JP5883861B2 - Method for producing organic semiconductor layer comprising mixture of first and second semiconductors - Google Patents

Method for producing organic semiconductor layer comprising mixture of first and second semiconductors Download PDF

Info

Publication number
JP5883861B2
JP5883861B2 JP2013520177A JP2013520177A JP5883861B2 JP 5883861 B2 JP5883861 B2 JP 5883861B2 JP 2013520177 A JP2013520177 A JP 2013520177A JP 2013520177 A JP2013520177 A JP 2013520177A JP 5883861 B2 JP5883861 B2 JP 5883861B2
Authority
JP
Japan
Prior art keywords
solvent
semiconductor material
layer
evaporation temperature
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013520177A
Other languages
Japanese (ja)
Other versions
JP2013539597A5 (en
JP2013539597A (en
Inventor
モハメド・ベンワディ
Original Assignee
コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ
コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ, コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ filed Critical コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ
Publication of JP2013539597A publication Critical patent/JP2013539597A/en
Publication of JP2013539597A5 publication Critical patent/JP2013539597A5/ja
Application granted granted Critical
Publication of JP5883861B2 publication Critical patent/JP5883861B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32056Deposition of conductive or semi-conductive organic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

本発明は、第一及び第二半導体材料の混合物から形成される有機半導体層の、より具体的には有機光電子装置、特にフォトダイオードの形成に関与する有機半導体層の製造に関する。   The present invention relates to the manufacture of an organic semiconductor layer formed from a mixture of first and second semiconductor materials, more specifically an organic semiconductor layer involved in the formation of an organic optoelectronic device, particularly a photodiode.

図1を参照すると、これは先行技術の有機フォトダイオード10の簡略化された断面図であり、通常このようなフォトダイオードは、例えばガラス製である透明基板12と、例えば“ITO”と通常呼ばれるインジウムスズ酸化物から形成される第一電極を形成する層14と、例えば一般的に“PEDOT”と呼ばれるポリ(3,4−エチレンジオキシチオフェン)、及び一般的に“PSS”と呼ばれるポリスチレンスルホン酸ナトリウムの混合物から形成され、このような混合物自身は通常“PEDOT:PSS”と呼ばれる注入層16であって、第一電極14から活性半導体層18への正孔の移動を容易にする注入層16と、2つの有機半導体材料P及びNの混合物、通常は2つのポリマーの混合物、例えば一般的に“P3HT”と呼ばれるポリ(3−ヘキシルチオフェン)と、一般的に“PCBM”と呼ばれる[6,6]フェニルC61酪酸メチルエステルとの混合物から形成されるPN接合を形成する活性半導体層18と、例えばカルシウム、銀、又はアルミニウムから形成され、電子のみを集めることが可能な低い仕事関数が理由でカルシウムが好まれる第二電極を形成している層20から形成された下から上への積み重ねを含む。   Referring to FIG. 1, this is a simplified cross-sectional view of a prior art organic photodiode 10, which is typically referred to as a transparent substrate 12 made of, for example, glass and, for example, “ITO”. A layer 14 forming a first electrode formed from indium tin oxide, for example poly (3,4-ethylenedioxythiophene) commonly referred to as “PEDOT”, and polystyrene sulfone generally referred to as “PSS” Formed from a mixture of sodium acids, such mixture itself is an injection layer 16, usually called “PEDOT: PSS”, which facilitates the transfer of holes from the first electrode 14 to the active semiconductor layer 18. 16 and a mixture of two organic semiconductor materials P and N, usually a mixture of two polymers, eg commonly referred to as “P3HT” Active semiconductor layer 18 forming a PN junction formed from a mixture of poly (3-hexylthiophene) and [6,6] phenyl C61 butyric acid methyl ester, commonly referred to as “PCBM”, for example calcium, silver Or a bottom-to-top stack formed from a layer 20 that forms a second electrode that is made of aluminum and that favors calcium because of the low work function that can collect only electrons.

動作中、電磁波放射は基板12を照射し、活性層18に到達する光子は電子正孔対を生成する。フォトダイオード10の照射に依存する値で電極14及び20に電位差を与えることによって、その後電流が集められる。   In operation, electromagnetic radiation irradiates the substrate 12, and photons that reach the active layer 18 generate electron-hole pairs. By applying a potential difference to electrodes 14 and 20 with a value that depends on the illumination of photodiode 10, current is then collected.

しかしながらこのようなフォトダイオード10の効率は、P型有機半導体材料、例えばP3HTと、N型有機半導体材料、例えばPCBMとの間の活性層18に存在する接触面積に依存し、接触面積の減少に伴って効率は急速に減少する。さらに、効率は領域の大きさにも依存し、電荷が再結合せずにそれらを横切って電極へ到達できるように、領域の拡張は小さくなくてはならない。そのため、この点で理想的な活性層18は、分子スケールで均一な2つの有機半導体材料の混合物によって形成される。   However, the efficiency of the photodiode 10 depends on the contact area existing in the active layer 18 between the P-type organic semiconductor material, for example, P3HT, and the N-type organic semiconductor material, for example, PCBM. The efficiency decreases rapidly with it. Furthermore, the efficiency also depends on the size of the region, and the expansion of the region must be small so that the charges can cross them and reach the electrode without recombination. Therefore, the active layer 18 that is ideal in this respect is formed by a mixture of two organic semiconductor materials that is uniform on a molecular scale.

しかしながら、現在の堆積技術ではこのような均一性を得ることはできない。実際に活性層18は、その中に溶解又は分散された有機半導体材料を有する溶媒を含む溶液の堆積によって、及びその後の溶媒の蒸発によって通常は形成される。   However, this uniformity cannot be achieved with current deposition techniques. In practice, the active layer 18 is usually formed by deposition of a solution containing a solvent having an organic semiconductor material dissolved or dispersed therein, and subsequent evaporation of the solvent.

溶媒蒸発速度が小さすぎるときは、その後相分離が観測されることがあり、第一半導体材料の層22及び第二半導体材料の層24から最終的に層18が形成される。それ故、2つの材料の間にある接触面26は非常に小さく、フォトダイオード10の効率は減少する。   If the solvent evaporation rate is too low, then phase separation may be observed, and finally the layer 18 is formed from the layer 22 of the first semiconductor material and the layer 24 of the second semiconductor material. Therefore, the contact surface 26 between the two materials is very small and the efficiency of the photodiode 10 is reduced.

図2Aから図2Dに示されるように、この問題はまた、例えばトルエンのような揮発性の高い溶媒を選択した場合にも生ずる。従って、当初は可能な限り均一な混合物を形成するために、例えば磁気攪拌によって2つの半導体材料をトルエン中で混合する際(図2A)、得られる溶液は非常に不安定である。熱力学的な要因の、並びに分子間の物理化学的引力及び斥力現象に由来する局所的な相分離(図2B)が、第一電極14上に溶液が堆積される前でさえ急速に現れる(図2C)。この現象は揮発性溶媒が蒸発する間続き、単一の型の材料から形成される大きな領域が層18内で最終的に観測され得る。   As shown in FIGS. 2A-2D, this problem also occurs when a highly volatile solvent such as toluene is selected. Thus, when the two semiconductor materials are mixed in toluene (FIG. 2A), for example by magnetic stirring, in order to form a mixture that is as homogeneous as possible initially, the resulting solution is very unstable. Local phase separation (FIG. 2B) due to thermodynamic factors, and from physicochemical attraction and repulsion between molecules, appears rapidly even before the solution is deposited on the first electrode 14 (FIG. FIG. 2C). This phenomenon continues as the volatile solvent evaporates, and large areas formed from a single type of material can eventually be observed in layer 18.

こうして、領域の80%が10μm超の寸法を少なくとも1つ有することを通常は観測し得る。従って2つの有機半導体材料間の全接触面積は、ここで再び減少し、フォトダイオードの効率は低い。   Thus, it can usually be observed that 80% of the region has at least one dimension greater than 10 μm. Thus, the total contact area between the two organic semiconductor materials is again reduced here and the efficiency of the photodiode is low.

特許文献1には、第二半導体材料で充填された細孔を有する第一半導体材料から作成される多孔質体を含む有機半導体層の製造方法が記載されている。多孔質体は、溶液内で混合された2つの材料の相分離を用いることで製造され、その後溶液が固化した後、第二材料は横孔を綺麗にするために除去される。まずはこのような多孔質体の製造方法によって細孔形状及び特に寸法を正確に設定することは困難であり、且つさらに第二材料の残渣が残ることで有機半導体層の品質に不利な影響を与える。   Patent Document 1 describes a method for producing an organic semiconductor layer including a porous body made from a first semiconductor material having pores filled with a second semiconductor material. The porous body is produced by using phase separation of two materials mixed in solution, after which the second material is removed to clean the lateral holes after the solution has solidified. First of all, it is difficult to accurately set the pore shape and particularly the dimensions by such a method for producing a porous body, and the residue of the second material remains, which adversely affects the quality of the organic semiconductor layer. .

米国特許出願公開第2009/050206号明細書US Patent Application Publication No. 2009/050206

本発明は、これらの材料間に大きな接触面積、つまり第二半導体材料によって少なくとも部分的に含浸された細孔を有する第一半導体材料から作成される多孔質体を有する2つの有機半導体材料によって形成される有機半導体層の製造方法を提供することによって、上述した問題を解決することを目的とする。これは細孔形状の固定を改善することを可能にし、且つ有機半導体層の品質に不利な影響を与える可能性のある残渣が存在しない多孔質体を得ることを可能にする。   The present invention is formed by two organic semiconductor materials having a porous body made from a first semiconductor material having a large contact area between these materials, ie, pores at least partially impregnated with a second semiconductor material. An object of the present invention is to solve the above-mentioned problems by providing a method for manufacturing an organic semiconductor layer. This makes it possible to improve the fixing of the pore shape and to obtain a porous body free of residues that can adversely affect the quality of the organic semiconductor layer.

これを達成するために、このような層の製造方法は、第二半導体材料を受け入れ可能な有効多孔率を備え、第一半導体材料から形成される多孔質固体体積の形成と、第一半導体材料にとって不活性であり、第二半導体材料の蒸発温度未満の蒸発温度を有する溶媒であって、溶媒中に溶解又は分散された第二半導体材料を含む液体の、少なくとも多孔質固体体積の外面上への堆積と、多孔質固体体積が液体によって少なくとも部分的に一度含浸され、前記溶媒の蒸発温度より高い、且つ第一及び第二半導体材料の蒸発温度未満の温度で加熱することによる溶媒の蒸発とを含む。   To achieve this, a method for manufacturing such a layer comprises the formation of a porous solid volume formed from a first semiconductor material with an effective porosity that can accept a second semiconductor material, and a first semiconductor material On the outer surface of at least the porous solid volume of a liquid that is inert to the liquid and that has an evaporation temperature below the evaporation temperature of the second semiconductor material, the liquid containing the second semiconductor material dissolved or dispersed in the solvent And evaporation of the solvent by heating the porous solid volume at least partially once with the liquid and heating at a temperature above the evaporation temperature of the solvent and below the evaporation temperature of the first and second semiconductor materials; including.

多孔質液体の形成は、溶媒中に溶解又は分散された第一半導体材料の溶液中への気泡の導入と、続いて行われる前記溶媒の蒸発とを含み、溶媒温度は気体蒸発温度未満である。 Formation of the porous liquid includes the introduction of bubbles into the solution of the first semiconductor material dissolved or dispersed in the solvent and the subsequent evaporation of the solvent, where the solvent temperature is less than the gas evaporation temperature. .

ここで言う「有効多孔率」とは、互いに行き来可能であり材料内部への空間を形成する、外部からのアクセスが可能な、それゆえ“充填可能な”細孔を有する材料を意味する。 “Effective porosity” as used herein refers to a material having pores that are accessible from the outside and thus can be “filled”, which can be passed back and forth to form a space inside the material.

言い換えると、2つの有機材料を接触させて配する前に、安定で大きな接触面積が生成される。そしてこの表面積は、2つの半導体材料の物理化学的な親和性の欠如とは無関係であり、2つの半導体材料間での改善された結合を備える非常に均一な半導体層が得られる。例えば5倍から100倍の範囲で有機フォトダイオードの効率の大幅な増加が観測され得る。   In other words, a stable and large contact area is created before the two organic materials are placed in contact. And this surface area is independent of the lack of physicochemical affinity of the two semiconductor materials, resulting in a very uniform semiconductor layer with improved bonding between the two semiconductor materials. For example, a significant increase in the efficiency of the organic photodiode can be observed in the range of 5 to 100 times.

その後、多孔質固体体積の製造により、一方では細孔径及び密度の大きな多様性を得ることが、及び他方では残渣のない“綺麗な”材料を形成することが可能となる。   Thereafter, the production of porous solid volumes makes it possible on the one hand to obtain a great variety of pore sizes and densities and on the other hand to form “clean” materials without residue.

実際、気体の使用により、溶媒中の1つ又は複数の材料のエマルジョンから得られうる液滴よりも小さな気泡を得ることが可能であり、従って非常に微細な孔、ひいては多孔質体を形成する第一材料の全体積に亘り均一に分布した高密度の細孔を有することが可能となる。さらに、選択される気体によっては、気泡のサイズは可変となり、より正確に細孔径を調整することが可能となる。   In fact, the use of gas makes it possible to obtain smaller bubbles than droplets that can be obtained from an emulsion of one or more materials in a solvent, thus forming very fine pores and thus a porous body. It is possible to have high-density pores that are uniformly distributed over the entire volume of the first material. Furthermore, depending on the gas selected, the bubble size is variable, and the pore diameter can be adjusted more accurately.

さらに、気体の蒸発は最終的な多孔質固体体積中に残渣を残さない。   Furthermore, gas evaporation does not leave a residue in the final porous solid volume.

本発明の実施形態によると、第一半導体材料はP3HTであり、第二半導体材料はPCBMである。   According to an embodiment of the present invention, the first semiconductor material is P3HT and the second semiconductor material is PCBM.

本発明は、上述の方法により形成され、且つ第一及び第二電極間に配された半導体層を含む光電子装置も目的とする。   The present invention is also directed to an optoelectronic device comprising a semiconductor layer formed by the method described above and disposed between first and second electrodes.

従来技術の有機フォトダイオードの簡略化された断面図である。FIG. 2 is a simplified cross-sectional view of a prior art organic photodiode. 従来技術の有機フォトダイオードの活性層を形成するために、揮発性溶媒中に2つの有機半導体材料を含む溶液を堆積するための従来技術の方法を示す。2 illustrates a prior art method for depositing a solution comprising two organic semiconductor materials in a volatile solvent to form an active layer of a prior art organic photodiode. 本発明による有機フォトダイオードの製造方法の様々な段階での簡略化された断面図を示す。FIG. 2 shows a simplified cross-sectional view at various stages of a method of manufacturing an organic photodiode according to the present invention. 本発明による有機フォトダイオードの製造方法の様々な段階での簡略化された断面図を示す。FIG. 2 shows a simplified cross-sectional view at various stages of a method of manufacturing an organic photodiode according to the present invention. 本発明による有機フォトダイオードの製造方法の様々な段階での簡略化された断面図を示す。FIG. 2 shows a simplified cross-sectional view at various stages of a method of manufacturing an organic photodiode according to the present invention. 本発明による有機フォトダイオードの製造方法の様々な段階での簡略化された断面図を示す。FIG. 2 shows a simplified cross-sectional view at various stages of a method of manufacturing an organic photodiode according to the present invention. 本発明による有機フォトダイオードの製造方法の様々な段階での簡略化された断面図を示す。FIG. 2 shows a simplified cross-sectional view at various stages of a method of manufacturing an organic photodiode according to the present invention. 本発明による有機フォトダイオードの製造方法の様々な段階での簡略化された断面図を示す。FIG. 2 shows a simplified cross-sectional view at various stages of a method of manufacturing an organic photodiode according to the present invention. 本発明による有機フォトダイオードの製造方法の様々な段階での簡略化された断面図を示す。FIG. 2 shows a simplified cross-sectional view at various stages of a method of manufacturing an organic photodiode according to the present invention.

添付の図と関連し、単に例として示される以下の説明を読むことで、本発明はより理解が深まるであろう。ここで、同一の参照符号は、同一又は類似の要素を指す。   The invention will be better understood upon reading the following description, given by way of example only, in conjunction with the accompanying figures, in which: Here, the same reference signs refer to the same or similar elements.

図3Aから図3Gを参照すると、本発明による有機フォトダイオードの製造方法は通常、ガラス基板12の形成することで開始し(図3A)、フォトダイオードの第一電極を形成するために基板12上でエッチングすることによる金属化ITO(14)の形成が続く(図3B)。その後、本方法では通常第一電極14上にPEDOT:PSS注入層16の堆積が続く(図3C)。   Referring to FIGS. 3A to 3G, the method of manufacturing an organic photodiode according to the present invention usually starts with the formation of a glass substrate 12 (FIG. 3A), on the substrate 12 to form the first electrode of the photodiode. This is followed by the formation of metallized ITO (14) by etching with (FIG. 3B). Thereafter, in this method, the deposition of the PEDOT: PSS injection layer 16 is usually continued on the first electrode 14 (FIG. 3C).

本方法では、多孔質P3HT層の製造が続く。より具体的には、P3HTは例えばアルカンなどの第一溶媒“B”中に溶解又は分散される。こうして得られる溶液は、第一溶媒“B”と非混和性であり、第一溶媒“B”よりも低い蒸発温度を有する第二溶媒“C”と混合される。例えば第一溶媒はクロロベンゼン又はクロロホルムである。こうして得られる混合物は、例えば機械的攪拌によって乳化され、エマルジョン30は注入層16上に堆積される(図3D)   The method continues with the production of a porous P3HT layer. More specifically, P3HT is dissolved or dispersed in a first solvent “B” such as an alkane. The solution thus obtained is immiscible with the first solvent “B” and is mixed with the second solvent “C” which has a lower evaporation temperature than the first solvent “B”. For example, the first solvent is chlorobenzene or chloroform. The mixture thus obtained is emulsified, for example by mechanical stirring, and the emulsion 30 is deposited on the injection layer 16 (FIG. 3D).

その後第二溶媒“C”は、例えば自身の蒸発温度以上であるが、第一溶媒“B”の蒸発温度未満の温度で加熱されることで蒸発する。その後第一溶媒“B”は、例えば自身の蒸発温度より高い温度で加熱されることで蒸発する。   Thereafter, the second solvent “C” evaporates by being heated at a temperature that is equal to or higher than its own evaporation temperature but lower than the evaporation temperature of the first solvent “B”. Thereafter, the first solvent “B” evaporates by being heated at a temperature higher than its own evaporation temperature, for example.

PCBM溶液を受け入れ可能な開放気孔率を有するP3HT多孔質固体層32は、こうして得られる(図3E)。層32は、全表面積500μmを超え10細孔/μmの(線形)分布を備える直径100nmの細孔を有する。 A P3HT porous solid layer 32 having an open porosity that can accept a PCBM solution is thus obtained (FIG. 3E). Layer 32 has pores with a diameter of 100 nm with a (linear) distribution with a total surface area of more than 500 μm 2 and 10 pores / μm.

エマルジョンの特性、並びに特に第一溶媒B中のP3HT液滴の大きさ及び第二溶媒C中の液滴濃度が、多孔質層32の最終的な気孔率を決定する。こうして50nmより大きな幅を有するマクロ孔、2nmから50nmの幅を有するメソ細孔、又は2nm未満の幅を有する微小孔を備える層32を形成することが可能である。細孔径は溶媒の性質によって、それらの非混和性の度合いによって、及びそれらの蒸発速度によって決定される。   The characteristics of the emulsion, and in particular the size of the P3HT droplets in the first solvent B and the concentration of the droplets in the second solvent C, determine the final porosity of the porous layer 32. It is thus possible to form a layer 32 comprising macropores having a width greater than 50 nm, mesopores having a width of 2 nm to 50 nm, or micropores having a width of less than 2 nm. The pore size is determined by the nature of the solvent, by their degree of immiscibility and by their evaporation rate.

有利には、特に液滴が高濃度の場合、前述のエマルジョンの安定化のために添加剤も加えられ得る。例えば添加剤は界面活性剤、例えば生体高分子などの乳化剤、例えば石鹸の微粒子、又は例えばアミノトリメトキシシランなどの親水性アミン重合体であるポリマーである。   Advantageously, additives may also be added to stabilize the aforementioned emulsions, especially when the droplets are highly concentrated. For example, the additive is a surfactant, eg, a polymer that is an emulsifier such as a biopolymer, such as soap microparticles, or a hydrophilic amine polymer such as aminotrimethoxysilane.

さらに、界面活性剤の存在下において、乳化剤は2つの溶媒間の界面張力を数mN/mまで、又は数μN/mまでも下げる利点を有し、界面面積を増加させるために必要な力を減少することが可能である。これにより小さなドメインサイズが維持され、気孔率が増加する。   Furthermore, in the presence of a surfactant, the emulsifier has the advantage of lowering the interfacial tension between the two solvents to a few mN / m, or even a few μN / m, and provides the necessary force to increase the interfacial area. It is possible to decrease. This maintains a small domain size and increases porosity.

その後本方法は、例えばシクロヘキサンである第三溶媒“A”中のPCBM溶液34を、多孔質層32の自由表面上に堆積することが続く。次いでこうして溶液は多孔質層32を完全に含浸する(図3F)。   The method then continues by depositing a PCBM solution 34 in a third solvent “A”, eg, cyclohexane, on the free surface of the porous layer 32. The solution is then completely impregnated with the porous layer 32 (FIG. 3F).

PCBMを溶解する又は分散するために用いられる第三溶媒“A”には、PCBMよりも低い蒸発温度を有し、及び有利には揮発性であるものが選択される。この溶媒には、この材料を逆に溶解することを避けるために、多孔質層32を形成する材料、この場合P3HTに対して不活性であるものが選択される。   The third solvent “A” used to dissolve or disperse PCBM is selected to have a lower evaporation temperature than PCBM and is preferably volatile. The solvent is selected to be inert to the material forming the porous layer 32, in this case P3HT, to avoid dissolving the material in reverse.

その後、第三溶媒の蒸発温度以上であるが、PCBMの蒸発温度未満の温度で、PCBM溶液で含浸された多孔質層32の加熱が実行される。高度の均一性を備えたP3HT及びPCBMの混合物から形成される有機半導体層38がこうして得られる(図3G)。   Thereafter, heating of the porous layer 32 impregnated with the PCBM solution is performed at a temperature equal to or higher than the evaporation temperature of the third solvent but lower than the evaporation temperature of PCBM. An organic semiconductor layer 38 formed from a mixture of P3HT and PCBM with a high degree of uniformity is thus obtained (FIG. 3G).

その後、例えばカルシウム、アルミニウム又は銀の層である第二電極を形成する層20を、層38の自由表面へ堆積することで本方法は終わる。   The method is then terminated by depositing on the free surface of layer 38 a layer 20 forming a second electrode, for example a layer of calcium, aluminum or silver.

前述の多孔質層はエマルジョンによって得られる。   The aforementioned porous layer is obtained by emulsion.

変形例として、多孔質層はポリスチレンの重合によって得られる。その重合中に直接得られる多孔性を有する多孔質ポリスチレンが用いられる。ポリスチレン細孔は、まずは第一材料で、及びその後第二材料で充填される。その後、ポリスチレンは不活性な骨組みとして残る。   As a variant, the porous layer is obtained by polymerization of polystyrene. Porous polystyrene with porosity obtained directly during the polymerization is used. The polystyrene pores are filled first with the first material and then with the second material. Thereafter, the polystyrene remains as an inert framework.

本発明によると、多孔質層は気体を追加することで、つまり泡を形成することで得られる。第一材料を含む溶液内へ気泡が導入される。溶媒の蒸発中に、もし溶媒の蒸発温度が気体の蒸発温度未満であれば、その後気泡は閉じ込められたままである。こうして気体が解放されるにつれて溶媒が蒸発する。後者は、人工的に導入され得る(空気、二酸化炭素)、又は例えばポリウレタンの若しくはエポキシ樹脂の重合のような、残渣(二酸化炭素)を生成する第一材料の重合によってインサイチューで生成され得る。   According to the invention, the porous layer is obtained by adding gas, ie by forming bubbles. Bubbles are introduced into the solution containing the first material. During evaporation of the solvent, if the evaporation temperature of the solvent is below the vaporization temperature of the gas, then the bubbles remain trapped. Thus the solvent evaporates as the gas is released. The latter can be artificially introduced (air, carbon dioxide) or generated in situ by polymerization of a first material that produces a residue (carbon dioxide), such as polymerization of polyurethane or epoxy resin, for example.

気泡の大きさ及び気体の性質により、細孔の形状、特にそれらの大きさ及び密度を正確に設定することが可能となる。   The size of the bubbles and the nature of the gas make it possible to accurately set the shape of the pores, especially their size and density.

同様に、多孔質P3HT層がPCBMで充填される実施形態が記載された。変形例として、多孔質PCBM層がP3HTで充填される。   Similarly, embodiments have been described in which a porous P3HT layer is filled with PCBM. As a variant, a porous PCBM layer is filled with P3HT.

同様に、P3HT及びPCBMが用いられる実施形態が記載された。当然、他の種類のポリマー又は非ポリマー型の有機半導体材料が、目的とする用途に応じて用いられ得る。エマルジョンの除去後に活性有機層を提供する、エマルジョンを形成するために用いられる第一及び第二溶媒の選定は、有機半導体材料の選定に明らかに依存する。非混和性である、又は極めてわずかに共に混和するように溶媒を選定すること、且つ第二溶媒の蒸発温度が第一溶媒の蒸発温度未満であることが唯一注意すべきことである。   Similarly, embodiments have been described where P3HT and PCBM are used. Of course, other types of polymer or non-polymeric organic semiconductor materials can be used depending on the intended application. The choice of the first and second solvents used to form the emulsion that provides the active organic layer after removal of the emulsion is clearly dependent on the choice of the organic semiconductor material. The only thing to note is that the solvent is chosen to be immiscible or very slightly miscible together and that the evaporation temperature of the second solvent is below the evaporation temperature of the first solvent.

同様に、有機フォトダイオードが製造される実施形態が記載された。当然、本発明による製造方法によって得られた半導体材料の混合物から形成される有機半導体層は、例えば両極性トランジスタのような他の型の有機マイクロ電子部品において用いられ得る。   Similarly, embodiments in which organic photodiodes are manufactured have been described. Of course, the organic semiconductor layer formed from the mixture of semiconductor materials obtained by the manufacturing method according to the invention can be used in other types of organic microelectronic components, for example bipolar transistors.

10 フォトダイオード
12 透明基板
14 第一電極
16 注入層
18 活性層
20 第二電極
22 第一半導体材料の層
24 第二半導体材料の層
26 接触面
30 エマルジョン
32 多孔質層
34 PCBM溶液
38 有機半導体層
DESCRIPTION OF SYMBOLS 10 Photodiode 12 Transparent substrate 14 1st electrode 16 Injection layer 18 Active layer 20 2nd electrode 22 Layer of 1st semiconductor material 24 Layer of 2nd semiconductor material 26 Contact surface 30 Emulsion 32 Porous layer 34 PCBM solution 38 Organic semiconductor layer

Claims (2)

第一及び第二有機半導体材料の混合物から形成される有機半導体層(38)の製造方法であって、
有効多孔率を備え、且つ前記第二半導体材料を受け入れ可能な、前記第一半導体材料から形成される多孔質固体体積(32)を形成する段階と、
前記第一半導体材料に対して不活性であり、且つ前記第二半導体材料の蒸発温度未満の蒸発温度を有する溶媒(A)中に溶解又は分散された前記第二半導体材料を含む液体(32)を少なくとも前記多孔質固体体積の外面上に堆積する段階と、
前記多孔質固体体積(32)が少なくとも部分的に前記液体で含浸されるとすぐに、前記溶媒の蒸発温度より高く、且つ前記第一及び前記第二半導体材料の蒸発温度未満の温度まで加熱することで前記溶媒(A)を蒸発させる段階と、を含み、
前記多孔質固体体積の形成が、溶媒中に溶解又は分散された前記第一半導体材料の溶液中へ気泡を導入するための気体を加える段階と、続く前記溶媒を蒸発させる段階とを含み、前記溶媒の蒸発温度が前記第一半導体材料の溶液中へ気泡を導入するための前記気体蒸発温度未満であることを特徴とする製造方法。
A method for producing an organic semiconductor layer (38) formed from a mixture of first and second organic semiconductor materials, comprising:
Forming a porous solid volume (32) formed from the first semiconductor material that has an effective porosity and is capable of receiving the second semiconductor material;
A liquid (32) comprising the second semiconductor material dissolved or dispersed in a solvent (A) that is inert to the first semiconductor material and has an evaporation temperature less than the evaporation temperature of the second semiconductor material. Depositing at least on the outer surface of the porous solid volume;
As soon as the porous solid volume (32) is at least partially impregnated with the liquid, it is heated to a temperature above the evaporation temperature of the solvent and below the evaporation temperature of the first and second semiconductor materials. Evaporating the solvent (A)
Wherein formation of the porous solid volume, the step of adding a gas for introducing gas bubbles into the solution of the first semiconductor material dissolved or dispersed in Solvent, and steps of evaporating followed the Solvent the method, wherein the evaporation temperature of the solvent medium is lower than the evaporation temperature of the gas for introducing gas bubbles into the solution of the first semiconductor material.
前記第一半導体材料がP3HTであり、及び前記第二半導体材料がPCBMであることを特徴とする、請求項1に記載の方法。   The method of claim 1, wherein the first semiconductor material is P3HT and the second semiconductor material is PCBM.
JP2013520177A 2010-07-22 2011-06-10 Method for producing organic semiconductor layer comprising mixture of first and second semiconductors Expired - Fee Related JP5883861B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1055990 2010-07-22
FR1055990A FR2963166B1 (en) 2010-07-22 2010-07-22 PROCESS FOR PRODUCING AN ORGANIC SEMICONDUCTOR LAYER COMPRISING A MIXTURE OF A FIRST AND A SECOND SEMICONDUCTOR MATERIAL
PCT/FR2011/051332 WO2012010759A1 (en) 2010-07-22 2011-06-10 Process for producing an organic semiconductor layer consisting of a mixture of a first and a second semiconductor

Publications (3)

Publication Number Publication Date
JP2013539597A JP2013539597A (en) 2013-10-24
JP2013539597A5 JP2013539597A5 (en) 2015-09-10
JP5883861B2 true JP5883861B2 (en) 2016-03-15

Family

ID=43719459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013520177A Expired - Fee Related JP5883861B2 (en) 2010-07-22 2011-06-10 Method for producing organic semiconductor layer comprising mixture of first and second semiconductors

Country Status (8)

Country Link
US (1) US8951830B2 (en)
EP (1) EP2596536B1 (en)
JP (1) JP5883861B2 (en)
KR (1) KR101894110B1 (en)
CN (1) CN102959754A (en)
BR (1) BR112012033070A2 (en)
FR (1) FR2963166B1 (en)
WO (1) WO2012010759A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681886B (en) * 2013-12-26 2017-09-22 中国科学院物理研究所 Shelf layer for perovskite-based thin film solar cell and preparation method thereof
CN108963080B (en) * 2018-07-07 2020-05-26 河南大学 Preparation method of porous organic semiconductor film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605327B2 (en) * 2003-05-21 2009-10-20 Nanosolar, Inc. Photovoltaic devices fabricated from nanostructured template
DE102004021567A1 (en) * 2004-05-03 2005-12-08 Covion Organic Semiconductors Gmbh Electronic devices containing organic semiconductors
GB2421353A (en) * 2004-12-14 2006-06-21 Cambridge Display Tech Ltd Method of preparing opto-electronic device
JP4972921B2 (en) * 2005-01-14 2012-07-11 セイコーエプソン株式会社 Method for manufacturing photoelectric conversion element
JP2008060092A (en) * 2005-01-31 2008-03-13 Sharp Corp Optical functional film, and manufacturing method thereof
FR2892563B1 (en) * 2005-10-25 2008-06-27 Commissariat Energie Atomique POLYMERIC NANOFIBRIDE NETWORK FOR PHOTOVOLTAIC CELLS
DE102007000791A1 (en) * 2007-09-28 2009-04-02 Universität Köln Method for producing an organic light-emitting diode or an organic solar cell and produced organic light-emitting diodes or solar cells
US20090194167A1 (en) * 2008-02-05 2009-08-06 Konarka Technologies, Inc. Methods of Forming Photoactive Layer

Also Published As

Publication number Publication date
KR20130095653A (en) 2013-08-28
BR112012033070A2 (en) 2016-12-20
EP2596536A1 (en) 2013-05-29
EP2596536B1 (en) 2015-09-30
FR2963166B1 (en) 2013-03-29
JP2013539597A (en) 2013-10-24
KR101894110B1 (en) 2018-08-31
US8951830B2 (en) 2015-02-10
FR2963166A1 (en) 2012-01-27
WO2012010759A1 (en) 2012-01-26
CN102959754A (en) 2013-03-06
US20130092921A1 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
Wang et al. High power conversion efficiency of 13.61% for 1 cm2 flexible polymer solar cells based on patternable and mass‐producible gravure‐printed silver nanowire electrodes
Girotto et al. High‐performance organic solar cells with spray‐coated hole‐transport and active layers
Zhang et al. Fabrication of hollow capsules based on hydrogen bonding
JP4845995B2 (en) Organic solar cell and manufacturing method thereof
US7505653B2 (en) Encapsulated photonic crystal structures
US8927383B2 (en) Multilayer heterostructures for application in OLEDs and photovoltaic devices
Bai et al. A one-step template-free approach to achieve tapered silicon nanowire arrays with controllable filling ratios for solar cell applications
JP5883861B2 (en) Method for producing organic semiconductor layer comprising mixture of first and second semiconductors
Zhou et al. Macroporous conductive polymer films fabricated by electrospun nanofiber templates and their electromechanical properties
JP4936886B2 (en) Manufacturing method of organic solar cell or photodetector.
Galagan et al. Failure analysis in ITO-free all-solution processed organic solar cells
Huang et al. Direct ink writing of pickering emulsions generates ultralight conducting polymer foams with hierarchical structure and multifunctionality
Charas et al. Insoluble patterns of cross-linkable conjugated polymers from blend demixing in spin cast films
JP4605085B2 (en) Method for forming heterojunctions in organic semiconductor polymers
JP5636185B2 (en) Method for depositing material on the surface of an object
TW201128253A (en) Unit for disposing a volatile liquid of a device containing the liquid and the preparation thereof
Lee et al. Immiscible solvents enabled nanostructure formation for efficient polymer photovoltaic cells
Ghazy Water‐Based Blend Nanoparticles of P3HT and PCBM for the Application in Organic Solar Cells
CN114539566B (en) Preparation method of poly (9, 9-di-n-octyl fluorenyl-2, 7-diyl) nanoparticle
Chung et al. Dewetting of swollen Poly (3-hexylthiophene) films during spin-coating processes: implications for device fabrication
Chen et al. Coordination of Thermally Activated Delayed Fluorescent Molecules for Efficient and Stable Perovskite Light‐Emitting Diodes
Haberkorn et al. Template-based preparation of free-standing semiconducting polymeric nanorod arrays on conductive substrates
Lin et al. Achieving good bias stress reliability in organic transistor with vertical channel
KR101239398B1 (en) Conductive polymer composition, opto-electronic film and device using thereof
Zhao et al. Phase Separation in Poly (9, 9‐dioctylfluorene)/Poly (methyl methacrylate) Blends

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150420

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20150721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5883861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees