JP5882549B1 - Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery Download PDF

Info

Publication number
JP5882549B1
JP5882549B1 JP2015543202A JP2015543202A JP5882549B1 JP 5882549 B1 JP5882549 B1 JP 5882549B1 JP 2015543202 A JP2015543202 A JP 2015543202A JP 2015543202 A JP2015543202 A JP 2015543202A JP 5882549 B1 JP5882549 B1 JP 5882549B1
Authority
JP
Japan
Prior art keywords
separator
porous layer
porous
secondary battery
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015543202A
Other languages
Japanese (ja)
Other versions
JPWO2015178351A1 (en
Inventor
本多 勧
勧 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2015543202A priority Critical patent/JP5882549B1/en
Application granted granted Critical
Publication of JP5882549B1 publication Critical patent/JP5882549B1/en
Publication of JPWO2015178351A1 publication Critical patent/JPWO2015178351A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/469Separators, membranes or diaphragms characterised by their shape tubular or cylindrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

熱可塑性樹脂を含む多孔質基材と、前記多孔質基材の片面又は両面に設けられた、ポリフッ化ビニリデン系樹脂を含む多孔質層であって、該多孔質層の面垂直方向に開口したセルが該多孔質層の面方向に隣接して多数並んだ構造を有し、水の接触角が115?〜140?である多孔質層と、を備えた非水系二次電池用セパレータ。A porous base material containing a thermoplastic resin, and a porous layer containing a polyvinylidene fluoride resin provided on one or both sides of the porous base material, wherein the porous layer is open in a direction perpendicular to the surface of the porous layer A separator for a non-aqueous secondary battery comprising: a porous layer having a structure in which a large number of cells are arranged adjacent to each other in the plane direction of the porous layer, and a water contact angle of 115 to 140 ?.

Description

本発明は、非水系二次電池用セパレータ、その製造方法及び非水系二次電池に関する。   The present invention relates to a separator for a non-aqueous secondary battery, a manufacturing method thereof, and a non-aqueous secondary battery.

リチウムイオン二次電池に代表される非水系二次電池は、ノートパソコン、携帯電話、デジタルカメラ、カムコーダといった携帯用電子機器の電源として広範に普及している。   Non-aqueous secondary batteries typified by lithium ion secondary batteries are widely used as power sources for portable electronic devices such as notebook computers, mobile phones, digital cameras, and camcorders.

近年、携帯用電子機器の小型化及び軽量化に伴い、非水系二次電池の外装の簡素化及び軽量化がなされており、外装材としてステンレス製の缶にかわって、アルミ製の缶が開発され、さらに金属製の缶にかわって、アルミラミネートフィルム製のパックが開発されている。ただし、アルミラミネートフィルム製のパックは軟らかいため、該パックを外装材とする電池(所謂、ソフトパック電池)においては、外部からの衝撃や、充放電に伴う電極の膨張及び収縮によって、電極とセパレータとの間に隙間が形成されやすく、サイクル寿命が低下することがある。   In recent years, with the miniaturization and weight reduction of portable electronic devices, the exterior and exterior of non-aqueous secondary batteries have been simplified, and aluminum cans have been developed instead of stainless steel cans as exterior materials. In addition, aluminum laminated film packs have been developed in place of metal cans. However, since a pack made of aluminum laminate film is soft, a battery (so-called soft pack battery) using the pack as an outer packaging material (so-called soft pack battery) is subjected to an impact from the outside or expansion and contraction of the electrode due to charge and discharge. A gap is easily formed between the two and the cycle life may be reduced.

上記の課題を解決するため、電極とセパレータとの接着性を高める技術が提案されている。その技術の一つとして、ポリオレフィン微多孔膜等からなる基材上にポリフッ化ビニリデン系樹脂を含む多孔質層を備えたセパレータが知られている(例えば、特許文献1〜4参照)。このセパレータは、電極に重ねてプレス又は熱プレスすると、多孔質層を介して電極へ良好に接着するので、電池のサイクル寿命を向上させ得る。   In order to solve the above problems, a technique for improving the adhesion between the electrode and the separator has been proposed. As one of such techniques, a separator having a porous layer containing a polyvinylidene fluoride-based resin on a substrate made of a polyolefin microporous film or the like is known (see, for example, Patent Documents 1 to 4). When this separator is pressed or hot pressed over the electrode, it adheres well to the electrode through the porous layer, so that the cycle life of the battery can be improved.

特開2004−356102号公報JP 2004-356102 A 国際公開第2005/049318号International Publication No. 2005/049318 特許第4988972号公報Japanese Patent No. 4988972 特開2013−54972号公報JP 2013-54972 A

しかし、ポリフッ化ビニリデン系樹脂は帯電しやすい樹脂であるため、ポリフッ化ビニリデン系樹脂を含む多孔質層は静電気を帯びやすく、該多孔質層を備えたセパレータはハンドリング性に劣る場合がある。その結果、ポリフッ化ビニリデン系樹脂を含む多孔質層を備えたセパレータと電極とを重ねて巻き回して電池素子を製造する際、電極とセパレータとが巻ずれを起こし、電池の生産効率が低下するという問題が生じていた。   However, since the polyvinylidene fluoride-based resin is a resin that is easily charged, a porous layer containing the polyvinylidene fluoride-based resin is easily charged with static electricity, and a separator provided with the porous layer may have poor handling properties. As a result, when a battery element is produced by stacking and winding a separator having a porous layer containing a polyvinylidene fluoride-based resin and winding the electrode, the electrode and the separator are unwound and the production efficiency of the battery is reduced. There was a problem.

一方で、外装材に電池素子を挿入後、電解液を注液する際、短時間で且つ均一性高くセパレータに電解液が含浸するためには、電解液の濡れ性が高いセパレータが好ましい。   On the other hand, when the electrolytic solution is injected after the battery element is inserted into the packaging material, a separator with high wettability of the electrolytic solution is preferable in order to impregnate the separator with high uniformity in a short time.

本発明の実施形態は、上記状況のもとになされた。
本発明の実施形態は、優れたハンドリング性及び電解液との高い親和性をバランスよく実現した非水系二次電池用セパレータを提供することを目的とする。
さらに、本発明の実施形態は、製造効率高く非水系二次電池を提供することを目的とする。
The embodiment of the present invention has been made under the above circumstances.
An object of the embodiment of the present invention is to provide a separator for a non-aqueous secondary battery that realizes excellent handling properties and high affinity with an electrolyte in a well-balanced manner.
Furthermore, an embodiment of the present invention aims to provide a non-aqueous secondary battery with high production efficiency.

前記課題を解決するための具体的手段には、以下の態様が含まれる。
[1] 熱可塑性樹脂を含む多孔質基材と、前記多孔質基材の片面又は両面に設けられた、ポリフッ化ビニリデン系樹脂を含む多孔質層であって、該多孔質層の面垂直方向に開口したセルが該多孔質層の面方向に隣接して多数並んだ構造を有し、水の接触角が115°〜140°である多孔質層と、を備え、前記多孔質層上で測定した帯電減衰半減期が300秒以下である、非水系二次電池用セパレータ。
[2] 前記セルの開口部の平均径が0.1μm〜10μmである、[1]に記載の非水系二次電池用セパレータ。
[3] 前記多孔質層の空孔率が40%〜80%である、[1]又は[2]に記載の非水系二次電池用セパレータ
エチレンカーボネートとメチルエチルカーボネートとが質量比3:7で混合してなる溶媒にLiBF が1Mの濃度で溶解してなる電解液に浸したときに動的濡れ張力が1.5mNになるまでの時間が10秒以下である、[1]〜[]のいずれかに記載の非水系二次電池用セパレータ。
] 前記多孔質層が、HLB値が5.0〜8.0である界面活性剤をさらに含み、前記ポリフッ化ビニリデン系樹脂と前記界面活性剤とが前記多孔質層の内部において混在している、[1]〜[]のいずれかに記載の非水系二次電池用セパレータ。
] 前記多孔質層において、前記ポリフッ化ビニリデン系樹脂と前記界面活性剤との質量比が99.9:0.1〜95.0:5.0である、[]に記載の非水系二次電池用セパレータ。
] 前記多孔質基材と前記多孔質層との間の剥離強度が0.1N/cm〜2.0N/cmである、[1]〜[]のいずれかに記載の非水系二次電池用セパレータ。
] 前記多孔質層がフィラーをさらに含む、[1]〜[]のいずれかに記載の非水系二次電池用セパレータ。
] 前記多孔質層を前記多孔質基材の両面に有する、[1]〜[]のいずれかに記載の非水系二次電池用セパレータ。
10] 前記多孔質基材がポリエチレンを含むポリオレフィン微多孔膜である、[1]〜[]のいずれかに記載の非水系二次電池用セパレータ。
11] 前記多孔質基材がポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜である、[1]〜[10]のいずれかに記載の非水系二次電池用セパレータ。
12] []〜[11]のいずれかに記載の非水系二次電池用セパレータを製造する方法であって、ポリフッ化ビニリデン系樹脂とHLB値が5.0〜8.0である界面活性剤とを溶媒に溶解させて得た溶液を多孔質基材の片面又は両面に塗工して塗工層を形成する工程と、前記塗工層から前記溶媒を除去して多孔質層を形成する工程と、を有する、非水系二次電池用セパレータの製造方法。
13] 正極と、負極と、前記正極及び前記負極の間に配置された[1]〜[11]のいずれかに記載の非水系二次電池用セパレータとを備え、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池。
Specific means for solving the problems include the following aspects.
[1] A porous substrate containing a thermoplastic resin, and a porous layer containing a polyvinylidene fluoride resin provided on one or both surfaces of the porous substrate, the surface being perpendicular to the porous layer open cell has a number aligned structure adjacent the surface direction of the porous layer comprises a porous layer contact angle of water is 115 ° to 140 °, and in the porous layer on the A separator for a non-aqueous secondary battery having a measured charge decay half-life of 300 seconds or less .
[2] The separator for a nonaqueous secondary battery according to [1], wherein an average diameter of the opening of the cell is 0.1 μm to 10 μm.
[3] The non-aqueous secondary battery separator according to [1] or [2], wherein the porosity of the porous layer is 40% to 80% .
[ 4 ] The dynamic wetting tension is 1.5 mN when immersed in an electrolytic solution in which LiBF 4 is dissolved at a concentration of 1M in a solvent in which ethylene carbonate and methyl ethyl carbonate are mixed at a mass ratio of 3: 7. The separator for a non-aqueous secondary battery according to any one of [1] to [ 3 ], wherein the time until it is 10 seconds or less.
[ 5 ] The porous layer further includes a surfactant having an HLB value of 5.0 to 8.0, and the polyvinylidene fluoride resin and the surfactant are mixed in the porous layer. The separator for nonaqueous secondary batteries according to any one of [1] to [ 4 ].
[6] In the above porous layer, the mass ratio of the surfactant and the polyvinylidene fluoride resin is 99.9: 0.1 to 95.0: A 5.0 non according to [5] Separator for water-based secondary battery.
[ 7 ] The non-aqueous system according to any one of [1] to [ 6 ], wherein a peel strength between the porous substrate and the porous layer is 0.1 N / cm to 2.0 N / cm. Secondary battery separator.
[ 8 ] The separator for a nonaqueous secondary battery according to any one of [1] to [ 7 ], wherein the porous layer further contains a filler.
[ 9 ] The separator for a nonaqueous secondary battery according to any one of [1] to [ 8 ], which has the porous layer on both surfaces of the porous substrate.
[ 10 ] The separator for a nonaqueous secondary battery according to any one of [1] to [ 9 ], wherein the porous substrate is a polyolefin microporous membrane containing polyethylene.
[ 11 ] The separator for a nonaqueous secondary battery according to any one of [1] to [ 10 ], wherein the porous substrate is a polyolefin microporous film containing polyethylene and polypropylene.
[ 12 ] A method for producing the separator for a non-aqueous secondary battery according to any one of [ 5 ] to [ 11 ], wherein the polyvinylidene fluoride resin and the HLB value are 5.0 to 8.0. A step of applying a solution obtained by dissolving an activator in a solvent to one or both sides of a porous substrate to form a coating layer; and removing the solvent from the coating layer to form a porous layer Forming the separator for a non-aqueous secondary battery.
[ 13 ] A positive electrode, a negative electrode, and a separator for a nonaqueous secondary battery according to any one of [1] to [ 11 ] disposed between the positive electrode and the negative electrode, and lithium doping / dedoping A non-aqueous secondary battery that obtains an electromotive force.

本発明の実施形態によれば、優れたハンドリング性及び電解液との高い親和性をバランスよく実現した非水系二次電池用セパレータが提供される。
さらに、本発明の実施形態によれば、製造効率高く非水系二次電池が提供される。
According to the embodiment of the present invention, there is provided a separator for a non-aqueous secondary battery that realizes excellent handling properties and high affinity with an electrolyte in a well-balanced manner.
Furthermore, according to the embodiment of the present invention, a non-aqueous secondary battery is provided with high manufacturing efficiency.

実施例A1のセパレータを走査型電子顕微鏡で面垂直方向から観察して得た画像である。It is the image obtained by observing the separator of Example A1 from a surface perpendicular direction with a scanning electron microscope. 比較例A2のセパレータを走査型電子顕微鏡で面垂直方向から観察して得た画像である。It is the image obtained by observing the separator of Comparative Example A2 from the surface perpendicular direction with a scanning electron microscope.

以下に、本発明の実施形態について説明する。これらの説明及び実施例は本発明を例示するものであり、本発明の範囲を制限するものではない。   Hereinafter, embodiments of the present invention will be described. These descriptions and examples are illustrative of the invention and are not intended to limit the scope of the invention.

本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。   In the present specification, a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.

本明細書において、「機械方向」とは、長尺な多孔質基材及びセパレータにおいて長尺方向を意味し、「幅方向」とは、「機械方向」に直交する方向を意味する。本明細書において、「機械方向」を「MD方向」とも称し、「幅方向」を「TD方向」とも称する。   In the present specification, “machine direction” means the long direction in the long porous substrate and separator, and “width direction” means the direction orthogonal to the “machine direction”. In this specification, “machine direction” is also referred to as “MD direction”, and “width direction” is also referred to as “TD direction”.

<非水系二次電池用セパレータ>
本開示の非水系二次電池用セパレータ(単に「セパレータ」とも称する。)は、熱可塑性樹脂を含む多孔質基材と、前記多孔質基材の片面又は両面に設けられた、ポリフッ化ビニリデン系樹脂を含む多孔質層であって、該多孔質層の面垂直方向に開口したセルが該多孔質層の面方向に隣接して多数並んだ構造(以下「ハニカム構造」とも称する。)を有し、水の接触角が115°〜140°である多孔質層と、を備える。本開示のセパレータにおいて、前記多孔質層は、セパレータの最外層として存在し、電極に接する層である。
<Separator for non-aqueous secondary battery>
A separator for a non-aqueous secondary battery according to the present disclosure (also simply referred to as “separator”) includes a porous base material containing a thermoplastic resin, and a polyvinylidene fluoride system provided on one or both surfaces of the porous base material. It is a porous layer containing resin, and has a structure in which a large number of cells opened in the surface vertical direction of the porous layer are arranged adjacent to each other in the surface direction of the porous layer (hereinafter also referred to as “honeycomb structure”). And a porous layer having a water contact angle of 115 ° to 140 °. In the separator of the present disclosure, the porous layer is a layer that exists as an outermost layer of the separator and is in contact with the electrode.

本開示のセパレータは、熱可塑性樹脂を含む多孔質基材の少なくとも片面にポリフッ化ビニリデン系樹脂を含む多孔質層を備えたセパレータとして、優れたハンドリング性及び電解液との高い親和性をバランスよく実現する。本開示のセパレータによれば、セパレータと電極とを重ねて巻き回して電池素子を製造する際の不良品発生を抑制でき、電池の製造効率を向上することができる。   The separator of the present disclosure is a separator having a porous layer containing a polyvinylidene fluoride-based resin on at least one surface of a porous substrate containing a thermoplastic resin, and has a good balance between excellent handling properties and high affinity with an electrolytic solution. Realize. According to the separator of the present disclosure, it is possible to suppress the generation of defective products when the battery element is manufactured by overlapping and winding the separator and the electrode, and the manufacturing efficiency of the battery can be improved.

本開示のセパレータにおいては、ポリフッ化ビニリデン系樹脂を含む多孔質層がハニカム構造を有し且つ水の接触角が115°〜140°であることにより、該多孔質層が静電気を帯びにくく且つ電解液に対する該多孔質層の表面の濡れ性が高い。そのため、本開示のセパレータと電極とを重ねて巻き回して電池素子を製造する際に、セパレータの位置ずれが抑制されると考えられる。また、電池素子から巻芯を引き抜く際に巻芯が滑りやすく、電池素子の型崩れが抑制されると考えられる。さらに、本開示のセパレータと電極とを重ねて巻き回して製造した電池素子に電解液を含浸させる際に、短時間で且つ均一性高く含浸することができる。したがって、本開示のセパレータによれば、電池の製造効率を向上することができる。   In the separator of the present disclosure, the porous layer containing the polyvinylidene fluoride resin has a honeycomb structure and the contact angle of water is 115 ° to 140 °. The wettability of the surface of the porous layer to the liquid is high. Therefore, it is considered that when the battery element is manufactured by overlapping and winding the separator and the electrode of the present disclosure, the position shift of the separator is suppressed. Further, it is considered that when the core is pulled out from the battery element, the core is easily slipped, and the battery element is prevented from being deformed. Furthermore, when impregnating the electrolytic solution into the battery element manufactured by overlapping and winding the separator and the electrode of the present disclosure, the impregnation can be performed in a short time and with high uniformity. Therefore, according to the separator of the present disclosure, the manufacturing efficiency of the battery can be improved.

セパレータが有する多孔質層の表面の帯電性は、多孔質層上で帯電減衰半減期を測定することにより比較可能である。帯電減衰半減期が小さいほど帯電性が低いことを意味する。   The chargeability of the surface of the porous layer of the separator can be compared by measuring the charge decay half-life on the porous layer. The smaller the charge decay half-life, the lower the chargeability.

本開示のセパレータは、ポリフッ化ビニリデン系樹脂を含む多孔質層を少なくとも片面に最外層として有するので、電極との接着性に優れる。したがって、本開示のセパレータを適用した非水系二次電池は、電池のサイクル寿命が向上する。   Since the separator of this indication has the porous layer containing polyvinylidene fluoride system resin as the outermost layer at least on one side, it is excellent in adhesiveness with an electrode. Therefore, the non-aqueous secondary battery to which the separator of the present disclosure is applied has an improved battery cycle life.

以下、本開示のセパレータが有する多孔質基材及び多孔質層の詳細を説明する。   Hereinafter, the detail of the porous base material and porous layer which the separator of this indication has is demonstrated.

[多孔質基材]
本開示において多孔質基材とは、内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜;繊維状物からなる、不織布、紙等の多孔性シート;などが挙げられる。本開示においては、セパレータの薄膜化及び強度の観点で、微多孔膜が好ましい。微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
[Porous substrate]
In the present disclosure, the porous substrate means a substrate having pores or voids therein. Examples of such a substrate include a microporous film; a porous sheet made of a fibrous material such as a nonwoven fabric and paper; In the present disclosure, a microporous membrane is preferable from the viewpoint of thinning and strength of the separator. A microporous membrane means a membrane that has a large number of micropores inside and has a structure in which these micropores are connected, allowing gas or liquid to pass from one surface to the other. To do.

多孔質基材は、熱可塑性樹脂を含む。熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;などが挙げられる。熱可塑性樹脂は、多孔質基材にシャットダウン機能を付与する観点で、融点が200℃未満の熱可塑性樹脂が好ましい。シャットダウン機能とは、電池温度が高まった際に、材料が溶解して多孔質基材の孔を閉塞することによりイオンの移動を遮断し、電池の熱暴走を防止する機能をいう。   The porous substrate includes a thermoplastic resin. Examples of the thermoplastic resin include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; The thermoplastic resin is preferably a thermoplastic resin having a melting point of less than 200 ° C. from the viewpoint of imparting a shutdown function to the porous substrate. The shutdown function refers to a function of preventing the thermal runaway of the battery by blocking the movement of ions by dissolving the material and closing the pores of the porous base material when the battery temperature rises.

多孔質基材としては、ポリオレフィンを含む微多孔膜(「ポリオレフィン微多孔膜」という。)が好ましい。ポリオレフィン微多孔膜としては、例えば、従来の電池セパレータに適用されているポリオレフィン微多孔膜が挙げられ、この中から十分な力学特性とイオン透過性を有するものを選択することが好ましい。   As the porous substrate, a microporous membrane containing polyolefin (referred to as “polyolefin microporous membrane”) is preferable. Examples of the polyolefin microporous membrane include a polyolefin microporous membrane applied to conventional battery separators, and it is preferable to select one having sufficient mechanical properties and ion permeability.

ポリオレフィン微多孔膜は、シャットダウン機能を発現する観点から、ポリエチレンを含むことが好ましく、ポリエチレンの含有量としては95質量%以上が好ましい。   The polyolefin microporous membrane preferably contains polyethylene from the viewpoint of exhibiting a shutdown function, and the polyethylene content is preferably 95% by mass or more.

ポリオレフィン微多孔膜は、高温に曝されたときに容易に破膜しない程度の耐熱性を付与するという観点では、ポリエチレン及びポリプロピレンを含むポリオレフィン微多孔膜が好ましい。このようなポリオレフィン微多孔膜としては、ポリエチレンとポリプロピレンが1つの層において混在している微多孔膜が挙げられる。該微多孔膜においては、シャットダウン機能と耐熱性の両立という観点から、95質量%以上のポリエチレンと5質量%以下のポリプロピレンとを含むことが好ましい。また、シャットダウン機能と耐熱性の両立という観点では、ポリオレフィン微多孔膜が2層以上の積層構造を備え、少なくとも1層はポリエチレンを含み、少なくとも1層はポリプロピレンを含む構造のポリオレフィン微多孔膜も好ましい。   The polyolefin microporous membrane is preferably a polyolefin microporous membrane containing polyethylene and polypropylene from the viewpoint of imparting heat resistance to such an extent that it does not easily break when exposed to high temperatures. Examples of such a polyolefin microporous membrane include a microporous membrane in which polyethylene and polypropylene are mixed in one layer. The microporous membrane preferably contains 95% by mass or more of polyethylene and 5% by mass or less of polypropylene from the viewpoint of achieving both a shutdown function and heat resistance. Also, from the viewpoint of achieving both a shutdown function and heat resistance, the polyolefin microporous membrane has a laminated structure of two or more layers, and at least one layer contains polyethylene and at least one layer contains a polyolefin microporous membrane having a structure containing polypropylene. .

ポリオレフィン微多孔膜に含まれるポリオレフィンとしては、重量平均分子量(Mw)が10万〜500万のポリオレフィンが好ましい。重量平均分子量が10万以上であると、十分な力学特性を確保できる。一方、重量平均分子量が500万以下であると、シャットダウン特性が良好であるし、膜の成形がしやすい。   The polyolefin contained in the polyolefin microporous membrane is preferably a polyolefin having a weight average molecular weight (Mw) of 100,000 to 5,000,000. When the weight average molecular weight is 100,000 or more, sufficient mechanical properties can be secured. On the other hand, when the weight average molecular weight is 5 million or less, the shutdown characteristics are good and the film can be easily formed.

ポリオレフィン微多孔膜は、例えば、以下の方法で製造可能である。すなわち、溶融したポリオレフィン樹脂をT−ダイから押し出してシート化し、これを結晶化処理した後延伸し、その後、熱処理をして微多孔膜とする方法である。または、流動パラフィンなどの可塑剤と一緒に溶融したポリオレフィン樹脂をT−ダイから押し出し、これを冷却してシート化し、延伸した後、可塑剤を抽出し熱処理をして微多孔膜とする方法である。   The polyolefin microporous membrane can be produced, for example, by the following method. That is, it is a method in which a melted polyolefin resin is extruded from a T-die to form a sheet, which is crystallized and then stretched, and then heat treated to form a microporous film. Alternatively, by extruding a polyolefin resin melted with a plasticizer such as liquid paraffin from a T-die, cooling it into a sheet, stretching, and then extracting the plasticizer and heat treating it into a microporous membrane. is there.

繊維状物からなる多孔性シートとしては、熱可塑性樹脂の繊維状物からなる、不織布、紙等の多孔性シートが挙げられる。   Examples of the porous sheet made of a fibrous material include porous sheets made of a thermoplastic resin fibrous material such as a nonwoven fabric and paper.

多孔質基材の表面には、多孔質層を形成するための塗工液との濡れ性を向上させる目的で、コロナ処理、プラズマ処理、火炎処理、紫外線照射処理等を施してもよい。   The surface of the porous substrate may be subjected to corona treatment, plasma treatment, flame treatment, ultraviolet irradiation treatment, etc. for the purpose of improving wettability with the coating liquid for forming the porous layer.

多孔質基材の厚さは、良好な力学特性と内部抵抗を得る観点から、3μm〜25μmが好ましく、5μm〜20μmがより好ましい。   The thickness of the porous substrate is preferably 3 μm to 25 μm, more preferably 5 μm to 20 μm, from the viewpoint of obtaining good mechanical properties and internal resistance.

多孔質基材のガーレ値(JIS P8117(2009))は、電池の短絡防止と十分なイオン透過性を得る観点から、50秒/100cc〜400秒/100ccが好ましい。   The Gurley value (JIS P8117 (2009)) of the porous substrate is preferably 50 seconds / 100 cc to 400 seconds / 100 cc from the viewpoint of preventing short circuit of the battery and obtaining sufficient ion permeability.

多孔質基材の空孔率は、適切な膜抵抗とシャットダウン機能を得る観点から、20%〜60%が好ましい。本開示における多孔質基材の空孔率の測定方法は、後述する。   The porosity of the porous substrate is preferably 20% to 60% from the viewpoint of obtaining appropriate membrane resistance and a shutdown function. A method for measuring the porosity of the porous substrate in the present disclosure will be described later.

多孔質基材の突刺強度は、製造歩留まりを向上させる観点から、200g以上が好ましい。本開示において多孔質基材の突刺強度は、カトーテック社製KES−G5ハンディー圧縮試験器を用いて、針先端の曲率半径0.5mm、突刺速度2mm/秒の条件で突刺試験を行って測定する最大突刺荷重(g)を指す。   The puncture strength of the porous substrate is preferably 200 g or more from the viewpoint of improving the production yield. In the present disclosure, the puncture strength of the porous substrate is measured by performing a puncture test using a KES-G5 handy compression tester manufactured by Kato Tech Co. under the conditions of a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec. Refers to the maximum piercing load (g).

[多孔質層]
本開示において多孔質層は、ポリフッ化ビニリデン系樹脂を含み、多孔質基材の片面又は両面にセパレータの最外層として設けられた層であり、セパレータと電極とを重ねてプレス又は熱プレスしたときに電極と接着する層である。
[Porous layer]
In the present disclosure, the porous layer includes a polyvinylidene fluoride-based resin, and is a layer provided as an outermost layer of the separator on one side or both sides of the porous base material. When the separator and the electrode are stacked and pressed or hot pressed It is a layer that adheres to the electrode.

本開示において多孔質層は、多孔質基材の片面のみにあるよりも両面にある方が、電池のサイクル寿命が向上する観点で好ましい。多孔質層が多孔質基材の両面にあると、セパレータの両面が多孔質層を介して両電極とよく接着するからである。   In the present disclosure, the porous layer is preferably present on both sides rather than only on one side of the porous substrate from the viewpoint of improving the cycle life of the battery. This is because when the porous layer is on both sides of the porous substrate, both sides of the separator are well bonded to both electrodes via the porous layer.

本開示において多孔質層は、多孔質層の面垂直方向(即ちセパレータの面垂直方向)に開口したセルが、多孔質層の面方向(即ちセパレータの面方向)に隣接して多数並んだ構造を有する。つまり、多孔質層は、多孔質層の面垂直方向(即ちセパレータの面垂直方向)又はそれに近い方向に立つ網目状の隔壁によって、多数の、開口部を有するセルに区画されている。   In the present disclosure, the porous layer has a structure in which a large number of cells opened in the direction perpendicular to the surface of the porous layer (that is, the direction perpendicular to the surface of the separator) are arranged adjacent to each other in the surface direction of the porous layer (that is, the surface direction of the separator). Have That is, the porous layer is partitioned into cells having a large number of openings by a mesh-like partition wall standing in a direction perpendicular to the plane of the porous layer (that is, a direction perpendicular to the plane of the separator).

前記セルの横方向の形状(セルを多孔質層の面方向に切断したときに現われる断面の形状)は限定されない。前記セルの横方向の形状としては、例えば、円形、楕円形、三角形、四角形、五角形、六角形、八角形などが挙げられ、複数種類の形状が混在していてもよい。前記セルの縦方向の形状(セルを多孔質層の面垂直方向に切断したときに現われる断面の形状)は限定されない。前記セルの縦方向の形状としては、柱状、錐状、テーパー状、逆テーパー状などが挙げられ、複数種類の形状が混在していてもよい。   The shape of the cell in the lateral direction (the shape of the cross section that appears when the cell is cut in the plane direction of the porous layer) is not limited. Examples of the shape of the cell in the lateral direction include a circle, an ellipse, a triangle, a quadrangle, a pentagon, a hexagon, an octagon, and the like, and a plurality of types of shapes may be mixed. The shape of the cell in the vertical direction (the shape of the cross section that appears when the cell is cut in the direction perpendicular to the plane of the porous layer) is not limited. Examples of the vertical shape of the cell include a columnar shape, a conical shape, a tapered shape, and an inverted tapered shape, and a plurality of types of shapes may be mixed.

本明細書において、多孔質層の面垂直方向に開口したセルが多孔質層の面方向に隣接して多数並んだ構造を「ハニカム構造」とも称する。本明細書において前記構造を「ハニカム構造」という場合、前記構造を構成するセルの横方向の形状及び縦方向の形状は限定されず、横方向の形状としては、円形、楕円形、三角形、四角形、五角形、六角形、八角形などが含まれ、縦方向の形状としては、柱状、錐状、テーパー状、逆テーパー状などが含まれる。   In the present specification, a structure in which a large number of cells opened in the direction perpendicular to the plane of the porous layer are arranged adjacent to each other in the plane direction of the porous layer is also referred to as a “honeycomb structure”. In the present specification, when the structure is referred to as a “honeycomb structure”, the shape in the horizontal direction and the vertical direction of the cells constituting the structure are not limited, and the shape in the horizontal direction may be a circle, an ellipse, a triangle, a quadrangle, and the like. , Pentagons, hexagons, octagons, and the like, and vertical shapes include columnar shapes, conical shapes, tapered shapes, reverse tapered shapes, and the like.

本開示において多孔質層は、ハニカム構造を有することにより、静電気を帯びにくく、また、電解液に対する濡れ性が向上するものと考えられる。   In the present disclosure, it is considered that the porous layer has a honeycomb structure so that it is less likely to be charged with static electricity and the wettability with respect to the electrolytic solution is improved.

本開示において、ハニカム構造を構成するセルの開口部の平均径としては、0.1μm〜10μmが好ましく、0.5μm〜10μmがより好ましく、1μm〜10μmが更に好ましい。セルの開口部の平均径が0.1μm以上であると、ハンドリング性がより良好になるため好ましい。セルの開口部の平均径が10μm以下であると、電解液の濡れ性がより良好になるため好ましい。セルの開口部の平均径は、走査型電子顕微鏡で多孔質層表面を観察し、得られた画像からセルを任意に20個選び、各セルの開口部の内縁それぞれについて最大径及び最小径を求めて{(最大径+最小径)/2)}を算出し、20個の平均値をセルの開口部の平均径とする。   In the present disclosure, the average diameter of the openings of the cells constituting the honeycomb structure is preferably 0.1 μm to 10 μm, more preferably 0.5 μm to 10 μm, and still more preferably 1 μm to 10 μm. It is preferable that the average diameter of the opening of the cell is 0.1 μm or more because the handleability becomes better. It is preferable that the average diameter of the opening of the cell is 10 μm or less because the wettability of the electrolytic solution becomes better. The average diameter of the opening of the cell is determined by observing the surface of the porous layer with a scanning electron microscope, selecting 20 cells arbitrarily from the obtained image, and setting the maximum diameter and the minimum diameter for each inner edge of the opening of each cell. Then, {(maximum diameter + minimum diameter) / 2)} is calculated, and the average value of 20 is set as the average diameter of the opening of the cell.

本開示において、ハニカム構造を構成するセルは、多孔質層を貫通する孔でもよいし、多孔質層を貫通していない窪みでもよい。前記セルが多孔質層を貫通していない窪みである場合、前記セルの空孔と多孔質基材表面との間に、多孔質層の一部として、ポリフッ化ビニリデン系樹脂を含む薄い層状領域が存在する。多孔質層と多孔質基材との接着性の観点では、前記セルは、多孔質層を貫通していない窪みであることが好ましい。   In the present disclosure, the cells constituting the honeycomb structure may be holes that penetrate the porous layer, or may be recesses that do not penetrate the porous layer. When the cell is a depression not penetrating the porous layer, a thin layered region containing a polyvinylidene fluoride resin as a part of the porous layer between the pores of the cell and the surface of the porous substrate Exists. From the viewpoint of adhesion between the porous layer and the porous substrate, the cell is preferably a depression that does not penetrate the porous layer.

本開示のセパレータは、多孔質層においてハニカム構造を構成するセルの空孔と、多孔質基材の微細孔とが連結されており、セパレータの一方の面から他方の面へと気体あるいは液体が通過可能となっている。前記セルが多孔質層を貫通していない窪みである場合は、前記セルの空孔と多孔質基材表面との間にある層状領域が内部に多数の微細孔を有し、該微細孔によって前記セルの空孔と多孔質基材の微細孔とが連結されていることが好ましい。   In the separator of the present disclosure, the pores of the cells constituting the honeycomb structure in the porous layer and the micropores of the porous base material are connected, and gas or liquid flows from one side of the separator to the other side. It is possible to pass. When the cell is a depression that does not penetrate the porous layer, the layered region between the cell pores and the porous substrate surface has a large number of micropores inside, and the micropores It is preferable that the pores of the cell and the micropores of the porous substrate are connected.

本開示における多孔質層の実施形態の好ましい一例としては、多孔質基材と接する層状領域であって、内部に多数の微細孔を有する層状領域と、前記層状領域の上に存在するハニカム構造と、を備えた多孔質層が挙げられる。   As a preferable example of the embodiment of the porous layer in the present disclosure, a layered region in contact with the porous substrate, a layered region having a large number of micropores therein, and a honeycomb structure existing on the layered region, , And a porous layer.

本開示のセパレータにおいて、一方の面から他方の面へと気体あるいは液体が通過可能となっていることは、ガーレ値を参考にして確認することができる。具体的には、セパレータのガーレ値から多孔質基材のガーレ値を減算した値が、1800秒/100cc以下であることが好ましく、1500秒/100cc以下であることがより好ましく、1000秒/100cc以下であることが更に好ましく、900秒/100cc以下であることが更に好ましく、800秒/100cc以下であることが更に好ましい。   In the separator of the present disclosure, it can be confirmed with reference to the Gurley value that gas or liquid can pass from one surface to the other surface. Specifically, the value obtained by subtracting the Gurley value of the porous substrate from the Gurley value of the separator is preferably 1800 seconds / 100 cc or less, more preferably 1500 seconds / 100 cc or less, and 1000 seconds / 100 cc. Or less, more preferably 900 seconds / 100 cc or less, and still more preferably 800 seconds / 100 cc or less.

本開示において、ハニカム構造を構成する隔壁(即ち、多孔質層を多数のセルに区画している隔壁)の厚さは、例えば0.1μm〜2μmである。ハニカム構造を構成する隔壁には多数の微細孔が存在していることが好ましく、該微細孔によって隣り合うセルの空孔どうしが連結されていることが好ましい。   In the present disclosure, the thickness of the partition walls constituting the honeycomb structure (that is, the partition walls partitioning the porous layer into a large number of cells) is, for example, 0.1 μm to 2 μm. The partition walls constituting the honeycomb structure preferably have a large number of micropores, and the pores of adjacent cells are preferably connected by the micropores.

本開示において多孔質層は、その表面において、水の接触角が115°〜140°である。多孔質層表面における水の接触角が115°より小さい場合は、静電気を帯びやすくハンドリング性に難がある。この観点で、水の接触角は、115°以上であり、120°以上であることがより好ましい。一方、多孔質層表面における水の接触角が140°より大きい場合は、電解液との濡れ性が十分でない。この観点で、水の接触角は、140°以下であり、135°以下であることがより好ましい。   In the present disclosure, the porous layer has a water contact angle of 115 ° to 140 ° on the surface thereof. When the contact angle of water on the surface of the porous layer is smaller than 115 °, it is easily charged with static electricity and handling properties are difficult. In this respect, the contact angle of water is 115 ° or more, and more preferably 120 ° or more. On the other hand, when the contact angle of water on the porous layer surface is larger than 140 °, the wettability with the electrolytic solution is not sufficient. In this respect, the contact angle of water is 140 ° or less, and more preferably 135 ° or less.

本開示において水の接触角は、接触角計(例えば、協和界面科学社製DropMaster DM−301)を使用し、水として蒸留水を用い、シリンジを用いて多孔質層の表面に1μLの水滴を形成し測定する。   In the present disclosure, the contact angle of water is a contact angle meter (for example, DropMaster DM-301 manufactured by Kyowa Interface Science Co., Ltd.), distilled water is used as water, and 1 μL of water droplets are applied to the surface of the porous layer using a syringe. Form and measure.

多孔質層におけるハニカム構造の有無、ハニカム構造を構成するセルの大きさ、及び多孔質層表面の水の接触角は、多孔質層を多孔質基材上に形成する際の諸条件によって制御可能である。詳しくは、後述するセパレータの製造方法の説明で述べる。   The presence or absence of a honeycomb structure in the porous layer, the size of the cells constituting the honeycomb structure, and the contact angle of water on the surface of the porous layer can be controlled by various conditions when the porous layer is formed on the porous substrate. It is. Details will be described in the description of the separator manufacturing method described later.

本開示において多孔質層は、電解液との濡れ性及びイオン透過性の観点から、空孔率が40%〜80%であることが好ましい。本開示における多孔質層の空孔率の測定方法は、後述する。   In the present disclosure, the porous layer preferably has a porosity of 40% to 80% from the viewpoint of wettability with the electrolytic solution and ion permeability. A method for measuring the porosity of the porous layer in the present disclosure will be described later.

多孔質層の厚さは、電極との接着性及びイオン透過性の観点から、多孔質基材の片面において、0.5μm以上が好ましく、1μm以上がより好ましく、1.5μm以上が更に好ましく、5μm以下が好ましく、4μm以下がより好ましく、3μm以下が更に好ましい。   The thickness of the porous layer is preferably 0.5 μm or more, more preferably 1 μm or more, and even more preferably 1.5 μm or more, on one side of the porous substrate, from the viewpoint of adhesion with the electrode and ion permeability. 5 micrometers or less are preferable, 4 micrometers or less are more preferable, and 3 micrometers or less are still more preferable.

本開示において多孔質層は、多孔質基材の片面又は両面に設けられ、少なくともポリフッ化ビニリデン系樹脂を含む多孔質層である。本開示において多孔質層は、さらに、ポリフッ化ビニリデン系樹脂以外のその他の樹脂やフィラー等の他の成分を含んでもよい。   In the present disclosure, the porous layer is a porous layer that is provided on one side or both sides of the porous substrate and contains at least polyvinylidene fluoride resin. In the present disclosure, the porous layer may further include other components such as other resins and fillers other than the polyvinylidene fluoride resin.

多孔質層に含まれるポリフッ化ビニリデン系樹脂の質量は、電極との接着性及びイオン透過性の観点から、多孔質基材の片面において、0.5g/m〜3.0g/mが好ましく、0.5g/m〜1.5g/mがより好ましい。多孔質基材の両面に多孔質層を形成する場合、多孔質層に含まれるポリフッ化ビニリデン系樹脂の質量は、両面の合計として、1.0g/m〜6.0g/mが好ましく、1.0g/m〜3.0g/mがより好ましい。Mass of polyvinylidene fluoride resin contained in the porous layer, from the viewpoint of adhesiveness and ion permeability of the electrode, on one side of the porous substrate, 0.5g / m 2 ~3.0g / m 2 is Preferably, 0.5 g / m 2 to 1.5 g / m 2 is more preferable. When forming a porous layer on both surfaces of the porous substrate, the mass of polyvinylidene fluoride resin contained in the porous layer, as the sum of both sides, 1.0g / m 2 ~6.0g / m 2 is preferably , 1.0g / m 2 ~3.0g / m 2 is more preferable.

[ポリフッ化ビニリデン系樹脂]
本開示において、ポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体(即ちポリフッ化ビニリデン);フッ化ビニリデンと他の共重合可能なモノマーとの共重合体(ポリフッ化ビニリデン共重合体);これらの混合物;が挙げられる。フッ化ビニリデンと共重合可能なモノマーとしては、例えば、テトラフロロエチレン、ヘキサフロロプロピレン、トリフロロエチレン、トリクロロエチレン、フッ化ビニル等が挙げられ、1種又は2種以上を用いることができる。ポリフッ化ビニリデン系樹脂は、構成単位としてフッ化ビニリデンを70mol%以上含有することが好ましく、電極との接合工程において十分な力学物性を確保するという観点で、フッ化ビニリデンを94mol%以上含有することが好ましい。
[Polyvinylidene fluoride resin]
In the present disclosure, as the polyvinylidene fluoride resin, a homopolymer of vinylidene fluoride (that is, polyvinylidene fluoride); a copolymer of vinylidene fluoride and another copolymerizable monomer (polyvinylidene fluoride copolymer) A mixture thereof. Examples of the monomer copolymerizable with vinylidene fluoride include tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, trichloroethylene, vinyl fluoride, and the like, and one kind or two or more kinds can be used. The polyvinylidene fluoride-based resin preferably contains 70 mol% or more of vinylidene fluoride as a structural unit, and contains 94 mol% or more of vinylidene fluoride from the viewpoint of securing sufficient mechanical properties in the bonding step with the electrode. Is preferred.

本開示においてポリフッ化ビニリデン系樹脂は、重量平均分子量(Mw)が10万〜300万の範囲であることが好ましい。重量平均分子量が10万以上であると、電極に対する多孔質層の接着力がよりよい傾向にある。この観点で、重量平均分子量は40万以上であることがより好ましい。一方、重量平均分子量が300万以下であると、塗工液の粘度が抑えられ成形性がよく、多孔質層の多孔化が良好である。この観点で、重量平均分子量は200万以下がより好ましく、120万以下が更に好ましい。ポリフッ化ビニリデン系樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC法)により求めることができる。比較的分子量の高いポリフッ化ビニリデン系樹脂は、乳化重合又は懸濁重合により得ることができ、懸濁重合により得ることが好ましい。   In the present disclosure, the polyvinylidene fluoride resin preferably has a weight average molecular weight (Mw) in the range of 100,000 to 3,000,000. When the weight average molecular weight is 100,000 or more, the adhesive force of the porous layer to the electrode tends to be better. In this respect, the weight average molecular weight is more preferably 400,000 or more. On the other hand, when the weight average molecular weight is 3 million or less, the viscosity of the coating liquid is suppressed, the moldability is good, and the porous layer is porous. In this respect, the weight average molecular weight is more preferably 2 million or less, and further preferably 1.2 million or less. The weight average molecular weight of the polyvinylidene fluoride resin can be determined by gel permeation chromatography (GPC method). The polyvinylidene fluoride resin having a relatively high molecular weight can be obtained by emulsion polymerization or suspension polymerization, and is preferably obtained by suspension polymerization.

[その他の樹脂]
本開示において多孔質層は、ポリフッ化ビニリデン系樹脂以外のその他の樹脂を含んでもよい。その他の樹脂としては、フッ素系ゴム、アクリル系樹脂、スチレン−ブタジエン共重合体、ビニルニトリル化合物(アクリロニトリル、メタクリロニトリル等)の単独重合体又は共重合体、カルボキシメチルセルロース、ヒドロキシアルキルセルロース、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリエーテル(ポリエチレンオキサイド、ポリプロピレンオキサイド等)などが挙げられる。
[Other resins]
In the present disclosure, the porous layer may include other resins other than the polyvinylidene fluoride resin. Other resins include fluorine rubber, acrylic resin, styrene-butadiene copolymer, homopolymers or copolymers of vinyl nitrile compounds (acrylonitrile, methacrylonitrile, etc.), carboxymethyl cellulose, hydroxyalkyl cellulose, polyvinyl alcohol , Polyvinyl butyral, polyvinyl pyrrolidone, polyether (polyethylene oxide, polypropylene oxide, etc.).

多孔質層におけるその他の樹脂の含有量は、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、その他の樹脂は、実質的に含まれていないことが特に好ましい。   The content of the other resin in the porous layer is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, and the other resin is not substantially contained. preferable.

[その他添加物]
本開示においては、多孔質層は、セパレータの滑り性や耐熱性を向上させる目的で、無機物又は有機物からなるフィラーやその他添加物を含んでいてもよい。その場合、本開示の効果を阻害しない程度の含有量や粒子サイズとすることが好ましい。
[Other additives]
In the present disclosure, the porous layer may contain a filler made of an inorganic substance or an organic substance or other additives for the purpose of improving the slipperiness and heat resistance of the separator. In that case, it is preferable to make it content and particle size of the grade which does not inhibit the effect of this indication.

フィラーの平均粒子径は、0.01μm〜10μmであることが好ましい。その下限値としては0.1μm以上がより好ましく、上限値としては5μm以下がより好ましい。   It is preferable that the average particle diameter of a filler is 0.01 micrometer-10 micrometers. The lower limit is more preferably 0.1 μm or more, and the upper limit is more preferably 5 μm or less.

フィラーの粒度分布は、0.1μm<d90−d10<3μmであることが好ましい。ここで、d10は、小さな粒子側から起算した重量累積粒度分布において、累積10%の平均粒子径(μm)を表し、d90は、累積90%の平均粒子径(μm)を表す。粒度分布の測定は、例えば、レーザー回折式粒度分布測定装置(シスメックス社製マスターサイザー2000)を用い、分散媒としては水を用い、分散剤として非イオン性界面活性剤Triton X-100を微量用いる方法が挙げられる。   The particle size distribution of the filler is preferably 0.1 μm <d90−d10 <3 μm. Here, d10 represents an average particle diameter (μm) of 10% cumulative in the weight cumulative particle size distribution calculated from the small particle side, and d90 represents an average particle diameter (μm) of 90% cumulative. The particle size distribution is measured using, for example, a laser diffraction particle size distribution measuring apparatus (Mastersizer 2000 manufactured by Sysmex Corporation), using water as a dispersion medium, and using a small amount of a nonionic surfactant Triton X-100 as a dispersant. A method is mentioned.

[無機フィラー]
本開示における無機フィラーとしては、電解液に対して安定であり、且つ、電気化学的に安定な無機フィラーが好ましい。具体的には例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化クロム、水酸化ジルコニウム、水酸化セリウム、水酸化ニッケル、水酸化ホウ素等の金属水酸化物;シリカ、アルミナ、ジルコニア、酸化マグネシウム等の金属酸化物;炭酸カルシウム、炭酸マグネシウム等の炭酸塩;硫酸バリウム、硫酸カルシウム等の硫酸塩;ケイ酸カルシウム、タルク等の粘土鉱物;などが挙げられる。無機フィラーは、金属水酸化物及び金属酸化物の少なくとも一種を含むことが好ましく、難燃性付与や除電効果の観点から、金属水酸化物の少なくとも一種を含むことがより好ましく、水酸化マグネシウムを含むことが更に好ましい。これらの無機フィラーは、1種を単独で使用しても2種以上を組み合わせて使用してもよい。無機フィラーは、シランカップリング剤等により表面修飾されたものでもよい。
[Inorganic filler]
The inorganic filler in the present disclosure is preferably an inorganic filler that is stable with respect to the electrolytic solution and electrochemically stable. Specifically, for example, metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, cerium hydroxide, nickel hydroxide, boron hydroxide; silica, alumina, zirconia, Metal oxides such as magnesium oxide; carbonates such as calcium carbonate and magnesium carbonate; sulfates such as barium sulfate and calcium sulfate; clay minerals such as calcium silicate and talc; The inorganic filler preferably contains at least one of a metal hydroxide and a metal oxide, and more preferably contains at least one metal hydroxide from the viewpoint of imparting flame retardancy and a charge removal effect. It is more preferable to include. These inorganic fillers may be used alone or in combination of two or more. The inorganic filler may be surface-modified with a silane coupling agent or the like.

無機フィラーの粒子形状には制限はなく、球に近い形状でもよく、板状の形状でもよいが、電池の短絡抑制の観点からは、板状の粒子や、凝集していない一次粒子であることが好ましい。   The particle shape of the inorganic filler is not limited, and may be a shape close to a sphere or a plate shape, but from the viewpoint of suppressing short circuit of the battery, it should be a plate-like particle or a non-aggregated primary particle. Is preferred.

本開示において、多孔質層における無機フィラーの含有量は、1質量%〜95質量%であることが好ましく、5質量%〜80質量%であることがより好ましく、10質量%〜50質量%であることが更に好ましい。   In the present disclosure, the content of the inorganic filler in the porous layer is preferably 1% by mass to 95% by mass, more preferably 5% by mass to 80% by mass, and 10% by mass to 50% by mass. More preferably it is.

[有機フィラー]
本開示における有機フィラーとしては、例えば、架橋ポリメタクリル酸メチル等の架橋アクリル系樹脂、架橋ポリスチレンなどが挙げられ、架橋ポリメタクリル酸メチルが好ましい。
[Organic filler]
Examples of the organic filler in the present disclosure include cross-linked acrylic resins such as cross-linked polymethyl methacrylate, and cross-linked polystyrene. Cross-linked polymethyl methacrylate is preferable.

[HLB値が5.0〜8.0である界面活性剤]
本開示における多孔質層は、セパレータのイオン透過性が向上する観点で、HLB値が5.0〜8.0である界面活性剤を含み、多孔質層の内部において該界面活性剤とポリフッ化ビニリデン系樹脂とが混在していることが好ましい。上記界面活性剤が多孔質層と多孔質基材との間の界面に存在し機能することにより、セパレータのイオン透過性が向上すると考えられる。
[Surfactant having an HLB value of 5.0 to 8.0]
The porous layer in the present disclosure includes a surfactant having an HLB value of 5.0 to 8.0 from the viewpoint of improving the ion permeability of the separator, and the surfactant and the polyfluoride are contained in the porous layer. It is preferable that vinylidene resin is mixed. It is considered that the ion permeability of the separator is improved by the presence and function of the surfactant at the interface between the porous layer and the porous substrate.

本開示において、HLB値(hydrophile‐lipophile balance value)とは、界面活性剤の親水性と親油性の程度を表す値であり、下記式により算出する値である。   In the present disclosure, the HLB value (hydrophile-lipophile balance value) is a value that represents the degree of hydrophilicity and lipophilicity of a surfactant, and is a value calculated by the following equation.

HLB値=20×親水部の式量の総和/分子量   HLB value = 20 × sum of formula weight of hydrophilic part / molecular weight

本開示において、HLB値が5.0〜8.0である界面活性剤は、複数種の界面活性剤を混合した混合界面活性剤でもよい。混合界面活性剤のHLB値は、成分界面活性剤それぞれのHLB値を質量百分率で重みづけした算術平均である。   In the present disclosure, the surfactant having an HLB value of 5.0 to 8.0 may be a mixed surfactant obtained by mixing a plurality of types of surfactants. The HLB value of the mixed surfactant is an arithmetic average obtained by weighting the HLB value of each component surfactant by a mass percentage.

本開示においては、例えば、ポリオキシエチレン脂肪酸ジエステル、ポリオキシエチレン脂肪酸モノエステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー等から、HLB値が5.0〜8.0である界面活性剤を選択すること、又は、上記化合物等を複数種組み合せて、HLB値が5.0〜8.0である界面活性剤を調製すること、が好ましい。本開示においては、ソルビタン脂肪酸エステルから、HLB値が5.0〜8.0である界面活性剤を選択すること、又は、ソルビタン脂肪酸エステルを複数種組み合せて、HLB値が5.0〜8.0である界面活性剤を調製すること、がより好ましい。   In the present disclosure, for example, polyoxyethylene fatty acid diester, polyoxyethylene fatty acid monoester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkyl ether, polyoxyalkylene alkyl ether, polyoxyethylene polyoxypropylene block A surfactant having an HLB value of 5.0 to 8.0 by selecting a surfactant having an HLB value of 5.0 to 8.0 from a polymer or the like, or by combining a plurality of the above compounds and the like It is preferable to prepare In the present disclosure, a surfactant having an HLB value of 5.0 to 8.0 is selected from sorbitan fatty acid esters, or a plurality of sorbitan fatty acid esters are combined to have an HLB value of 5.0 to 8. It is more preferred to prepare a surfactant that is zero.

多孔質層におけるポリフッ化ビニリデン系樹脂とHLB値が5.0〜8.0である界面活性剤との質量比は、99.9:0.1〜95.0:5.0が好ましい。前記界面活性剤の質量比が0.1以上であると、多孔質層のイオン透過性が向上する。この観点で前記界面活性剤の質量比は0.2以上であることがより好ましい。一方、前記界面活性剤の質量比が5.0以下であると、多孔質基材と多孔質層との間の剥離強度が確保される。この観点で前記界面活性剤の質量比は3.0以下であることがより好ましい。したがって、前記質量比は、99.9:0.1〜95.0:5.0が好ましく、99.9:0.1〜97.0:3.0がより好ましく、99.8:0.2〜97.0:3.0が更に好ましい。   The mass ratio of the polyvinylidene fluoride resin in the porous layer to the surfactant having an HLB value of 5.0 to 8.0 is preferably 99.9: 0.1 to 95.0: 5.0. When the mass ratio of the surfactant is 0.1 or more, the ion permeability of the porous layer is improved. From this viewpoint, the mass ratio of the surfactant is more preferably 0.2 or more. On the other hand, when the mass ratio of the surfactant is 5.0 or less, the peel strength between the porous substrate and the porous layer is ensured. From this viewpoint, the mass ratio of the surfactant is more preferably 3.0 or less. Accordingly, the mass ratio is preferably 99.9: 0.1 to 95.0: 5.0, more preferably 99.9: 0.1 to 97.0: 3.0, and 99.8: 0. 2-97.0: 3.0 is more preferable.

本開示における多孔質層は、各種の分散剤を含んでいてもよく、分散剤は、例えば、多孔質層を形成するための塗工液に対して、分散性、塗工性及び保存安定性を向上させる目的で添加される。また、本開示における多孔質層には、湿潤剤、消泡剤、pH調整剤等の各種添加剤が含まれていてもよく、これらは、塗工液に対して、例えば、多孔質基材との馴染みをよくする目的、塗工液へのエア噛み込みを抑制する目的、又はpH調整剤の目的で添加される。   The porous layer in the present disclosure may contain various dispersants, and the dispersant is, for example, dispersibility, coatability, and storage stability with respect to a coating liquid for forming the porous layer. It is added for the purpose of improving. In addition, the porous layer in the present disclosure may contain various additives such as a wetting agent, an antifoaming agent, and a pH adjusting agent. It is added for the purpose of improving familiarity, the purpose of suppressing air entrainment in the coating liquid, or the purpose of a pH adjuster.

[非水系二次電池用セパレータの諸特性]
本開示のセパレータの膜厚は、電池のエネルギー密度及び出力特性の観点から、30μm以下が好ましく、25μm以下がより好ましい。
[Characteristics of separators for non-aqueous secondary batteries]
The film thickness of the separator of the present disclosure is preferably 30 μm or less and more preferably 25 μm or less from the viewpoint of the energy density and output characteristics of the battery.

本開示のセパレータの突刺強度は、250g〜1000gが好ましく、300g〜600gがより好ましい。セパレータの突刺強度の測定方法は、多孔質基材の突刺強度の測定方法と同様である。   The puncture strength of the separator of the present disclosure is preferably 250 g to 1000 g, and more preferably 300 g to 600 g. The method for measuring the puncture strength of the separator is the same as the method for measuring the puncture strength of the porous substrate.

本開示のセパレータの空孔率は、電極との接着性、ハンドリング性、イオン透過性、及び力学特性の観点から、30%〜60%が好ましい。本開示におけるセパレータの空孔率の測定方法は、多孔質基材の空孔率の測定方法(後述)と同様である。   The porosity of the separator of the present disclosure is preferably 30% to 60% from the viewpoints of adhesion to the electrode, handling properties, ion permeability, and mechanical properties. The method for measuring the porosity of the separator in the present disclosure is the same as the method for measuring the porosity of the porous substrate (described later).

本開示のセパレータのガーレ値(JIS P8117(2009))は、イオン透過性と機械強度とのバランスの観点で、50秒/100cc〜1500秒/100ccが好ましく、100秒/100cc〜1500秒/100ccがより好ましく、500秒/100cc〜1500秒/100ccが更に好ましい。   The Gurley value (JIS P8117 (2009)) of the separator of the present disclosure is preferably 50 seconds / 100 cc to 1500 seconds / 100 cc, and 100 seconds / 100 cc to 1500 seconds / 100 cc from the viewpoint of the balance between ion permeability and mechanical strength. Is more preferable, and 500 seconds / 100 cc to 1500 seconds / 100 cc is still more preferable.

本開示のセパレータに含まれる水分量(質量基準)は1000ppm以下が好ましい。セパレータの水分量が少ないほど、電池において電解液と水との反応を抑えることができ、電池内でのガス発生を抑えることができ、電池のサイクル特性が向上する。この観点で、セパレータに含まれる水分量(質量基準)は800ppm以下がより好ましく、500ppm以下が更に好ましい。   The water content (mass basis) contained in the separator of the present disclosure is preferably 1000 ppm or less. The smaller the moisture content of the separator, the more the reaction between the electrolyte and water in the battery can be suppressed, the gas generation in the battery can be suppressed, and the cycle characteristics of the battery are improved. In this respect, the water content (mass basis) contained in the separator is more preferably 800 ppm or less, and further preferably 500 ppm or less.

本開示のセパレータにおいて、多孔質層と多孔質基材との間の剥離強度は、電極との接着性及びイオン透過性の観点から、0.1N/cm〜2.0N/cmが好ましい。前記剥離強度が0.1N/cm以上であると、多孔質層と多孔質基材との接着性に優れ、その結果、電極とセパレータとの接着性が良好となる。この観点から、前記剥離強度は、0.1N/cm以上が好ましく、0.2N/cm以上がより好ましく、0.3N/cm以上が更に好ましく、0.4N/cm以上が更に好ましい。前記剥離強度が2.0N/cm以下であると、セパレータのイオン透過性に優れる。この観点から、前記剥離強度は、2.0N/cm以下が好ましく、1.5N/cm以下がより好ましい。本開示における剥離強度の測定方法は、後述する。   In the separator of the present disclosure, the peel strength between the porous layer and the porous substrate is preferably 0.1 N / cm to 2.0 N / cm from the viewpoint of adhesion to the electrode and ion permeability. When the peel strength is 0.1 N / cm or more, the adhesion between the porous layer and the porous substrate is excellent, and as a result, the adhesion between the electrode and the separator is improved. In this respect, the peel strength is preferably equal to or greater than 0.1 N / cm, more preferably equal to or greater than 0.2 N / cm, still more preferably equal to or greater than 0.3 N / cm, and still more preferably equal to or greater than 0.4 N / cm. When the peel strength is 2.0 N / cm or less, the separator has excellent ion permeability. In this respect, the peel strength is preferably 2.0 N / cm or less, and more preferably 1.5 N / cm or less. A method for measuring peel strength in the present disclosure will be described later.

本開示のセパレータは、多孔質層上で測定した帯電減衰半減期が300秒以下であることが好ましい。多孔質層上で測定した帯電減衰半減期が300秒以下であることで、静電気に起因するハンドリング性の悪化を抑制することができる。その結果、セパレータと電極とを重ねて巻き回して電池素子を製造する際に不良品の発生を抑制することができ、電池の製造効率を向上することができる。この観点では、多孔質層上で測定した帯電減衰半減期の値は、低いほど好ましい。   The separator of the present disclosure preferably has a charge decay half-life measured on the porous layer of 300 seconds or less. When the charge decay half-life measured on the porous layer is 300 seconds or less, it is possible to suppress deterioration in handling properties due to static electricity. As a result, when a battery element is manufactured by overlapping and winding the separator and the electrode, the generation of defective products can be suppressed, and the manufacturing efficiency of the battery can be improved. From this viewpoint, the value of the charge decay half-life measured on the porous layer is preferably as low as possible.

本開示において、セパレータの帯電減衰半減期の測定方法は、以下の通りである。
セパレータをMD方向45mm×TD方向45mmの大きさに3枚切り出して、これを試験片とする。試験片をドライルーム(露点−60℃)に1時間放置した後、静電気除去器で10秒間除電して、次いでシシド静電気株式会社製STATIC HONESTMETER TYPE H−0110を用いて、多孔質層上で帯電減衰半減期(秒)を測定する。試験片3枚についてそれぞれ帯電減衰半減期を測定し、測定値を平均する。
In the present disclosure, the method for measuring the charge decay half-life of the separator is as follows.
Three separators are cut into a size of 45 mm in the MD direction × 45 mm in the TD direction, and this is used as a test piece. The test piece was left in a dry room (dew point -60 ° C.) for 1 hour, then neutralized with a static eliminator for 10 seconds, and then charged on the porous layer using STATIC HONESTETTER TYPE H-0110 manufactured by Sicid Electrostatic Co., Ltd. Measure the decay half-life (seconds). For each of the three test pieces, the charge decay half-life is measured, and the measured values are averaged.

本開示のセパレータは、短時間で且つ均一性高く電解液を含浸し十分な電池性能を得る観点から、電解液に浸したときに動的濡れ張力が1.5mNになるまでの時間が10秒以下であることが好ましく、5秒以下であることがより好ましい。この観点では、上記時間は、短いほど好ましい。   From the viewpoint of impregnating the electrolytic solution with high uniformity and obtaining sufficient battery performance, the separator of the present disclosure has a time of 10 seconds until the dynamic wetting tension becomes 1.5 mN when immersed in the electrolytic solution. Or less, more preferably 5 seconds or less. In this respect, the shorter the time, the better.

本開示において、上記時間の測定方法は、以下の通りである。
セパレータをMD方向25mm×TD方向25mmの大きさに3枚切り出して、これを試験片とする。ウィルヘルミィ法を適用した動的濡れ性試験機(株式会社レスカ製WET−6200)を用いて、室温にて試験片を電解液に浸漬し、動的濡れ張力が1.5mNになるまでの時間(秒)を測定する。電解液としては、1M LiBF4−エチレンカーボネート:メチルエチルカーボネート=3:7(質量比)を用いる。試験片3枚についてそれぞれ上記時間を測定し、測定値を平均する。
In the present disclosure, the method for measuring the time is as follows.
Three separators are cut into a size of 25 mm in the MD direction × 25 mm in the TD direction, and this is used as a test piece. Using a dynamic wettability tester (WET-6200 manufactured by Reska Co., Ltd.) to which the Wilhelmy method is applied, the time until the dynamic wetting tension becomes 1.5 mN by immersing the test piece in the electrolyte at room temperature ( Second). As the electrolytic solution, 1M LiBF4-ethylene carbonate: methyl ethyl carbonate = 3: 7 (mass ratio) is used. The above time is measured for each of the three test pieces, and the measured values are averaged.

セパレータの帯電減衰半減期および濡れ性は、例えば、多孔質層にハニカム構造を備えること、ハニカム構造を構成するセルの大きさ、多孔質層に含まれる成分、多孔質層の厚さ等により制御可能である。   The charge decay half-life and wettability of the separator are controlled by, for example, providing the porous layer with a honeycomb structure, the size of the cells constituting the honeycomb structure, the components contained in the porous layer, the thickness of the porous layer, etc. Is possible.

<非水系二次電池用セパレータの製造方法>
本開示のセパレータは、例えば、少なくともポリフッ化ビニリデン系樹脂を含む塗工液を多孔質基材上に塗工し塗工層を形成し、次いで塗工層に含まれるポリフッ化ビニリデン系樹脂を固化させることで、多孔質層を多孔質基材上に形成する方法で製造できる。ハニカム構造を有する多孔質層を形成する方法としては、具体的には、下記(i)〜(iii)の方法が挙げられ、中でも下記(i)の方法が好ましい。
<Method for producing separator for non-aqueous secondary battery>
The separator of the present disclosure is formed by, for example, applying a coating solution containing at least a polyvinylidene fluoride resin on a porous substrate to form a coating layer, and then solidifying the polyvinylidene fluoride resin contained in the coating layer By making it, it can manufacture by the method of forming a porous layer on a porous base material. Specific examples of the method for forming a porous layer having a honeycomb structure include the following methods (i) to (iii), and the following method (i) is preferable.

(i)ポリフッ化ビニリデン系樹脂を、良溶媒と貧溶媒とを混合した混合溶媒に溶解して、塗工液を作製すること、塗工液を多孔質基材上に塗工し塗工層を形成すること、及び、塗工層から良溶媒を選択的に除去することにより相分離現象を誘発した後、塗工層から貧溶媒を除去すること、を含む方法。 (I) Dissolving polyvinylidene fluoride resin in a mixed solvent in which a good solvent and a poor solvent are mixed to produce a coating solution, and coating the coating solution on a porous substrate to form a coating layer And removing the poor solvent from the coating layer after inducing a phase separation phenomenon by selectively removing the good solvent from the coating layer.

(ii)ポリフッ化ビニリデン系樹脂を、孔形成剤を含む良溶媒に溶解して、塗工液を作製すること、塗工液を多孔質基材上に塗工し塗工層を形成すること、及び、塗工層から良溶媒を選択的に除去することによりポリフッ化ビニリデン系樹脂及び孔形成剤を固化させた後、孔形成剤を孔形成剤の良溶媒により除去すること、を含む方法。 (Ii) Dissolving the polyvinylidene fluoride resin in a good solvent containing a pore-forming agent to produce a coating solution, and coating the coating solution on a porous substrate to form a coating layer. And, after the polyvinylidene fluoride resin and the pore-forming agent are solidified by selectively removing the good solvent from the coating layer, the pore-forming agent is removed with the good solvent of the pore-forming agent. .

(iii)ポリフッ化ビニリデン系樹脂を良溶媒に溶解して塗工液を作製すること、塗工液を多孔質基材上に塗工し塗工層を形成すること、及び、塗工層の周囲の温度及び湿度を制御することにより相分離現象を誘発した後、塗工層から良溶媒を除去すること、を含む方法。 (Iii) dissolving a polyvinylidene fluoride resin in a good solvent to prepare a coating solution, coating the coating solution on a porous substrate to form a coating layer, and Removing the good solvent from the coating layer after inducing a phase separation phenomenon by controlling the ambient temperature and humidity.

上記(i)の方法の場合、塗工液に用いる良溶媒としては、例えば、メチルエチルケトン、アセトン、テトラヒドロフラン、フッ素系溶剤及びこれらの混合物などが挙げられる。中でも、メチルエチルケトン、アセトン、テトラヒドロフランが好ましい。塗工液に用いる貧溶媒としては、ポリフッ化ビニリデン系樹脂を溶解しないものであれば特に限定されず、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、トリプロピレングリコール、トルエン、オルトキシレン、メタキシレン、パラキシレン、エチルベンゼン及びこれらの混合物などが挙げられる。貧溶媒は、安定的に塗工できる塗工液が確保できる適量を添加することが好ましい。塗工層からまず良溶媒を選択的に除去する観点で、乾燥雰囲気において良溶媒が貧溶媒より先に揮発することが好ましく、したがって、良溶媒の沸点は貧溶媒の沸点よりも低いことが好ましい。   In the case of the method (i), examples of the good solvent used in the coating liquid include methyl ethyl ketone, acetone, tetrahydrofuran, a fluorine-based solvent, and a mixture thereof. Of these, methyl ethyl ketone, acetone, and tetrahydrofuran are preferable. The poor solvent used in the coating solution is not particularly limited as long as it does not dissolve the polyvinylidene fluoride resin, and water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, tripropylene Examples include glycol, toluene, ortho-xylene, meta-xylene, para-xylene, ethylbenzene, and mixtures thereof. It is preferable to add an appropriate amount of the poor solvent that can secure a coating solution that can be stably applied. From the viewpoint of selectively removing the good solvent from the coating layer, the good solvent is preferably volatilized before the poor solvent in a dry atmosphere. Therefore, the boiling point of the good solvent is preferably lower than the boiling point of the poor solvent. .

上記(i)の方法の場合、塗工液中のポリフッ化ビニリデン系樹脂の含有量は、1質量%〜20質量%であることが好ましい。塗工液における良溶媒と貧溶媒の質量比は、80:20〜99.5:0.5であることが好ましく、90:10〜99:1であることがより好ましい。上記(i)の方法において、溶媒の種類、ポリフッ化ビニリデン系樹脂の種類、塗工液の組成、多孔質層の厚さ、多孔質層の塗工量、乾燥雰囲気及び乾燥条件(温度、速度)等を適宜選択することにより、ハニカム構造及び微細な多孔構造を制御することができる。   In the case of the method (i), the content of the polyvinylidene fluoride resin in the coating liquid is preferably 1% by mass to 20% by mass. The mass ratio of the good solvent and the poor solvent in the coating liquid is preferably 80:20 to 99.5: 0.5, and more preferably 90:10 to 99: 1. In the method (i) above, the type of solvent, the type of polyvinylidene fluoride resin, the composition of the coating solution, the thickness of the porous layer, the coating amount of the porous layer, the drying atmosphere and the drying conditions (temperature, speed) ) Etc. can be appropriately selected to control the honeycomb structure and the fine porous structure.

上記(ii)の方法の場合、塗工液に用いる良溶媒としては、ポリフッ化ビニリデン系樹脂を溶解する溶媒であれば特に限定されず、例えば、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルフォキシド、γ−ブチロラクトン、エチレンカーボネート、メチルエチルケトン、アセトン、酢酸エチル、テトラヒドロフラン、フッ素系溶剤などが挙げられる。中でも、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルフォキシド、γ−ブチロラクトン、メチルエチルケトン、アセトン、テトラヒドロフランが好ましい。塗工液に用いる孔形成剤としては、良溶媒に溶解しないものであれば特に限定されず、NaCl等の水に溶解する無機塩、シリカ等の強酸に溶解する金属酸化物及びこれらの混合物などが挙げられる。   In the case of the above method (ii), the good solvent used in the coating solution is not particularly limited as long as it is a solvent that dissolves the polyvinylidene fluoride resin. For example, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethyl Examples thereof include sulfoxide, γ-butyrolactone, ethylene carbonate, methyl ethyl ketone, acetone, ethyl acetate, tetrahydrofuran, and a fluorine-based solvent. Among these, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, methyl ethyl ketone, acetone, and tetrahydrofuran are preferable. The pore-forming agent used in the coating liquid is not particularly limited as long as it does not dissolve in a good solvent, inorganic salts that dissolve in water such as NaCl, metal oxides that dissolve in strong acids such as silica, and mixtures thereof. Is mentioned.

上記(ii)の方法の場合、塗工液中のポリフッ化ビニリデン系樹脂の含有量は、1質量%〜20質量%であることが好ましい。塗工液におけるポリフッ化ビニリデン系樹脂と孔形成剤の質量比は、10:90〜90:10であることが好ましく、20:80〜80:20であることがより好ましい。上記(ii)の方法において、溶媒の種類、ポリフッ化ビニリデン系樹脂の種類、孔形成剤の種類、塗工液の組成、多孔質層の厚さ、多孔質層の塗工量、乾燥雰囲気及び乾燥条件(温度、速度)等を適宜選択することにより、ハニカム構造及び微細な多孔構造を制御することができる。   In the case of the method (ii), the content of the polyvinylidene fluoride resin in the coating solution is preferably 1% by mass to 20% by mass. The mass ratio of the polyvinylidene fluoride resin and the pore-forming agent in the coating solution is preferably 10:90 to 90:10, and more preferably 20:80 to 80:20. In the above method (ii), the type of solvent, the type of polyvinylidene fluoride resin, the type of pore forming agent, the composition of the coating solution, the thickness of the porous layer, the coating amount of the porous layer, the dry atmosphere, and A honeycomb structure and a fine porous structure can be controlled by appropriately selecting drying conditions (temperature, speed) and the like.

上記(iii)の方法の場合、塗工液に用いる良溶媒としては、例えば、メチルエチルケトン、アセトン、テトラヒドロフラン、フッ素系溶剤及びこれらの混合物などが挙げられる。中でも、フッ素系溶剤が好ましい。上記(iii)の方法の場合、塗工層表面において、水滴の濃縮、水滴の成長、及び毛細管現象による水滴のパッキングが生じ、ハニカム構造のテンプレートが形成される。続いて、良溶媒が揮発した後、水滴が揮発することで、ハニカム構造が形成される。したがって、塗工液に用いる良溶媒としては、水と相溶性がなく、水よりも沸点の低い溶媒が好ましい。   In the case of the method (iii), examples of the good solvent used for the coating liquid include methyl ethyl ketone, acetone, tetrahydrofuran, a fluorine-based solvent, and a mixture thereof. Among these, a fluorinated solvent is preferable. In the case of the above method (iii), concentration of water droplets, growth of water droplets, and packing of water droplets due to capillary phenomenon occur on the surface of the coating layer, and a honeycomb structure template is formed. Subsequently, after the good solvent volatilizes, the water droplets volatilize to form a honeycomb structure. Therefore, the good solvent used for the coating liquid is preferably a solvent that is not compatible with water and has a lower boiling point than water.

上記(iii)の方法の場合、塗工液中のポリフッ化ビニリデン系樹脂の含有量は、1質量%〜20質量%であることが好ましい。上記(iii)の方法において、溶媒の種類、ポリフッ化ビニリデン系樹脂の種類、塗工液の組成、多孔質層の厚さ、多孔質層の塗工量、乾燥雰囲気及び乾燥条件(温度、速度)等を適宜選択することにより、ハニカム構造及び微細な多孔構造を制御することができる。   In the case of the method (iii), the content of the polyvinylidene fluoride resin in the coating solution is preferably 1% by mass to 20% by mass. In the above method (iii), the type of solvent, the type of polyvinylidene fluoride resin, the composition of the coating solution, the thickness of the porous layer, the coating amount of the porous layer, the drying atmosphere and the drying conditions (temperature, speed) ) Etc. can be appropriately selected to control the honeycomb structure and the fine porous structure.

上記(i)〜(iii)の方法において、多孔質層にフィラーやその他添加物を含有させる場合は、塗工液中に溶解又は分散させればよい。塗工液は、界面活性剤等の分散剤、増粘剤、湿潤剤、消泡剤、pH調整剤等を含有していてもよい。これらの添加剤は、非水系二次電池の使用範囲において電気化学的に安定で電池内反応を阻害しないものであれば、残存するものであってもよい。   In the above methods (i) to (iii), when the porous layer contains a filler or other additives, it may be dissolved or dispersed in the coating solution. The coating liquid may contain a dispersant such as a surfactant, a thickener, a wetting agent, an antifoaming agent, a pH adjusting agent, and the like. These additives may remain as long as they are electrochemically stable in the use range of the non-aqueous secondary battery and do not inhibit the reaction in the battery.

多孔質層として、ポリフッ化ビニリデン系樹脂とHLB値が5.0〜8.0である界面活性剤とが内部に混在している多孔質層を形成する場合は、上記(i)〜(iii)の方法において、ポリフッ化ビニリデン系樹脂およびHLB値が5.0〜8.0である界面活性剤を溶媒に溶解させて塗工液を作製すればよい。   When forming a porous layer in which a polyvinylidene fluoride resin and a surfactant having an HLB value of 5.0 to 8.0 are mixed as the porous layer, the above (i) to (iii) ), A polyvinylidene fluoride resin and a surfactant having an HLB value of 5.0 to 8.0 may be dissolved in a solvent to prepare a coating solution.

上記(i)〜(iii)の方法において、多孔質基材への塗工液の塗工方法としては、ナイフコーター法、グラビアコーター法、マイヤーバー法、ダイコーター法、リバースロールコーター法、ロールコーター法、スクリーン印刷法、インクジェット法、スプレー法、ディップ法等が挙げられる。多孔質層を多孔質基材の両面に形成する場合、塗工液を片面ずつ塗工してもよいが、塗工液を両面に同時に塗工することが生産性の観点から好ましい。   In the above methods (i) to (iii), the coating method of the coating liquid onto the porous substrate includes knife coater method, gravure coater method, Mayer bar method, die coater method, reverse roll coater method, roll Examples include a coater method, a screen printing method, an ink jet method, a spray method, and a dip method. When the porous layer is formed on both sides of the porous substrate, the coating solution may be applied on each side, but it is preferable from the viewpoint of productivity to apply the coating solution on both sides simultaneously.

<非水系二次電池>
本開示の非水系二次電池は、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池であり、正極と、負極と、本開示の非水系二次電池用セパレータとを備える。ドープとは、吸蔵、担持、吸着、又は挿入を意味し、正極等の電極の活物質にリチウムイオンが入る現象を意味する。
<Non-aqueous secondary battery>
The non-aqueous secondary battery of the present disclosure is a non-aqueous secondary battery that obtains an electromotive force by doping or dedoping lithium, and includes a positive electrode, a negative electrode, and a separator for the non-aqueous secondary battery of the present disclosure. Doping means occlusion, loading, adsorption, or insertion, and means a phenomenon in which lithium ions enter an active material of an electrode such as a positive electrode.

本開示の非水系二次電池は、正極と、負極と、正極及び負極の間に配置されたセパレータとを備える。本開示の非水系二次電池は、例えば、負極と正極とがセパレータを介して対向した電池素子が電解液と共に外装材内に封入された構造を有する。本開示の非水系二次電池は、非水電解質二次電池、特にリチウムイオン二次電池に好適である。   The non-aqueous secondary battery according to the present disclosure includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode. The non-aqueous secondary battery of the present disclosure has a structure in which, for example, a battery element in which a negative electrode and a positive electrode face each other via a separator is enclosed in an exterior material together with an electrolytic solution. The nonaqueous secondary battery of the present disclosure is suitable for a nonaqueous electrolyte secondary battery, particularly a lithium ion secondary battery.

本開示の非水系二次電池は、セパレータとして本開示のセパレータを用いることにより、高い製造効率で製造することができる。   The non-aqueous secondary battery of the present disclosure can be manufactured with high manufacturing efficiency by using the separator of the present disclosure as the separator.

以下、本開示の非水系二次電池が備える正極、負極、電解液及び外装材の態様例を説明する。   Hereinafter, exemplary embodiments of the positive electrode, the negative electrode, the electrolytic solution, and the exterior material included in the nonaqueous secondary battery of the present disclosure will be described.

正極は、例えば、正極活物質及びバインダ樹脂を含む活物質層が集電体上に成形された構造である。活物質層は、さらに導電助剤を含んでもよい。正極活物質としては、例えばリチウム含有遷移金属酸化物等が挙げられ、具体的にはLiCoO、LiNiO、LiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3、LiMn、LiFePO、LiCo1/2Ni1/2、LiAl1/4Ni3/4等が挙げられる。バインダ樹脂としては、例えばポリフッ化ビニリデン系樹脂などが挙げられる。導電助剤としては、例えばアセチレンブラック、ケッチェンブラック、黒鉛粉末といった炭素材料が挙げられる。集電体としては、例えば厚さ5μm〜20μmの、アルミ箔、チタン箔、ステンレス箔等が挙げられる。The positive electrode has, for example, a structure in which an active material layer containing a positive electrode active material and a binder resin is formed on a current collector. The active material layer may further contain a conductive additive. Examples of the positive electrode active material include lithium-containing transition metal oxides. Specifically, LiCoO 2 , LiNiO 2 , LiMn 1/2 Ni 1/2 O 2 , LiCo 1/3 Mn 1/3 Ni 1 / 3 O 2, LiMn 2 O 4 , LiFePO 4, LiCo 1/2 Ni 1/2 O 2, LiAl 1/4 Ni 3/4 O 2 and the like. Examples of the binder resin include polyvinylidene fluoride resin. Examples of the conductive aid include carbon materials such as acetylene black, ketjen black, and graphite powder. Examples of the current collector include aluminum foil, titanium foil, and stainless steel foil having a thickness of 5 μm to 20 μm.

本開示の非水系二次電池において、セパレータの多孔質層を正極側に配置した場合、当該層が耐酸化性に優れるため、4.2V以上の高電圧で作動可能なLiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3といった正極活物質を適用しやすく有利である。In the non-aqueous secondary battery according to the present disclosure, when the porous layer of the separator is disposed on the positive electrode side, the layer is excellent in oxidation resistance, and thus LiMn 1/2 Ni 1 operable at a high voltage of 4.2 V or higher. It is easy to apply positive electrode active materials such as / 2 O 2 and LiCo 1/3 Mn 1/3 Ni 1/3 O 2 .

負極は、例えば、負極活物質及びバインダ樹脂を含む活物質層が集電体上に成形された構造である。活物質層は、さらに導電助剤を含んでもよい。負極活物質としては、リチウムを電気化学的に吸蔵し得る材料が挙げられ、具体的には例えば、炭素材料;ケイ素、スズ、アルミニウム等とリチウムとの合金;などが挙げられる。バインダ樹脂としては、例えばポリフッ化ビニリデン系樹脂、スチレン−ブタジエンゴムなどが挙げられる。導電助剤としては、例えばアセチレンブラック、ケッチェンブラック、黒鉛粉末といった炭素材料が挙げられる。集電体としては、例えば厚さ5μm〜20μmの、銅箔、ニッケル箔、ステンレス箔等が挙げられる。また、上記の負極に代えて、金属リチウム箔を負極として用いてもよい。   The negative electrode has, for example, a structure in which an active material layer containing a negative electrode active material and a binder resin is formed on a current collector. The active material layer may further contain a conductive additive. Examples of the negative electrode active material include materials that can occlude lithium electrochemically, and specific examples include carbon materials; alloys of silicon, tin, aluminum, and the like with lithium. Examples of the binder resin include polyvinylidene fluoride resin and styrene-butadiene rubber. Examples of the conductive aid include carbon materials such as acetylene black, ketjen black, and graphite powder. Examples of the current collector include copper foil, nickel foil, and stainless steel foil having a thickness of 5 to 20 μm. Moreover, it may replace with said negative electrode and may use metal lithium foil as a negative electrode.

電解液は、例えば、リチウム塩を非水系溶媒に溶解した溶液である。リチウム塩としては、例えばLiPF、LiBF、LiClO等が挙げられる。非水系溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、フロロエチレンカーボネート、ジフロロエチレンカーボネート、ビニレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、及びそのフッ素置換体等の鎖状カーボネート;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル;などが挙げられ、これらは単独で用いても混合して用いてもよい。電解液としては、環状カーボネートと鎖状カーボネートとを質量比(環状カーボネート:鎖状カーボネート)20:80〜40:60で混合し、リチウム塩を0.5M〜1.5M溶解したものが好ましい。The electrolytic solution is, for example, a solution in which a lithium salt is dissolved in a non-aqueous solvent. Examples of the lithium salt include LiPF 6 , LiBF 4 , LiClO 4, and the like. Examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, fluoroethylene carbonate, difluoroethylene carbonate, and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, and fluorine-substituted products thereof; and cyclic esters such as γ-butyrolactone and γ-valerolactone; these may be used alone or in combination. As the electrolytic solution, a solution in which a cyclic carbonate and a chain carbonate are mixed at a mass ratio (cyclic carbonate: chain carbonate) 20:80 to 40:60 and a lithium salt is dissolved in an amount of 0.5 M to 1.5 M is preferable.

外装材としては、金属缶やアルミラミネートフィルム製パック等が挙げられる。電池の形状としては、角型、円筒型、コイン型等が挙げられ、本開示のセパレータはいずれの形状にも好適である。   Examples of the exterior material include metal cans and aluminum laminate film packs. Examples of the shape of the battery include a square shape, a cylindrical shape, and a coin shape, and the separator of the present disclosure is suitable for any shape.

本開示の非水系二次電池は、例えば、正極と負極との間に本開示のセパレータを配置した積層体に、電解液を含浸させて外装材(例えば、アルミラミネートフィルム製パック)に収容し、前記外装材の上から前記積層体を熱プレスすることで製造することができる。   The non-aqueous secondary battery of the present disclosure is, for example, impregnated with an electrolytic solution in a laminate in which the separator of the present disclosure is disposed between a positive electrode and a negative electrode and accommodated in an exterior material (for example, an aluminum laminate film pack). The laminate can be manufactured by hot pressing from above the exterior material.

非水系二次電池を製造する際において、正極と負極との間にセパレータを配置する方式は、正極、セパレータ、負極をこの順に少なくとも1層ずつ積層する方式(所謂スタック方式)でもよく、正極、セパレータ、負極、セパレータをこの順に重ね、長さ方向に巻き回す方式でもよい。   When manufacturing a non-aqueous secondary battery, the method of disposing a separator between the positive electrode and the negative electrode may be a method of stacking at least one layer of the positive electrode, the separator, and the negative electrode in this order (so-called stack method). The separator, the negative electrode, and the separator may be stacked in this order and wound in the length direction.

以下に実施例を挙げて、本開示のセパレータ及び非水系二次電池をさらに具体的に説明する。ただし、本開示のセパレータ及び非水系二次電池は、以下の実施例に限定されるものではない。   The separator and non-aqueous secondary battery of the present disclosure will be described more specifically with reference to examples. However, the separator and the non-aqueous secondary battery of the present disclosure are not limited to the following examples.

<測定方法>
各実施例及び比較例で適用した測定方法は、以下のとおりである。
<Measurement method>
The measurement methods applied in each example and comparative example are as follows.

[膜厚]
多孔質基材及びセパレータの膜厚(μm)は、接触式の厚み計(ミツトヨ社製LITEMATIC)を用いて20点を測定し、これを平均することで求めた。測定端子として直径5mmの円柱状の端子を用い、測定中に7gの荷重が印加されるように調整した。
多孔質層の塗工厚(μm)は、セパレータの膜厚から多孔質基材の膜厚を減算して求めた。
[Film thickness]
The film thickness (μm) of the porous substrate and the separator was determined by measuring 20 points using a contact-type thickness meter (LITEMATIC manufactured by Mitutoyo Corporation) and averaging these. A cylindrical terminal having a diameter of 5 mm was used as a measurement terminal, and the load was adjusted so that a load of 7 g was applied during the measurement.
The coating thickness (μm) of the porous layer was obtained by subtracting the thickness of the porous substrate from the thickness of the separator.

[目付]
目付(1m当たりの質量)は、セパレータを10cm×30cmに切り出してその質量を測定し、この質量を面積で除することで求めた。
[Unit weight]
The basis weight (mass per 1 m 2 ) was determined by cutting the separator into 10 cm × 30 cm, measuring the mass, and dividing this mass by the area.

[多孔質層の塗工量]
多孔質層の塗工量(g/m)は、セパレータの目付から多孔質基材の目付を減算して求めた。
[Coating amount of porous layer]
The coating amount (g / m 2 ) of the porous layer was determined by subtracting the basis weight of the porous substrate from the basis weight of the separator.

[ガーレ値]
多孔質基材及びセパレータのガーレ値(秒/100cc)は、JIS P8117(2009)に従い、ガーレ式デンソメータ(東洋精機社製G−B2C)を用いて測定した。
[Gurley value]
The Gurley value (second / 100 cc) of the porous substrate and the separator was measured using a Gurley type densometer (G-B2C manufactured by Toyo Seiki Co., Ltd.) according to JIS P8117 (2009).

[空孔率]
多孔質基材及び多孔質層の空孔率は、下記の算出方法に従って求めた。
構成材料がa、b、c、・・・、nであり、各構成材料の質量がWa、Wb、Wc、・・・、Wn(g/cm)であり、各構成材料の真密度がda、db、dc、・・・、dn(g/cm)であり、厚さをt(cm)としたとき、空孔率ε(%)は以下の式より求められる。
ε={1−(Wa/da+Wb/db+Wc/dc+・・・+Wn/dn)/t}×100
[Porosity]
The porosity of the porous substrate and the porous layer was determined according to the following calculation method.
The constituent materials are a, b, c,..., N, the mass of each constituent material is Wa, Wb, Wc,..., Wn (g / cm 2 ), and the true density of each constituent material is Da, db, dc,..., dn (g / cm 3 ), and when the thickness is t (cm), the porosity ε (%) is obtained from the following equation.
ε = {1− (Wa / da + Wb / db + Wc / dc +... + Wn / dn) / t} × 100

[セルの開口部の平均径]
走査型電子顕微鏡(キーエンス社製3Dリアルサーフェスビュー顕微鏡VE−8800)を使用してセパレータの表面を観察した。得られた画像からセルを任意に20個選び、各セルの開口部の内縁それぞれについて最大径及び最小径を求めて{(最大径+最小径)/2)}を算出し、20個の平均値をセルの開口部の平均径とした。
[Average diameter of cell openings]
The surface of the separator was observed using a scanning electron microscope (Keyence 3D Real Surface View Microscope VE-8800). 20 cells are arbitrarily selected from the obtained images, the maximum diameter and the minimum diameter are obtained for each inner edge of the opening of each cell, {(maximum diameter + minimum diameter) / 2)} is calculated, and the average of 20 cells is calculated. The value was defined as the average diameter of the cell opening.

[水の接触角]
協和界面科学社製の接触角計DropMaster DM−301を使用して、多孔質層表面の水の接触角を測定した。水として蒸留水を用い、シリンジを用いてセパレータの表面に1μLの水滴を形成し、接触角の測定を行った。10個の水滴について接触角の測定を行い、平均値を算出した。
[Contact angle of water]
Using a contact angle meter DropMaster DM-301 manufactured by Kyowa Interface Science Co., Ltd., the contact angle of water on the surface of the porous layer was measured. Distilled water was used as water, 1 μL of water droplets were formed on the surface of the separator using a syringe, and the contact angle was measured. The contact angle was measured for 10 water droplets, and the average value was calculated.

[帯電減衰半減期]
セパレータをMD方向45mm×TD方向45mmの大きさに3枚切り出して、これを試験片とした。試験片をドライルーム(露点−60℃)に1時間放置した後、静電気除去器で10秒間除電して、次いでシシド静電気株式会社製STATIC HONESTMETER TYPE H−0110を用いて、帯電減衰半減期(秒)を測定した。試験片3枚の測定値を平均し、セパレータの帯電減衰半減期(秒)とした。
[Charging decay half-life]
Three separators were cut into a size of 45 mm in the MD direction × 45 mm in the TD direction, and used as test pieces. The test piece was left in a dry room (dew point -60 ° C.) for 1 hour, then neutralized with a static eliminator for 10 seconds, and then charged decay half-life (seconds) using STATIC HONESTEMETER TYPE H-0110 manufactured by Sicid Electrostatic Co. ) Was measured. The measured values of the three test pieces were averaged to obtain the charge decay half-life (seconds) of the separator.

[電解液との濡れ性]
セパレータをMD方向25mm×TD方向25mmの大きさに3枚切り出し、これを試験片とした。動的濡れ性試験機(株式会社レスカ製WET−6200)を用いて、室温にて試験片を電解液(1M LiBF−エチレンカーボネート:メチルエチルカーボネート=3:7(質量比))に浸漬し、動的濡れ張力が1.5mNになるまでの時間(秒)を測定した。試験片3枚の測定値を平均し、これをセパレータの濡れ性の指標とした。
[Wettability with electrolyte]
Three separators were cut into a size of 25 mm in the MD direction × 25 mm in the TD direction and used as test pieces. The test piece is immersed in an electrolytic solution (1M LiBF 4 -ethylene carbonate: methyl ethyl carbonate = 3: 7 (mass ratio)) at room temperature using a dynamic wettability tester (WET-6200 manufactured by Reska Co., Ltd.). The time (seconds) until the dynamic wetting tension became 1.5 mN was measured. The measured values of three test pieces were averaged and used as an indicator of the wettability of the separator.

[剥離強度]
セパレータの両面に3M社製のメンディングテープを長さ方向がセパレータのMD方向に一致するように張り付けた。両面にメンディングテープが張り付いたセパレータを10mm幅に3枚切り出し、これを試験片とした。試験片の長さ方向(即ちセパレータのMD方向)の一端から、メンディングテープを直下の多孔質層と共に少し剥がし、2つに分離した端部をテンシロン(オリエンテック社製RTC−1210A)に把持させてT字剥離試験を行った。T字剥離試験の引張速度は20mm/minとし、多孔質基材から多孔質層が剥離する際の荷重(N)を測定し、測定開始後10mmから40mmまでの荷重を0.4mm間隔で採取しその平均を算出し、さらに試験片3枚の測定値を平均して、セパレータの剥離強度(N/cm)とした。
[Peel strength]
Mending tape made by 3M was pasted on both sides of the separator so that the length direction coincided with the MD direction of the separator. Three separators with a mending tape attached on both sides were cut out to a width of 10 mm and used as test pieces. The mending tape is peeled off together with the porous layer directly below from one end in the length direction of the test piece (that is, the MD direction of the separator), and the two separated ends are held by Tensilon (Orientec RTC-1210A). T-peel test was conducted. The tensile speed of the T-shaped peel test is 20 mm / min, the load (N) when the porous layer peels from the porous substrate is measured, and the load from 10 mm to 40 mm is sampled at intervals of 0.4 mm after the measurement is started. The average was calculated, and the measured values of the three test pieces were averaged to obtain the peel strength (N / cm) of the separator.

<実施例A1>
アセトンと水とを質量比95:5で混合した混合溶媒に、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVDF−HFP、アルケマ社製KYNAR2800)を溶解させ塗工液を作製した。塗工液に対するPVDF−HFPの濃度を10質量%とした。
この塗工液を、多孔質基材であるポリエチレン微多孔膜(膜厚9.1μm、ガーレ値160秒/100cc、空孔率33%)の両面にバーコータ#6を用いて塗工し、多孔質基材の両面に塗工層を形成した。この塗工層を60℃で乾燥し、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面を走査型電子顕微鏡(SEM)で観察し、多孔質層がハニカム構造を有することを確認した。このセパレータの表面を面垂直方向から観察して得たSEM画像を図1に示す。
<Example A1>
A polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP, KYNAR2800 manufactured by Arkema Inc.) was dissolved in a mixed solvent in which acetone and water were mixed at a mass ratio of 95: 5 to prepare a coating solution. The density | concentration of PVDF-HFP with respect to the coating liquid was 10 mass%.
This coating solution was coated on both sides of a porous microporous polyethylene film (film thickness: 9.1 μm, Gurley value: 160 sec / 100 cc, porosity: 33%) using a bar coater # 6. The coating layer was formed on both surfaces of the porous substrate. This coating layer was dried at 60 ° C. to obtain a separator having a porous layer on both sides of a polyethylene microporous membrane. The surface of this separator was observed with a scanning electron microscope (SEM), and it was confirmed that the porous layer had a honeycomb structure. An SEM image obtained by observing the surface of the separator from the direction perpendicular to the plane is shown in FIG.

<実施例A2>
混合溶媒におけるアセトンと水の質量比を97.5:2.5に変更した以外は実施例A1と同様にして、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造を有することを確認した。
<Example A2>
A separator having a porous layer on both sides of a polyethylene microporous membrane was obtained in the same manner as in Example A1, except that the mass ratio of acetone to water in the mixed solvent was changed to 97.5: 2.5. The surface of this separator was observed with an SEM, and it was confirmed that the porous layer had a honeycomb structure.

<比較例A1>
特開2004−356102号公報に記載されている実施例に基づいて、下記のとおり、セパレータを作製した。
アセトンとイソプロパノールと水とを質量比89.4:7.1:3.5で混合した混合溶媒に、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVDF−HFP、アルケマ社製KYNAR2800)を溶解させ塗工液を作製した。塗工液に対するPVDF−HFPの濃度を2.6質量%とした。
この塗工液を、多孔質基材であるポリエチレン微多孔膜(膜厚9.1μm、ガーレ値160秒/100cc、空孔率33%)の両面にバーコータ#6を用いて塗工し、多孔質基材の両面に塗工層を形成した。この塗工層を60℃で乾燥し、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造を有しないことを確認した。このセパレータは多孔質層が剥がれやすく、多孔質層及びセパレータの各種物性値を測定することが困難であり、また、このセパレータを用いて電池を作製することができなかった。
<Comparative Example A1>
Based on the examples described in JP-A-2004-356102, a separator was produced as follows.
A polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP, KYNAR2800 manufactured by Arkema) is dissolved in a mixed solvent in which acetone, isopropanol, and water are mixed at a mass ratio of 89.4: 7.1: 3.5. A coating solution was prepared. The density | concentration of PVDF-HFP with respect to the coating liquid was 2.6 mass%.
This coating solution was coated on both sides of a porous microporous polyethylene film (film thickness: 9.1 μm, Gurley value: 160 sec / 100 cc, porosity: 33%) using a bar coater # 6. The coating layer was formed on both surfaces of the porous substrate. This coating layer was dried at 60 ° C. to obtain a separator having a porous layer on both sides of a polyethylene microporous membrane. The surface of this separator was observed by SEM, and it was confirmed that the porous layer did not have a honeycomb structure. In this separator, the porous layer is easily peeled off, it is difficult to measure various physical properties of the porous layer and the separator, and a battery cannot be produced using this separator.

<比較例A2>
塗工液におけるPVDF−HFPの濃度を10質量%に変更した以外は比較例A1と同様にして、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造を有しないことを確認した。このセパレータの表面を面垂直方向から観察して得たSEM画像を図2に示す。
<Comparative Example A2>
A separator having a porous layer on both sides of a polyethylene microporous membrane was obtained in the same manner as in Comparative Example A1, except that the PVDF-HFP concentration in the coating solution was changed to 10% by mass. The surface of this separator was observed by SEM, and it was confirmed that the porous layer did not have a honeycomb structure. FIG. 2 shows an SEM image obtained by observing the surface of the separator from the direction perpendicular to the plane.

<比較例A3>
ジメチルアセトアミドとトリプロピレングリコールとを質量比8:2で混合した混合溶媒に、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVDF−HFP、アルケマ社製KYNAR2800)を溶解させ塗工液を作製した。塗工液に対するPVDF−HFPの濃度を8質量%とした。
この塗工液を、多孔質基材であるポリエチレン微多孔膜(膜厚9.1μm、ガーレ値160秒/100cc、空孔率33%)の両面に塗工し、多孔質基材の両面に塗工層を形成した。多孔質基材の両面に塗工層を有する複合膜を凝固液(水:ジメチルアセトアミド:トリプロピレングリコール=57:30:13[質量比]、液温40℃)に浸漬し、塗工層に含まれる樹脂を固化させた。次いで、複合膜を水洗し乾燥して、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造を有しないことを確認した。
<Comparative Example A3>
A polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP, KYNAR2800 manufactured by Arkema Co., Ltd.) was dissolved in a mixed solvent in which dimethylacetamide and tripropylene glycol were mixed at a mass ratio of 8: 2 to prepare a coating solution. The concentration of PVDF-HFP with respect to the coating solution was 8% by mass.
This coating solution is applied to both sides of a porous microporous polyethylene film (film thickness: 9.1 μm, Gurley value: 160 sec / 100 cc, porosity: 33%). A coating layer was formed. A composite film having a coating layer on both sides of a porous substrate is dipped in a coagulation liquid (water: dimethylacetamide: tripropylene glycol = 57: 30: 13 [mass ratio], liquid temperature 40 ° C.) and applied to the coating layer. The contained resin was solidified. Next, the composite membrane was washed with water and dried to obtain a separator having porous layers on both sides of the polyethylene microporous membrane. The surface of this separator was observed by SEM, and it was confirmed that the porous layer did not have a honeycomb structure.

<比較例A4>
PVDF−HFPをアルケマ社製KYNAR2800からSolvay社製Solef21216に変更した以外は実施例A1と同様にして、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造を有することを確認した。
<Comparative Example A4>
A separator having a porous layer on both sides of a polyethylene microporous membrane was obtained in the same manner as in Example A1, except that PVDF-HFP was changed from KYNAR2800 manufactured by Arkema to Solef 21216 manufactured by Solvay. The surface of this separator was observed with an SEM, and it was confirmed that the porous layer had a honeycomb structure.

<実施例B1>
アセトンと水とを質量比95:5で混合した混合溶媒に、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVDF−HFP、アルケマ社製KYNAR2800)と、界面活性剤としてソルビタンモノパルミテート(HLB値6.7)とを溶解させ塗工液を作製した。塗工液に含まれるPVDF−HFPとソルビタンモノパルミテートの質量比を99.8:0.2とし、塗工液に対する両者の合計濃度を10質量%とした。
この塗工液を、多孔質基材であるポリエチレン微多孔膜(膜厚9.1μm、ガーレ値160秒/100cc、空孔率33%)の両面にバーコータ#6を用いて塗工し、多孔質基材の両面に塗工層を形成した。この塗工層を60℃で乾燥し、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造及び微小な多孔構造を有することを確認した。
<Example B1>
In a mixed solvent obtained by mixing acetone and water at a mass ratio of 95: 5, polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP, KYNAR2800 manufactured by Arkema) and sorbitan monopalmitate (HLB value) as a surfactant are used. 6.7) was dissolved to prepare a coating solution. The mass ratio of PVDF-HFP and sorbitan monopalmitate contained in the coating solution was 99.8: 0.2, and the total concentration of both was 10% by mass with respect to the coating solution.
This coating solution was coated on both sides of a porous microporous polyethylene film (film thickness: 9.1 μm, Gurley value: 160 sec / 100 cc, porosity: 33%) using a bar coater # 6. The coating layer was formed on both surfaces of the porous substrate. This coating layer was dried at 60 ° C. to obtain a separator having a porous layer on both sides of a polyethylene microporous membrane. The surface of this separator was observed with an SEM, and it was confirmed that the porous layer had a honeycomb structure and a fine porous structure.

<実施例B2>
塗工液に含まれるPVDF−HFPとソルビタンモノパルミテートの質量比を99.5:0.5に変更した以外は実施例B1と同様にして、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造及び微小な多孔構造を有することを確認した。
<Example B2>
A porous layer is provided on both sides of a polyethylene microporous membrane in the same manner as in Example B1 except that the mass ratio of PVDF-HFP and sorbitan monopalmitate contained in the coating liquid is changed to 99.5: 0.5. A separator was obtained. The surface of this separator was observed with an SEM, and it was confirmed that the porous layer had a honeycomb structure and a fine porous structure.

<実施例B3>
塗工液に含まれるPVDF−HFPとソルビタンモノパルミテートの質量比を99:1に変更した以外は実施例B1と同様にして、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造及び微小な多孔構造を有することを確認した。
<Example B3>
A separator having a porous layer on both sides of a polyethylene microporous membrane was obtained in the same manner as in Example B1, except that the mass ratio of PVDF-HFP and sorbitan monopalmitate contained in the coating solution was changed to 99: 1. . The surface of this separator was observed with an SEM, and it was confirmed that the porous layer had a honeycomb structure and a fine porous structure.

<実施例B4>
塗工液に含まれるPVDF−HFPとソルビタンモノパルミテートの質量比を98:2に変更した以外は実施例B1と同様にして、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造及び微小な多孔構造を有することを確認した。
<Example B4>
A separator having a porous layer on both sides of a polyethylene microporous membrane was obtained in the same manner as in Example B1 except that the mass ratio of PVDF-HFP and sorbitan monopalmitate contained in the coating solution was changed to 98: 2. . The surface of this separator was observed with an SEM, and it was confirmed that the porous layer had a honeycomb structure and a fine porous structure.

<実施例B5>
アセトンと水とを質量比95:5で混合した混合溶媒に、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVDF−HFP、アルケマ社製KYNAR2800)と、界面活性剤としてソルビタンモノパルミテート(HLB値6.7)とを溶解させた。この溶液に含まれるPVDF−HFPとソルビタンモノパルミテートの質量比を99:1とし、この溶液に対する両者の合計濃度を10質量%とした。
さらに上記の溶液に、無機フィラーとして水酸化マグネシウム(協和化学社製キスマ5P)を分散させ塗工液を作製した。塗工液に含まれるPVDF−HFPと水酸化マグネシウムの質量比を80:20とした。
この塗工液を、多孔質基材であるポリエチレン微多孔膜(膜厚9.1μm、ガーレ値160秒/100cc、空孔率33%)の両面にバーコータ#6を用いて塗工し、多孔質基材の両面に塗工層を形成した。この塗工層を60℃で乾燥し、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造及び微小な多孔構造を有することを確認した。
<Example B5>
In a mixed solvent obtained by mixing acetone and water at a mass ratio of 95: 5, polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP, KYNAR2800 manufactured by Arkema) and sorbitan monopalmitate (HLB value) as a surfactant are used. 6.7). The mass ratio of PVDF-HFP and sorbitan monopalmitate contained in this solution was 99: 1, and the total concentration of both in this solution was 10% by mass.
Further, magnesium hydroxide (Kisuma Chemical Co., Ltd., Kisuma 5P) was dispersed as an inorganic filler in the above solution to prepare a coating solution. The mass ratio of PVDF-HFP and magnesium hydroxide contained in the coating solution was 80:20.
This coating solution was coated on both sides of a porous microporous polyethylene film (film thickness: 9.1 μm, Gurley value: 160 sec / 100 cc, porosity: 33%) using a bar coater # 6. The coating layer was formed on both surfaces of the porous substrate. This coating layer was dried at 60 ° C. to obtain a separator having a porous layer on both sides of a polyethylene microporous membrane. The surface of this separator was observed with an SEM, and it was confirmed that the porous layer had a honeycomb structure and a fine porous structure.

<実施例B6>
塗工液に含まれるPVDF−HFPと水酸化マグネシウムの質量比を60:40に変更した以外は実施例B5と同様にして、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造及び微小な多孔構造を有することを確認した。
<Example B6>
A separator having a porous layer on both sides of a polyethylene microporous membrane was obtained in the same manner as in Example B5 except that the mass ratio of PVDF-HFP and magnesium hydroxide contained in the coating solution was changed to 60:40. The surface of this separator was observed with an SEM, and it was confirmed that the porous layer had a honeycomb structure and a fine porous structure.

<実施例B7>
界面活性剤としてソルビタンモノパルミテート(HLB値6.7)とソルビタントリオレート(HLB値1.8)とを質量比65.3:34.7で用い、塗工液に含まれるPVDF−HFPと界面活性剤の質量比を99:1に変更した以外は実施例B1と同様にして、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造及び微小な多孔構造を有することを確認した。
<Example B7>
As a surfactant, sorbitan monopalmitate (HLB value 6.7) and sorbitan trioleate (HLB value 1.8) were used at a mass ratio of 65.3: 34.7, and PVDF-HFP contained in the coating solution A separator having a porous layer on both sides of a polyethylene microporous membrane was obtained in the same manner as in Example B1, except that the surfactant mass ratio was changed to 99: 1. The surface of this separator was observed with an SEM, and it was confirmed that the porous layer had a honeycomb structure and a fine porous structure.

<実施例B8>
界面活性剤としてソルビタンモノパルミテート(HLB値6.7)とTween80(PEG−20ソルビタンモノオレート、HLB値15.0)とを質量比84.3:15.7で用い、塗工液に含まれるPVDF−HFPと界面活性剤の質量比を99:1に変更した以外は実施例B1と同様にして、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造及び微小な多孔構造を有することを確認した。
<Example B8>
As a surfactant, sorbitan monopalmitate (HLB value 6.7) and Tween 80 (PEG-20 sorbitan monooleate, HLB value 15.0) were used at a mass ratio of 84.3: 15.7 and included in the coating liquid. A separator having a porous layer on both sides of a polyethylene microporous membrane was obtained in the same manner as in Example B1, except that the mass ratio of PVDF-HFP and the surfactant was changed to 99: 1. The surface of this separator was observed with an SEM, and it was confirmed that the porous layer had a honeycomb structure and a fine porous structure.

<実施例B9>
界面活性剤をソルビタンモノパルミテート(HLB値6.7)からソルビタンモノステアレート(HLB値4.7)に変更し、塗工液に含まれるPVDF−HFPと界面活性剤の質量比を99:1に変更した以外は実施例B1と同様にして、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造及び微小な多孔構造を有することを確認した。
<Example B9>
The surfactant was changed from sorbitan monopalmitate (HLB value 6.7) to sorbitan monostearate (HLB value 4.7), and the mass ratio of PVDF-HFP and surfactant contained in the coating solution was 99: A separator having a porous layer on both sides of a polyethylene microporous membrane was obtained in the same manner as in Example B1, except that the number was changed to 1. The surface of this separator was observed with an SEM, and it was confirmed that the porous layer had a honeycomb structure and a fine porous structure.

<実施例B10>
塗工液にソルビタンモノパルミテートを含まない以外は実施例B1と同様にして、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータを、界面活性剤としてソルビタンモノパルミテート(HLB値6.7)を水に添加した液に浸漬し、多孔質層に界面活性剤を付与したセパレータを得た。このセパレータの多孔質層の内部においては、ポリフッ化ビニリデン系樹脂と上記界面活性剤とが混在した状態になっておらず、上記界面活性剤はポリエチレン微多孔膜と多孔質層との間に介在していない。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造及び微小な多孔構造を有することを確認した。
<Example B10>
A separator having a porous layer on both sides of a polyethylene microporous membrane was obtained in the same manner as in Example B1 except that the coating liquid did not contain sorbitan monopalmitate. This separator was immersed in a solution obtained by adding sorbitan monopalmitate (HLB value 6.7) as water as a surfactant to obtain a separator having a surfactant added to the porous layer. In the porous layer of the separator, the polyvinylidene fluoride resin and the surfactant are not mixed, and the surfactant is interposed between the polyethylene microporous membrane and the porous layer. Not done. The surface of this separator was observed with an SEM, and it was confirmed that the porous layer had a honeycomb structure and a fine porous structure.

<比較例B1>
塗工液に含まれるPVDF−HFPとソルビタンモノパルミテートの質量比を90:10に変更した以外は実施例B1と同様にして、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造を有さず、微細孔がわずかに形成された構造であることを確認した。
<Comparative Example B1>
A separator having a porous layer on both sides of a polyethylene microporous membrane was obtained in the same manner as in Example B1, except that the mass ratio of PVDF-HFP and sorbitan monopalmitate contained in the coating solution was changed to 90:10. . The surface of this separator was observed with an SEM, and it was confirmed that the porous layer did not have a honeycomb structure and had a structure in which micropores were slightly formed.

<比較例B2>
アセトンとイソプロパノールと水とを質量比89.4:7.1:3.5で混合した混合溶媒に、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVDF−HFP、アルケマ社製KYNAR2800)と、界面活性剤としてソルビタンモノパルミテート(HLB値6.7)とを溶解させ塗工液を作製した。塗工液に含まれるPVDF−HFPとソルビタンモノパルミテートの質量比を99:1とし、塗工液に対する両者の合計濃度を10質量%とした。
この塗工液を、多孔質基材であるポリエチレン微多孔膜(膜厚9.1μm、ガーレ値160秒/100cc、空孔率33%)の両面にバーコータ#6を用いて塗工し、多孔質基材の両面に塗工層を形成した。この塗工層を60℃で乾燥し、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造を有していないこと、微細孔が均一性高く分布した多孔構造であることを確認した。
<Comparative Example B2>
In a mixed solvent in which acetone, isopropanol, and water are mixed at a mass ratio of 89.4: 7.1: 3.5, a polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP, KYNAR2800 manufactured by Arkema) and an interface Sorbitan monopalmitate (HLB value 6.7) was dissolved as an activator to prepare a coating solution. The mass ratio of PVDF-HFP and sorbitan monopalmitate contained in the coating solution was 99: 1, and the total concentration of both was 10% by mass with respect to the coating solution.
This coating solution was coated on both sides of a porous microporous polyethylene film (film thickness: 9.1 μm, Gurley value: 160 sec / 100 cc, porosity: 33%) using a bar coater # 6. The coating layer was formed on both surfaces of the porous substrate. This coating layer was dried at 60 ° C. to obtain a separator having a porous layer on both sides of a polyethylene microporous membrane. The surface of the separator was observed with an SEM, and it was confirmed that the porous layer did not have a honeycomb structure, and the porous structure had fine pores distributed with high uniformity.

<比較例B3>
塗工液に含まれるPVDF−HFPと水酸化マグネシウムの質量比を40:60に変更した以外は実施例B5と同様にして、ポリエチレン微多孔膜の両面に多孔質層を有するセパレータを得た。このセパレータの表面をSEMで観察し、多孔質層がハニカム構造を有していないこと、微細孔が均一性高く分布した多孔構造であることを確認した。
<Comparative Example B3>
A separator having a porous layer on both sides of a polyethylene microporous membrane was obtained in the same manner as in Example B5 except that the mass ratio of PVDF-HFP and magnesium hydroxide contained in the coating solution was changed to 40:60. The surface of the separator was observed with an SEM, and it was confirmed that the porous layer did not have a honeycomb structure, and the porous structure had fine pores distributed with high uniformity.

<電池製造効率の試験>
セパレータ(幅108mm)を2枚用意して重ね、MD方向の一端をステンレス製の巻芯に巻きつけた。2枚のセパレータの間に正極(幅106.5mm)をはさみ、一方のセパレータ上に負極(幅107mm)を配置し、この積層体を巻回して、巻回電極体を連続的に50個作製した。正極からのセパレータのはみ出し量が1.5mm±0.3mmの範囲内であり、負極からのセパレータのはみ出し量が1.0mm±0.3mmの範囲内であり、且つ、2枚のセパレータの積層部分がずれていない場合を合格と判断した。一方、上記に該当しない場合は不合格と判断した。そして、合格した巻回電極体の個数割合(%)を算出し、下記のとおり分類した。
A:合格した個数割合が100%
B:合格した個数割合が90%以上100%未満
C:合格した個数割合が90%未満
<Battery manufacturing efficiency test>
Two separators (width 108 mm) were prepared and overlapped, and one end in the MD direction was wound around a stainless steel core. A positive electrode (width: 106.5 mm) was sandwiched between two separators, a negative electrode (width: 107 mm) was placed on one separator, and this laminate was wound to produce 50 continuous wound electrode bodies. did. The amount of protrusion of the separator from the positive electrode is in the range of 1.5 mm ± 0.3 mm, the amount of protrusion of the separator from the negative electrode is in the range of 1.0 mm ± 0.3 mm, and the lamination of the two separators The case where the part did not slip | deviated was judged as the pass. On the other hand, when it did not correspond to the above, it was judged as a failure. And the number ratio (%) of the passed winding electrode body was computed, and it classified as follows.
A: The percentage of the number that passed is 100%
B: Passed number ratio is 90% or more and less than 100% C: Passed number ratio is less than 90%

<電池性能の試験>
[負極の作製]
負極活物質である人造黒鉛300g、バインダであるスチレン−ブタジエン共重合体の変性体を40質量%含む水溶性分散液7.5g、増粘剤であるカルボキシメチルセルロース3g、及び適量の水を双腕式混合機にて攪拌して混合し、負極用スラリーを作製した。この負極用スラリーを負極集電体である厚さ10μmの銅箔に塗布し、乾燥後プレスして、負極活物質層を有する負極を得た。
<Battery performance test>
[Production of negative electrode]
300 g of artificial graphite as negative electrode active material, 7.5 g of water-soluble dispersion containing 40% by mass of modified styrene-butadiene copolymer as binder, 3 g of carboxymethyl cellulose as thickener, and appropriate amount of water The mixture was stirred and mixed with a type mixer to prepare a negative electrode slurry. This negative electrode slurry was applied to a 10 μm thick copper foil as a negative electrode current collector, dried and pressed to obtain a negative electrode having a negative electrode active material layer.

[正極の作製]
正極活物質であるコバルト酸リチウム粉末89.5g、導電助剤であるアセチレンブラック4.5g、及びバインダであるポリフッ化ビニリデン6gを、ポリフッ化ビニリデンの濃度が6質量%となるようにN−メチル−ピロリドンに溶解し、双腕式混合機にて攪拌し、正極用スラリーを作製した。この正極用スラリーを正極集電体である厚さ20μmのアルミ箔に塗布し、乾燥後プレスして、正極活物質層を有する正極を得た。
[Production of positive electrode]
89.5 g of lithium cobaltate powder as a positive electrode active material, 4.5 g of acetylene black as a conductive auxiliary agent, and 6 g of polyvinylidene fluoride as a binder are mixed with N-methyl so that the concentration of polyvinylidene fluoride is 6% by mass. -It melt | dissolved in the pyrrolidone and stirred with the double arm type mixer, and produced the slurry for positive electrodes. This positive electrode slurry was applied to a 20 μm thick aluminum foil as a positive electrode current collector, dried and pressed to obtain a positive electrode having a positive electrode active material layer.

[電池の作製]
正極と負極にそれぞれリードタブを溶接し、この正極と負極をセパレータを介して接合させ電池素子を作製した。この電池素子をアルミパック中に収容し電解液を浸み込ませ、真空シーラーを用いて封入した。電解液としては、1M LiPF−エチレンカーボネート:エチルメチルカーボネート(質量比3:7)を用いた。その後、電池素子および電解液を収容したアルミパックに対して、熱プレス機により熱プレス(荷重:電極1cm当たり20kg、温度:90℃、プレス時間:2分間)を行い、試験用の二次電池を得た。
[Production of battery]
Lead tabs were welded to the positive electrode and the negative electrode, respectively, and the positive electrode and the negative electrode were joined via a separator to produce a battery element. This battery element was accommodated in an aluminum pack, infiltrated with an electrolytic solution, and sealed using a vacuum sealer. As the electrolytic solution, 1M LiPF 6 -ethylene carbonate: ethyl methyl carbonate (mass ratio 3: 7) was used. Thereafter, the aluminum pack containing the battery element and the electrolytic solution was subjected to hot pressing (load: 20 kg per 1 cm 2 of electrode, temperature: 90 ° C., pressing time: 2 minutes) with a hot press machine, and a secondary test was performed. A battery was obtained.

[サイクル特性試験]
試験用二次電池に対して100サイクルの充放電を行い、100サイクル後の容量維持率(%)を求めて、これをサイクル特性の指標とした。この試験において、充電は0.5C又は1.0C且つ4.2Vの定電流定電圧充電とし、放電は0.5C又は1.0C且つ2.75Vカットオフの定電流放電とした。実施例A1等においては、充放電の電流を0.5Cとし、実施例B1等においては、充放電の電流を1.0Cとした。
[Cycle characteristic test]
The secondary battery for test was charged and discharged 100 cycles, the capacity retention rate (%) after 100 cycles was determined, and this was used as an index of cycle characteristics. In this test, charging was constant current constant voltage charging of 0.5 C or 1.0 C and 4.2 V, and discharging was constant current discharging of 0.5 C or 1.0 C and 2.75 V cutoff. In Example A1 etc., the charge / discharge current was set to 0.5C, and in Example B1 etc., the charge / discharge current was set to 1.0C.

[セパレータと電極との接着性の確認]
サイクル特性試験後の試験用二次電池を解体し、セパレータと電極との接着性を、接着力及び均一性の観点から確認した。
[Confirmation of adhesion between separator and electrode]
The secondary battery for test after the cycle characteristic test was disassembled, and the adhesion between the separator and the electrode was confirmed from the viewpoints of adhesive strength and uniformity.

−接着力−
アルミパックから電池素子を取り出し、2つに切り分け、試験片を2個得た。1個の試験片で正極の180度剥離試験を行い、もう1個の試験片で負極の180度剥離試験を行った。180度剥離試験は、テンシロン(オリエンテック社製RTC−1210A)を用いて引張速度20mm/minの条件で行った。試験片から正極又は負極が剥離する際の荷重(N)を測定し、測定開始後10mmから40mmまでの荷重を0.4mm間隔で採取しその平均値を算出した。そして、正極及び負極のそれぞれについて、実施例A1又は実施例B1の平均値を100として、その他の実施例及び比較例の相対値を算出した。
-Adhesive strength-
The battery element was taken out from the aluminum pack and cut into two pieces to obtain two test pieces. One test piece was subjected to a 180 ° peel test on the positive electrode, and another test piece was subjected to a 180 ° peel test on the negative electrode. The 180-degree peel test was conducted using Tensilon (RTC-1210A manufactured by Orientec Co., Ltd.) under the condition of a tensile speed of 20 mm / min. The load (N) when the positive electrode or the negative electrode was peeled from the test piece was measured, and the load from 10 mm to 40 mm was sampled at intervals of 0.4 mm after the start of measurement, and the average value was calculated. And about each of the positive electrode and the negative electrode, the average value of Example A1 or Example B1 was set to 100, and the relative value of the other Example and the comparative example was computed.

−均一性−
180度剥離試験を終えた後の正極および負極について、セパレータと接していた側の表面を目視で観察し、下記のとおり分類した。
G1:セパレータの多孔質層がほぼ全て電極表面に付着していた。均一性は良好である。
G2:セパレータの多孔質層の大部分が電極表面に付着しているが、一部破損している。
NG:セパレータの多孔質層の大部分が180度剥離試験の際に著しく破損し、ほとんど電極表面に付着していない。均一性は不良である。
-Uniformity-
About the positive electrode and negative electrode after finishing a 180 degree | times peeling test, the surface of the side which was in contact with the separator was observed visually, and it classified as follows.
G1: Almost all porous layers of the separator were attached to the electrode surface. Uniformity is good.
G2: Most of the porous layer of the separator adheres to the electrode surface, but is partially damaged.
NG: Most of the porous layer of the separator was remarkably damaged during the 180-degree peel test, and hardly adhered to the electrode surface. The uniformity is poor.

表1及び表3に、各実施例及び各比較例のセパレータの各種物性値を示す。多孔質層がハニカム構造を有しない比較例においては、セルの開口部の平均径の代わりに、多孔質層表面に存在する微細孔の平均径を記す。
表2及び表4に、各実施例及び各比較例のセパレータを用いて作製した二次電池の評価結果を示す。
Tables 1 and 3 show various physical property values of the separators of Examples and Comparative Examples. In the comparative example in which the porous layer does not have a honeycomb structure, the average diameter of the micropores existing on the surface of the porous layer is described instead of the average diameter of the cell opening.
Tables 2 and 4 show the evaluation results of the secondary batteries prepared using the separators of the examples and comparative examples.

2014年5月20日に出願された日本国出願番号第2014−104352号の開示、及び2014年8月21日に出願された日本国出願番号第2014−168462号の開示は、その全体が参照により本明細書に取り込まれる。   For the disclosure of Japanese application No. 2014-104352 filed on May 20, 2014 and the disclosure of Japanese application No. 2014-168462 filed on August 21, 2014, reference is made in its entirety. Is incorporated herein by reference.

本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。   All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (13)

熱可塑性樹脂を含む多孔質基材と、
前記多孔質基材の片面又は両面に設けられた、ポリフッ化ビニリデン系樹脂を含む多孔質層であって、該多孔質層の面垂直方向に開口したセルが該多孔質層の面方向に隣接して多数並んだ構造を有し、水の接触角が115°〜140°である多孔質層と、
を備え、前記多孔質層上で測定した帯電減衰半減期が300秒以下である、非水系二次電池用セパレータ。
A porous substrate containing a thermoplastic resin;
A porous layer comprising a polyvinylidene fluoride resin provided on one or both surfaces of the porous substrate, wherein cells open in a direction perpendicular to the surface of the porous layer are adjacent to the surface direction of the porous layer A porous layer having a structure in which a large number of the layers are arranged and having a water contact angle of 115 ° to 140 °,
A separator for a non-aqueous secondary battery having a charge decay half-life measured on the porous layer of 300 seconds or less .
前記セルの開口部の平均径が0.1μm〜10μmである、請求項1に記載の非水系二次電池用セパレータ。   The separator for non-aqueous secondary batteries according to claim 1, wherein an average diameter of the opening of the cell is 0.1 μm to 10 μm. 前記多孔質層の空孔率が40%〜80%である、請求項1又は請求項2に記載の非水系二次電池用セパレータ。   The separator for nonaqueous secondary batteries according to claim 1 or 2, wherein the porosity of the porous layer is 40% to 80%. エチレンカーボネートとメチルエチルカーボネートとが質量比3:7で混合してなる溶媒にLiBF が1Mの濃度で溶解してなる電解液に浸したときに動的濡れ張力が1.5mNになるまでの時間が10秒以下である、請求項1〜請求項のいずれか1項に記載の非水系二次電池用セパレータ。 When the dynamic wetting tension becomes 1.5 mN when immersed in an electrolyte solution in which LiBF 4 is dissolved at a concentration of 1M in a solvent in which ethylene carbonate and methyl ethyl carbonate are mixed at a mass ratio of 3: 7 . The separator for a nonaqueous secondary battery according to any one of claims 1 to 3 , wherein the time is 10 seconds or less. 前記多孔質層が、HLB値が5.0〜8.0である界面活性剤をさらに含み、
前記ポリフッ化ビニリデン系樹脂と前記界面活性剤とが前記多孔質層の内部において混在している、請求項1〜請求項のいずれか1項に記載の非水系二次電池用セパレータ。
The porous layer further includes a surfactant having an HLB value of 5.0 to 8.0,
The separator for nonaqueous secondary batteries according to any one of claims 1 to 4 , wherein the polyvinylidene fluoride resin and the surfactant are mixed in the porous layer.
前記多孔質層において、前記ポリフッ化ビニリデン系樹脂と前記界面活性剤との質量比が99.9:0.1〜95.0:5.0である、請求項に記載の非水系二次電池用セパレータ。 The non-aqueous secondary according to claim 5 , wherein in the porous layer, a mass ratio of the polyvinylidene fluoride resin and the surfactant is 99.9: 0.1 to 95.0: 5.0. Battery separator. 前記多孔質基材と前記多孔質層との間の剥離強度が0.1N/cm〜2.0N/cmである、請求項1〜請求項のいずれか1項に記載の非水系二次電池用セパレータ。 The non-aqueous secondary according to any one of claims 1 to 6 , wherein a peel strength between the porous substrate and the porous layer is 0.1 N / cm to 2.0 N / cm. Battery separator. 前記多孔質層がフィラーをさらに含む、請求項1〜請求項のいずれか1項に記載の非水系二次電池用セパレータ。 The separator for a nonaqueous secondary battery according to any one of claims 1 to 7 , wherein the porous layer further contains a filler. 前記多孔質層を前記多孔質基材の両面に有する、請求項1〜請求項のいずれか1項に記載の非水系二次電池用セパレータ。 The separator for a nonaqueous secondary battery according to any one of claims 1 to 8 , wherein the porous layer is provided on both surfaces of the porous substrate. 前記多孔質基材がポリエチレンを含むポリオレフィン微多孔膜である、請求項1〜請求項のいずれか1項に記載の非水系二次電池用セパレータ。 The separator for non-aqueous secondary batteries according to any one of claims 1 to 9 , wherein the porous substrate is a polyolefin microporous film containing polyethylene. 前記多孔質基材がポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜である、請求項1〜請求項10のいずれか1項に記載の非水系二次電池用セパレータ。 The separator for non-aqueous secondary batteries according to any one of claims 1 to 10 , wherein the porous substrate is a polyolefin microporous film containing polyethylene and polypropylene. 請求項〜請求項11のいずれか1項に記載の非水系二次電池用セパレータを製造する方法であって、
ポリフッ化ビニリデン系樹脂とHLB値が5.0〜8.0である界面活性剤とを溶媒に溶解させて得た溶液を多孔質基材の片面又は両面に塗工して塗工層を形成する工程と、
前記塗工層から前記溶媒を除去して多孔質層を形成する工程と、
を有する、非水系二次電池用セパレータの製造方法。
A method for producing the separator for a non-aqueous secondary battery according to any one of claims 5 to 11 ,
A coating layer is formed by applying a solution obtained by dissolving a polyvinylidene fluoride resin and a surfactant having an HLB value of 5.0 to 8.0 in a solvent to one or both sides of a porous substrate. And a process of
Removing the solvent from the coating layer to form a porous layer;
The manufacturing method of the separator for non-aqueous secondary batteries which has these.
正極と、負極と、前記正極及び前記負極の間に配置された請求項1〜請求項11のいずれか1項に記載の非水系二次電池用セパレータとを備え、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池。 A positive electrode, a negative electrode, and the separator for a non-aqueous secondary battery according to any one of claims 1 to 11 disposed between the positive electrode and the negative electrode, and by lithium doping / dedoping Non-aqueous secondary battery for obtaining electromotive force.
JP2015543202A 2014-05-20 2015-05-18 Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery Expired - Fee Related JP5882549B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015543202A JP5882549B1 (en) 2014-05-20 2015-05-18 Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014104352 2014-05-20
JP2014104352 2014-05-20
JP2014168462 2014-08-21
JP2014168462 2014-08-21
PCT/JP2015/064224 WO2015178351A1 (en) 2014-05-20 2015-05-18 Separator for nonaqueous secondary batteries, method for producing same and nonaqueous secondary battery
JP2015543202A JP5882549B1 (en) 2014-05-20 2015-05-18 Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery

Publications (2)

Publication Number Publication Date
JP5882549B1 true JP5882549B1 (en) 2016-03-09
JPWO2015178351A1 JPWO2015178351A1 (en) 2017-04-20

Family

ID=54554020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015543202A Expired - Fee Related JP5882549B1 (en) 2014-05-20 2015-05-18 Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery

Country Status (4)

Country Link
JP (1) JP5882549B1 (en)
KR (1) KR20170009838A (en)
CN (1) CN106233500A (en)
WO (1) WO2015178351A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347906B2 (en) 2017-03-17 2019-07-09 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6693619B2 (en) * 2016-07-04 2020-05-13 株式会社ハッピージャパン Substrate with β-type polyvinylidene fluoride film and manufacturing method thereof, and piezoelectric sensor having β-polyvinylidene fluoride film and manufacturing method thereof
CN106953058A (en) * 2017-04-10 2017-07-14 天津中科先进技术研究院有限公司 Lithium ion battery diaphragm
JP6884627B2 (en) * 2017-04-14 2021-06-09 住友化学株式会社 Insulating porous layer for non-aqueous electrolyte secondary battery
CN108963156A (en) * 2018-07-10 2018-12-07 福建师范大学 Method of modifying of the aluminate coupling agent to coating film
KR102396985B1 (en) * 2018-11-02 2022-05-12 주식회사 엘지에너지솔루션 Crosslinked polyolefin separator having inorganic layer and high power secondary battery comprising the same
JP7213658B2 (en) * 2018-11-06 2023-01-27 旭化成株式会社 Separator having fine pattern, wound body and non-aqueous electrolyte battery
WO2023053771A1 (en) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 Lithium-ion secondary battery
CN114024095B (en) * 2021-10-27 2022-08-05 长园泽晖新能源材料研究院(珠海)有限公司 Coating diaphragm with special pore structure and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073221A (en) * 2004-08-31 2006-03-16 Teijin Ltd Separator for lithium ion secondary battery, and lithium ion secondary battery
JP2009070609A (en) * 2007-09-11 2009-04-02 Sony Corp Separator and battery using the same
JP2010092881A (en) * 2008-08-19 2010-04-22 Teijin Ltd Separator for nonaqueous secondary battery
JP2010195899A (en) * 2009-02-24 2010-09-09 Sumitomo Chemical Co Ltd Method for producing porous film, porous film, method for producing laminated porous film, laminated porous film, and separator for battery
JP2011023162A (en) * 2009-07-14 2011-02-03 Teijin Ltd Separator for nonaqueous secondary battery
JP2012104291A (en) * 2010-11-08 2012-05-31 Sony Corp Shrinkage-resistant microporous film and battery separator
JP2012227066A (en) * 2011-04-21 2012-11-15 Sony Corp Separator and nonaqueous electrolyte battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system
JP2013054972A (en) * 2011-09-05 2013-03-21 Sony Corp Separator, nonaqueous electrolyte battery, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system
JP2013137984A (en) * 2011-09-05 2013-07-11 Sony Corp Separator and nonaqueous electrolyte battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040241550A1 (en) 2003-05-28 2004-12-02 Wensley C. Glen Battery separator for lithium polymer battery
CN1882436B (en) 2003-11-19 2010-12-15 东燃化学株式会社 Composite microporous film, and production method and use thereof
JP2008297349A (en) * 2007-05-29 2008-12-11 Nitto Denko Corp Method of producing porous film
JP4988972B1 (en) 2011-04-08 2012-08-01 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
CN103746085B (en) * 2013-11-07 2017-01-04 深圳市星源材质科技股份有限公司 A kind of coating composite diaphragm and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073221A (en) * 2004-08-31 2006-03-16 Teijin Ltd Separator for lithium ion secondary battery, and lithium ion secondary battery
JP2009070609A (en) * 2007-09-11 2009-04-02 Sony Corp Separator and battery using the same
JP2010092881A (en) * 2008-08-19 2010-04-22 Teijin Ltd Separator for nonaqueous secondary battery
JP2010195899A (en) * 2009-02-24 2010-09-09 Sumitomo Chemical Co Ltd Method for producing porous film, porous film, method for producing laminated porous film, laminated porous film, and separator for battery
JP2011023162A (en) * 2009-07-14 2011-02-03 Teijin Ltd Separator for nonaqueous secondary battery
JP2012104291A (en) * 2010-11-08 2012-05-31 Sony Corp Shrinkage-resistant microporous film and battery separator
JP2012227066A (en) * 2011-04-21 2012-11-15 Sony Corp Separator and nonaqueous electrolyte battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system
JP2013054972A (en) * 2011-09-05 2013-03-21 Sony Corp Separator, nonaqueous electrolyte battery, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system
JP2013137984A (en) * 2011-09-05 2013-07-11 Sony Corp Separator and nonaqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347906B2 (en) 2017-03-17 2019-07-09 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle

Also Published As

Publication number Publication date
KR20170009838A (en) 2017-01-25
CN106233500A (en) 2016-12-14
WO2015178351A1 (en) 2015-11-26
JPWO2015178351A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP5882549B1 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP6171117B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP6205525B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
US9887406B2 (en) Separator for non-aqueous secondary battery, method for manufacturing the same, and non-aqueous secondary battery
JP5844950B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP6143992B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP5213158B2 (en) Multilayer porous membrane production method, lithium ion battery separator and lithium ion battery
JP6738339B2 (en) Electrochemical element separator, method for producing the same, and method for producing the electrochemical element
KR20230107896A (en) Separator for nonaqueous electrolyte cell, nonaqueous electrolyte cell, and method for manufacturing nonaqueous electrolyte cell
EP3919269B1 (en) Separator for non-aqueous secondary battery, and non-aqueous secondary battery
JP5612797B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2012137377A1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP4988973B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
KR20130036043A (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP5745174B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP6078703B1 (en) Non-aqueous secondary battery separator, non-aqueous secondary battery, and non-aqueous secondary battery manufacturing method
JPWO2016002567A1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP2011181493A (en) Nonaqueous electrolyte secondary battery
JP2016181439A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
KR20120086038A (en) Electrode assembly for secondary battery
JP2014026947A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2015170448A (en) Separator for nonaqueous secondary battery, method of manufacturing the same, and nonaqueous secondary battery
JP2023151012A (en) Separator for non-aqueous secondary battery, and non-aqueous secondary battery
JP2021190269A (en) Separator for non-water-based secondary battery and non-water-based secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160203

R150 Certificate of patent or registration of utility model

Ref document number: 5882549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees