品を作ることができると考えられている。   In the production of substances using microreactors, it has been studied to perform so-called numbering up, in which a large number of microreactors are produced in parallel, instead of scaling up to increase the size of the reactor as in the past. In the conventional scale-up, in order to mass-produce substances developed in laboratory flasks, after conducting a small test of several liters and a medium test of several hundred liters, an actual plant with a scale of several meters is designed. It takes a lot of cost, labor, and time, and it is not uncommon for yield to deteriorate due to scale-up. On the other hand, in the numbering up in the microreactor, it is considered that a large number of the same microreactors are produced in parallel, so that production can be easily increased and products of the same quality can be produced.

電気化学反応用マイクロリアクターは、分析用途には数多くの報告がある(例えば、特許文献1〜3参照)。特に、特開平5−223772号公報は、平面内で間隙を隔てて相対する微小バンド電極あるいはお互いに噛み合った櫛形微小電極を用いた、高感度電器化学検出用微小電極セルが報告されている。ところが、マイクロリアクターを化学物質生産用途に用いた例は非常に少ない(例えば、特許文献4〜6参照)。しかも、特開2003−172736号公報は、実質的にはDNAのPCR反応や電気泳動を目的にしており、化学物質生産を目的にしたものではない。また、米国特許6607655号公報では、マイクロリアクターを使って化学物質生産の例が示されているが、電極間にスリットの開いた絶縁性フィルムを挟み込んで、二つの電極とスリットで形成された空間に反応液を注入し、電気化学反応を実施する仕組みとなっている。また、特開2004−66169号公報では、熱硬化樹脂成型品を炭化焼成した炭素材料からなる微小空間内で電気化学反応を実施するマイクロ化学デバイスが報告されている。しかしながら、いずれも直流電源を用いた検討を行なっているのみで、交流電源についての記載はない。
特開平5−223772号公報 特開2004−239781号公報 特開2003−4752号公報 特開2003−172736号公報 米国特許第6607655号公報 特開2004−66169号公報
Electrochemical reaction microreactors have many reports for analytical applications (see, for example, Patent Documents 1 to 3). In particular, Japanese Patent Application Laid-Open No. 5-223772 reports a highly sensitive electrochemical chemical detection microelectrode cell using microband electrodes opposed to each other with a gap in the plane or comb-shaped microelectrodes meshed with each other. However, there are very few examples of using a microreactor for chemical substance production (see, for example, Patent Documents 4 to 6). Moreover, Japanese Patent Application Laid-Open No. 2003-172736 is substantially intended for DNA PCR reactions and electrophoresis, and is not intended for chemical substance production. In addition, US Pat. No. 6,607,655 discloses an example of chemical production using a microreactor, but a space formed by two electrodes and a slit by sandwiching an insulating film having a slit between the electrodes. The reaction solution is injected into the tank and the electrochemical reaction is carried out. Japanese Patent Application Laid-Open No. 2004-66169 reports a microchemical device that performs an electrochemical reaction in a minute space made of a carbon material obtained by carbonizing and baking a thermosetting resin molded product. However, all of these are only studies using a DC power source, and there is no description about the AC power source.
Japanese Patent Application Laid-Open No. 5-223772 JP 2004-239781 A JP 2003-4752 A Japanese Patent Laid-Open No. 2003-172736 US Pat. No. 6,607,655 JP 2004-66169 A

電気化学反応は、陽極では酸化反応が、陰極では還元反応が生じ、それぞれ生成物が異なる。一般に、電気化学反応では、陽極と陰極の生成物の混合を避けるため直流電源が用いられる。ところが、溶液の電気抵抗を下げるため作用極と対極の電極間距離を近づけていくと、支持電解質と反応したと考えられる副生成物が生じることが明らかになった。本発明は、このような副反応が起こらずに、収率がよい化学物質の製造方法を見いだすことを目的とする。   In the electrochemical reaction, an oxidation reaction occurs at the anode and a reduction reaction occurs at the cathode, and the products are different. In general, a direct current power source is used in electrochemical reactions to avoid mixing of the anode and cathode products. However, it was found that when a distance between the working electrode and the counter electrode was reduced in order to reduce the electric resistance of the solution, a by-product thought to have reacted with the supporting electrolyte was generated. An object of the present invention is to find a method for producing a chemical substance having a good yield without causing such a side reaction.

即ち、本発明は、作用極と対極が流路に沿って備えられた電気化学反応装置を用いて、電極間に交流電流を流して電気化学反応を行なうことを特徴とする化学物質の製造方法である。 That is, the present invention provides a method for producing a chemical substance characterized in that an electrochemical reaction is performed by passing an alternating current between electrodes using an electrochemical reaction device in which a working electrode and a counter electrode are provided along a flow path. It is.

本発明の電気化学反応方法を用いることで、副反応が生じにくくなり、電気化学反応の収率を向上させることが可能となる。   By using the electrochemical reaction method of the present invention, side reactions are less likely to occur, and the yield of electrochemical reactions can be improved.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に用いる電気化学反応装置は、流路に沿って作用極と対極を備えている。本発明において、その作用極と対極の間隔は、1000μm以下が好ましく、500μm以下がさらに好ましい。電極間距離が大きくなりすぎると、反応液の電気抵抗が高まり、消費電力が大きくなる問題が生じる場合がある。   The electrochemical reaction device used in the present invention includes a working electrode and a counter electrode along the flow path. In the present invention, the distance between the working electrode and the counter electrode is preferably 1000 μm or less, and more preferably 500 μm or less. If the distance between the electrodes becomes too large, there may be a problem that the electric resistance of the reaction solution increases and the power consumption increases.

本発明で用いる電極の形状は、特に限定されない。また、本発明で用いる電極の配置も、特に限定されない。   The shape of the electrode used in the present invention is not particularly limited. Further, the arrangement of the electrodes used in the present invention is not particularly limited.

本発明において用いられる電気化学反応装置の電極設置形態は、特に限定されないが、流路の壁面に設置してもよく、電極の間に絶縁性スペーサーを挟んで設置しても良い。   Although the electrode installation form of the electrochemical reaction apparatus used in the present invention is not particularly limited, it may be installed on the wall surface of the flow path, or may be installed with an insulating spacer interposed between the electrodes.

本発明で用いる電極の作成方法は特に限定されない。好ましい方法として、電極形状にくり貫いた薄板のマスクを被せたり、フォトレジストを使ったりしてから、金属を蒸着やスパッタリング技術を用いて電極とする方法が挙げられる。薄膜電極を用いる場合は、流路壁の一部に設けてもよく、流路の周囲に取り巻くように設けてもよく、またそれが二重らせん状につながっていても良い。また、電極となる導電性材料からなるフィルムと、絶縁性材料からなるフィルムを交互に重ね合わせたものに、重ね合わせ方向に貫通孔を開け流路とし、流路の進行方向に対し電極フィルムと絶縁フィルムが交互に来るようにしたものを利用しても良い。   The method for producing the electrode used in the present invention is not particularly limited. As a preferable method, there is a method in which a thin plate mask cut into an electrode shape is covered or a photoresist is used, and then a metal is used as an electrode by vapor deposition or sputtering technique. When a thin film electrode is used, it may be provided on a part of the flow path wall, may be provided so as to surround the flow path, or may be connected in a double spiral shape. In addition, a film made of a conductive material to be an electrode and a film made of an insulating material are alternately stacked, a through hole is formed in the overlapping direction as a flow path, and the electrode film You may utilize what made the insulation film come alternately.

本発明で用いるマイクロリアクターの電極素材は、通電すれば特に限定されない。例えば、パラジウム、プラチナ、ロジウム、イリジウム、ニッケル、金、タングステン、ニオブ、カドニウム、マンガン、タリウム、鉛、水銀などの金属や、グラッシーカーボン、分光分析級黒鉛、熱分解黒鉛、炭素クロスなどの炭素素材やそれらの粉末をキシレンワックス、エポキシ樹脂、シリコーンゴム、ヌジョールなどに分散させたものなどを使用することができる。また、上記金属を蒸着やスパッタを用いて付着させる際には、基板との付着性を向上させるために、下地としてクロムやチタンなどの薄膜を付着させても良い。また、炭素は、金属電極の表面に炭素粉末を接着性のある素材に分散させたペーストを塗布しても良く、同様に金属電極の表面に炭化水素化合物を塗布し、減圧下で熱分解させて熱分解黒鉛としても良い。   The electrode material of the microreactor used in the present invention is not particularly limited as long as power is supplied. For example, metals such as palladium, platinum, rhodium, iridium, nickel, gold, tungsten, niobium, cadmium, manganese, thallium, lead, mercury, and carbon materials such as glassy carbon, spectroscopic grade graphite, pyrolytic graphite, and carbon cloth And those powders dispersed in xylene wax, epoxy resin, silicone rubber, Nujol or the like can be used. In addition, when the metal is deposited by vapor deposition or sputtering, a thin film such as chromium or titanium may be deposited as a base in order to improve adhesion to the substrate. Carbon may be coated with a paste in which carbon powder is dispersed in an adhesive material on the surface of the metal electrode. Similarly, a hydrocarbon compound is coated on the surface of the metal electrode and thermally decomposed under reduced pressure. Pyrolytic graphite may also be used.

本発明で用いるマイクロリアクターの電極表面には、金属めっきなどの手法を施し、電極表面を広げる工夫をしても良く、特に触媒活性の高い白金黒やパラジウム黒などを付着させても良い。   A method such as metal plating may be applied to the electrode surface of the microreactor used in the present invention so as to widen the electrode surface, and platinum black or palladium black having particularly high catalytic activity may be adhered.

本発明の電気化学反応においては、電極間に交流電流を流すことが必要である。この理由については明らかにされていないが、直流電流を用いた場合には、電極間距離が短くなると電位勾配が高くなり、電荷を帯びた分子が電極に強く引き寄せられ反応するようになるためと推測される。一定周期で極が入れ替わる交流を用いた場合、予期せぬ副反応は生じなくなり、目的物の収率が向上するのである。   In the electrochemical reaction of the present invention, it is necessary to pass an alternating current between the electrodes. Although the reason for this is not clarified, when a direct current is used, the potential gradient increases as the distance between the electrodes decreases, and charged molecules are strongly attracted to the electrodes and react. Guessed. When alternating current in which the poles are switched at a constant period is used, an unexpected side reaction does not occur and the yield of the target product is improved.

電極間に交流電流を流すためには、交流電源を用いることが好ましい。また、交流電流の周波数は特に限定されないが、1Hzから100kHzが好ましく、10Hzから2kHzがさらに好ましい。この範囲の周波数を用いることで、無効電流が増大しない条件で交流電流を用いる効果を得ることが可能となる。   In order to pass an alternating current between the electrodes, it is preferable to use an alternating current power source. The frequency of the alternating current is not particularly limited, but is preferably 1 Hz to 100 kHz, and more preferably 10 Hz to 2 kHz. By using a frequency within this range, it is possible to obtain the effect of using an alternating current under the condition that the reactive current does not increase.

本発明で用いる電気化学反応装置を作製するのに用いる材料は特に限定されない。ガラス、石英、ポリイミド、フッ素樹脂、アクリルなどの絶縁性材料が好ましい。また、シリコンや金属など導電性材料であっても表面を絶縁化処理したものであれば使用することが出来る。   The material used for producing the electrochemical reaction device used in the present invention is not particularly limited. Insulating materials such as glass, quartz, polyimide, fluororesin and acrylic are preferred. Even a conductive material such as silicon or metal can be used as long as the surface is insulated.

本発明で用いる電気化学反応装置の作成方法としては、例えば絶縁性基板上に電極を設け、その上に絶縁性の基板にエッチングや機械加工などによって溝を形成した板を被せ接着させる方法が挙げられる。ここで、流路の形状は特に限定されず、直線状でも曲線状でも構わない。接着方法は特に限定されないが、熱圧着、熱融着など加熱による方法や、反応に影響しない範囲で接着剤を使用しても良い。   Examples of a method for producing an electrochemical reaction apparatus used in the present invention include a method in which an electrode is provided on an insulating substrate, and a plate on which a groove is formed by etching or machining on the insulating substrate is adhered. It is done. Here, the shape of the flow path is not particularly limited, and may be linear or curved. The bonding method is not particularly limited, but an adhesive may be used as long as the method does not affect the reaction, such as thermocompression bonding or heat fusion.

上述の方法の例として、ガラスや熱可塑性樹脂などの絶縁性基板上に蒸着やスパッタ技術を使って一対以上の電極を設けた後、エッチングや機械加工を用いて溝を形成した絶縁性基板で蓋をして、熱融着して接着させたものを使用しても良い。   As an example of the above-described method, an insulating substrate in which a pair of electrodes is provided on an insulating substrate such as glass or thermoplastic resin by vapor deposition or sputtering, and then grooves are formed by etching or machining. You may use what was covered and heat-sealed and adhere | attached.

また、ガラスなどの絶縁性基板上に厚膜レジスト(例えば、SU-8 MicroChem社製)を使って溝を形成し、その溝の中に蒸着やスパッタ技術を使って一対以上の電極を設けた後、ガラスなどの絶縁性基板で蓋をして、レジストを使って接着したものを使用しても良い。   Also, a groove was formed on an insulating substrate such as glass using a thick film resist (eg, SU-8 MicroChem), and a pair of electrodes were provided in the groove using vapor deposition or sputtering techniques. After that, the substrate may be covered with an insulating substrate such as glass and bonded using a resist.

また、表面を酸化させて絶縁性を高めたシリコン基板にエッチング技術を用いて溝を形成し、その溝の中に蒸着やスパッタ技術を使って一対以上の電極を設けた後、ガラスなどの絶縁性基板で蓋をして、陽極接合により接合させたものを使用しても良い。   In addition, a groove is formed on the silicon substrate whose surface has been oxidized to enhance the insulating property using an etching technique, and a pair or more electrodes are provided in the groove using an evaporation or sputtering technique. It is also possible to use what is covered with a conductive substrate and bonded by anodic bonding.

本発明で用いる電気化学反応装置の流路は、フォトリソグラフィー技術を用いて形成するのが好ましい。フォトリソグラフィー技術は、容易に微細な加工が可能である上に、二次元的には自由に設計が可能であり、また、量産化技術も確立されているので、安価に電気化学反応装置を供給することが可能であるなどメリットが多い。   The flow path of the electrochemical reaction apparatus used in the present invention is preferably formed using a photolithography technique. Photolithographic technology enables easy microfabrication, can be freely designed in two dimensions, and has established mass production technology, so it can supply electrochemical reactors at low cost. There are many advantages such as being able to do.

本発明で用いる電気化学反応装置の流路の長さは特に限定されず、反応液濃度、反応液流量、電流密度、電流効率などを考慮し適宜設計して良い。   The length of the channel of the electrochemical reaction apparatus used in the present invention is not particularly limited, and may be appropriately designed in consideration of the reaction solution concentration, the reaction solution flow rate, the current density, the current efficiency, and the like.

本発明で使用する電気化学反応装置には、温度制御機器が備わっていても良い。ここで言う、温度制御機器とは、加熱や冷却機能を持ち所定の温度に制御することのできる装置であれば特に限定されないが、熱媒や冷媒を流す管や、電熱ヒーターや、ペルチェ素子などを挙げることができる。熱制御機器は、反応流路に近い場所に設置した方が、温度応答が素早いので好ましい。   The electrochemical reaction apparatus used in the present invention may be equipped with a temperature control device. Here, the temperature control device is not particularly limited as long as it has a heating and cooling function and can be controlled to a predetermined temperature. However, a pipe through which a heat medium or a refrigerant flows, an electric heater, a Peltier element, etc. Can be mentioned. It is preferable to install the thermal control device near the reaction flow path because the temperature response is quick.

本発明で行なう電気化学反応は、特に限定されない。電気化学反応は、酸化反応と還元反応に大別される。特に有機化合物の電気化学反応においては、官能基変換型、付加型、挿入型、置換型、交換型、脱離型、二量化型、交差二量化型、環化型、多量化型、開裂型、金属化型、不斉合成型、などの反応型が挙げられるが、いずれも特に限定されない。より具体的な反応例としては、炭素−炭素多重結合の還元、芳香環の還元、炭素−ハロゲン結合の還元、アルデヒドおよびケトンの還元、カルボン酸とその誘導体の還元、ケトンまたはカルボン酸と共益しているオレフィンの還元二量化反応、ニトロ基の還元、窒素−窒素一重結合の還元、窒素−窒素二重結合の還元、炭素−窒素一重結合の還元、炭素−窒素二重結合の還元、炭素−窒素三重結合の還元、脱炭酸を伴うカルボン酸の酸化、アルデヒドからカルボン酸への酸化、芳香族化合物の酸化、オレフィン類の酸化、アミンおよびヒドラジンの酸化、スルフィド類の酸化、チオ尿素誘導体の酸化、チオカルボニル誘導体の酸化、有機金属化合物またはカルバニオンの酸化などが挙げられるが、いずれも特に限定されない。また、有機電気化学反応は、多種多様のイオン種やラジカル種と呼ばれる活性中間種が発生するが、これら活性中間種を経由する反応、例えばカチオン種に対するメトキシ化、アセトキシ化、シアノ化などの求核置換反応に使用しても良い。   The electrochemical reaction performed in the present invention is not particularly limited. Electrochemical reactions are roughly classified into oxidation reactions and reduction reactions. Especially in the electrochemical reaction of organic compounds, functional group conversion type, addition type, insertion type, substitution type, exchange type, elimination type, dimerization type, cross dimerization type, cyclization type, multimerization type, cleavage type , Metallized type, asymmetric synthetic type, and the like, but any of them is not particularly limited. More specific reaction examples include carbon-carbon multiple bond reduction, aromatic ring reduction, carbon-halogen bond reduction, aldehyde and ketone reduction, carboxylic acid and its derivative reduction, and ketone or carboxylic acid. Reduction dimerization reaction of olefins, reduction of nitro group, reduction of nitrogen-nitrogen single bond, reduction of nitrogen-nitrogen double bond, reduction of carbon-nitrogen single bond, reduction of carbon-nitrogen double bond, carbon- Reduction of nitrogen triple bond, oxidation of carboxylic acid with decarboxylation, oxidation of aldehyde to carboxylic acid, oxidation of aromatic compounds, oxidation of olefins, oxidation of amines and hydrazine, oxidation of sulfides, oxidation of thiourea derivatives , Oxidation of a thiocarbonyl derivative, oxidation of an organometallic compound or carbanion, and the like are not particularly limited. In addition, active electrochemical species called ionic species and radical species are generated in organic electrochemical reactions. Reactions via these active intermediate species, such as methoxylation, acetoxylation, cyanation, etc. for cationic species. You may use for a nuclear substitution reaction.

また、電気化学反応は、反応基質と電極との間の電子授受により基質の酸化・還元を行なう直接法と、メディエーターと呼ばれる電子移動担体を用いる間接法とに大別されるが、いずれにも特に限定されない。同様に、本発明で用いられる反応基質も、有機化合物、無機化合物に限らず、特に限定されない。   Electrochemical reactions are broadly divided into direct methods in which the substrate is oxidized and reduced by transferring electrons between the reaction substrate and the electrode, and indirect methods using an electron transfer carrier called a mediator. There is no particular limitation. Similarly, the reaction substrate used in the present invention is not limited to an organic compound and an inorganic compound, and is not particularly limited.

本発明で行なう還元二量化反応の反応基質は、特に限定されない。例えば、マレイン酸、コハク酸、ジメチルマレイン酸、ジメチルコハク酸、アクリロニトリル等の炭素−炭素二重結合を有する化合物や、ケトン類やアルデヒド類など炭素−酸素二重結合を有する化合物などが挙げられる。これらの反応基質は、同一種類同士で反応させても良く、また、異種間で反応させても良い。   The reaction substrate for the reduction dimerization reaction performed in the present invention is not particularly limited. Examples thereof include compounds having a carbon-carbon double bond such as maleic acid, succinic acid, dimethylmaleic acid, dimethyl succinic acid and acrylonitrile, and compounds having a carbon-oxygen double bond such as ketones and aldehydes. These reaction substrates may be reacted in the same kind or in different kinds.

本発明で行なうメトキシ化反応の反応基質は、特に限定されない。   The reaction substrate for the methoxylation reaction performed in the present invention is not particularly limited.

本発明で用いることのできる溶剤は、プロトンを供給できる溶剤であれば、特に限定されない。例えば、水、メタノール、エタノール、n−プロパノール、イソプロパノール、1,2−エタンジオール、酢酸、塩酸などが使用できる。これらは単一溶剤で用いても良く、混合溶剤として用いても良い。混合する溶剤としては、上述した溶剤でも良く、アセトニトリル、ジメチルホルムアミド、プロピレンカーボネート、ジメチルスルホキシド、ホルムアミド、2−ピロリドン、ピリジン、テトラメチルウレア、エチレンジアミン、ニトロメタン、ニトロベンゼン、ヘキサン、ジクロロメタン、クロロホルムなどを用いることができる。   The solvent that can be used in the present invention is not particularly limited as long as it can supply protons. For example, water, methanol, ethanol, n-propanol, isopropanol, 1,2-ethanediol, acetic acid, hydrochloric acid and the like can be used. These may be used as a single solvent or as a mixed solvent. As the solvent to be mixed, the above-mentioned solvents may be used, and acetonitrile, dimethylformamide, propylene carbonate, dimethyl sulfoxide, formamide, 2-pyrrolidone, pyridine, tetramethylurea, ethylenediamine, nitromethane, nitrobenzene, hexane, dichloromethane, chloroform, etc. should be used. Can do.

本発明では支持電解質を用いても良い。その種類や使用量は、反応溶液に溶解し導電性を持たせることができれば特に限定されない。支持電解質は溶媒中でイオンとして働くので、イオン化しやすいアニオンとカチオンで組み合わされた塩である。カチオンとしては、Li、Na、K、Rb、Csなどのアルカリ金属イオンや、アンモニウムイオン、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラ(n−プロピル)アンモニウムイオン、テトラ(i−プロピル)アンモニウムイオン、テトラ(n−ブチル)アンモニウムイオン、テトラ(n−ヘキシル)アンモニウムイオンなどの第4級アルキルアンモニウムなどが挙げられる。アニオンとしては、Cl、Br、Iなどのハロゲンイオンや、酢酸イオン、硫酸イオン、硝酸イオン、過塩素酸イオン、BF 、PF 、ビス(トリフルオロメタンスルホニル)イミド、ビス(1,1,2,2,3,3,3−ヘプタフルオロ−1−プロパンスルホニル)イミド、ビス(1,1,2,2,3,3,4,4,4−ノナフルオロ−1−ブタンスルホニル)イミド、各種スルホン酸イオンなどが挙げられる。 In the present invention, a supporting electrolyte may be used. The kind and amount of use are not particularly limited as long as they can be dissolved in the reaction solution and have conductivity. Since the supporting electrolyte acts as an ion in the solvent, it is a salt combined with an anion and a cation that are easily ionized. Examples of the cation include alkali metal ions such as Li + , Na + , K + , Rb + , and Cs + , ammonium ions, tetramethylammonium ions, tetraethylammonium ions, tetra (n-propyl) ammonium ions, tetra (i−). And quaternary alkyl ammonium such as propyl) ammonium ion, tetra (n-butyl) ammonium ion, and tetra (n-hexyl) ammonium ion. Examples of anions include halogen ions such as Cl , Br and I , acetate ions, sulfate ions, nitrate ions, perchlorate ions, BF 4 , PF 6 , bis (trifluoromethanesulfonyl) imide, bis ( 1,1,2,2,3,3,3-heptafluoro-1-propanesulfonyl) imide, bis (1,1,2,2,3,3,4,4,4-nonafluoro-1-butanesulfonyl) ) Imido and various sulfonate ions.

本発明で用いる電気化学反応装置の流路の入口は、外部より流路内に流体を導入するための供給装置と接続されていても良く、流路内に小型のポンプを内蔵させても良い。外部より電気化学反応装置に流体を導入するための供給手段は、特に限定されるものではないが、例えば、種々のポンプや、圧送する方法、重力差を利用する方法、高圧に圧縮された容器から供給する方法、などを用いることができる。ポンプとして具体例を示すとすれば、1)シリンダー内の流体をピストンで押し込めるシリンジポンプ、2)ピストンポンプ、ダイヤフラムポンプといったピストンやプランジャーなどの往復運動を利用して圧力を高める往復式ポンプ、3)ギアポンプやペリスタポンプといった歯車やローラーを回転し、流体を空隙に閉じ込めて押し動かして輸送する回転式ポンプ、4)ボリュートポンプや、デフューザポンプといった、流体を回転羽根で回転しその遠心力によって圧力を高める遠心式ポンプや、その他一般的に知られているポンプなどが挙げられる。   The inlet of the channel of the electrochemical reaction device used in the present invention may be connected to a supply device for introducing a fluid into the channel from the outside, and a small pump may be built in the channel. . The supply means for introducing the fluid into the electrochemical reaction apparatus from the outside is not particularly limited. For example, various pumps, a method of pumping, a method of utilizing a difference in gravity, a container compressed to a high pressure The method of supplying from, etc. can be used. Specific examples of pumps include 1) a syringe pump that pushes fluid in a cylinder with a piston, and 2) a reciprocating pump that increases pressure using a reciprocating motion of a piston or plunger, such as a piston pump or a diaphragm pump, 3) Rotating pumps that rotate gears and rollers such as gear pumps and peristaltic pumps, confine the fluid in a gap and push it to transport, 4) Rotary fluids such as volute pumps and diffuser pumps, which rotate by rotating blades and pressurize by centrifugal force Centrifugal pumps that increase the pressure, and other generally known pumps.

本発明で使用する電気化学反応装置の流路の水力相当直径は、1μm以上2000μm以下が好ましく、10μm以上1000μm以下がさらに好ましく、20μm以上500μm以下がとりわけ好ましい。電気化学反応装置の流路の水力相当直径が1μm以下では、圧力損失が甚だ大きくなると共に、処理量も著しく少なくなるため好ましくなく、2000μm以上では温度制御が困難になるため副生成物が増加するので好ましくない。ここで言う水力相当直径とは、(流路断面積×4÷濡れ辺長)で表すことができる。   The hydraulic equivalent diameter of the flow path of the electrochemical reaction apparatus used in the present invention is preferably 1 μm or more and 2000 μm or less, more preferably 10 μm or more and 1000 μm or less, and particularly preferably 20 μm or more and 500 μm or less. If the hydraulic equivalent diameter of the flow path of the electrochemical reaction apparatus is 1 μm or less, the pressure loss is extremely large and the amount of treatment is remarkably reduced, which is not preferable, and if it is 2000 μm or more, temperature control becomes difficult and the by-product increases. Therefore, it is not preferable. The hydraulic equivalent diameter mentioned here can be expressed by (channel cross-sectional area × 4 ÷ wetting side length).

本発明に用いる反応液の前処理方法や後処理方法は、特に限定されないが、本発明で使用する電気化学反応装置と同様の水力相当直径の流路を使って、行なっても良い。   The pre-treatment method and post-treatment method of the reaction solution used in the present invention are not particularly limited, but may be performed using a flow path having a hydraulic equivalent diameter similar to that of the electrochemical reaction device used in the present invention.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples.

なお、以下の実施例、比較例において、選択率は消費された原料に対する目的物に転換された原料のモル%である。   In the following Examples and Comparative Examples, the selectivity is the mol% of the raw material converted into the target product with respect to the consumed raw material.

(実施例1)
マイクロリアクターは、2枚のアクリル板に電極と溝をそれぞれ設けたものを、接着して作った。具体的には、以下の手順で作成した。
1)一方のアクリル板を機械加工し、図1に示した形状の溝を形成した。溝の寸法は、幅900μm、深さ200μm、電極にかかる長さは100mmであった。溝の両端に外部から送液するための貫通孔を空けた。
2)もう一方のアクリル板に、図2に示した電極形状をくり貫いたマスクを被せて、クロムを1000Å蒸着してから、金を2000Å蒸着し電極を設けた。流路に掛かる電極の寸法は幅300μm、長さ10mm、各電極の間隙は300μmであった。
3)上記の2枚のアクリル板を重ね合わせ密着し、115℃に設定したイナートオーブンに1時間入れ、熱圧着により接合させマイクロリアクターを完成させた。マイクロリアクターの概略平面図を図3に示した。
Example 1
The microreactor was made by bonding two acrylic plates with electrodes and grooves, respectively. Specifically, it was created according to the following procedure.
1) One acrylic plate was machined to form a groove having the shape shown in FIG. The dimensions of the groove were a width of 900 μm, a depth of 200 μm, and a length applied to the electrode of 100 mm. A through-hole for feeding liquid from the outside was opened at both ends of the groove.
2) The other acrylic plate was covered with a mask in which the electrode shape shown in FIG. 2 was cut, and chrome was deposited by 1000 liters, and then gold was deposited by 2,000 liters to provide an electrode. The dimensions of the electrode applied to the flow path were 300 μm wide, 10 mm long, and the gap between the electrodes was 300 μm.
3) The above two acrylic plates were superposed and adhered, placed in an inert oven set at 115 ° C. for 1 hour, and joined by thermocompression to complete a microreactor. A schematic plan view of the microreactor is shown in FIG.

電気化学反応装置の流路の注入口から反応液(マレイン酸ジメチル:5wt%,酢酸ナトリウム:2wt%/メタノール)を、シリンジポンプを用いて合計10μL/minの流量で送液した。電気化学反応装置は、ペルチェ素子の上に載せ、15℃に温度制御した。交流電源を使い、周波数10Hz、振幅3.5Vの交流電流を印加して、吐出したサンプルをガスクロマトグラフィーで定量分析した。マレイン酸ジメチルの転換率は29.8%であり、二量体であるテトラブチルブタンカルボン酸は生成せず、メトキシ化されたメトキシコハク酸ジメチルの選択率(消費されたマレイン酸ジメチルに対するメトキシコハク酸ジメチルのモル%)は80.3%であった。   The reaction solution (dimethyl maleate: 5 wt%, sodium acetate: 2 wt% / methanol) was fed from the inlet of the channel of the electrochemical reaction device at a total flow rate of 10 μL / min using a syringe pump. The electrochemical reaction apparatus was mounted on a Peltier device and the temperature was controlled at 15 ° C. Using an alternating current power source, an alternating current having a frequency of 10 Hz and an amplitude of 3.5 V was applied, and the discharged sample was quantitatively analyzed by gas chromatography. The conversion of dimethyl maleate was 29.8%, and the dimer tetrabutylbutanecarboxylic acid was not produced. The selectivity for methoxylated dimethyl methoxysuccinate (methoxy succinate over consumed dimethyl maleate) Mol% of dimethyl acid) was 80.3%.

(実施例2)
交流電流の振幅を5.0Vに変更した以外は実施例1と同様にして実験したところ、マレイン酸ジメチルの転換率は38.8%であり、テトラブチルブタンカルボン酸の選択率は6.6%、メトキシコハク酸ジメチルの選択率は61.9%であった。
(Example 2)
When an experiment was conducted in the same manner as in Example 1 except that the amplitude of the alternating current was changed to 5.0 V, the conversion of dimethyl maleate was 38.8%, and the selectivity for tetrabutylbutanecarboxylic acid was 6.6. %, The selectivity for dimethyl methoxysuccinate was 61.9%.

(実施例3)
交流電流の周波数を100Hzに、振幅を10Vに変更した以外は実施例1と同様にして実験したところ、マレイン酸ジメチルの転換率は62.8%であり、テトラブチルブタンカルボン酸の選択率は12.6%、メトキシコハク酸ジメチルの選択率は38.8%であった。
(Example 3)
An experiment was conducted in the same manner as in Example 1 except that the frequency of the alternating current was changed to 100 Hz and the amplitude was changed to 10 V. As a result, the conversion rate of dimethyl maleate was 62.8%, and the selectivity of tetrabutylbutanecarboxylic acid was The selectivity for 12.6% and dimethyl methoxysuccinate was 38.8%.

(実施例4)
交流電流の周波数を1kHzに、振幅を10Vに変更した以外は実施例1と同様にして実験したところ、マレイン酸ジメチルの転換率は44.8%であり、テトラブチルブタンカルボン酸の選択率は11.1%、メトキシコハク酸ジメチルの選択率は54.2%であった。
Example 4
An experiment was conducted in the same manner as in Example 1 except that the frequency of the alternating current was changed to 1 kHz and the amplitude was changed to 10 V. As a result, the conversion rate of dimethyl maleate was 44.8%, and the selectivity of tetrabutylbutanecarboxylic acid was The selectivity for 11.1% and dimethyl methoxysuccinate was 54.2%.

(実施例5)
交流電流の周波数を10kHzに、振幅を10Vに変更した以外は実施例1と同様にして実験したところ、マレイン酸ジメチルの転換率は29.8%であり、テトラブチルブタンカルボン酸は生成せず、メトキシコハク酸ジメチルの選択率は80.0%であった。
(Example 5)
When an experiment was conducted in the same manner as in Example 1 except that the frequency of the alternating current was changed to 10 kHz and the amplitude was changed to 10 V, the conversion rate of dimethyl maleate was 29.8%, and tetrabutylbutanecarboxylic acid was not produced. The selectivity for dimethyl methoxysuccinate was 80.0%.

(実施例6)
反応液を、マレイン酸ジメチル:20 wt%,酢酸ナトリウム:2wt%/メタノールに変更し、交流電流の周波数を100Hzに、振幅を10Vに変更した以外は実施例1と同様にして実験したところ、マレイン酸ジメチルの転換率は83.3%であり、テトラブチルブタンカルボン酸の選択率は14.4%、メトキシコハク酸ジメチルの選択率は49.0%であった。
(Example 6)
When the reaction solution was changed to dimethyl maleate: 20 wt%, sodium acetate: 2 wt% / methanol, the experiment was performed in the same manner as in Example 1 except that the frequency of the alternating current was changed to 100 Hz and the amplitude was changed to 10 V. The conversion of dimethyl maleate was 83.3%, the selectivity for tetrabutylbutanecarboxylic acid was 14.4%, and the selectivity for dimethyl methoxysuccinate was 49.0%.

(実施例7)
交流電流の周波数を1.2kHzに、振幅を30Vに変更した以外は実施例6と同様にして実験したところ、マレイン酸ジメチルの転換率は50.2%であり、テトラブチルブタンカルボン酸は生成せず、メトキシコハク酸ジメチルの選択率は79.4%であった。
(Example 7)
When the experiment was conducted in the same manner as in Example 6 except that the frequency of the alternating current was changed to 1.2 kHz and the amplitude was changed to 30 V, the conversion rate of dimethyl maleate was 50.2%, and tetrabutylbutanecarboxylic acid was produced. The selectivity for dimethyl methoxysuccinate was 79.4%.

(比較例1)
直流電源を用いて3.9Vの定電圧条件に変更した以外は実施例1と同様にして実験したところ、マレイン酸ジメチルの転換率は51.7%であり、テトラブチルブタンカルボン酸の選択率は1.7%、メトキシコハク酸ジメチルの選択率は8.8%であった。これより、メトキシコハク酸ジメチルの選択率が、実施例と比較して低下することが分かった。
(Comparative Example 1)
An experiment was conducted in the same manner as in Example 1 except that the DC voltage was changed to a constant voltage condition of 3.9 V. As a result, the conversion of dimethyl maleate was 51.7%, and the selectivity for tetrabutylbutanecarboxylic acid was Was 1.7%, and the selectivity for dimethyl methoxysuccinate was 8.8%. From this, it was found that the selectivity for dimethyl methoxysuccinate was lower than that in Examples.

(比較例2)
反応液を、マレイン酸ジメチル:20 wt%,酢酸ナトリウム:2wt%/メタノールに変更し、直流電源を用いて3.9Vの定電圧条件直流電流に変更した以外は実施例1と同様にして実験したところ、マレイン酸ジメチルの転換率は77.3%であり、テトラブチルブタンカルボン酸の選択率は1.3%、メトキシコハク酸ジメチルの選択率は20.8%であった。これより、メトキシコハク酸ジメチルの選択率が、実施例と比較して低下することが分かった。
(Comparative Example 2)
Experiment was conducted in the same manner as in Example 1 except that the reaction solution was changed to dimethyl maleate: 20 wt%, sodium acetate: 2 wt% / methanol and changed to a constant current condition of 3.9 V using a DC power source. As a result, the conversion rate of dimethyl maleate was 77.3%, the selectivity of tetrabutylbutanecarboxylic acid was 1.3%, and the selectivity of dimethyl methoxysuccinate was 20.8%. From this, it was found that the selectivity for dimethyl methoxysuccinate was lower than that in Examples.

本発明の一実施形態に係るマイクロリアクターの流路部分の概略平面図である。It is a schematic plan view of the flow path part of the microreactor which concerns on one Embodiment of this invention. 本発明の一実施形態に係るマイクロリアクターの電極部分の概略平面図である。It is a schematic plan view of the electrode part of the microreactor which concerns on one Embodiment of this invention. 本発明の一実施形態に係るマイクロリアクターの概略平面図である。1 is a schematic plan view of a microreactor according to an embodiment of the present invention.

符号の説明Explanation of symbols

1.電極部流路
2.電極部から注入口および吐出口までの流路
3.注入口および吐出口

1. 1. Electrode part flow path 2. A flow path from the electrode part to the inlet and outlet. Inlet and outlet

Claims (2)

作用極と対極が流路に沿って備えられた電気化学反応装置を用いて、電極間に交流電流を流して電気化学反応を行なうことを特徴とする化学物質の製造方法。
A method for producing a chemical substance, wherein an electrochemical reaction is performed by passing an alternating current between electrodes using an electrochemical reaction device in which a working electrode and a counter electrode are provided along a flow path.
電気化学反応が、メトキシ化反応であることを特徴とする、請求項1記載の化学物質の製造方法。
The method for producing a chemical substance according to claim 1, wherein the electrochemical reaction is a methoxylation reaction.
JP2005224958A 2005-08-03 2005-08-03 Manufacturing method of chemical substances Expired - Fee Related JP4783598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005224958A JP4783598B2 (en) 2005-08-03 2005-08-03 Manufacturing method of chemical substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224958A JP4783598B2 (en) 2005-08-03 2005-08-03 Manufacturing method of chemical substances

Publications (2)

Publication Number Publication Date
JP2007039737A true JP2007039737A (en) 2007-02-15
JP4783598B2 JP4783598B2 (en) 2011-09-28

Family

ID=37798003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224958A Expired - Fee Related JP4783598B2 (en) 2005-08-03 2005-08-03 Manufacturing method of chemical substances

Country Status (1)

Country Link
JP (1) JP4783598B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1965587A2 (en) 2007-02-20 2008-09-03 Buffalo Inc. Digital content reproducing and storing apparatus, digital content reproducing and storing method, digital content storing apparatus, digital content reproducing apparatus, and computer readable medium storing digital content reproducing and storing program
JP2013010076A (en) * 2011-06-29 2013-01-17 Sumitomo Bakelite Co Ltd Method for manufacturing microchannel device and microchannel chip
JP5765226B2 (en) * 2009-09-15 2015-08-19 宇部興産株式会社 Non-aqueous electrolyte and electrochemical device using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180164A (en) * 1997-09-05 1999-03-26 Otsuka Chem Co Ltd Production of 3-dialkoxymethyl cephem compound
JP2000054177A (en) * 1998-07-31 2000-02-22 Toto Ltd Electrolyzer
JP2005186034A (en) * 2003-12-26 2005-07-14 Takaoka Kasei Kogyo Kk Electrolytic hydrogen-containing water producing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180164A (en) * 1997-09-05 1999-03-26 Otsuka Chem Co Ltd Production of 3-dialkoxymethyl cephem compound
JP2000054177A (en) * 1998-07-31 2000-02-22 Toto Ltd Electrolyzer
JP2005186034A (en) * 2003-12-26 2005-07-14 Takaoka Kasei Kogyo Kk Electrolytic hydrogen-containing water producing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1965587A2 (en) 2007-02-20 2008-09-03 Buffalo Inc. Digital content reproducing and storing apparatus, digital content reproducing and storing method, digital content storing apparatus, digital content reproducing apparatus, and computer readable medium storing digital content reproducing and storing program
JP5765226B2 (en) * 2009-09-15 2015-08-19 宇部興産株式会社 Non-aqueous electrolyte and electrochemical device using the same
US9130244B2 (en) 2009-09-15 2015-09-08 Ube Industries, Ltd. Nonaqueous electrolyte solution and electrochemical element using same
JP2013010076A (en) * 2011-06-29 2013-01-17 Sumitomo Bakelite Co Ltd Method for manufacturing microchannel device and microchannel chip

Also Published As

Publication number Publication date
JP4783598B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
Atobe et al. Applications of flow microreactors in electrosynthetic processes
Green et al. A microflow electrolysis cell for laboratory synthesis on the multigram scale
Green et al. An extended channel length microflow electrolysis cell for convenient laboratory synthesis
Pennemann et al. Benchmarking of microreactor applications
Gütz et al. Highly modular flow cell for electroorganic synthesis
Green et al. Electrochemical deprotection of para-methoxybenzyl ethers in a flow electrolysis cell
Suga et al. “Cation flow” method: A new approach to conventional and combinatorial organic syntheses using electrochemical microflow systems
Pletcher et al. Flow electrolysis cells for the synthetic organic chemistry laboratory
Löwe et al. State-of-the-art in microreaction technology: concepts, manufacturing and applications
Chapman et al. Simple and versatile laboratory scale CSTR for multiphasic continuous-flow chemistry and long residence times
Haswell et al. The application of micro reactors to synthetic chemistry
Hardwick et al. Advances in electro-and sono-microreactors for chemical synthesis
Ahmed et al. Enhancement of reaction rates by segmented fluid flow in capillary scale reactors
Nagaki et al. Design of a numbering-up system of monolithic microreactors and its application to synthesis of a key intermediate of valsartan
McQuade et al. Applying flow chemistry: methods, materials, and multistep synthesis
Brivio et al. Miniaturized continuous flow reaction vessels: influence on chemical reactions
Fletcher et al. Micro reactors: principles and applications in organic synthesis
Horii et al. A new approach to anodic substitution reaction using parallel laminar flow in a micro-flow reactor
Broese et al. An Electrocatalytic Newman–Kwart-Type Rearrangement
Ziogas et al. Electrochemical microstructured reactors: design and application in organic synthesis
Arai et al. An anodic aromatic C, C cross-coupling reaction using parallel laminar flow mode in a flow microreactor
Neyt et al. Application of reactor engineering concepts in continuous flow chemistry: a review
van den Brink et al. Miniaturization of electrochemical cells for mass spectrometry
JP4783598B2 (en) Manufacturing method of chemical substances
Chen et al. Electrochemical cyclobutane synthesis in flow: scale-up of a promising melt-castable energetic intermediate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees