JP5884150B2 - Method for manufacturing fillet welded joint - Google Patents

Method for manufacturing fillet welded joint Download PDF

Info

Publication number
JP5884150B2
JP5884150B2 JP2011069729A JP2011069729A JP5884150B2 JP 5884150 B2 JP5884150 B2 JP 5884150B2 JP 2011069729 A JP2011069729 A JP 2011069729A JP 2011069729 A JP2011069729 A JP 2011069729A JP 5884150 B2 JP5884150 B2 JP 5884150B2
Authority
JP
Japan
Prior art keywords
plate
thickness direction
less
fatigue
plate thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011069729A
Other languages
Japanese (ja)
Other versions
JP2012200782A (en
Inventor
恒久 半田
恒久 半田
聡 伊木
聡 伊木
遠藤 茂
茂 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011069729A priority Critical patent/JP5884150B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to PCT/JP2012/058787 priority patent/WO2012133879A1/en
Priority to CN201280015840.4A priority patent/CN103459637B/en
Priority to KR1020167003625A priority patent/KR101687687B1/en
Priority to CN201280015867.3A priority patent/CN103459640B/en
Priority to KR1020137024879A priority patent/KR20130125822A/en
Priority to KR1020137024880A priority patent/KR101594913B1/en
Priority to PCT/JP2012/058780 priority patent/WO2012133872A1/en
Priority to TW101110718A priority patent/TWI469846B/en
Priority to TW101110717A priority patent/TWI478786B/en
Publication of JP2012200782A publication Critical patent/JP2012200782A/en
Application granted granted Critical
Publication of JP5884150B2 publication Critical patent/JP5884150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、隅肉溶接継手に関し、特に板厚50mm以上の極厚鋼板の継手で疲労特性に優れたものに関する。   The present invention relates to a fillet welded joint, and particularly to a joint made of an extremely thick steel plate having a thickness of 50 mm or more and having excellent fatigue characteristics.

船舶、海洋構造物、橋梁、建築物、圧力容器などの溶接鋼構造物に使用される鋼板は、強度、靭性などの機械的性質や溶接性に優れていることはもちろんであるが、稼動時における定常の繰返し荷重や、風、地震等の震動に起因する非定常の繰返し荷重に対しても、構造物の構造安全性を確保できる特性を有することが要求される。特に近年では、鋼板に対して、耐疲労特性に優れることが強く要求されている。   Steel plates used for welded steel structures such as ships, offshore structures, bridges, buildings, pressure vessels, etc. are of course excellent in mechanical properties such as strength and toughness and weldability. It is required to have a characteristic that can ensure the structural safety of the structure even with respect to a steady cyclic load and a non-steady cyclic load caused by vibrations such as wind and earthquake. Particularly in recent years, steel sheets are strongly required to have excellent fatigue resistance.

溶接鋼構造物では、溶接止端部等に多数の応力集中部が存在するが、溶接止端部には応力が集中しやすく、また、引張の残留応力も作用するため、繰返し荷重が作用した場合には、溶接止端部から疲労亀裂が発生しやすく、溶接止端部が疲労亀裂の発生源となることが多い。   In welded steel structures, there are many stress concentration parts at the weld toe, etc., but stress tends to concentrate at the weld toe part, and tensile residual stress also acts, so repeated loads were applied. In some cases, fatigue cracks are likely to occur from the weld toe, and the weld toe is often the source of fatigue cracks.

このような疲労亀裂の発生を防止するために、止端部形状の改善や、圧縮の残留応力の導入などの方策が知られている。しかし、溶接鋼構造物には多数の溶接止端部が存在するため、溶接止端部ごとに、上記した疲労亀裂の発生を防止する方策を実行することは、多大の労力と時間を必要とし、施工工数の増加や、施工コストの高騰を招く。   In order to prevent the occurrence of such fatigue cracks, measures such as improvement of the shape of the toe portion and introduction of compressive residual stress are known. However, since there are a large number of weld toes in a welded steel structure, it takes a lot of labor and time to implement the above-described measures for preventing the occurrence of fatigue cracks for each weld toe. , Increase in the number of construction steps and increase in construction cost.

そこで、このような疲労亀裂の発生を防止する方策に代えて、使用する鋼板自体の耐疲労特性を向上させて、溶接鋼構造物の耐疲労特性の向上を図ることが考えられている。鋼板自体の耐疲労特性を向上させることにより、疲労亀裂の成長が抑制されて、溶接鋼構造物の疲労寿命の延長が可能となる。   Therefore, it has been considered to improve the fatigue resistance characteristics of the welded steel structure by improving the fatigue resistance characteristics of the steel sheet used in place of measures for preventing the occurrence of such fatigue cracks. By improving the fatigue resistance of the steel plate itself, the growth of fatigue cracks is suppressed and the fatigue life of the welded steel structure can be extended.

耐疲労特性に優れた鋼板として例えば、特許文献1では、鋼板圧延方向に延在する縞状の第二相が母相内に5〜50%の面積率で散在する微視組織を有し、第二相の硬さHが母相の硬さHより30%以上高い、耐疲労亀裂進展特性の良好な鋼板が提案されている。 As a steel plate excellent in fatigue resistance characteristics, for example, in Patent Document 1, a striped second phase extending in the steel plate rolling direction has a microscopic structure scattered in an area ratio of 5 to 50% in the matrix phase, hardness H V of the second phase is 30% or more higher than the hardness H V of the mother phase, excellent steel fatigue crack growth properties have been proposed.

特許文献1に記載された技術は、母相中に、硬さの高い第二相を分散させ、疲労亀裂が硬い第二相付近に達すると亀裂の伝播が大幅に遅延する現象により、鋼板の耐疲労亀裂伝播特性を向上させるもので、第二相のアスペクト比を4以上とすることが好ましいとしている。このような鋼板を、表面から疲労亀裂が発生し伝播する大型構造物に使用すれば、特別な配慮を必要とせず、高い疲労亀裂伝播阻止特性を大型構造物に付与可能であることが記載されている。   The technique described in Patent Document 1 disperses a high-hardness second phase in the matrix phase, and when a fatigue crack reaches the vicinity of the hard second phase, the propagation of cracks is significantly delayed, and the steel plate It is intended to improve fatigue crack propagation resistance, and the aspect ratio of the second phase is preferably 4 or more. It is described that if such a steel plate is used for a large structure in which fatigue cracks are generated from the surface and propagated, no special consideration is required and a high fatigue crack propagation preventing property can be imparted to the large structure. ing.

また、溶接継手の中では、角回し溶接、十字溶接、カバープレート溶接、スタッド溶接などの隅肉溶接継手の疲労強度が最も低いことが知られ、特に最近の大型コンテナ船等に適用される極厚鋼板の隅肉溶接継手における疲労強度の改善が喫緊の課題とされている。
隅肉溶接継手の場合、溶接止端部から発生した疲労き裂は板厚方向に進展するため板厚方向の耐疲労特性に優れた鋼板を用いることが継手としての耐疲労特性を向上させるために有効である。
Among welded joints, fillet welded joints such as corner welding, cross welding, cover plate welding, stud welding, etc. are known to have the lowest fatigue strength, and are especially applicable to recent large container ships. Improvement of fatigue strength in fillet welded joints of thick steel plates is an urgent issue.
In the case of fillet welded joints, fatigue cracks generated from the weld toes propagate in the plate thickness direction, so using a steel plate with excellent fatigue resistance in the plate thickness direction improves the fatigue resistance of the joint. It is effective for.

特許文献2には、質量%で、C:0.015〜0.20%、Si:0.05〜2.0%、Mn:0.1〜2.0%、P:0.05%以下、S:0.02%以下を含有し、残部Feおよび不可避的不純物よりなり、X線で測定した板厚方向の(200)回折強度比が2.0〜15.0で、且つ回復または再結晶フェライト粒の面積率が15〜40%である、板厚方向の疲労き裂伝播速度が低い厚鋼板が記載されている。   In Patent Document 2, in mass%, C: 0.015 to 0.20%, Si: 0.05 to 2.0%, Mn: 0.1 to 2.0%, P: 0.05% or less , S: 0.02% or less, the balance being Fe and inevitable impurities, the (200) diffraction intensity ratio in the plate thickness direction measured by X-ray is 2.0 to 15.0, and recovery or re- A thick steel sheet having a low fatigue crack propagation rate in the thickness direction, in which the area ratio of crystal ferrite grains is 15 to 40%, is described.

特開平7−90478号公報JP-A-7-90478 特開平8−199286号公報JP-A-8-199286

特許文献1に記載された技術では、疲労亀裂伝播速度を低くし、疲労亀裂の伝播を著しく遅滞させるため、母相に比べ第二相の硬さを高くし、さらに硬質の第二相を多量に分散させる必要がある。このため、鋼板の延性、靭性の低下が著しくなるという問題が生じる。鋼板の延性、靭性の低下は、多量の合金元素の含有で防止できる場合もあるが、多量の合金元素の含有は、材料コストの高騰を招くという問題を避けられない。   In the technique described in Patent Document 1, in order to reduce the fatigue crack propagation rate and significantly delay the propagation of fatigue cracks, the hardness of the second phase is increased compared to the parent phase, and a large amount of hard second phase is added. Need to be distributed. For this reason, the problem that the ductility of a steel plate and the toughness fall remarkably arises. In some cases, a decrease in the ductility and toughness of the steel sheet can be prevented by containing a large amount of alloy elements. However, the inclusion of a large amount of alloy elements inevitably raises the material cost.

また、特許文献2に記載された技術では、板厚方向の(200)回折強度比を2.0以上とし、すなわち、(100)面が板面に平行に揃った集合組織を発達させ、疲労亀裂先端で種々のすべり系を活動させ転位同士の干渉を生じさせ、亀裂の伝播を抑制して板厚方向の疲労亀裂伝播速度を低くしている。しかし、(100)面は劈開面であり、板面に平行に(100)面が揃った厚鋼板では、板厚方向の靭性が劣化するという問題を残していた。更に、特許文献1、2記載の技術では、疲労亀裂伝播速度は低減するが、疲労亀裂発生寿命を含むトータルの疲労寿命は顕著には増加しない。   Further, in the technique described in Patent Document 2, the (200) diffraction intensity ratio in the plate thickness direction is set to 2.0 or more, that is, a texture in which the (100) plane is aligned parallel to the plate surface is developed, and fatigue Various slip systems are activated at the crack tip, causing interference between dislocations, suppressing crack propagation and reducing the fatigue crack propagation rate in the plate thickness direction. However, the (100) plane is a cleavage plane, and the thick steel plate having the (100) plane parallel to the plate surface has a problem that the toughness in the plate thickness direction deteriorates. Furthermore, in the techniques described in Patent Documents 1 and 2, the fatigue crack propagation speed is reduced, but the total fatigue life including the fatigue crack generation life is not significantly increased.

上述したように、特許文献1、2に記載された耐疲労特性に優れた厚鋼板は溶接構造物用としては、コストや性能面で改善すべき余地があり、一方、隅肉溶接継手の製作においても、継手としての耐疲労特性を向上する溶接法は明らかにされていない。   As described above, the thick steel plates with excellent fatigue resistance described in Patent Documents 1 and 2 have room to be improved in terms of cost and performance for use in welded structures, while manufacturing fillet welded joints. However, a welding method for improving fatigue resistance as a joint is not disclosed.

そこで、本発明は板厚方向の耐疲労特性に優れた厚鋼板を用いた隅肉継手で耐疲労特性に優れた隅肉溶接継手を提供することを目的とする。   Accordingly, an object of the present invention is to provide a fillet welded joint having excellent fatigue resistance, which is a fillet joint using a thick steel plate having excellent fatigue resistance in the thickness direction.

本発明者らは、上記目的を達成するため、厚鋼板の板厚方向の耐疲労特性に及ぼす集合組織と鋼板内の圧縮残留応力の影響および隅肉溶接継手の溶接条件が継手の耐疲労特性に及ぼす影響について鋭意研究を重ね、以下の知見を得た。   In order to achieve the above object, the present inventors have determined that the influence of the texture and compressive residual stress in the thickness direction of the thick steel plate on the fatigue resistance property of the steel plate and the welding conditions of the fillet welded joint are the fatigue resistance properties of the joint. The following findings were obtained through extensive research on the effects on the environment.

厚鋼板の板厚方向の耐疲労特性を向上させるためには、(1)少なくとも、鋼板の圧延面の両側または片側から板厚方向に2mmの位置から板厚の3/10位置までの範囲を、板面に平行に、(110)面を発達させた組織((110)集合組織)とする。   In order to improve the fatigue resistance in the plate thickness direction of the thick steel plate, (1) at least a range from a position of 2 mm to 3/10 position of the plate thickness in the plate thickness direction from both sides or one side of the rolled surface of the steel plate. Suppose that the (110) plane is developed parallel to the plate surface ((110) texture).

(2)上記(1)においてさらに、板面に平行に、(100)面の発達を抑制した組織とする。(3)板厚方向圧縮残留応力を導入し、その平均値をできるだけ小さくする(圧縮側にする)。   (2) In the above (1), the structure further suppresses the development of the (100) plane parallel to the plate surface. (3) Introduce compressive residual stress in the plate thickness direction, and make the average value as small as possible (on the compression side).

(4)鋼板の板厚方向と直角方向の圧縮残留応力を、鋼板の圧延面の両側または片側から板厚方向に4mmまでの範囲において、100MPa以上とすることも有効である。   (4) It is also effective to set the compressive residual stress in the direction perpendicular to the sheet thickness direction of the steel sheet to 100 MPa or more in the range from both sides or one side of the rolled surface of the steel sheet to 4 mm in the sheet thickness direction.

また、(5)隅肉溶接継手作製の際の溶接入熱と積層数を制限することが、隅肉溶接部の疲労強度を向上させるのに有効である。   Moreover, (5) Limiting the welding heat input and the number of laminations when producing fillet welded joints is effective in improving the fatigue strength of fillet welds.

尚、本発明は板厚50mm以上の厚鋼板の隅肉溶接継手を対象とする。板厚50mm未満では、板厚効果による疲労強度の低下はそれほど顕著ではなく、また、過去の多くの疲労試験データベースに基づいた各種疲労設計曲線に準拠すれば、本発明を用いなくとも耐疲労安全性は確保される。「耐疲労特性に優れた」とは、図1に示す寸法形状の切欠付3点曲げ隅肉溶接継手疲労試験片を用いて、応力比が0.1となる条件で疲労試験を実施して、板厚方向の疲労寿命を求め、応力範囲340MPaでの疲労寿命が25万回以上の場合とする。   The present invention is directed to a fillet welded joint of thick steel plates having a thickness of 50 mm or more. If the thickness is less than 50 mm, the decrease in fatigue strength due to the thickness effect is not so significant, and if it conforms to various fatigue design curves based on many past fatigue test databases, the fatigue resistance safety can be achieved without using the present invention. Sex is ensured. “Excellent fatigue resistance” means that a fatigue test was conducted under the condition that the stress ratio was 0.1 using a notched three-point bend fillet welded joint fatigue test piece with the dimensions shown in FIG. The fatigue life in the plate thickness direction is obtained, and the fatigue life in the stress range of 340 MPa is assumed to be 250,000 times or more.

本発明は、上記知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)板厚50mm以上の板厚方向の耐疲労特性に優れた厚鋼板の隅肉部を、入熱30kJ/cm以下、3層6パス以下の積層で溶接することを特徴とする、疲労強度の優れた隅肉溶接継手。
(2)前記板厚50mm以上の厚鋼板が、少なくとも、鋼板の圧延面の両側または片側から板厚方向に2mmの位置から板厚の3/10位置までの範囲において、板面に平行な(110)面のX線強度比が2.0以上となる部位を有することを特徴とする(1)に記載の疲労強度の優れた隅肉溶接継手。
(3)前記板厚50mm以上の厚鋼板の前記組織が、さらに板面に平行な(100)面のX線強度比が1.1以下であることを特徴とする(2)に記載の疲労強度の優れた隅肉溶接継手。
(4)前記板厚50mm以上の厚鋼板の板厚方向圧縮残留応力の平均値が、160MPa以上であることを特徴とする(2)または(3)に記載の疲労強度の優れた隅肉溶接継手
(5)前記板厚50mm以上の厚鋼板の圧延面の両側または片側から板厚方向に4mmまでの範囲において、板厚方向と直角方向の圧縮残留応力が100MPa以上であることを特徴とする(1)に記載の疲労強度の優れた隅肉溶接継手。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) Fatigue characterized by welding a fillet portion of a thick steel plate having excellent fatigue resistance in the thickness direction of a thickness of 50 mm or more, with a heat input of 30 kJ / cm or less and a lamination of 3 layers and 6 passes or less. Fillet welded joint with excellent strength.
(2) The steel plate having a thickness of 50 mm or more is parallel to the plate surface at least in the range from 2 mm position to 3/10 position of the plate thickness from both sides or one side of the rolled surface of the steel plate in the plate thickness direction ( 110) The fillet welded joint having excellent fatigue strength according to (1), wherein the X-ray intensity ratio of the surface is 2.0 or more.
(3) The fatigue according to (2), wherein the structure of the thick steel plate having a thickness of 50 mm or more is such that the X-ray intensity ratio of the (100) plane parallel to the plate surface is 1.1 or less. Fillet welded joint with excellent strength.
(4) The fillet weld having excellent fatigue strength according to (2) or (3), wherein an average value of compressive residual stress in the thickness direction of the thick steel plate having a thickness of 50 mm or more is 160 MPa or more. The joint (5) is characterized in that the compressive residual stress in the direction perpendicular to the plate thickness direction is 100 MPa or more in a range from both sides or one side of the rolled surface of the thick steel plate having a plate thickness of 50 mm or more to 4 mm in the plate thickness direction. A fillet welded joint having excellent fatigue strength according to (1).

本発明によれば、疲労強度が特に問題となる板厚50mm以上の厚鋼板の隅肉溶接部の疲労特性を溶接構造物としての延性、靭性を備えた厚鋼板を用いて容易に、且つ安価に向上でき、産業上格段の効果を奏する。   According to the present invention, the fatigue characteristics of a fillet welded portion of a thick steel plate having a thickness of 50 mm or more in which fatigue strength is a particular problem can be easily and inexpensively obtained using a thick steel plate having ductility and toughness as a welded structure. It can be greatly improved and has an industrially significant effect.

疲労試験に使用する切欠付3点曲げ隅肉溶接継手疲労試験片の寸法形状を模式的に示す説明図。Explanatory drawing which shows typically the dimension shape of the 3 point bending fillet welded joint fatigue test piece with a notch used for a fatigue test. 隅肉溶接継手に適用する厚鋼板の板厚方向断面における、進展する疲労亀裂先端でのすべりの発生状況を模式的に示す説明図。Explanatory drawing which shows typically the generation | occurrence | production state of the slip in the fatigue crack front-end | tip in the plate | board thickness direction cross section of the thick steel plate applied to a fillet welded joint. 疲労試験に使用する切欠付3点曲げ疲労試験片の寸法形状を模式的に示す説明図。Explanatory drawing which shows typically the dimension shape of the 3 point | piece bending fatigue test piece with a notch used for a fatigue test. 隅肉溶接継手の溶接条件を説明する図。The figure explaining the welding conditions of a fillet welded joint.

本発明では、板厚方向の耐疲労特性に優れた厚鋼板の隅肉継手の溶接条件として溶接入熱(kJ/cm)と積層方法を規定する。溶接入熱(入熱と言う場合がある)は30kJ/cm以下とする。30kJ/cmを超える入熱で隅肉溶接すると、溶接の熱影響により、鋼板の組織あるいは内部残留応力の形態が変化し、板厚方向の耐疲労特性に優れた鋼板の疲労特性に悪影響を及ぼすため30kJ/cm以下とする。   In the present invention, welding heat input (kJ / cm) and a lamination method are defined as welding conditions for a fillet joint of a thick steel plate having excellent fatigue resistance in the thickness direction. The welding heat input (sometimes referred to as heat input) is 30 kJ / cm or less. When fillet welding is performed at a heat input exceeding 30 kJ / cm, the structure of the steel sheet or the form of internal residual stress changes due to the thermal effect of the welding, which adversely affects the fatigue characteristics of the steel sheet with excellent fatigue resistance in the thickness direction. Therefore, it is set to 30 kJ / cm or less.

また、溶接入熱30kJ/cm以下であっても3層6パスを超える積層で隅肉溶接継手を作製すると、溶接止端部の圧縮残留応力が高くなり、疲労特性向上効果が得られなくなるため、積層は3層6パス以下とする。なお、溶接法は特に規定しない。手溶接、MIG溶接、CO溶接などが適用できる。 Moreover, even if the welding heat input is 30 kJ / cm or less, if a fillet welded joint is produced with a laminate exceeding three layers and six passes, the compressive residual stress at the weld toe portion becomes high, and the effect of improving fatigue characteristics cannot be obtained. The lamination is 3 layers or 6 passes or less. The welding method is not specified. Manual welding, MIG welding, CO 2 welding, etc. can be applied.

板厚50mm以上の板厚方向の耐疲労特性に優れた厚鋼板として以下に述べる厚鋼板1(特定の組織、板厚方向圧縮残留応力を備えたもの)または厚鋼板2(板厚方向と直角方向の圧縮残留応力を備えたもの)が好ましい。まず、厚鋼板1の組織と板厚方向圧縮残留応力について説明する。
[組織]
少なくとも鋼板の圧延面の両側または片側から板厚方向に2mmの位置から板厚の3/10位置までの範囲において、板面に平行な(110)面のX線強度比が2.0以上となる集合組織を有する。
Thick steel plate 1 (having a specific structure and compressive residual stress in the plate thickness direction) or thick steel plate 2 (perpendicular to the plate thickness direction) described below as a steel plate having excellent fatigue resistance in the plate thickness direction of 50 mm or more With a compressive residual stress in the direction) is preferred. First, the structure of the thick steel plate 1 and the compressive residual stress in the plate thickness direction will be described.
[Organization]
The X-ray intensity ratio of the (110) plane parallel to the plate surface is 2.0 or more at least in the range from the position of 2 mm in the plate thickness direction from both sides or one side of the rolled surface of the steel plate to 3/10 position of the plate thickness. It has a texture.

板厚方向に進展する疲労亀裂(亀裂面が板厚面)の進展(伝播)を抑制するために、(110)面を、亀裂面(板厚面)から90°傾けた組織、すなわち、板面に平行に(110)面を集積させた組織((110)集合組織)とし、X線強度比を2.0以上とする。   In order to suppress the progress (propagation) of fatigue cracks that propagate in the plate thickness direction (the crack surface is the plate thickness surface), a structure in which the (110) surface is inclined by 90 ° from the crack surface (plate thickness surface), that is, a plate A structure ((110) texture) in which the (110) planes are accumulated parallel to the plane is set, and the X-ray intensity ratio is set to 2.0 or more.

図2は板厚方向断面における、進展する疲労亀裂先端でのすべりの発生状況を説明する模式図である。一般に、疲労亀裂は、繰返し応力の作用により、亀裂先端で、剪断応力が最大となる亀裂面から45°程度傾いた面で不可逆なすべりが生じ、それが蓄積して進展していく(亀裂先端の応力場と結晶方位の関係で剪断応力が最も高くなるすべり系(すべり面すべり方向)ですべり変形が生じ、亀裂が進展していく)。   FIG. 2 is a schematic diagram for explaining the occurrence of slip at the tip of a progressing fatigue crack in the cross section in the thickness direction. Generally, fatigue cracks cause irreversible slip at the crack tip at a crack angle of about 45 ° from the crack surface where the shear stress is maximum due to the action of repeated stress, which accumulates and propagates (crack tip). In the slip system (slip direction in the slip plane) where the shear stress is the highest due to the relationship between the stress field and the crystal orientation, slip deformation occurs and the crack progresses.

従って、体心立方(bcc)構造鋼板の主すべり面である(110)面を、亀裂面から90°傾けると、剪断応力が最大となる。例えば、亀裂面から45°程度傾いた面でのすべりが抑制される。   Therefore, when the (110) plane, which is the main sliding surface of the body-centered cubic (bcc) structural steel plate, is tilted by 90 ° from the crack plane, the shear stress becomes maximum. For example, slipping on a surface inclined by about 45 ° from the crack surface is suppressed.

また、板面に平行な(110)面のX線強度比が2.0未満では疲労亀裂伝播速度を低下させて、板厚方向の疲労特性を向上させる効果が十分得られないので、2.0以上とする。なお、板面に平行な(110)面のX線強度比とは、ランダムな方位を有する鋼板における板面に平行な(110)面からのX線強度を基準とし、それに対する、板面に平行に存在する(110)面からのX線強度の比をいう。板面に平行な(110)面のX線強度比が2.0以上とは、ランダムな結晶方位を有する鋼板に比して、板面に平行な(110)面が2.0倍以上に高く集積して、(110)集合組織を形成していることを意味する。   Further, if the X-ray intensity ratio of the (110) plane parallel to the plate surface is less than 2.0, the effect of reducing the fatigue crack propagation rate and improving the fatigue characteristics in the plate thickness direction cannot be obtained sufficiently. 0 or more. The X-ray intensity ratio of the (110) plane parallel to the plate surface is based on the X-ray intensity from the (110) plane parallel to the plate surface in the steel plate having a random orientation, The ratio of the X-ray intensity from the (110) plane existing in parallel. The X-ray intensity ratio of the (110) plane parallel to the plate surface is 2.0 or more means that the (110) plane parallel to the plate surface is 2.0 times or more compared to a steel plate having a random crystal orientation. It means that it is highly accumulated and forms a (110) texture.

板厚方向に伝播する疲労亀裂は、鋼板表面近傍の応力集中部、たとえば表面に取り付けられた部材等の溶接部から発生するが、当該部位、特に鋼板表面から2mm迄の部位においては、部材等の取り付けのための溶接熱により付与された集合組織が消失してしまう。   Fatigue cracks propagating in the plate thickness direction are generated from stress-concentrated portions in the vicinity of the steel plate surface, for example, welds such as members attached to the surface. The texture imparted by the welding heat for attaching the metal will disappear.

一方、板厚中央部まで進展した疲労亀裂は、亀裂が大きくなっており、亀裂先端の応力拡大係数が大きく、繰返し荷重1サイクル当たりの疲労亀裂進展量が大きくなり、(110)集合組織の存在による疲労亀裂伝播速度の低減効果がほとんど得られない。   On the other hand, the fatigue crack that has propagated to the center of the plate thickness is large, the stress intensity factor at the crack tip is large, the amount of fatigue crack growth per cycle is large, and the presence of (110) texture The effect of reducing the fatigue crack propagation rate due to is hardly obtained.

従って、上記集合組織を、少なくとも鋼板の圧延面の両側または片側から板厚方向に2mmの位置から板厚の3/10位置までの範囲に形成する。但し、鋼板全体を(110)集合組織としてもよく、板厚方向全体を上記集合組織とすることを妨げるものではない。   Therefore, the texture is formed in a range from a position of 2 mm in the sheet thickness direction from at least one side or one side of the rolled surface of the steel sheet to a 3/10 position of the sheet thickness. However, the entire steel plate may be a (110) texture, and this does not prevent the entire thickness direction from being the texture.

体心立方(bcc)構造鋼板では、(100)面は劈開面であり、板面に平行な(100)面の存在は、板厚方向の靭性を低下させ、(100)面が板面に平行に発達すると、(110)集合組織の形成を阻害するので、少なくとも鋼板の圧延面の両側または片側から板厚方向に2mmの位置から板厚の3/10位置までの範囲において、板面に平行な(100)面のX線強度比を1.1以下、好ましくは可能な限り低減する。なお、板面に平行な(100)面のX線強度比とは、ランダムな方位を有する鋼板における板面に平行な(100)面からのX線強度を基準とし、それに対する、板面に平行に存在する(100)面からのX線強度の比をいう。板面に平行な(100)面のX線強度比が1.1以下とは、ランダムな方位を有する鋼板に比して、板面に平行な(100)面の集積が1.1倍以下であり、(100)集合組織をほとんど形成していないことを意味する。   In the body-centered cubic (bcc) structure steel plate, the (100) plane is a cleavage plane, and the presence of the (100) plane parallel to the plate surface reduces the toughness in the plate thickness direction, and the (100) plane becomes the plate surface. When it develops in parallel, the formation of (110) texture is inhibited, so at least in the range from 2 mm in the thickness direction to the 3/10 position of the plate thickness from both sides or one side of the rolled surface of the plate. The X-ray intensity ratio of the parallel (100) plane is 1.1 or less, preferably reduced as much as possible. The X-ray intensity ratio of the (100) plane parallel to the plate surface is based on the X-ray intensity from the (100) plane parallel to the plate surface in a steel plate having a random orientation, The ratio of X-ray intensity from (100) planes existing in parallel. The X-ray intensity ratio of the (100) plane parallel to the plate surface is 1.1 or less means that the accumulation of the (100) plane parallel to the plate surface is 1.1 times or less compared to the steel plate having a random orientation. It means that (100) texture is hardly formed.

[板厚方向圧縮残留応力]
板厚方向の圧縮残留応力は、板厚方向の靭性低下抑制および板厚方向の疲労亀裂伝播速度低減に有効であるが、160MPa未満では、前述した、優れた耐疲労特性が得られないため、160MPa以上とする。板厚方向圧縮残留応力の平均値は、X線測定により板厚方向(亀裂伝播方向)の残留応力を板厚方向に4mmピッチで測定し、その圧縮側の値(マイナス側の値)の平均値の絶対値とした。
[Thickness direction compressive residual stress]
The compressive residual stress in the plate thickness direction is effective for suppressing toughness reduction in the plate thickness direction and reducing the fatigue crack propagation rate in the plate thickness direction, but if it is less than 160 MPa, the excellent fatigue resistance characteristics described above cannot be obtained. 160 MPa or more. The average value of compressive residual stress in the plate thickness direction is measured by X-ray measurement of the residual stress in the plate thickness direction (crack propagation direction) at a pitch of 4 mm in the plate thickness direction. The absolute value was taken.

次に、厚鋼板2の板厚方向と直角方向の圧縮残留応力について説明する。板厚方向の耐疲労特性を向上させる場合、厚鋼板の圧延面の両側または片側から板厚方向に4mmまでの範囲において、板厚方向と直角方向の圧縮残留応力を100MPa以上とすることも有効である。   Next, the compressive residual stress in the direction perpendicular to the plate thickness direction of the thick steel plate 2 will be described. When improving fatigue resistance in the plate thickness direction, it is also effective to set the compressive residual stress in the direction perpendicular to the plate thickness direction to 100 MPa or more in the range from both sides or one side of the rolled surface of the thick steel plate to 4 mm in the plate thickness direction. It is.

溶接構造物の製作において鋼板表面部への仮付溶接あるいは打ち傷等が避けられず、鋼板のごく表面部においては圧縮残留応力が損なわれるので、100MPa以上の圧縮残留応力の存在する範囲を鋼板の圧延面の両側または片側から板厚方向に4mmとする。   In the production of a welded structure, tack welding or scratching on the steel plate surface is inevitable, and the compressive residual stress is impaired at the very surface of the steel plate. It is set to 4 mm in the plate | board thickness direction from the both sides or one side of a rolling surface.

一方、圧縮残留応力の範囲が表面から4mmを超えて板厚の内部にまで拡がると、内部応力のバランスから疲労亀裂が発生する表面部付近の圧縮残留応力が小さくなるため、鋼板の圧延面の両側または片側から板厚方向に4mmまでの範囲とする。   On the other hand, if the range of the compressive residual stress extends beyond 4 mm from the surface to the inside of the plate thickness, the compressive residual stress in the vicinity of the surface portion where fatigue cracks occur due to the balance of internal stress decreases, so The range is 4 mm from both sides or one side in the plate thickness direction.

上記範囲内における板厚方向に直角方向の圧縮残留応力は100MPa以上とする。疲労亀裂の伝播抑制には、亀裂面(亀裂伝播面)と直角方向に圧縮応力を作用させることが有効である。本発明は板厚方向に伝播する亀裂を対象とするので、圧縮残留応力の圧縮方向を板厚方向と直角方向とする。   The compressive residual stress in the direction perpendicular to the plate thickness direction within the above range is 100 MPa or more. In order to suppress the propagation of fatigue cracks, it is effective to apply a compressive stress in a direction perpendicular to the crack surface (crack propagation surface). Since the present invention targets cracks propagating in the plate thickness direction, the compression direction of the compressive residual stress is set to a direction perpendicular to the plate thickness direction.

圧縮残留応力が100MPa未満では、疲労亀裂伝播速度は低減されるものの、疲労寿命の向上につながるほど顕著な効果は得られないため、100MPa以上とする。なお、より好ましくは、150MPa以上である。鋼板の圧延面の両側または片側から板厚方向に4mmまでの範囲を超える鋼板内の板厚方向に直角方向の圧縮残留応力については特に規定しないが、通常、板厚方向に4mmまでの範囲内より小さい大きさとなる。   If the compressive residual stress is less than 100 MPa, the fatigue crack propagation rate is reduced, but a remarkable effect cannot be obtained so as to lead to an improvement in fatigue life. In addition, More preferably, it is 150 MPa or more. The compressive residual stress in the direction perpendicular to the plate thickness direction in the steel plate exceeding the range of 4 mm in the plate thickness direction from both sides or one side of the rolled surface of the steel plate is not particularly specified, but is usually in the range of up to 4 mm in the plate thickness direction. Smaller size.

上述した板厚方向の耐疲労特性に優れた、板厚50mm以上の厚鋼板1、2に溶接鋼構造物用としての強度と靭性(引張強さTS:490MPa以上、−40℃における吸収エネルギー:200J以上)を兼備させるための、成分組成と製造条件は本発明においては特に規定しないが、好ましい、成分組成と製造条件は以下の様である。
厚鋼板1の場合
[成分組成] 説明において%は質量%とする。
Strength and toughness for welded steel structures on steel plates 1 and 2 having a thickness of 50 mm or more, excellent in fatigue resistance characteristics in the thickness direction as described above (tensile strength TS: 490 MPa or more, absorbed energy at −40 ° C .: In the present invention, the component composition and production conditions for combining 200 J or more) are not particularly defined, but preferred component compositions and production conditions are as follows.
In the case of the thick steel plate 1 [component composition] In the explanation,% is mass%.

C:0.03〜0.15%
Cは、鋼の強度を増加させる作用を有する元素であり、所望の高強度を確保するためには、0.03%以上含有することが好ましいが、0.15%を超えて含有すると、溶接熱影響部靭性が低下する。このため、Cは0.03〜0.15%の範囲に限定することが好ましい。
C: 0.03-0.15%
C is an element having an effect of increasing the strength of steel, and in order to ensure a desired high strength, it is preferably contained in an amount of 0.03% or more. Heat-affected zone toughness decreases. For this reason, it is preferable to limit C to 0.03 to 0.15% of range.

Si:0.60%以下
Siは、脱酸剤として作用するとともに、固溶して鋼の強度を増加させる作用を有する元素である。このような効果を得るためには、0.01%以上含有することが望ましい。一方、0.60%を超える含有は、溶接熱影響部靭性を低下させる。このため、Siは0.60%以下に限定することが好ましい。なお、より好ましくは0.50%以下である。
Si: 0.60% or less Si is an element that acts as a deoxidizer and has a function of increasing the strength of steel by solid solution. In order to acquire such an effect, it is desirable to contain 0.01% or more. On the other hand, the content exceeding 0.60% lowers the weld heat affected zone toughness. For this reason, it is preferable to limit Si to 0.60% or less. In addition, More preferably, it is 0.50% or less.

Mn:0.80〜1.80%
Mnは、鋼の強度を増加させる作用を有する元素であり、所望の高強度を確保するためには、0.80%以上含有することが好ましいが、1.80%を超えて含有すると、母材靭性の低下が懸念される。このため、Mnは0.80〜1.80%の範囲に限定することが好ましい。なお、より好ましくは0.9〜1.60%である。
Mn: 0.80 to 1.80%
Mn is an element that has the effect of increasing the strength of steel. In order to ensure the desired high strength, Mn is preferably contained in an amount of 0.80% or more, but if contained in excess of 1.80%, There is concern about a reduction in material toughness. For this reason, Mn is preferably limited to a range of 0.80 to 1.80%. In addition, More preferably, it is 0.9 to 1.60%.

Ti:0.005〜0.050%、Nb:0.001〜0.1%のうちから選ばれた1種または2種
Ti、Nbは、析出強化を介して強度を増加させるとともに、加熱時のオーステナイト粒の成長を抑制し鋼板組織の微細化に寄与する元素であり、本発明では1種または2種を含有する。
One or two selected from Ti: 0.005 to 0.050%, Nb: 0.001 to 0.1%
Ti and Nb are elements that increase the strength through precipitation strengthening and suppress the growth of austenite grains during heating and contribute to the refinement of the steel sheet structure. In the present invention, Ti and Nb contain one or two kinds.

Tiは、炭化物、窒化物を形成し、鋼板製造時のオーステナイト粒の微細化に寄与するとともに、溶接熱影響部の結晶粒粗大化を抑制し、溶接熱影響部靭性を向上させる。このような効果を得るためには、0.005%以上含有することが好ましい。一方、0.050%を超える含有は、靭性を低下させる。このため、Tiは0.005〜0.050%の範囲に限定することが好ましい。なお、より好ましくは0.005〜0.02%である。   Ti forms carbides and nitrides, contributes to the refinement of austenite grains during steel plate production, suppresses crystal grain coarsening in the weld heat affected zone, and improves the weld heat affected zone toughness. In order to acquire such an effect, it is preferable to contain 0.005% or more. On the other hand, the content exceeding 0.050% reduces toughness. For this reason, Ti is preferably limited to a range of 0.005 to 0.050%. In addition, More preferably, it is 0.005 to 0.02%.

Nbは、Tiと同様に、析出強化を介して強度を増加させ、さらに組織を微細化するとともに、オーステナイトの再結晶を抑制し、所望の組織を形成するための圧延による効果を促進する作用を有する。このような効果を得るためには、0.001%以上含有することが好ましいが、0.1%を超える含有は、組織が針状化し靭性が低下する傾向となる。このため、Nbは0.001〜0.1%の範囲に限定することが好ましい。なお、より好ましくは0.02〜0.05%である。   Nb, like Ti, increases the strength through precipitation strengthening, further refines the structure, suppresses recrystallization of austenite, and promotes the effect of rolling to form the desired structure. Have. In order to acquire such an effect, it is preferable to contain 0.001% or more, but when it exceeds 0.1%, the structure tends to become needle-like and the toughness tends to decrease. For this reason, Nb is preferably limited to a range of 0.001 to 0.1%. In addition, More preferably, it is 0.02 to 0.05%.

更に特性を向上させる場合、上記基本成分に加えて、Cu、Ni、Cr、Mo、V、W、Zr、B、Alの1種または2種以上を含有することができる。   Furthermore, when improving a characteristic, in addition to the said basic component, 1 type (s) or 2 or more types of Cu, Ni, Cr, Mo, V, W, Zr, B, and Al can be contained.

Cu:2.0%以下、Ni:2.0%以下、Cr:0.6%以下、Mo:0.6%以下、V:0.2%以下、W:0.5%以下、Zr:0.5%以下、B:0.0050%以下の1種または2種以上
Cu、Ni、Cr、Mo、V、W、Zr、Bは、鋼の強度および靭性を向上させる元素で、所望する特性に応じて1種または2種以上を含有する。
Cu: 2.0% or less, Ni: 2.0% or less, Cr: 0.6% or less, Mo: 0.6% or less, V: 0.2% or less, W: 0.5% or less, Zr: 0.5% or less, B: One or more of 0.0050% or less Cu, Ni, Cr, Mo, V, W, Zr, B are elements that improve the strength and toughness of steel, and are desired It contains 1 type or 2 types or more depending on the characteristics.

Cuは、主として析出強化を介して鋼の強度増加に寄与する。このような効果を得るためには、0.05%以上含有することが望ましいが、2.0%を超える含有は、析出強化が過多となり、靭性が低下する。このため、含有する場合には、Cuは2.0%以下に限定することが好ましい。なお、より好ましくは0.35%以下である。   Cu contributes to the strength increase of steel mainly through precipitation strengthening. In order to obtain such an effect, it is desirable to contain 0.05% or more. However, if it exceeds 2.0%, precipitation strengthening is excessive and toughness decreases. For this reason, when it contains, it is preferable to limit Cu to 2.0% or less. In addition, More preferably, it is 0.35% or less.

Niは、鋼の強度を増加するとともに、靭性向上にも寄与する。また、Niは、Cuによる熱間圧延時の割れを防止するために有効に作用する。このような効果を得るためには、0.05%以上含有することが望ましい。しかし、2.0%を超えて多量に含有しても、効果が飽和し含有量に見合う効果が期待できなくなり経済的に不利となるとともに、Niは高価な元素であり多量の含有は材料コストの高騰を招く。このため、含有する場合には、Niは2.0%以下に限定することが好ましい。なお、より好ましくは0.1%以上である。   Ni increases the strength of the steel and contributes to improved toughness. Ni acts effectively to prevent cracking during hot rolling with Cu. In order to acquire such an effect, it is desirable to contain 0.05% or more. However, even if it is contained in a large amount exceeding 2.0%, the effect is saturated and an effect commensurate with the content cannot be expected and it is economically disadvantageous, and Ni is an expensive element. Invite the soaring. For this reason, when it contains, it is preferable to limit Ni to 2.0% or less. In addition, More preferably, it is 0.1% or more.

Crは、パーライト量を増加させ、鋼の強度増加に寄与する。このような効果を得るためには、0.01%以上含有することが望ましいが、0.6%を超える含有は、溶接部の靭性を低下させる。このため、含有する場合には、Crは0.6%以下に限定することが好ましい。なお、より好ましくは0.01〜0.2%である。   Cr increases the amount of pearlite and contributes to an increase in steel strength. In order to acquire such an effect, it is desirable to contain 0.01% or more, but inclusion exceeding 0.6% reduces the toughness of a welded part. For this reason, when it contains, it is preferable to limit Cr to 0.6% or less. In addition, More preferably, it is 0.01 to 0.2%.

Moは、鋼の強度増加に寄与する。このような効果を得るためには、0.01%以上含有することが望ましいが、0.6%を超える含有は、溶接部の靭性を低下させる。このため、含有する場合には、Moは0.6%以下に限定することが好ましい。なお、より好ましくは0.01〜0.08%である。   Mo contributes to an increase in steel strength. In order to acquire such an effect, it is desirable to contain 0.01% or more, but inclusion exceeding 0.6% reduces the toughness of a welded part. For this reason, when it contains, it is preferable to limit Mo to 0.6% or less. In addition, More preferably, it is 0.01 to 0.08%.

Vは、固溶強化、析出強化を介して鋼の強度増加に寄与する。このような効果を得るためには、0.05%以上含有することが望ましいが、0.2%を超える含有は、母材靭性および溶接性を顕著に低下させる。このため、Vは0.2%以下に限定することが好ましい。なお、より好ましくは0.05〜0.1%である。   V contributes to increasing the strength of steel through solid solution strengthening and precipitation strengthening. In order to acquire such an effect, it is desirable to contain 0.05% or more, but inclusion exceeding 0.2% significantly reduces the base metal toughness and weldability. For this reason, it is preferable to limit V to 0.2% or less. In addition, More preferably, it is 0.05 to 0.1%.

Wは、鋼の強度増加、とくに高温の強度増加に寄与する。このような効果を得るためには、0.1%以上含有することが望ましいが、0.5%を超える多量の含有は、溶接部の靭性を低下させる。また、高価なWの多量含有は材料コストの高騰を招く。このため、含有する場合には、Wは0.5%以下に限定することが好ましい。なお、より好ましくは0.2〜0.4%である。   W contributes to an increase in the strength of steel, particularly at a high temperature. In order to acquire such an effect, it is desirable to contain 0.1% or more, but if it contains more than 0.5%, the toughness of the welded portion is lowered. In addition, a large amount of expensive W causes a material cost to rise. For this reason, when contained, W is preferably limited to 0.5% or less. In addition, More preferably, it is 0.2 to 0.4%.

Zrは、鋼の強度増加に寄与するとともに、亜鉛めっき処理材における耐めっき割れ性を向上させる。このような効果を得るためには0.01%以上含有することが望ましいが、0.5%を超える含有は、溶接部靭性を低下させる。このため、含有する場合には、0.5%以下に限定することが好ましい。なお、より好ましくは0.01〜0.1%である。   Zr contributes to increasing the strength of steel and improves the resistance to plating cracking in the galvanized material. In order to acquire such an effect, it is desirable to contain 0.01% or more, but inclusion exceeding 0.5% lowers the toughness of the weld. For this reason, when it contains, it is preferable to limit to 0.5% or less. In addition, More preferably, it is 0.01 to 0.1%.

Bは、焼入れ性の向上を介し鋼の強度増加に寄与するとともに、圧延中にBNとして析出し、圧延後のフェライト粒の微細化に寄与する。このような効果を得るためには、0.0010%以上含有することが望ましいが、0.0050%を超える含有は靭性を劣化させる。このため、含有する場合には、Bは0.0050%以下に限定することが好ましい。なお、より好ましくは0.0010〜0.0035%である。   B contributes to an increase in the strength of the steel through improvement of hardenability and also precipitates as BN during rolling and contributes to refinement of ferrite grains after rolling. In order to acquire such an effect, it is desirable to contain 0.0010% or more, but inclusion exceeding 0.0050% deteriorates toughness. For this reason, when it contains, it is preferable to limit B to 0.0050% or less. More preferably, it is 0.0010 to 0.0035%.

Al:0.1%以下
Alは、脱酸剤として作用するとともに、結晶粒の微細化にも寄与し、このような効果を得るためには、0.015%以上含有することが望ましいが、0.1%を超える過剰の含有は、靭性の低下に繋がる。このため、含有する場合には、Alは0.1%以下に限定した。なお、好ましくは0.08%以下である。
Al: 0.1% or less Al acts as a deoxidizer and contributes to the refinement of crystal grains, and in order to obtain such an effect, it is desirable to contain 0.015% or more, An excessive content exceeding 0.1% leads to a decrease in toughness. For this reason, when it contained, Al was limited to 0.1% or less. In addition, Preferably it is 0.08% or less.

上記した成分以外の残部は、Feおよび不可避的不純物で、P:0.035%以下、S:0.035%以下、N:0.012%以下などが許容できる。   The balance other than the above components is Fe and inevitable impurities, and P: 0.035% or less, S: 0.035% or less, N: 0.012% or less, etc. are acceptable.

[製造条件]
スラブ等の鋼素材の製造方法は、とくに限定しない。上記組成の溶鋼を、転炉等の常用の溶製炉を用いて溶製し、連続鋳造法等の常用の方法で、スラブ等の鋼素材とし、900〜1350℃の温度に加熱する。
[Production conditions]
The manufacturing method of steel materials, such as a slab, is not specifically limited. The molten steel having the above composition is melted using a conventional melting furnace such as a converter, and is made into a steel material such as a slab by a conventional method such as a continuous casting method, and heated to a temperature of 900 to 1350 ° C.

加熱温度が900℃未満では、所望の熱間圧延が困難となる。一方、1350℃を超える加熱温度では、表面酸化が顕著となり、また、結晶粒の粗大化が顕著となる。このため、鋼素材の加熱温度は、900〜1350℃の範囲の温度に限定することが好ましい。なお、より好ましくは、靭性向上の観点から、1150℃以下である。   If heating temperature is less than 900 degreeC, desired hot rolling will become difficult. On the other hand, when the heating temperature exceeds 1350 ° C., the surface oxidation becomes remarkable and the coarsening of the crystal grains becomes remarkable. For this reason, it is preferable to limit the heating temperature of a steel raw material to the temperature of the range of 900-1350 degreeC. More preferably, it is 1150 ° C. or less from the viewpoint of improving toughness.

加熱された鋼素材に、熱間圧延を施す。熱間圧延は第一の圧延と、第二の圧延を備え、第一の圧延は、オーステナイト部分再結晶温度以上の温度域(上記成分組成の場合、オーステナイト部分再結晶温度以上の温度域は、表面温度で1000〜850℃)で累積圧下率10%以上とする。オーステナイト粒が少なくとも部分的に再結晶するため、鋼板組織を微細かつ均一にすることができる。なお、少なくともオーステナイト粒が部分的に再結晶するためには、累積圧下率:10%以上とすることが好ましい。圧延温度域が、オーステナイト未再結晶温度域では、結晶粒の均一化が期待できなくなる。なお、累積圧下率の上限は、第二の圧延の圧下率確保の観点から30%とすることが好ましい。   The heated steel material is hot rolled. The hot rolling includes the first rolling and the second rolling, and the first rolling is a temperature range above the austenite partial recrystallization temperature (in the case of the above component composition, the temperature range above the austenite partial recrystallization temperature is The cumulative rolling reduction is 10% or more at a surface temperature of 1000 to 850 ° C. Since the austenite grains are at least partially recrystallized, the steel sheet structure can be made fine and uniform. In order to at least partially recrystallize the austenite grains, it is preferable that the cumulative rolling reduction is 10% or more. When the rolling temperature range is the austenite non-recrystallization temperature range, it becomes impossible to expect uniform crystal grains. The upper limit of the cumulative rolling reduction is preferably 30% from the viewpoint of securing the rolling reduction of the second rolling.

上記した第一の圧延後、鋼板の圧延面の両側または片側から板厚方向に2mmの位置から板厚の3/10位置までの範囲が、二相組織となる温度域で、各パスの平均圧下率が3.5%未満かつ累積圧下率:50%以上、圧延終了温度:600℃以上の第二の圧延を施す。   After the first rolling described above, the range from the position of 2 mm in the plate thickness direction to the 3/10 position of the plate thickness from both sides or one side of the rolled surface of the steel plate is the temperature range where the two-phase structure is formed, and the average of each pass Second rolling is performed at a rolling reduction of less than 3.5%, a cumulative rolling reduction of 50% or more, and a rolling end temperature of 600 ° C. or more.

第二の圧延において、各パスの平均圧下率は、鋼板の圧延面の両側または片側から板厚方向に2mmの位置から板厚の3/10位置までの範囲に剪断歪を導入し、累積圧下率50%以上とし、圧延終了温度:600℃以上とした場合に、板面に平行な(110)面のX線強度比が2.0以上の(110)集合組織を形成するため、3.5%未満とする。
累積圧下率が50%未満では、板面に平行な(110)面のX線強度比が2.0以上とすることができない。
In the second rolling, the average reduction ratio of each pass is determined by introducing shear strain in the range from the position of 2 mm in the sheet thickness direction to the position of 3/10 of the sheet thickness from both sides or one side of the rolled surface of the sheet. 2. When the rate is 50% or more and the rolling end temperature is 600 ° C. or more, an (110) texture whose X-ray intensity ratio of the (110) plane parallel to the plate surface is 2.0 or more is formed. Less than 5%.
If the cumulative rolling reduction is less than 50%, the X-ray intensity ratio of the (110) plane parallel to the plate surface cannot be made 2.0 or more.

なお、上記組成範囲の場合、表面温度が900〜600℃の温度域で鋼板の圧延面の両側または片側から板厚方向に2mmの位置から板厚の3/10位置までの範囲が略二相組織となる。圧延終了温度は表面温度で600℃以上、の温度域の温度とする。   In the case of the above composition range, the range from the position of 2 mm in the sheet thickness direction to the position of 3/10 of the sheet thickness from both sides or one side of the rolled surface of the steel sheet in the temperature range of 900 to 600 ° C. is substantially two-phase. Become an organization. The rolling end temperature is a surface temperature of 600 ° C. or higher.

圧延終了温度が、表面温度で600℃未満では、フェライトに過度の加工歪が導入され靭性が低下するため、600℃以上、好ましくは850〜600℃とする。   If the rolling end temperature is less than 600 ° C. at the surface temperature, excessive work strain is introduced into the ferrite and the toughness is lowered, so that it is 600 ° C. or higher, preferably 850 to 600 ° C.

上記製造方法による厚鋼板は、少なくとも、鋼板の圧延面の両側または片側から板厚方向に2mmの位置から板厚の3/10位置までの範囲で板面に平行な(100)面のX線強度比が1.1以下となり、板厚方向の靭性劣化が抑制される。   The thick steel plate produced by the above manufacturing method has at least (100) plane X-rays parallel to the plate surface in a range from a position 2 mm in the plate thickness direction to 3/10 position of the plate thickness from both sides or one side of the rolled surface of the steel plate. The strength ratio is 1.1 or less, and toughness deterioration in the thickness direction is suppressed.

熱間圧延では、板厚50mm以上の鋼板とする。板厚が50mm未満では、熱間圧延時に、少なくとも、鋼板の圧延面の両側または片側から板厚方向に2mmの位置から板厚の3/10位置までの範囲に、(110)集合組織の発達に有効な剪断歪を導入することが困難となる。更に、板厚が50mm未満では、板厚方向圧縮残留応力の導入により鋼板座屈性能の低下が懸念される。以上より、板厚50mm以上の厚鋼板とする。また、熱間圧延は第一の圧延と第二の圧延の他に、これら圧延の作用効果を損なわない範囲で圧延を施しても良い。   In hot rolling, a steel plate having a thickness of 50 mm or more is used. When the plate thickness is less than 50 mm, at the time of hot rolling, the development of (110) texture occurs at least in the range from 2 mm position to 3/10 position of the plate thickness from both sides or one side of the rolled surface of the steel plate in the plate thickness direction. It is difficult to introduce an effective shear strain in the case. Furthermore, if the plate thickness is less than 50 mm, there is a concern that the steel plate buckling performance may be lowered due to the introduction of the plate thickness direction compressive residual stress. From the above, a thick steel plate having a thickness of 50 mm or more is obtained. In addition to the first rolling and the second rolling, the hot rolling may be performed as long as the effects of the rolling are not impaired.

第二の圧延後、冷却速度1℃/s以上で加速冷却を施す。冷却速度1℃/s未満では、板厚方向圧縮残留応力の平均値を160MPa以上とすることが困難なため、1℃/s以上とする。なお、より好ましくは、5℃/s以上の冷却速度で400℃以下まで冷却する。   After the second rolling, accelerated cooling is performed at a cooling rate of 1 ° C./s or more. If the cooling rate is less than 1 ° C./s, it is difficult to set the average value of the compressive residual stress in the plate thickness direction to 160 MPa or more. More preferably, it is cooled to 400 ° C. or lower at a cooling rate of 5 ° C./s or higher.

なお、熱間圧延では、板厚50mm以上の鋼板とする。先に述べた理由以外に、板厚が50mm未満では、熱間圧延時に、少なくとも、鋼板の圧延面の両側または片側から板厚方向に2mmの位置から板厚の3/10位置までの範囲に、(110)集合組織の発達に有効な剪断歪を導入することが困難となる。更に、板厚が50mm未満では、板厚方向圧縮残留応力の導入により鋼板座屈性能の低下が懸念される。熱間圧延は第一の圧延と第二の圧延の他に、これら圧延の作用効果を損なわない範囲で圧延を施しても良い。   In hot rolling, a steel plate having a thickness of 50 mm or more is used. In addition to the reasons described above, if the plate thickness is less than 50 mm, at the time of hot rolling, at least in the range from the position of 2 mm in the plate thickness direction from both sides or one side of the rolled surface of the steel plate to the 3/10 position of the plate thickness. , (110) It becomes difficult to introduce shear strain effective for the development of texture. Furthermore, if the plate thickness is less than 50 mm, there is a concern that the steel plate buckling performance may be lowered due to the introduction of the plate thickness direction compressive residual stress. In the hot rolling, in addition to the first rolling and the second rolling, the rolling may be performed as long as the effects of the rolling are not impaired.

第二の圧延後、冷却速度1℃/s以上で加速冷却を施す。冷却速度1℃/s未満では、板厚方向圧縮残留応力の平均値を160MPa以上とすることが困難なため、1℃/s以上とする。なお、より好ましくは、5℃/s以上の冷却速度で400℃以下まで冷却する。   After the second rolling, accelerated cooling is performed at a cooling rate of 1 ° C./s or more. If the cooling rate is less than 1 ° C./s, it is difficult to set the average value of the compressive residual stress in the plate thickness direction to 160 MPa or more. More preferably, it is cooled to 400 ° C. or lower at a cooling rate of 5 ° C./s or higher.

厚鋼板2の場合
[成分組成] 説明において%は質量%とする。
In the case of the thick steel plate 2 [Ingredient composition] In the description,% is mass%.

C:0.03〜0.15%
Cは、鋼の強度を増加させる作用を有する元素であり、所望の高強度を確保するためには、0.03%以上含有することが好ましいが、0.15%を超えて含有すると、溶接熱影響部靭性が低下する。このため、Cは0.03〜0.15%の範囲に限定することが好ましい。
C: 0.03-0.15%
C is an element having an effect of increasing the strength of steel, and in order to ensure a desired high strength, it is preferably contained in an amount of 0.03% or more. Heat-affected zone toughness decreases. For this reason, it is preferable to limit C to 0.03 to 0.15% of range.

Si:1.0%以下
Siは、脱酸剤として作用するとともに、固溶して鋼の強度を増加させる作用を有する元素である。このような効果を得るためには、0.01%以上含有することが望ましい。一方、1.0%を超える含有は、溶接熱影響部靭性を低下させる。このため、Siは1.0%以下に限定することが好ましい。なお、より好ましくは0.50%以下である。
Si: 1.0% or less Si is an element that acts as a deoxidizer and has a function of increasing the strength of steel by solid solution. In order to acquire such an effect, it is desirable to contain 0.01% or more. On the other hand, the content exceeding 1.0% lowers the weld heat affected zone toughness. For this reason, it is preferable to limit Si to 1.0% or less. In addition, More preferably, it is 0.50% or less.

Mn:1.0〜2.0%
Mnは、鋼の強度を増加させる作用を有する元素であり、所望の高強度を確保するためには、1.0%以上含有することが好ましいが、2.0%を超えて含有すると、母材靭性の低下が懸念される。このため、Mnは1.0〜2.0%の範囲に限定することが好ましい。なお、より好ましくは0.9〜1.60%である。
Mn: 1.0-2.0%
Mn is an element that has the effect of increasing the strength of steel. In order to ensure a desired high strength, Mn is preferably contained in an amount of 1.0% or more. There is concern about a reduction in material toughness. For this reason, it is preferable to limit Mn to the range of 1.0 to 2.0%. In addition, More preferably, it is 0.9 to 1.60%.

Ti:0.005〜0.05%、Nb:0.001〜0.05%の1種または2種
Ti、Nbは、析出強化を介して強度を増加させるとともに、加熱時のオーステナイト粒の成長を抑制し鋼板組織の微細化に寄与する元素であり、本発明では1種または2種を含有する。
One or two of Ti: 0.005 to 0.05% and Nb: 0.001 to 0.05%
Ti and Nb are elements that increase the strength through precipitation strengthening and suppress the growth of austenite grains during heating and contribute to the refinement of the steel sheet structure. In the present invention, Ti and Nb contain one or two kinds.

Tiは、炭化物、窒化物を形成し、鋼板製造時のオーステナイト粒の微細化に寄与するとともに、溶接熱影響部の結晶粒粗大化を抑制し、溶接熱影響部靭性を向上させる。このような効果を得るためには、0.005%以上含有することが好ましい。一方、0.05%を超える含有は、靭性を低下させる。このため、Tiは0.005〜0.05%の範囲に限定することが好ましい。なお、より好ましくは0.005〜0.02%である。   Ti forms carbides and nitrides, contributes to the refinement of austenite grains during steel plate production, suppresses crystal grain coarsening in the weld heat affected zone, and improves the weld heat affected zone toughness. In order to acquire such an effect, it is preferable to contain 0.005% or more. On the other hand, the content exceeding 0.05% reduces toughness. For this reason, it is preferable to limit Ti to 0.005 to 0.05% of range. In addition, More preferably, it is 0.005 to 0.02%.

Nbは、Tiと同様に、析出強化を介して強度を増加させ、さらに組織を微細化するとともに、オーステナイトの再結晶を抑制し、所望の組織を形成するための圧延による効果を促進する作用を有する。このような効果を得るためには、0.001%以上含有することが好ましいが、0.05%を超える含有は、組織が針状化し靭性が低下する傾向となる。このため、Nbは0.001〜0.05%の範囲に限定することが好ましい。なお、より好ましくは0.02〜0.05%である。   Nb, like Ti, increases the strength through precipitation strengthening, further refines the structure, suppresses recrystallization of austenite, and promotes the effect of rolling to form the desired structure. Have. In order to acquire such an effect, it is preferable to contain 0.001% or more. However, if it exceeds 0.05%, the structure tends to become needle-like and the toughness tends to decrease. For this reason, it is preferable to limit Nb to 0.001 to 0.05% of range. In addition, More preferably, it is 0.02 to 0.05%.

Al:0.1%以下
Alは、脱酸剤として作用するとともに、結晶粒の微細化にも寄与する元素であり、必要に応じて含有できる。このような効果を得るためには、0.015%以上含有することが望ましいが、0.1%を超える過剰の含有は、靭性の低下に繋がる。このため、含有する場合には、Alは0.1%以下に限定した。なお、好ましくは0.08%以下である。
Al: 0.1% or less Al is an element that acts as a deoxidizer and contributes to refinement of crystal grains, and can be contained as necessary. In order to acquire such an effect, it is desirable to contain 0.015% or more, However, Excess content exceeding 0.1% will lead to the fall of toughness. For this reason, when it contained, Al was limited to 0.1% or less. In addition, Preferably it is 0.08% or less.

N:0.0035〜0.0075%
Nは、TiNの必要量を確保するために必要な元素で、0.0035%未満では十分なTiN量が得られず、0.0075%を超えると溶接熱サイクルによってTiNが溶解する領域において固溶N量が増加して、いずれの場合も溶接部の靭性を著しく低下させるため、0.0075%以下とする。
N: 0.0035 to 0.0075%
N is an element necessary for securing the necessary amount of TiN. If it is less than 0.0035%, a sufficient amount of TiN cannot be obtained, and if it exceeds 0.0075%, it is solidified in the region where TiN is dissolved by the welding heat cycle. The amount of dissolved N increases, and in any case, the toughness of the welded portion is significantly reduced.

更に特性を向上させる場合、上記基本成分に加えて、Cu、Ni、Cr、Mo、V、W、Zr、B、Caの1種または2種以上を含有することができる。   Furthermore, when improving a characteristic, in addition to the said basic component, 1 type (s) or 2 or more types of Cu, Ni, Cr, Mo, V, W, Zr, B, and Ca can be contained.

Cu:0.01〜0.5%、Ni:2.0%以下、Cr:0.01〜0.5%、Mo:0.01〜0.5%、V:0.001〜0.1%、W:0.5%以下、Zr:0.5%以下、Ca:0.0005〜0.0030%、B:0.0005〜0.0020%の1種または2種以上
Cu、Ni、Cr、Mo、V、W、Zr、Bは、鋼の強度および靭性を向上させる元素で、所望する特性に応じて1種または2種以上を含有する。
Cu: 0.01-0.5%, Ni: 2.0% or less, Cr: 0.01-0.5%, Mo: 0.01-0.5%, V: 0.001-0.1 %, W: 0.5% or less, Zr: 0.5% or less, Ca: 0.0005 to 0.0030%, B: 0.0005 to 0.0020% Cu, Ni, Cr, Mo, V, W, Zr, and B are elements that improve the strength and toughness of the steel, and contain one or more kinds depending on the desired properties.

Cuは、主として析出強化を介して鋼の強度増加に寄与する。このような効果を得るためには、0.01%以上含有することが望ましいが、0.5%を超える含有は、析出強化が過多となり、靭性が低下する。このため、含有する場合には、Cuは0.5%以下に限定することが好ましい。なお、より好ましくは0.35%以下である。   Cu contributes to the strength increase of steel mainly through precipitation strengthening. In order to acquire such an effect, it is desirable to contain 0.01% or more, but when it exceeds 0.5%, precipitation strengthening is excessive and toughness is lowered. For this reason, when it contains, it is preferable to limit Cu to 0.5% or less. In addition, More preferably, it is 0.35% or less.

Niは、Cuによる熱間圧延時の割れを防止するために有効に作用する。このような効果を得るためには、0.05%以上含有することが望ましい。しかし、2.0%を超えて多量に含有しても、効果が飽和し含有量に見合う効果が期待できなくなり経済的に不利となるとともに、Niは高価な元素であり多量の含有は材料コストの高騰を招く。このため、含有する場合には、Niは2.0%以下に限定することが好ましい。なお、より好ましくは0.1%以上である。   Ni acts effectively to prevent cracking during hot rolling with Cu. In order to acquire such an effect, it is desirable to contain 0.05% or more. However, even if it is contained in a large amount exceeding 2.0%, the effect is saturated and an effect commensurate with the content cannot be expected and it is economically disadvantageous, and Ni is an expensive element. Invite the soaring. For this reason, when it contains, it is preferable to limit Ni to 2.0% or less. In addition, More preferably, it is 0.1% or more.

Crは、パーライト量を増加させ、鋼の強度増加に寄与する。このような効果を得るためには、0.01%以上含有することが望ましいが、0.5%を超える含有は、溶接部の靭性を低下させる。このため、含有する場合には、Crは0.5%以下に限定することが好ましい。なお、より好ましくは0.01〜0.2%である。   Cr increases the amount of pearlite and contributes to an increase in steel strength. In order to acquire such an effect, it is desirable to contain 0.01% or more, but inclusion exceeding 0.5% reduces the toughness of a welded part. For this reason, when contained, Cr is preferably limited to 0.5% or less. In addition, More preferably, it is 0.01 to 0.2%.

Moは、鋼の強度増加に寄与する。このような効果を得るためには、0.01%以上含有することが望ましいが、0.5%を超える含有は、溶接部の靭性を低下させる。このため、含有する場合には、Moは0.5%以下に限定することが好ましい。なお、より好ましくは0.01〜0.08%である。   Mo contributes to an increase in steel strength. In order to acquire such an effect, it is desirable to contain 0.01% or more, but inclusion exceeding 0.5% reduces the toughness of a welded part. For this reason, when it contains, it is preferable to limit Mo to 0.5% or less. In addition, More preferably, it is 0.01 to 0.08%.

Vは、固溶強化、析出強化を介して鋼の強度増加に寄与する。このような効果を得るためには、0.001%以上含有することが望ましいが、0.1%を超える含有は、母材靭性および溶接性を顕著に低下させる。このため、Vは0.1%以下に限定することが好ましい。なお、より好ましくは0.05〜0.1%である。   V contributes to increasing the strength of steel through solid solution strengthening and precipitation strengthening. In order to acquire such an effect, it is desirable to contain 0.001% or more, but the content exceeding 0.1% remarkably lowers the base metal toughness and weldability. For this reason, it is preferable to limit V to 0.1% or less. In addition, More preferably, it is 0.05 to 0.1%.

Wは、鋼の強度増加、とくに高温の強度増加に寄与する。このような効果を得るためには、0.1%以上含有することが望ましいが、0.5%を超える多量の含有は、溶接部の靭性を低下させる。また、高価なWの多量含有は材料コストの高騰を招く。このため、含有する場合には、Wは0.5%以下に限定することが好ましい。なお、より好ましくは0.2〜0.4%である。   W contributes to an increase in the strength of steel, particularly at a high temperature. In order to acquire such an effect, it is desirable to contain 0.1% or more, but if it contains more than 0.5%, the toughness of the welded portion is lowered. In addition, a large amount of expensive W causes a material cost to rise. For this reason, when contained, W is preferably limited to 0.5% or less. In addition, More preferably, it is 0.2 to 0.4%.

Zrは、鋼の強度増加に寄与するとともに、亜鉛めっき処理材における耐めっき割れ性を向上させる。このような効果を得るためには0.01%以上含有することが望ましいが、0.5%を超える含有は、溶接部靭性を低下させる。このため、含有する場合には、0.5%以下に限定することが好ましい。なお、より好ましくは0.01〜0.1%である。   Zr contributes to increasing the strength of steel and improves the resistance to plating cracking in the galvanized material. In order to acquire such an effect, it is desirable to contain 0.01% or more, but inclusion exceeding 0.5% lowers the toughness of the weld. For this reason, when it contains, it is preferable to limit to 0.5% or less. In addition, More preferably, it is 0.01 to 0.1%.

Bは、焼入れ性の向上を介し鋼の強度増加に寄与するとともに、圧延中にBNとして析出し、圧延後のフェライト粒の微細化に寄与する。このような効果を得るためには、0.0005%以上含有することが望ましいが、0.0020%を超える含有は靭性を劣化させる。このため、含有する場合には、Bは0.0020%以下に限定することが好ましい。なお、より好ましくは0.001〜0.003%である。   B contributes to an increase in the strength of the steel through improvement of hardenability and also precipitates as BN during rolling and contributes to refinement of ferrite grains after rolling. In order to acquire such an effect, it is desirable to contain 0.0005% or more, but inclusion exceeding 0.0020% deteriorates toughness. For this reason, when it contains, it is preferable to limit B to 0.0020% or less. In addition, More preferably, it is 0.001 to 0.003%.

Ca:0.0005%〜0.0030%
Caは、Sの固定による靭性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.0005%は含有することが必要であるが、0.0030%を超えて含有しても効果が飽和するため、0.0005%〜0.0030%とする。
Ca: 0.0005% to 0.0030%
Ca is an element having an effect of improving toughness by fixing S. In order to exert such an effect, it is necessary to contain at least 0.0005%, but even if it exceeds 0.0030%, the effect is saturated, so 0.0005% to 0.0030% And

上記した成分以外の残部は、Feおよび不可避的不純物で、P:0.035%以下、S:0.035%以下などが許容できる。
[製造条件]
スラブ等の鋼素材の製造方法は、とくに限定しない。上記組成の溶鋼を、転炉等の常用の溶製炉を用いて溶製し、連続鋳造法等の常用の方法で、スラブ等の鋼素材とし、1000〜1250℃の温度に加熱する。
The balance other than the above components is Fe and inevitable impurities, and P: 0.035% or less, S: 0.035% or less, etc. are acceptable.
[Production conditions]
The manufacturing method of steel materials, such as a slab, is not specifically limited. The molten steel having the above composition is melted using a conventional melting furnace such as a converter, and is made into a steel material such as a slab by a conventional method such as a continuous casting method, and heated to a temperature of 1000 to 1250 ° C.

加熱温度が1000℃未満では、所望の熱間圧延が困難となる。一方、1250℃を超える加熱温度では、表面酸化が顕著となり、また、結晶粒の粗大化が顕著となる。このため、鋼素材の加熱温度は、1000〜1250℃の範囲の温度に限定することが好ましい。なお、より好ましくは、靭性向上の観点から、1200℃以下である。   If heating temperature is less than 1000 degreeC, desired hot rolling will become difficult. On the other hand, at a heating temperature exceeding 1250 ° C., surface oxidation becomes significant and crystal grain coarsening becomes significant. For this reason, it is preferable to limit the heating temperature of a steel raw material to the temperature of the range of 1000-1250 degreeC. In addition, more preferably, it is 1200 degrees C or less from a viewpoint of a toughness improvement.

加熱された鋼素材に、熱間圧延を施す。熱間圧延は、(Ar3点+50)℃以上の温度域において累積圧下率30%以上の圧延を行い、後述の冷却条件との組み合わせで、鋼板の圧延面の両側または片側から板厚方向に4mmまでの範囲に、100MPa以上の板厚方向に直角方向の圧縮残留応力を導入する。Ar3点は、例えば、Ar3(℃)=910−273×C−74×Mn−57×Ni−16×Cr−9×Mo−5×Cu(各元素は含有量(質量%))で求めることが可能である。   The heated steel material is hot rolled. Hot rolling is performed at a temperature of (Ar3 point +50) ° C. or higher with a cumulative reduction of 30% or more, and in combination with the cooling conditions described later, 4 mm from both sides or one side of the rolled surface of the steel plate in the thickness direction. In the range up to this point, compressive residual stress in the direction perpendicular to the thickness direction of 100 MPa or more is introduced. Ar3 point is calculated | required by Ar3 (degreeC) = 910-273 * C-74 * Mn-57 * Ni-16 * Cr-9 * Mo-5 * Cu (each element is content (mass%)), for example. Is possible.

熱間圧延では、板厚50mm以上の鋼板とする。圧縮残留応力は、疲労特性を向上させるが、座屈性能を低下させ、その低下は板厚が薄い鋼板ほど顕著で板厚50mm未満では鋼板自体の座屈性能の低下が懸念されるため、板厚50mm以上とする。   In hot rolling, a steel plate having a thickness of 50 mm or more is used. Compressive residual stress improves fatigue properties, but reduces buckling performance, and the reduction is more noticeable for steel sheets with thinner plate thickness, and if the plate thickness is less than 50 mm, there is a concern that the buckling performance of the steel plate itself may decrease. The thickness is 50 mm or more.

尚、本発明は規定した温度域外での圧延を制限するものではなく、スラブ加熱後の高温で実施する粗圧延などを行うことが可能である。   In addition, this invention does not restrict | limit rolling outside the prescribed | regulated temperature range, It is possible to perform rough rolling etc. implemented at the high temperature after slab heating.

圧延終了後、3℃/s以上の冷却速度にて350℃以下まで冷却する。冷却速度、冷却停止温度のどちらかが上記規定を外れると、鋼板の圧延面の両側または片側から板厚方向に4mmまでの範囲において、板厚方向に直角となる100MPa以上の圧縮残留応力が得られない。より好ましくは、5℃/s以上の冷却速度にて300℃以下まで冷却する。   After the completion of rolling, it is cooled to 350 ° C. or lower at a cooling rate of 3 ° C./s or higher. If either the cooling rate or the cooling stop temperature deviates from the above, a compressive residual stress of 100 MPa or more perpendicular to the plate thickness direction is obtained in the range from both sides or one side of the steel plate to 4 mm in the plate thickness direction. I can't. More preferably, it cools to 300 degrees C or less with the cooling rate of 5 degrees C / s or more.

表1に化学成分、表2に製造条件および特性を示す板厚50〜80mmの板厚方向の疲労特性に優れる厚鋼板1、表4に化学成分、表5に製造条件および特性を示す板厚55〜70mmの板厚方向の疲労特性に優れる厚鋼板2を用いて、隅肉溶接継手を作製し、図1に形状を示す切欠付3点曲げ隅肉溶接継手疲労試験片を用いて3点曲げ疲労試験を実施した。厚鋼板1、2の組織、機械的特性および板厚方向疲労特性を確認するための試験方法は次の(1)〜(6)のとおりとした。   Table 1 shows chemical components, Table 2 shows manufacturing conditions and characteristics, thick steel plate 1 having excellent thickness in the thickness direction of 50 to 80 mm, Table 4 shows chemical components, and Table 5 shows manufacturing conditions and characteristics. A fillet welded joint was prepared using a thick steel plate 2 having excellent fatigue properties in the thickness direction of 55 to 70 mm, and three points were used using a notched three-point bend fillet welded joint fatigue test piece whose shape is shown in FIG. A bending fatigue test was performed. Test methods for confirming the structure, mechanical properties and thickness direction fatigue properties of the thick steel plates 1 and 2 were as follows (1) to (6).

(1)組織観察
得られた厚鋼板の板厚の1/4位置(表面から板厚方向に2mm〜板厚の3/10位置の範囲の代表)から、板面に平行に組織観察用試験片(大きさ:厚さ1.5mm×幅25mm×長さ30mm)を採取し、X線回折法により、板面に平行な(110)面および(100)面のX線回折強度を求めた。得られたX線回折強度と、ランダム試験片の(110)面および(100)面のX線回折強度との比を、それぞれ、板面に平行な(110)面のX線強度比、板面に平行な(100)面のX線強度比とした。
(2)板厚方向圧縮残留応力測定
得られた厚鋼板から、X線残留応力測定用試験片(大きさ:板厚(鋼板元厚まま)×12.5mm×300mm[板厚方向寸法×圧延垂直方向寸法×圧延方向寸法])を採取し、測定面[寸法12.5mm×350mmの面]に電解研磨を施した後、板厚方向に4mmピッチでX線により板厚方向圧縮残留応力を測定した。測定された残留応力の内、圧縮側(マイナス側)の値を平均し、その絶対値を、板厚方向圧縮残留応力の平均値とした。
(1) Microstructure observation From the 1/4 position of the thickness of the obtained thick steel plate (representative of the range of 2 mm to 3/10 position of the plate thickness from the surface to the thickness direction), the structure observation test parallel to the plate surface A piece (size: thickness 1.5 mm × width 25 mm × length 30 mm) was sampled, and X-ray diffraction intensities of the (110) plane and (100) plane parallel to the plate surface were determined by X-ray diffraction. . The ratio between the obtained X-ray diffraction intensity and the X-ray diffraction intensity of the (110) plane and (100) plane of the random test piece is determined by comparing the X-ray intensity ratio of the (110) plane parallel to the plate plane and the plate, respectively. The X-ray intensity ratio of the (100) plane parallel to the plane was used.
(2) Measurement of compressive residual stress in the plate thickness direction From the obtained thick steel plate, a test piece for measuring X-ray residual stress (size: plate thickness (the original thickness of the steel plate)) x 12.5 mm x 300 mm [plate thickness direction dimension x rolling Vertical dimension × rolling direction dimension]), and after the electrolytic polishing is performed on the measurement surface [surface of dimension 12.5 mm × 350 mm], the compressive residual stress in the plate thickness direction is measured by X-rays at a pitch of 4 mm in the plate thickness direction. It was measured. Among the measured residual stresses, the values on the compression side (minus side) were averaged, and the absolute value was defined as the average value of the compressive residual stresses in the thickness direction.

(3)板厚方向に垂直方向の圧縮残留応力測定
得られた厚鋼板から、X線残留応力測定用試験片(大きさ:板厚(鋼板元厚まま)×12.5mm×300mm[板厚方向寸法×圧延垂直方向×圧延方向])を採取し、測定面[寸法12.5mm×350mmの面]に電解研磨を施した後、板厚方向に4mmピッチでX線により板厚方向に垂直方向の残留応力を測定した。板厚方向に4mmピッチで測定するライン数は5ラインとした。測定された5ラインの残留応力を各板厚位置毎に5点平均して求めた残留応力の板厚方向分布図から、表面/裏面から4mmの位置における残留応力(マイナスの値)を求め、その絶対値を、圧縮残留応力とした。
(3) Measurement of compressive residual stress in the direction perpendicular to the plate thickness direction From the obtained thick steel plate, a test piece for measuring X-ray residual stress (size: plate thickness (the original thickness of the steel plate) x 12.5 mm x 300 mm [plate thickness Direction dimension × rolling vertical direction × rolling direction]), and after electropolishing the measurement surface [surface of dimension 12.5 mm × 350 mm], perpendicular to the plate thickness direction by X-rays at 4 mm pitch in the plate thickness direction Residual stress in the direction was measured. The number of lines measured at a 4 mm pitch in the thickness direction was 5 lines. From the distribution of residual stress in the thickness direction obtained by averaging five points of the measured residual stress for each thickness position, obtain the residual stress (negative value) at a position 4 mm from the front surface / back surface, The absolute value was defined as compressive residual stress.

(4)引張試験
得られた厚鋼板から、JIS Z 2201(1998)の規定に準拠して、引張方向が鋼板の圧延方向と直角方向となるように、JIS 4号引張試験片(平行部径:14mm)を採取した。試験片の採取位置は、板厚の1/4位置(表面から板厚方向に2mm〜板厚の3/10位置の範囲の代表)とした。引張試験は、JIS Z 2241(1998)に準拠して行い、YS:降伏強さまたは0.2%耐力、TS:引張強さ、伸びELを求め、静的引張時の引張特性を評価した。
(4) Tensile test JIS No. 4 tensile specimen (diameter of parallel part) was obtained from the obtained thick steel sheet in accordance with the provisions of JIS Z 2201 (1998) so that the tensile direction was perpendicular to the rolling direction of the steel sheet. : 14 mm). The sampling position of the test piece was a 1/4 position of the plate thickness (representative of a range of 2 mm to 3/10 position of the plate thickness from the surface to the plate thickness direction). The tensile test was performed according to JIS Z 2241 (1998), and YS: yield strength or 0.2% proof stress, TS: tensile strength, elongation EL were determined, and the tensile properties during static tension were evaluated.

(5)靭性試験
得られた厚鋼板から、JIS Z 2242(2005)の規定に準拠して、長手方向が圧延方向に平行となるように、Vノッチ試験片を採取し、−40℃における吸収エネルギーを求め、靭性を評価した。なお、Vノッチ試験片は、板厚の1/4位置(表面から板厚方向に2mm〜板厚の3/10位置の範囲の代表)から採取した。
(5) Toughness test V-notch specimens were sampled from the resulting thick steel plate in accordance with the provisions of JIS Z 2242 (2005) so that the longitudinal direction is parallel to the rolling direction, and absorption at −40 ° C. Energy was determined and toughness was evaluated. The V-notch test piece was taken from a 1/4 position of the plate thickness (representative of a range from 2 mm to 3/10 position of the plate thickness in the plate thickness direction from the surface).

(6)板厚方向疲労特性確認試験
得られた厚鋼板から、疲労亀裂の伝播方向が板厚方向となるように、疲労試験用試験片(大きさ:板厚(鋼板元厚まま)×12.5mm×300〜350mm[板厚方向寸法×圧延垂直方向寸法×圧延方向寸法])を採取した。試験片は、図3に示す寸法形状の切欠き付き3点曲げ疲労試験片であり、疲労試験時の曲げスパンを板厚の4倍とするため、板厚が50〜65mmの場合、圧延方向寸法を300mm、板厚が80mmの場合、圧延方向寸法を350mmとした。疲労試験は、応力範囲が340MPa、応力比R(=最小荷重/最大荷重)が0.1となる条件で疲労試験を実施して、板厚方向の疲労特性(疲労寿命)を求めた。
(6) Sheet thickness direction fatigue property confirmation test From the obtained thick steel plate, a fatigue test specimen (size: plate thickness (the original thickness of the steel plate) x 12) so that the propagation direction of fatigue cracks is the plate thickness direction. .5 mm × 300 to 350 mm [plate thickness direction size × rolling vertical direction size × rolling direction size]). The test piece is a notched three-point bending fatigue test piece having the dimensions shown in FIG. 3, and the bending span during the fatigue test is 4 times the plate thickness. Therefore, when the plate thickness is 50 to 65 mm, the rolling direction When the dimension was 300 mm and the plate thickness was 80 mm, the dimension in the rolling direction was 350 mm. In the fatigue test, a fatigue test was performed under the conditions that the stress range was 340 MPa and the stress ratio R (= minimum load / maximum load) was 0.1, and the fatigue characteristics (fatigue life) in the thickness direction were obtained.

上述した試験により特性を確認した厚鋼板1、2を用いて、図4に示す条件にて隅肉溶接継手を作製し、疲労試験を実施した。疲労試験片として、図1に示す寸法形状の切欠付3点曲げ隅肉溶接継手疲労試験片を用い、応力範囲が340MPa、応力比R(=最小荷重/最大荷重)が0.1となる条件で実施して、疲労寿命を求めた。厚鋼板1で得られた結果を表3に、厚鋼板2で得られた結果を表6に示す。   Using the thick steel plates 1 and 2 whose characteristics were confirmed by the test described above, fillet welded joints were produced under the conditions shown in FIG. 4, and a fatigue test was performed. As a fatigue test piece, a notched three-point bending fillet welded joint fatigue test piece having the dimensions shown in FIG. 1 is used, and the stress range is 340 MPa and the stress ratio R (= minimum load / maximum load) is 0.1. The fatigue life was obtained. The results obtained with the thick steel plate 1 are shown in Table 3, and the results obtained with the thick steel plate 2 are shown in Table 6.

厚鋼板1、2において、本発明例(厚鋼板1の場合、試験No.3、4、6、厚鋼板2の場合、試験No.2、7、8、10)はいずれも、応力範囲340MPaの厳しい条件で、疲労寿命が25万回以上で耐疲労特性に優れた隅肉溶接継手の得られることが確認された。一方、本発明で規定する溶接条件(入熱30kJ/cm以下、3層6パス以下の積層条件)の範囲を外れる比較例(厚鋼板1の場合、試験No.1、2、厚鋼板2の場合、試験No.4、5)および、板厚方向の疲労寿命が劣る厚鋼板を用いた比較例(厚鋼板1の場合、試験No.5、厚鋼板2の場合、試験No.1、3、6、9)は、耐疲労特性が確保できていない。   In the thick steel plates 1 and 2, the present invention examples (in the case of the thick steel plate 1, tests No. 3, 4, 6 and in the case of the thick steel plate 2, the test Nos. 2, 7, 8, 10) all have a stress range of 340 MPa. It was confirmed that a fillet welded joint having excellent fatigue resistance with a fatigue life of 250,000 times or more can be obtained under severe conditions. On the other hand, a comparative example (in the case of the thick steel plate 1, test Nos. 1 and 2 and the thick steel plate 2) out of the range of the welding conditions specified in the present invention (heat input 30 kJ / cm or less, 3 layers and 6 passes or less). In this case, test Nos. 4 and 5) and a comparative example using a thick steel plate with inferior fatigue life in the thickness direction (in the case of thick steel plate 1, in test No. 5 and in the case of thick steel plate 2, test No. 1, 3) , 6, 9) have not secured fatigue resistance.

Figure 0005884150
Figure 0005884150

Figure 0005884150
Figure 0005884150

Figure 0005884150
Figure 0005884150

Figure 0005884150
Figure 0005884150

Figure 0005884150
Figure 0005884150

Figure 0005884150
Figure 0005884150

Claims (2)

板厚方向圧縮残留応力の平均値が、160MPa以上である、板厚50mm以上の板厚方向の耐疲労特性に優れた厚鋼板の隅肉部を、入熱30kJ/cm以下、3層6パス以下の積層で溶接し、
前記板厚50mm以上の厚鋼板が、少なくとも、鋼板の圧延面の両側または片側から板厚方向に2mmの位置から板厚の3/10位置までの範囲において、板面に平行な(110)面のX線強度比が2.0以上となる部位を有することを特徴とする、疲労強度の優れた隅肉溶接継手の製造方法。
An average value of compressive residual stress in the plate thickness direction is 160 MPa or more, and a fillet portion of the thick steel plate having excellent fatigue resistance in the plate thickness direction of 50 mm or more is applied to a heat input of 30 kJ / cm or less, three layers and six passes. Welding with the following lamination,
The steel plate having a thickness of 50 mm or more is at least a (110) plane parallel to the plate surface in a range from a position of 2 mm to 3/10 position of the plate thickness from both sides or one side of the rolled surface of the steel plate in the plate thickness direction. The manufacturing method of the fillet welded joint excellent in fatigue strength characterized by having the site | part from which X-ray intensity ratio of becomes 2.0 or more .
前記板厚50mm以上の厚鋼板は、鋼板の圧延面の両側または片側から板厚方向に2mm
の位置から板厚の3/10位置までの範囲において、さらに板面に平行な(100)面の
X線強度比が1.1以下であることを特徴とする請求項に記載の疲労強度の優れた隅肉
溶接継手の製造方法。
The steel plate having a thickness of 50 mm or more is 2 mm in the plate thickness direction from both sides or one side of the rolled surface of the steel plate.
2. The fatigue strength according to claim 1 , wherein the X-ray intensity ratio of the (100) plane parallel to the plate surface is 1.1 or less in a range from the position of 3 to the 3/10 position of the plate thickness. Manufacturing method of excellent fillet welded joints.
JP2011069729A 2011-03-28 2011-03-28 Method for manufacturing fillet welded joint Active JP5884150B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2011069729A JP5884150B2 (en) 2011-03-28 2011-03-28 Method for manufacturing fillet welded joint
PCT/JP2012/058780 WO2012133872A1 (en) 2011-03-28 2012-03-27 Thick steel sheet having superior fatigue resistance properties in sheet thickness direction, method for producing same, and fillet welded joint using said thick steel sheet
KR1020167003625A KR101687687B1 (en) 2011-03-28 2012-03-27 Thick steel sheet having superior fatigue resistance properties in direction of sheet thickness, method for producing same, and fillet welded joint using said thick steel sheet
CN201280015867.3A CN103459640B (en) 2011-03-28 2012-03-27 The Plate Steel of the fatigue resistance excellence in thickness of slab direction and the fillet-welded joint of manufacture method and this Plate Steel of use thereof
KR1020137024879A KR20130125822A (en) 2011-03-28 2012-03-27 Thick steel sheet having superior fatigue resistance properties in direction of sheet thickness, method for producing same, and fillet welded joint using said thick steel sheet
KR1020137024880A KR101594913B1 (en) 2011-03-28 2012-03-27 Thick steel sheet having superior fatigue resistance properties in sheet thickness direction, method for producing same, and fillet welded joint using said thick steel sheet
PCT/JP2012/058787 WO2012133879A1 (en) 2011-03-28 2012-03-27 Thick steel sheet having superior fatigue resistance properties in direction of sheet thickness, method for producing same, and fillet welded joint using said thick steel sheet
CN201280015840.4A CN103459637B (en) 2011-03-28 2012-03-27 Steel plate that the fatigue resistance in thickness of slab direction is excellent and manufacture method thereof and the fillet-welded joint of this steel plate of use
TW101110718A TWI469846B (en) 2011-03-28 2012-03-28 A thick steel sheet excellent in fatigue resistance in the thickness direction and a method for producing the same, and a thick welded steel joint
TW101110717A TWI478786B (en) 2011-03-28 2012-03-28 A thick steel sheet excellent in fatigue resistance in the thickness direction and a method for producing the same, and a thick welded steel joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011069729A JP5884150B2 (en) 2011-03-28 2011-03-28 Method for manufacturing fillet welded joint

Publications (2)

Publication Number Publication Date
JP2012200782A JP2012200782A (en) 2012-10-22
JP5884150B2 true JP5884150B2 (en) 2016-03-15

Family

ID=47182291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011069729A Active JP5884150B2 (en) 2011-03-28 2011-03-28 Method for manufacturing fillet welded joint

Country Status (1)

Country Link
JP (1) JP5884150B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105127567B (en) * 2015-09-30 2017-05-24 青岛兰石重型机械设备有限公司 Welding method of chrome-molybdenum vanadium steel for super-thick pressure vessels

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253821A (en) * 1995-03-16 1996-10-01 Nippon Steel Corp Production of welded joint having excellent fatigue strength
JP4660315B2 (en) * 2005-08-09 2011-03-30 新日本製鐵株式会社 Manufacturing method of thick high strength steel plate with excellent toughness and thick high strength steel plate with excellent toughness
JP5618044B2 (en) * 2009-03-17 2014-11-05 Jfeスチール株式会社 Thick steel plate with excellent fatigue crack propagation characteristics in the thickness direction and method for producing the same

Also Published As

Publication number Publication date
JP2012200782A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP5096088B2 (en) Welded joints with excellent toughness and fatigue cracking suppression properties
JP5910219B2 (en) High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same
JP5418662B2 (en) Base material of high toughness clad steel plate excellent in weld zone toughness and method for producing the clad steel plate
JP6555435B2 (en) Clad steel sheet and manufacturing method thereof
JP6079165B2 (en) High toughness and corrosion resistant Ni alloy clad steel plate with excellent weld toughness and method for producing the same
JP2006089789A (en) Low yield ratio high tensile steel sheet having low acoustic anisotropy and having excellent weldability and its production method
JP6705569B1 (en) Clad steel plate and method of manufacturing the same
JP6036616B2 (en) Steel sheet for welded structure excellent in fatigue crack resistance and method for producing the same
JP4490472B2 (en) Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP2011241454A (en) Thick steel plate excellent in fatigue characteristic
JP5618044B2 (en) Thick steel plate with excellent fatigue crack propagation characteristics in the thickness direction and method for producing the same
US20110036469A1 (en) Steel plate that exhibits excellent low-temperature toughness in base material and weld heat-affected zone and has small strength anisotropy, and manufacturing method thereof
JP5432565B2 (en) Thick steel plate with excellent brittle crack propagation stopping properties and fatigue crack growth inhibition properties
KR101594913B1 (en) Thick steel sheet having superior fatigue resistance properties in sheet thickness direction, method for producing same, and fillet welded joint using said thick steel sheet
JP5716419B2 (en) Steel plate with excellent fatigue resistance and method for producing the same
KR101687687B1 (en) Thick steel sheet having superior fatigue resistance properties in direction of sheet thickness, method for producing same, and fillet welded joint using said thick steel sheet
JP2014095145A (en) Steel sheet for welded structure excellent in weldability and fatigue crack propagation resistance and its manufacturing method
JP5884150B2 (en) Method for manufacturing fillet welded joint
JP5906868B2 (en) Thick steel plate with excellent fatigue resistance in the thickness direction and method for producing the same
JP2020019995A (en) Thick steel sheet, manufacturing method therefor, and weldment structure
JP4754175B2 (en) Fillet welded joint of thin steel plate using transformation expansion of weld metal
JP5949023B2 (en) Thick steel plate with excellent fatigue resistance in the thickness direction and method for producing the same
JP2019007055A (en) Clad steel sheet having high strength base material excellent in low temperature toughness, and manufacturing method therefor
JP2003268498A (en) H-type steel excellent in fillet section toughness and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5884150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250