JP5879585B2 - Display device and driving method thereof - Google Patents

Display device and driving method thereof Download PDF

Info

Publication number
JP5879585B2
JP5879585B2 JP2012271150A JP2012271150A JP5879585B2 JP 5879585 B2 JP5879585 B2 JP 5879585B2 JP 2012271150 A JP2012271150 A JP 2012271150A JP 2012271150 A JP2012271150 A JP 2012271150A JP 5879585 B2 JP5879585 B2 JP 5879585B2
Authority
JP
Japan
Prior art keywords
potential
drive transistor
power supply
supply line
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012271150A
Other languages
Japanese (ja)
Other versions
JP2013101358A (en
Inventor
山下 淳一
淳一 山下
勝秀 内野
勝秀 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joled Inc
Original Assignee
Joled Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joled Inc filed Critical Joled Inc
Priority to JP2012271150A priority Critical patent/JP5879585B2/en
Publication of JP2013101358A publication Critical patent/JP2013101358A/en
Application granted granted Critical
Publication of JP5879585B2 publication Critical patent/JP5879585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Description

本発明は、画素毎に配した発光素子を電流駆動して画像を表示する表示装置及びその駆動方法に関する。またかかる表示装置を用いた電子機器に関する。詳しくは、各画素回路内に設けた絶縁ゲート型電界効果トランジスタによって有機ELなどの発光素子に通電する電流量を制御する、いわゆるアクティブマトリクス型の表示装置の駆動方式に関する。   The present invention relates to a display device that displays an image by current-driving light emitting elements arranged for each pixel and a driving method thereof. The present invention also relates to an electronic device using such a display device. Specifically, the present invention relates to a driving method of a so-called active matrix display device in which an amount of current supplied to a light emitting element such as an organic EL is controlled by an insulated gate field effect transistor provided in each pixel circuit.

発光素子として有機ELデバイスを用いた平面自発光型の表示装置の開発が近年盛んになっている。有機ELデバイスは有機薄膜に電界をかけると発光する現象を利用したデバイスである。有機ELデバイスは印加電圧が10V以下で駆動するため低消費電力である。また有機ELデバイスは自ら光を発する自発光素子であるため、照明部材を必要とせず軽量化及び薄型化が容易である。さらに有機ELデバイスの応答速度は数μs程度と非常に高速であるので、動画表示時の残像が発生しない。   In recent years, development of flat self-luminous display devices using organic EL devices as light-emitting elements has become active. An organic EL device is a device that utilizes the phenomenon of light emission when an electric field is applied to an organic thin film. Since the organic EL device is driven at an applied voltage of 10 V or less, it has low power consumption. In addition, since the organic EL device is a self-luminous element that emits light, it does not require an illumination member and can be easily reduced in weight and thickness. Furthermore, since the response speed of the organic EL device is as high as several μs, an afterimage does not occur when displaying a moving image.

有機ELデバイスを画素に用いた平面自発光型の表示装置の中でも、とりわけ駆動素子として薄膜トランジスタを各画素に集積形成したアクティブマトリクス型の表示装置の開発が盛んである。アクティブマトリクス型平面自発光表示装置は、例えば以下の特許文献1ないし5に記載されている。   Among planar self-luminous display devices that use organic EL devices as pixels, active matrix display devices in which thin film transistors are integrated and formed as driving elements in each pixel are particularly active. Active matrix type flat self-luminous display devices are described in, for example, Patent Documents 1 to 5 below.

特開2003−255856JP 2003-255856 A 特開2003−271095JP 2003-271095 A 特開2004−133240JP 2004-133240 A 特開2004−029791JP 2004-029791 A 特開2004−093682JP 2004-093682 A

しかしながら、従来のアクティブマトリクス型平面自発光表示装置は、プロセス変動により発光素子を駆動するトランジスタ(ドライブトランジスタ)の閾電圧や移動度がばらついてしまう。また有機ELデバイスの電流/電圧特性も経時的に変化する。この様なドライブトランジスタの特性ばらつきや有機ELデバイスの特性変動は発光輝度に影響を与えてしまう。表示装置の画面全体にわたって発光輝度を均一に制御するため、各画素回路内で上述したドライブトランジスタや有機ELデバイスの特性変動を補正する必要がある。従来からかかる補正機能を画素毎に備えた表示装置が提案されている。   However, in the conventional active matrix type flat self light emitting display device, the threshold voltage and mobility of a transistor (drive transistor) for driving the light emitting element vary due to process variations. In addition, the current / voltage characteristics of the organic EL device change with time. Such variations in the characteristics of the drive transistor and the characteristics of the organic EL device affect the light emission luminance. In order to uniformly control the light emission luminance over the entire screen of the display device, it is necessary to correct the characteristic variation of the drive transistor and the organic EL device described above in each pixel circuit. Conventionally, a display device having such a correction function for each pixel has been proposed.

ドライブトランジスタの閾電圧補正動作や移動度補正動作を安定的に行うため、各画素に形成された容量素子はなるべく容量値を大きくすることが好ましい。容量素子はドライブトランジスタなどと同様に薄膜素子で形成されており、容量素子の誘電体膜はドライブトランジスタのゲート絶縁膜と同層になっている。容量素子の大容量化を図るためには、誘電体膜を薄くする必要があり、必然的にゲート絶縁膜も薄くなる。このためドライブトランジスタのドレインとソース間の絶縁耐圧が低下する傾向になる。   In order to stably perform the threshold voltage correction operation and the mobility correction operation of the drive transistor, it is preferable to increase the capacitance value of the capacitor element formed in each pixel as much as possible. The capacitive element is formed of a thin film element like the drive transistor, and the dielectric film of the capacitive element is in the same layer as the gate insulating film of the drive transistor. In order to increase the capacity of the capacitive element, it is necessary to make the dielectric film thin, and the gate insulating film is inevitably thin. For this reason, the withstand voltage between the drain and source of the drive transistor tends to decrease.

一方、各画素回路で移動度補正動作や閾電圧補正動作を実行するためには、所定のシーケンスに従って各画素に供給する電源電圧を高低2レベルで切り換える必要がある。電源電圧のレベルを切り換える過程で、ドライブトランジスタのソース/ドレイン間に大きな電位差が生じ、場合によりドライブトランジスタの絶縁耐圧を超えてしまう恐れがある。この様な点から、従来はドライブトランジスタの絶縁耐圧をある程度確保する必要があり、容量素子の大容量化の妨げとなっていた。   On the other hand, in order to execute the mobility correction operation and the threshold voltage correction operation in each pixel circuit, it is necessary to switch the power supply voltage supplied to each pixel between high and low levels according to a predetermined sequence. In the process of switching the level of the power supply voltage, a large potential difference is generated between the source and drain of the drive transistor, and in some cases, the withstand voltage of the drive transistor may be exceeded. For this reason, conventionally, it has been necessary to ensure a certain level of dielectric strength of the drive transistor, which has hindered the increase in capacity of the capacitive element.

本発明の表示装置は、画素アレイ部と駆動部とからなり、画素アレイ部は、第1の電位とこれよりも低い第2の電位とが選択的に供給される給電線、行状の走査線、列状の信号線、及び、各走査線と各信号線とが交差する部分に配された行列状の画素を備える。各画素は、少なくともサンプリングトランジスタと、ドライブトランジスタと、発光素子と、保持容量とを備える。サンプリングトランジスタは、信号線と保持容量との間に挿入され、その制御端に接続された走査線からの制御信号に応じて映像信号の書き込みを行うように構成され、ドライブトランジスタは、発光素子と給電線との間に挿入され、その制御端に印加された電圧に応じて、発光素子への駆動電流を制御するように構成され、保持容量は、ドライブトランジスタの制御端に接続され、その保持電圧に応じた電圧をドライブトランジスタの制御端に印加するように構成されている。駆動部は、所定のシーケンスに従って制御信号及び映像信号を供給し且つ給電線の電位を切り換えて各画素を駆動し、以って、駆動電流のドライブトランジスタの閾電圧に対する依存性を補正するための閾電圧補正動作と、映像信号の信号電位を保持容量に書き込む書込動作と、保持容量に書き込まれた信号電位に応じて発光素子を発光させる発光動作とを含む一連の動作を行うように構成されている。ドライブトランジスタのゲートの電位をVg、閾電圧をVthとし、第1の電位をVccとするとき、発光期間における第1の電位は、Vg<Vcc+Vthを満たすように設定されており、駆動部は、給電線に第2の電位を供給した状態で、閾電圧補正動作及び書込動作を行い、書込動作の終了時においてサンプリングトランジスタをオフしてから、給電線からドライブトランジスタを介した電流によってドライブトランジスタの発光素子側のソース/ドレインの電位が上昇し、これに合わせてドライブトランジスタのゲートの電位が上昇し、その上昇の終了後に給電線の電位が第2の電位から第1の電位に上昇するように構成されている。 Display device of the present invention consists and the drive unit pixel array unit, image element array portion, the feeding line and the first and second potentials less than this is selectively supplied, the scanning of rows Lines, column-like signal lines, and matrix-like pixels arranged at portions where each scanning line and each signal line intersect. Each pixel includes at least a sampling transistor, Ru includes a drive transistor, a light emitting element, and a storage capacitor. The sampling transistor is inserted between the signal line and the storage capacitor, and is configured to write a video signal in accordance with a control signal from a scanning line connected to the control end of the sampling transistor. It is configured to control the drive current to the light emitting element according to the voltage applied to the control terminal, inserted between the power supply line and the storage capacitor is connected to the control terminal of the drive transistor A voltage corresponding to the voltage is applied to the control terminal of the drive transistor. The driving unit supplies a control signal and a video signal according to a predetermined sequence, and drives each pixel by switching the potential of the power supply line, thereby correcting the dependency of the driving current on the threshold voltage of the drive transistor. It is configured to perform a series of operations including a threshold voltage correction operation, a writing operation for writing the signal potential of the video signal to the holding capacitor, and a light emitting operation for causing the light emitting element to emit light according to the signal potential written to the holding capacitor. Has been. When the gate potential of the drive transistor is Vg, the threshold voltage is Vth, and the first potential is Vcc, the first potential in the light emission period is set to satisfy Vg <Vcc + Vth. The threshold voltage correction operation and the writing operation are performed with the second potential supplied to the power supply line, and the sampling transistor is turned off at the end of the writing operation, and then the drive is performed by the current from the power supply line via the drive transistor. The potential of the source / drain on the light emitting element side of the transistor rises, and the potential of the gate of the drive transistor rises accordingly. After the rise, the potential of the power supply line rises from the second potential to the first potential. Is configured to do.

好ましくは、駆動部は、画素が発光動作を行う時給電線を第1高電位とし、画素が閾電圧補正動作を行う時給電線を第1高電位より低い第2高電位とする。また、好ましくは、画素の全ての動作で該ドライブトランジスタのソースとドレイン間に加わる電圧が飽和動作領域に入るように第1高電位及び第2高電位と低電位のレベルを設定する。
更に好ましくは、駆動部は、給電線の電位を制御する電源スキャナを備え、電源スキャナは、シフトレジスタとその各段に接続された出力バッファとを備え、シフトレジスタは、順次各段毎に切り換信号を生成し、出力バッファは、電源ラインと接地ラインとの間に配され該切り換信号に応じて電源ライン側の第1又は第2高電位と接地ライン側の低電位を切り換えて対応する給電線に印加する。この場合、出力バッファは、電源ライン側に第1高電位と第2高電位が切り換わりながら供給される一方、これと対応して接地ライン側に第1低電位とこれより低い第2低電位が切り換わりながら供給されており、該電源ラインと該接地ラインとの間に配された該出力バッファを構成するトランジスタのソースとドレイン間に加わる電圧が絶縁耐圧を越えない様にする。また、出力バッファは、電源ライン側で第1高電位から第2高電位に切り換った後、接地ライン側で第1低電位から第2低電位に切り換え、接地ライン側で第2低電位から第1低電位に戻った後、電源ライン側で第2高電位から第1高電位に戻す。
本発明の表示装置の駆動方法は、第1の電位とこれよりも低い第2の電位とが選択的に供給される給電線、行状の走査線、列状の信号線、及び、各走査線と各信号線とが交差する部分に配された行列状の画素を備える画素アレイ部を有し、画素アレイ部の各画素は、少なくとも、サンプリングトランジスタ、ドライブトランジスタ、発光素子、及び、保持容量を備え、サンプリングトランジスタは、信号線と保持容量との間に挿入され、その制御端に接続された走査線からの制御信号に応じて映像信号の書き込みを行うように構成され、ドライブトランジスタは、発光素子と給電線との間に挿入され、その制御端に印加された電圧に応じて、発光素子への駆動電流を制御するように構成され、保持容量は、ドライブトランジスタの制御端に接続され、その保持電圧に応じた電圧を前記ドライブトランジスタの制御端に印加するように構成された表示装置の駆動方法である。ドライブトランジスタの閾電圧に応じた電圧を保持容量に設定する閾電圧補正工程と、映像信号の信号電位を保持容量に書き込む書込工程と、書込工程の終了時においてサンプリングトランジスタをオフしてから、給電線からドライブトランジスタを介した電流によって、発光素子の等価容量を充電し、以って、ドライブトランジスタの発光素子側のソース/ドレインの電位を上昇させ、これに合わせてドライブトランジスタのゲートの電位を上昇させる電位上昇工程と、保持容量に書き込まれた信号電位に応じて発光素子を発光させる発光工程とを有し、ドライブトランジスタのゲートの電位をVg、閾電圧をVthとし、第1の電位をVccとするとき、発光期間における第1の電位は、Vg<Vcc+Vthを満たすように設定されており、閾電圧補正工程及び書込工程は、給電線に第2の電位が供給された状態で実行され、電位上昇工程の処理が開始しドライブトランジスタのゲートの電位の上昇の終了後に給電線の電位を第2の電位から第1の電位に上昇させる。
Preferably, the drive unit, the hourly wires are picture element performs a light emitting operation with a first high potential, the pixel is a second high potential hourly wire lower than the first high potential for performing threshold voltage correction operation. Preferably, the levels of the first high potential, the second high potential, and the low potential are set so that the voltage applied between the source and drain of the drive transistor in all the operations of the pixel enters the saturation operation region.
More preferably, the drive unit includes a power supply scanner for controlling the potential of the feed line, the power supply scanner includes a shift register and its output buffer connected to each stage, the shift register sequentially in each stage It generates a cut signal, the output buffer is switched to the low potential of the first or second high-potential and the ground line side of the power line side in accordance with該切Ri signal is arranged between the power supply line and a ground line Applied to the corresponding feeder. In this case, the output buffer, while the first high potential and a second high potential is supplied while switched to the power supply line side, the first low potential and this lower than the second low to the ground line side Correspondingly The voltage is supplied while switching the potential so that the voltage applied between the source and drain of the transistor constituting the output buffer arranged between the power supply line and the ground line does not exceed the withstand voltage. The output buffer switches from the first high potential to the second high potential on the power supply line side, then switches from the first low potential to the second low potential on the ground line side, and switches to the second low potential on the ground line side. After returning to the first low potential, the second high potential is returned to the first high potential on the power line side.
According to the display device driving method of the present invention, a feeding line, a row-shaped scanning line, a column-shaped signal line, and each scanning line to which a first potential and a second potential lower than the first potential are selectively supplied. And each signal line have a pixel array portion having matrix-like pixels arranged at the intersections, and each pixel of the pixel array portion has at least a sampling transistor, a drive transistor, a light emitting element, and a storage capacitor The sampling transistor is inserted between the signal line and the storage capacitor, and is configured to write a video signal in accordance with a control signal from a scanning line connected to a control terminal thereof, and the drive transistor emits light The drive capacitor is inserted between the device and the power supply line, and the drive current to the light emitting device is controlled in accordance with the voltage applied to the control terminal. The storage capacitor is connected to the control terminal of the drive transistor. It is a method of driving a display device configured to apply a voltage corresponding to the holding voltage to the control terminal of the drive transistor. A threshold voltage correction step for setting a voltage corresponding to the threshold voltage of the drive transistor to the holding capacitor, a writing step for writing the signal potential of the video signal to the holding capacitor, and after the sampling transistor is turned off at the end of the writing step Then, the equivalent capacitance of the light emitting element is charged by the current from the feeder line through the drive transistor, thereby raising the potential of the source / drain on the light emitting element side of the drive transistor, and the gate of the drive transistor is adjusted accordingly. A potential raising step for raising the potential, and a light emitting step for causing the light emitting element to emit light in accordance with the signal potential written in the storage capacitor, wherein the gate potential of the drive transistor is Vg, the threshold voltage is Vth, When the potential is Vcc, the first potential in the light emission period is set to satisfy Vg <Vcc + Vth. Thus, the threshold voltage correcting step and the writing step are executed in a state where the second potential is supplied to the power supply line, the processing of the potential raising step is started, and after the rise of the potential of the gate of the drive transistor is finished, The potential is raised from the second potential to the first potential.

本発明によれば、給電線に印加する高電位を所定のシーケンスに従ってレベルの異なる第1高電位と第2高電位で切り換えている。これにより画素の一連の動作でドライブトランジスタのソースとドレインに過大な電圧が加わらないようにしている。これにより、ドライブトランジスタのソース/ドレイン間の絶縁耐圧を従来より下げることができる。換言すると、ドライブトランジスタのゲート絶縁膜を薄膜化できるので、これに合わせて保持容量の誘電体膜も薄くなるため、その大容量化が可能になる。   According to the present invention, the high potential applied to the power supply line is switched between the first high potential and the second high potential having different levels according to a predetermined sequence. This prevents an excessive voltage from being applied to the source and drain of the drive transistor in a series of pixel operations. As a result, the withstand voltage between the source and drain of the drive transistor can be lowered as compared with the prior art. In other words, since the gate insulating film of the drive transistor can be thinned, the dielectric film of the storage capacitor is also thinned accordingly, so that the capacity can be increased.

本発明にかかる表示装置の全体構成を示すブロック図である。1 is a block diagram showing an overall configuration of a display device according to the present invention. 図1に示した表示装置に組み込まれる画素の一例を示す回路図である。It is a circuit diagram which shows an example of the pixel integrated in the display apparatus shown in FIG. 図1及び図2に示した表示装置の動作説明に供する参考タイミングチャートである。3 is a reference timing chart for explaining the operation of the display device shown in FIGS. 1 and 2. 図1及び図2に示した表示装置の実施形態の動作説明に供するタイミングチャートである。3 is a timing chart for explaining the operation of the embodiment of the display device shown in FIGS. 1 and 2. 図1及び図2に示した表示装置の動作説明に供する回路図である。FIG. 3 is a circuit diagram for explaining operations of the display device shown in FIGS. 1 and 2. 同じく動作説明に供する回路図である。It is a circuit diagram similarly used for operation | movement description. 同じく動作説明に供する回路図である。It is a circuit diagram similarly used for operation | movement description. 同じく動作説明に供する回路図である。It is a circuit diagram similarly used for operation | movement description. 図1及び図2に示した表示装置に含まれる電源スキャナの構成を示す部分図である。FIG. 3 is a partial view illustrating a configuration of a power supply scanner included in the display device illustrated in FIGS. 1 and 2. 同じく電源スキャナの別の例を示す部分図である。It is a fragmentary figure which shows another example of a power supply scanner similarly. 図9に示した電源スキャナの動作説明に供するタイミングチャートである。10 is a timing chart for explaining the operation of the power supply scanner shown in FIG. 9. 図10に示した電源スキャナの動作説明に供するタイミングチャートである。11 is a timing chart for explaining the operation of the power supply scanner shown in FIG. 10. 図10に示した電源スキャナの動作説明に供する別のタイミングチャートである。11 is another timing chart for explaining the operation of the power supply scanner shown in FIG. 10. 本発明にかかる表示装置のデバイス構成を示す断面図である。It is sectional drawing which shows the device structure of the display apparatus concerning this invention. 本発明にかかる表示装置のモジュール構成を示す平面図である。It is a top view which shows the module structure of the display apparatus concerning this invention. 本発明にかかる表示装置を備えたテレビジョンセットを示す斜視図である。It is a perspective view which shows the television set provided with the display apparatus concerning this invention. 本発明にかかる表示装置を備えたデジタルスチルカメラを示す斜視図である。It is a perspective view which shows the digital still camera provided with the display apparatus concerning this invention. 本発明にかかる表示装置を備えたノート型パーソナルコンピューターを示す斜視図である。1 is a perspective view illustrating a notebook personal computer including a display device according to the present invention. 本発明にかかる表示装置を備えた携帯端末装置を示す模式図である。It is a schematic diagram which shows the portable terminal device provided with the display apparatus concerning this invention. 本発明にかかる表示装置を備えたビデオカメラを示す斜視図である。It is a perspective view which shows the video camera provided with the display apparatus concerning this invention.

以下図面を参照して本発明の実施の形態を詳細に説明する。図1は本発明にかかる表示装置の全体構成を示すブロック図である。図示するように、本表示装置は、画素アレイ部1とこれを駆動する駆動部とからなる。画素アレイ部1は、行状の走査線WSと、列状の信号線(信号ライン)SLと、両者が交差する部分に配された行列状の画素2と、各画素2の各行に対応して配された給電線(電源ライン)VLとを備えている。なお本例は、各画素2にRGB三原色のいずれかが割り当てられており、カラー表示が可能である。但しこれに限られるものではなく、単色表示のデバイスも含む。駆動部は、各走査線WSに順次制御信号を供給して画素2を行単位で線順次走査するライトスキャナ4と、この線順次走査に合わせて各給電線VLに第1電位と第2電位で切り換る電源電圧を供給する電源スキャナ6と、この線順次走査に合わせて列状の信号線SLに駆動信号となる信号電位と基準電位を供給する信号セレクタ(水平セレクタ)3とを備えている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the overall configuration of a display device according to the present invention. As shown in the figure, the display device includes a pixel array unit 1 and a drive unit that drives the pixel array unit 1. The pixel array section 1 corresponds to a row-shaped scanning line WS, a column-shaped signal line (signal line) SL, a matrix-shaped pixel 2 arranged at a portion where both intersect, and each row of each pixel 2. The power supply line (power supply line) VL is provided. In this example, any one of the three RGB primary colors is assigned to each pixel 2, and color display is possible. However, the present invention is not limited to this, and includes a monochrome display device. The drive unit sequentially supplies a control signal to each scanning line WS to scan the pixels 2 line-sequentially in units of rows, and the first potential and the second potential to each power supply line VL in accordance with the line sequential scanning. And a signal selector (horizontal selector) 3 for supplying a signal potential serving as a drive signal and a reference potential to the column-shaped signal lines SL in accordance with the line sequential scanning. ing.

図2は、図1に示した表示装置に含まれる画素2の具体的な構成及び結線関係を示す回路図である。図示するように、この画素2は有機ELデバイスなどで代表される発光素子ELと、サンプリングトランジスタTr1と、ドライブトランジスタTrdと、保持容量Csとを含む。サンプリングトランジスタTr1は、その制御端(ゲート)が対応する走査線WSに接続し、一対の電流端(ソース及びドレイン)の片方が対応する信号線SLに接続し、他方がドライブトランジスタTrdの制御端(ゲートG)に接続する。ドライブトランジスタTrdは、一対の電流端(ソースS及びドレイン)の一方が発光素子ELに接続し、他方が対応する給電線VLに接続している。本例では、ドライブトランジスタTrdがNチャネル型であり、そのドレインが給電線VLに接続する一方、ソースSが出力ノードとして発光素子ELのアノードに接続している。発光素子ELのカソードは所定のカソード電位Vcathに接続している。保持容量CsはドライブトランジスタTrdの片方の電流端であるソースSと制御端であるゲートGの間に接続している。   FIG. 2 is a circuit diagram showing a specific configuration and connection relationship of the pixel 2 included in the display device shown in FIG. As illustrated, the pixel 2 includes a light emitting element EL represented by an organic EL device, a sampling transistor Tr1, a drive transistor Trd, and a storage capacitor Cs. The control terminal (gate) of the sampling transistor Tr1 is connected to the corresponding scanning line WS, one of the pair of current terminals (source and drain) is connected to the corresponding signal line SL, and the other is connected to the control terminal of the drive transistor Trd. Connect to (Gate G). In the drive transistor Trd, one of a pair of current ends (source S and drain) is connected to the light emitting element EL, and the other is connected to the corresponding power supply line VL. In this example, the drive transistor Trd is an N-channel type, and its drain is connected to the power supply line VL, while the source S is connected to the anode of the light emitting element EL as an output node. The cathode of the light emitting element EL is connected to a predetermined cathode potential Vcath. The storage capacitor Cs is connected between the source S that is one of the current ends of the drive transistor Trd and the gate G that is the control end.

かかる構成において、サンプリングトランジスタTr1は走査線WSから供給された制御信号に応じて導通し、信号線SLから供給された信号電位をサンプリングして保持容量Csに保持する。ドライブトランジスタTrdは、第1電位(高電位Vcc)にある給電線VLから電流の供給を受け保持容量Csに保持された信号電位に応じて駆動電流を発光素子ELに流す。ライトスキャナ4は、信号線SLが信号電位にある時間帯にサンプリングトランジスタTr1を導通状態にするため、所定のパルス幅の制御信号を制御線WSに出力し、以って保持容量Csに信号電位を保持すると同時にドライブトランジスタTrdの移動度μに対する補正を信号電位に加える。この後ドライブトランジスタTrdは保持容量Csに書き込まれた信号電位Vsigに応じた駆動電流を発光素子ELに供給し、発光動作に入る。   In such a configuration, the sampling transistor Tr1 is turned on in response to a control signal supplied from the scanning line WS, samples the signal potential supplied from the signal line SL, and holds it in the holding capacitor Cs. The drive transistor Trd is supplied with current from the power supply line VL at the first potential (high potential Vcc), and flows drive current to the light emitting element EL in accordance with the signal potential held in the holding capacitor Cs. The write scanner 4 outputs a control signal having a predetermined pulse width to the control line WS in order to bring the sampling transistor Tr1 into a conductive state in a time zone in which the signal line SL is at the signal potential, and thus the signal potential to the holding capacitor Cs. At the same time, a correction for the mobility μ of the drive transistor Trd is added to the signal potential. Thereafter, the drive transistor Trd supplies a drive current corresponding to the signal potential Vsig written in the storage capacitor Cs to the light emitting element EL, and starts a light emitting operation.

本画素回路2は、上述した移動度補正機能に加え閾電圧補正機能も備えている。即ち電源スキャナ6は、サンプリングトランジスタTr1が信号電位Vsigをサンプリングする前に、第1タイミングで給電線VLを第1電位(高電位Vcc)から第2電位(低電位Vss2)に切り換える。またライトスキャナ4は同じくサンプリングトランジスタTr1が信号電位Vsigをサンプリングする前に、第2タイミングでサンプリングトランジスタTr1を導通させて信号線SLから基準電位Vss1をドライブトランジスタTrdのゲートGに印加すると共にドライブトランジスタTrdのソースSを第2電位(Vss2)にセットする。電源スキャナ6は第2タイミングの後の第3タイミングで給電線VLを第2電位Vss2から第1電位Vccに切り換えて、ドライブトランジスタTrdの閾電圧Vthに相当する電圧を保持容量Csに保持する。かかる閾電圧補正機能により、本表示装置は画素毎にばらつくドライブトランジスタTrdの閾電圧Vthの影響をキャンセルすることができる。   The pixel circuit 2 has a threshold voltage correction function in addition to the mobility correction function described above. That is, the power supply scanner 6 switches the power supply line VL from the first potential (high potential Vcc) to the second potential (low potential Vss2) at the first timing before the sampling transistor Tr1 samples the signal potential Vsig. Similarly, the write scanner 4 applies the reference potential Vss1 from the signal line SL to the gate G of the drive transistor Trd from the signal line SL by making the sampling transistor Tr1 conductive at the second timing before the sampling transistor Tr1 samples the signal potential Vsig. The source S of Trd is set to the second potential (Vss2). The power supply scanner 6 switches the power supply line VL from the second potential Vss2 to the first potential Vcc at a third timing after the second timing, and holds a voltage corresponding to the threshold voltage Vth of the drive transistor Trd in the holding capacitor Cs. With this threshold voltage correction function, the display device can cancel the influence of the threshold voltage Vth of the drive transistor Trd that varies from pixel to pixel.

本画素回路2は、さらにブートストラップ機能も備えている。即ちライトスキャナ4は保持容量Csに信号電位Vsigが保持された段階で走査線WSに対する制御信号の印加を解除し、サンプリングトランジスタTr1を非道通状態にしてドライブトランジスタTrdのゲートGを信号線SLから電気的に切り離し、以ってドライブトランジスタTrdのソースSの電位変動にゲートGの電位が連動し、ゲートGとソースS間の電圧Vgsを一定に維持することができる。   The pixel circuit 2 further has a bootstrap function. That is, the write scanner 4 cancels the application of the control signal to the scanning line WS at the stage where the signal potential Vsig is held in the holding capacitor Cs, and the sampling transistor Tr1 is turned off to connect the gate G of the drive transistor Trd from the signal line SL. By electrically disconnecting, the potential of the gate G is interlocked with the potential fluctuation of the source S of the drive transistor Trd, and the voltage Vgs between the gate G and the source S can be maintained constant.

本発明の特徴事項として、電源スキャナ6は、給電線VLに印加する高電位Vccを所定のシーケンスに応じてレベルの異なる第1高電位と第2高電位で切り換えることにより、画素2の一連の動作でドライブトランジスタTrdのソースSとドレインDの間に加わる電圧が絶縁耐圧を超えないようにしている。図2に示した実施形態では、第1高電位がVccに相当し、第2高電位はこれより低いレベルとなっている。本明細書ではこの第2高電位をVcc2で表す。具体的な動作では、電源スキャナ6は、画素2が発光動作を行うとき給電線VLを第1高電位Vccとし、画素2が閾電圧補正動作を行うとき給電線VLを第1高電位Vccよりも低い第2高電位Vcc2としている。電源スキャナ6は、画素2の閾電圧補正動作、移動度補正動作、信号電位書込動作及び発光動作を含む全ての動作で、ドライブトランジスタTrdのソースSとドレインDの間に加わる電圧が飽和動作領域に入るように、第1高電位Vcc及び第2高電位Vcc2と低電位Vss2のレベルを設定している。   As a feature of the present invention, the power supply scanner 6 switches the high potential Vcc applied to the power supply line VL between the first high potential and the second high potential having different levels in accordance with a predetermined sequence, so that a series of pixels 2 In operation, the voltage applied between the source S and drain D of the drive transistor Trd is prevented from exceeding the withstand voltage. In the embodiment shown in FIG. 2, the first high potential corresponds to Vcc, and the second high potential is at a lower level. In this specification, this second high potential is represented by Vcc2. In a specific operation, the power supply scanner 6 sets the power supply line VL to the first high potential Vcc when the pixel 2 performs the light emission operation, and sets the power supply line VL from the first high potential Vcc when the pixel 2 performs the threshold voltage correction operation. The second high potential Vcc2 is also low. In the power supply scanner 6, the voltage applied between the source S and the drain D of the drive transistor Trd is saturated in all operations including the threshold voltage correcting operation, the mobility correcting operation, the signal potential writing operation, and the light emitting operation of the pixel 2. The levels of the first high potential Vcc, the second high potential Vcc2, and the low potential Vss2 are set so as to enter the region.

図3は、図2に示した画素回路2の動作説明に供するタイミングチャートである。但しこのタイミングチャートは参考例であり、電源スキャナ6が給電線VLに供給する電位は3レベルでなく高電位Vccと低電位Vss2の2レベルとなっている。このタイミングチャートは、時間軸を共通にして、走査線WSの電位変化、給電線VLの電位変化及び信号線SLの電位変化を表している。またこれらの電位変化と並行に、ドライブトランジスタTrdのゲートG及びソースSの電位変化も表してある。図3のタイミングチャートに示すように、画素は前のフィールドの発光期間から当該フィールドの非発光期間に入り、そのあと当該フィールドの発光期間となる。この非発光期間で準備動作、閾電圧補正動作、信号書込動作、移動度補正動作などを行う。   FIG. 3 is a timing chart for explaining the operation of the pixel circuit 2 shown in FIG. However, this timing chart is a reference example, and the potential supplied from the power supply scanner 6 to the power supply line VL is not three levels, but two levels of a high potential Vcc and a low potential Vss2. This timing chart represents a change in the potential of the scanning line WS, a change in the potential of the power supply line VL, and a change in the potential of the signal line SL, with a common time axis. In parallel with these potential changes, the potential changes of the gate G and the source S of the drive transistor Trd are also shown. As shown in the timing chart of FIG. 3, the pixel enters the non-light emission period of the field from the light emission period of the previous field, and then becomes the light emission period of the field. During this non-emission period, a preparation operation, a threshold voltage correction operation, a signal writing operation, a mobility correction operation, and the like are performed.

前フィールドの発光期間では、給電線VLが高電位Vccにあり、ドライブトランジスタTrdが駆動電流Idsを発光素子ELに供給している。駆動電流Idsは高電位Vccにある給電線VLからドライブトランジスタTrdを介して発光素子ELを通り、カソードラインに流れ込んでいる。   In the light emission period of the previous field, the power supply line VL is at the high potential Vcc, and the drive transistor Trd supplies the drive current Ids to the light emitting element EL. The drive current Ids flows from the power supply line VL at the high potential Vcc through the light emitting element EL through the drive transistor Trd to the cathode line.

続いて当該フィールドの非発光期間に入るとまずタイミングT1で給電線VLを高電位Vccから低電位Vss2に切り換える。これにより給電線VLはVss2まで放電され、さらにドライブトランジスタTrdのソースSの電位はVss2まで下降する。これにより発光素子ELのアノード電位(即ちドライブトランジスタTrdのソース電位)は逆バイアス状態となるため、駆動電流が流れなくなり消灯する。またドライブトランジスタのソースSの電位降下に連動してゲートGの電位も降下する。   Subsequently, when the non-light-emission period of the field starts, the power supply line VL is first switched from the high potential Vcc to the low potential Vss2 at timing T1. As a result, the power supply line VL is discharged to Vss2, and the potential of the source S of the drive transistor Trd drops to Vss2. As a result, the anode potential of the light emitting element EL (that is, the source potential of the drive transistor Trd) is in a reverse bias state, so that the drive current does not flow and the light is turned off. Further, the potential of the gate G also drops in conjunction with the potential drop of the source S of the drive transistor.

続いてタイミングT2になると、走査線WSを低レベルから高レベルに切り換えることで、サンプリングトランジスタTr1が導通状態になる。この時信号線SLは基準電位Vss1にある。よってドライブトランジスタTrdのゲートGの電位は導通したサンプリングトランジスタTr1を通じて信号線SLの基準電位Vss1となる。この時ドライブトランジスタTrdのソースSの電位はVss1よりも十分低い電位Vss2にある。この様にしてドライブトランジスタTrdのゲートGとソースSとの間の電圧VgsがドライブトランジスタTrdの閾電圧Vthより大きくなるように、初期化される。タイミングT1からタイミングT3までの期間T1‐T3はドライブトランジスタTrdのゲートG/ソースS間電圧Vgsを予めVth以上に設定する準備期間である。   Subsequently, at timing T2, the sampling transistor Tr1 becomes conductive by switching the scanning line WS from the low level to the high level. At this time, the signal line SL is at the reference potential Vss1. Therefore, the potential of the gate G of the drive transistor Trd becomes the reference potential Vss1 of the signal line SL through the conducting sampling transistor Tr1. At this time, the potential of the source S of the drive transistor Trd is at a potential Vss2 that is sufficiently lower than Vss1. In this way, the voltage Vgs between the gate G and the source S of the drive transistor Trd is initialized so as to be larger than the threshold voltage Vth of the drive transistor Trd. A period T1-T3 from the timing T1 to the timing T3 is a preparation period in which the gate G / source S voltage Vgs of the drive transistor Trd is set to Vth or higher in advance.

この後タイミングT3になると、給電線VLが低電位Vss2から高電位Vccに遷移し、ドライブトランジスタTrdのソースSの電位が上昇を開始する。やがてドライブトランジスタTrdのゲートG/ソースS間電圧Vgsが閾電圧Vthとなった所で電流がカットオフする。この様にしてドライブトランジスタTrdの閾電圧Vthに相当する電圧が保持容量Csに書き込まれる。これが閾電圧補正動作である。この時電流がもっぱら保持容量Cs側に流れ、発光素子ELには流れないようにするため、発光素子ELがカットオフとなるようにカソード電位Vcathを設定しておく。   Thereafter, at timing T3, the power supply line VL changes from the low potential Vss2 to the high potential Vcc, and the potential of the source S of the drive transistor Trd starts to rise. Eventually, the current is cut off when the voltage Vgs between the gate G and the source S of the drive transistor Trd becomes the threshold voltage Vth. In this way, a voltage corresponding to the threshold voltage Vth of the drive transistor Trd is written into the storage capacitor Cs. This is the threshold voltage correction operation. At this time, the cathode potential Vcath is set so that the light emitting element EL is cut off in order to prevent the current from flowing to the storage capacitor Cs and not to the light emitting element EL.

タイミングT4では走査線WSがハイレベルからローレベルに戻る。換言すると、走査線WSに印加された第一のパルスが解除され、サンプリングトランジスタはオフ状態になる。以上の説明から明らかなように、第一パルスは閾電圧補正動作を行うために、サンプリングトランジスタTr1のゲートに印加される。   At timing T4, the scanning line WS returns from the high level to the low level. In other words, the first pulse applied to the scanning line WS is released, and the sampling transistor is turned off. As is clear from the above description, the first pulse is applied to the gate of the sampling transistor Tr1 in order to perform the threshold voltage correction operation.

この後信号線SLが基準電位Vss1から信号電位Vsigに切り換る。続いてタイミングT5で走査線WSが再びローレベルからハイレベルに立上る。換言すると第二のパルスがサンプリングトランジスタTr1のゲートに印加される。これによりサンプリングトランジスタTr1は再びオンし、信号線SLから信号電位Vsigをサンプリングする。よってドライブトランジスタTrdのゲートGの電位は信号電位Vsigになる。ここで発光素子ELは始めカットオフ状態(ハイインピーダンス状態)にあるためドライブトランジスタTrdのドレインとソースの間に流れる電流は専ら保持容量Csと発光素子ELの等価容量に流れ込み充電を開始する。この後サンプリングトランジスタTr1がオフするタイミングT6までに、ドライブトランジスタTrdのソースSの電位はΔVだけ上昇する。この様にして映像信号の信号電位VsigがVthに足し込まれる形で保持容量Csに書き込まれる共に、移動度補正用の電圧ΔVが保持容量Csに保持された電圧から差し引かれる。よってタイミングT5からタイミングT6まで期間T5‐T6が信号書込期間&移動度補正期間となる。換言すると、走査線WSに第二パルスが印加されると、信号書込動作及び移動度補正動作が行われる。信号書込期間&移動度補正期間T5‐T6は、第二パルスのパルス幅に等しい。即ち第二パルスのパルス幅が移動度補正期間を規定している。   Thereafter, the signal line SL is switched from the reference potential Vss1 to the signal potential Vsig. Subsequently, at timing T5, the scanning line WS rises again from the low level to the high level. In other words, the second pulse is applied to the gate of the sampling transistor Tr1. As a result, the sampling transistor Tr1 is turned on again, and the signal potential Vsig is sampled from the signal line SL. Therefore, the potential of the gate G of the drive transistor Trd becomes the signal potential Vsig. Here, since the light emitting element EL is initially in the cut-off state (high impedance state), the current flowing between the drain and the source of the drive transistor Trd flows exclusively into the holding capacitor Cs and the equivalent capacity of the light emitting element EL and starts charging. Thereafter, by the timing T6 when the sampling transistor Tr1 is turned off, the potential of the source S of the drive transistor Trd rises by ΔV. In this way, the signal potential Vsig of the video signal is written to the storage capacitor Cs in a form added to Vth, and the mobility correction voltage ΔV is subtracted from the voltage stored in the storage capacitor Cs. Therefore, the period T5-T6 from the timing T5 to the timing T6 becomes a signal writing period & mobility correction period. In other words, when the second pulse is applied to the scanning line WS, a signal writing operation and a mobility correction operation are performed. The signal writing period & mobility correction period T5-T6 is equal to the pulse width of the second pulse. That is, the pulse width of the second pulse defines the mobility correction period.

この様に信号書込期間T5‐T6では信号電にVsigの書込みと補正量ΔVの調整が同時に行われる。Vsigが高いほどドライブトランジスタTrdが供給する電流Idsは大きくなり、ΔVの絶対値も大きくなる。従って発光輝度レベルに応じた移動度補正が行われる。Vsigを一定とした場合、ドライブトランジスタTrdの移動度μが大きいほどΔVの絶対値が大きくなる。換言すると移動度μが大きいほど保持容量Csに対する負帰還量ΔVが大きくなるので、画素毎の移動度μのばらつきを取り除くことができる。   In this way, in the signal writing period T5-T6, the signal voltage is written to Vsig and the correction amount ΔV is adjusted simultaneously. As Vsig increases, the current Ids supplied from the drive transistor Trd increases and the absolute value of ΔV also increases. Therefore, mobility correction is performed according to the light emission luminance level. When Vsig is constant, the absolute value of ΔV increases as the mobility μ of the drive transistor Trd increases. In other words, the larger the mobility μ is, the larger the negative feedback amount ΔV with respect to the storage capacitor Cs is, so that variation in the mobility μ for each pixel can be removed.

最後にタイミングT6になると、前述したように走査線WSが低レベル側に遷移し、サンプリングトランジスタTr1はオフ状態となる。これによりドライブトランジスタTrdのゲートGは信号線SLから切り離される。同時にドレイン電流Idsが発光素子ELを流れ始める。これにより発光素子ELのアノード電位は駆動電流Idsに応じて上昇する。発光素子ELのアノード電位の上昇は、即ちドライブトランジスタTrdのソースSの電位上昇に他ならない。ドライブトランジスタTrdのソースSの電位が上昇すると、保持容量Csのブートストラップ動作によりドライブトランジスタTrdのゲートGの電位も連動して上昇する。ゲート電位の上昇量はソース電位の上昇量に等しくなる。ゆえに発光期間中ドライブトランジスタTrdのゲートG/ソースS間電圧Vgsは一定に保持される。このVgsの値は信号電位Vsigに閾電圧Vth及び移動量μの補正をかけたものとなっている。ドライブトランジスタTrdは、飽和領域で動作する。即ちドライブトランジスタTrdは、ゲートG/ソースS間電圧Vgsに応じた駆動電流Idsを供給する。このVgsの値は信号電位Vsigに閾電圧Vth及び移動量μの補正をかけたものとなっている。   Finally, at timing T6, as described above, the scanning line WS shifts to the low level side, and the sampling transistor Tr1 is turned off. As a result, the gate G of the drive transistor Trd is disconnected from the signal line SL. At the same time, the drain current Ids starts to flow through the light emitting element EL. As a result, the anode potential of the light emitting element EL rises according to the drive current Ids. The increase in the anode potential of the light emitting element EL is none other than the increase in the potential of the source S of the drive transistor Trd. When the potential of the source S of the drive transistor Trd rises, the potential of the gate G of the drive transistor Trd also rises in conjunction with the bootstrap operation of the storage capacitor Cs. The amount of increase in gate potential is equal to the amount of increase in source potential. Therefore, the voltage Vgs between the gate G and the source S of the drive transistor Trd is kept constant during the light emission period. The value of Vgs is obtained by correcting the signal potential Vsig with the threshold voltage Vth and the movement amount μ. The drive transistor Trd operates in the saturation region. That is, the drive transistor Trd supplies a drive current Ids according to the gate G / source S voltage Vgs. The value of Vgs is obtained by correcting the signal potential Vsig with the threshold voltage Vth and the movement amount μ.

図3に示した参考例では、ライトスキャナ4は1H内で2回制御信号のパルスを出力している。画素2は1回目のパルスに応答して閾電圧補正を行い、2回目のパルスに応じて信号電位書込動作と移動度補正動作を同時に行っている。一方電源スキャナ6が給電線DSに供給する電源電圧は高電位Vccと低電位Vss2の二値を用い、閾電圧補正動作を開始するときはタイミングチャートに示すようにドライブトランジスタTrdのソースSは低電位Vss2となり、ドレインは高電位Vccになる。動作の関係上、高電位Vccと低電位Vss2の電位差は15V以上に達する。   In the reference example shown in FIG. 3, the write scanner 4 outputs the control signal pulse twice within 1H. The pixel 2 performs threshold voltage correction in response to the first pulse, and simultaneously performs a signal potential writing operation and a mobility correction operation in response to the second pulse. On the other hand, the power supply voltage supplied to the power supply line DS by the power supply scanner 6 uses two values of the high potential Vcc and the low potential Vss2, and when starting the threshold voltage correction operation, the source S of the drive transistor Trd is low as shown in the timing chart. The potential becomes Vss2, and the drain becomes the high potential Vcc. In terms of operation, the potential difference between the high potential Vcc and the low potential Vss2 reaches 15V or more.

一方、パネルの高精細化が進むにつれ、1画素当たりの面積は小さくなり、これに応じて1画素当たりの保持容量Csの容量値が小さくなる。保持容量Csの容量値が小さくなると、これに比例して移動度補正時間が短くなるので、移動度補正時間のばらつきに対するマージンが低下し、画面上に走査線に沿った筋などが発生してしまう。   On the other hand, as the definition of the panel increases, the area per pixel decreases, and the capacitance value of the storage capacitor Cs per pixel decreases accordingly. As the capacitance value of the storage capacitor Cs decreases, the mobility correction time decreases in proportion to this, so the margin for variations in the mobility correction time decreases, and stripes along the scanning line occur on the screen. End up.

この対策として、保持容量の誘電体膜を薄くして、その大容量化を図ることが考えられる。一般に画素回路を構成する保持容量やトランジスタは薄膜プロセスを用いて同時に形成される。保持容量Csの誘電体膜とトランジスタのゲート絶縁膜は同層となっている。保持容量Csの大容量化のため誘電体膜を薄くしようとすると、必然的にドライブトランジスタのゲート絶縁膜も薄くしなければならず、ドライブトランジスタの耐圧が低下してしまう。特にドライブトランジスタTrdのソース/ドレイン間耐圧は12V程度に低下してしまう。図1及び図2に示した表示装置は2個のトランジスタで複雑な補正動作を行うため、画素に供給する電源電圧を高電位と低電位で交互に切り換えており、ドライブトランジスタのソース/ドレイン間には最悪15V以上の電圧が印加されてしまう。従って保持容量を大容量化すると、ドライブトランジスタTrdのソース/ドレイン間耐圧の許容値を超えて、電圧が印加される危険性があり、このままではドライブトランジスタTrdのゲート絶縁膜薄膜化ひいては保持容量Csの大容量化が難しい。   As a countermeasure, it is conceivable to increase the capacity by thinning the dielectric film of the storage capacitor. In general, a storage capacitor and a transistor constituting a pixel circuit are formed simultaneously using a thin film process. The dielectric film of the storage capacitor Cs and the gate insulating film of the transistor are in the same layer. If the dielectric film is made thin in order to increase the storage capacity Cs, the gate insulating film of the drive transistor must inevitably be made thin, and the breakdown voltage of the drive transistor is lowered. In particular, the source / drain breakdown voltage of the drive transistor Trd is reduced to about 12V. Since the display device shown in FIG. 1 and FIG. 2 performs a complex correction operation with two transistors, the power supply voltage supplied to the pixel is alternately switched between a high potential and a low potential, and between the source and drain of the drive transistor A voltage of 15 V or more is applied to the worst case. Therefore, if the storage capacitor is increased, there is a risk that a voltage will be applied beyond the allowable value of the source / drain breakdown voltage of the drive transistor Trd. In this state, the gate insulating film of the drive transistor Trd is made thinner and the storage capacitor Cs. It is difficult to increase the capacity.

図4は、同じく図1及び図2に示した表示装置の動作説明に供するタイミングチャートである。このタイミングチャートは本発明の実施形態を表しており、理解を容易にするため図3に示した参考例のタイミングチャートと同様の表記を採用している。図示するように、本実施形態では給電線VLに印加する電圧を参考例の2値(Vcc,Vss2)から3値(Vcc,Vcc2,Vss2)へと変更している。ここで新たに追加した電位Vcc2は、参考例で用いた高電位Vccと低電位Vss2の中間電位である。新たに追加した中間電位Vcc2が給電線VLに印加されている期間で、閾電圧補正動作、信号電位書込動作及び移動度補正動作を行い、その後サンプリングトランジスタTr1がオフして発光期間になった後給電線VLを高電位Vccまで引き上げる。これによりドライブトランジスタTrdのソース/ドレイン間に印加される耐圧を12V以下とし、ゲート絶縁膜の薄膜化を可能にする。   FIG. 4 is a timing chart for explaining the operation of the display device shown in FIGS. This timing chart represents an embodiment of the present invention, and the same notation as the timing chart of the reference example shown in FIG. 3 is adopted for easy understanding. As shown in the drawing, in this embodiment, the voltage applied to the power supply line VL is changed from the binary value (Vcc, Vss2) of the reference example to the ternary value (Vcc, Vcc2, Vss2). The newly added potential Vcc2 is an intermediate potential between the high potential Vcc and the low potential Vss2 used in the reference example. During the period in which the newly added intermediate potential Vcc2 is applied to the power supply line VL, the threshold voltage correction operation, the signal potential writing operation, and the mobility correction operation are performed, and then the sampling transistor Tr1 is turned off to enter the light emission period. The rear feed line VL is pulled up to the high potential Vcc. As a result, the withstand voltage applied between the source and drain of the drive transistor Trd is set to 12 V or less, and the gate insulating film can be made thinner.

図4のタイミングチャートに示すように、各画素はタイミングT1から非発光期間に入り、タイミングT6の後発光期間に切り換る。この非発光期間T1‐T6の中で、前半は給電線VLが低電位Vss2にある。後半の閾電圧補正期間T3‐T4や信号電位書込み期間T5‐T6に入ると、給電線VLは中間電位Vcc2まで上がる。その後発光期間に入ると給電線VLは高電位Vccまでさらに上がる。この給電線VLの電位は、ドライブトランジスタTrdのドレインD側に印加される。   As shown in the timing chart of FIG. 4, each pixel enters a non-light emission period from timing T1, and switches to a light emission period after timing T6. In the non-light emitting period T1-T6, the power supply line VL is at the low potential Vss2 in the first half. In the latter half of the threshold voltage correction period T3-T4 and the signal potential writing period T5-T6, the power supply line VL rises to the intermediate potential Vcc2. Thereafter, when the light emission period starts, the power supply line VL further rises to the high potential Vcc. The potential of the power supply line VL is applied to the drain D side of the drive transistor Trd.

一方ドライブトランジスタTrdのソース電位に着目すると、非発光期間T1‐T3で最も低くなる。このとき給電線VLも低電位Vss2にあるため、絶縁耐圧を超える恐れはない。続いて補正期間T3‐T6になると、ソース電位は若干上昇するがドレイン側が高電位に切り換る。このとき中間電位Vcc2ではなく参考例のように高電位Vccとすると、ドライブトランジスタの耐圧を超える恐れがある。そこで本発明では給電線VLの電位を中間電位Vcc2としている。その後発光期間に入ると給電線VLは高電位Vccになるが、このときにはブートストラップ動作でドライブトランジスタのソース電位も大きく上昇している。従ってドライブトランジスタTrdのドレイン/ソース間電圧が絶縁耐圧を超える恐れが無い。   On the other hand, when attention is paid to the source potential of the drive transistor Trd, it becomes the lowest in the non-light emitting period T1-T3. At this time, since the power supply line VL is also at the low potential Vss2, there is no possibility of exceeding the withstand voltage. Subsequently, in the correction period T3-T6, the source potential rises slightly, but the drain side switches to a high potential. At this time, if the high potential Vcc is used instead of the intermediate potential Vcc2 as in the reference example, the withstand voltage of the drive transistor may be exceeded. Therefore, in the present invention, the potential of the feeder line VL is set to the intermediate potential Vcc2. Thereafter, when the light emission period starts, the power supply line VL becomes the high potential Vcc. At this time, the source potential of the drive transistor is also greatly increased by the bootstrap operation. Therefore, there is no possibility that the drain-source voltage of the drive transistor Trd exceeds the withstand voltage.

以上の説明から明らかなように、ドライブトランジスタTrdのソース/ドレイン間電圧が絶縁耐圧を超える危険性が最も高い期間は、閾電圧補正期間や移動度補正期間である。そこでこれらの補正動作を行う期間は、給電線VLを中間電位Vcc2で抑えることにより、過大な電圧が絶縁耐圧を超えてドライブトランジスタのソース/ドレイン間に印加されることを防いでいる。換言するとドライブトランジスタTrdの絶縁耐圧を参考例に比べて低くすることができ、その分ゲート絶縁膜の薄膜化ひいては保持容量の大容量化を達成することができる。   As is apparent from the above description, the period during which the source / drain voltage of the drive transistor Trd has the highest risk of exceeding the withstand voltage is the threshold voltage correction period or the mobility correction period. Therefore, during the period during which these correction operations are performed, the power supply line VL is suppressed to the intermediate potential Vcc2, thereby preventing an excessive voltage from being applied between the source / drain of the drive transistor beyond the withstand voltage. In other words, the withstand voltage of the drive transistor Trd can be made lower than that of the reference example, and accordingly, the gate insulating film can be made thinner and the holding capacity can be increased accordingly.

引き続き図5〜図8を参照して、本発明にかかる表示装置の動作を詳細に説明する。図5は、準備期間T2‐T3における画素の電位状態を示している。この準備期間では信号線SLを基準電位Vss1にしておき、サンプリングトランジスタTr1をオンする。これによりドライブトランジスタTrdのゲートGに基準電位Vss1が書き込まれる。一方給電線は低電位Vss2にあり、これはVss1に対してVth分よりさらに低い値であるので、ドライブトランジスタTrdはオン状態にあり、そのソース電位もVss2となる。この様にして準備期間T2‐T3では、ドライブトランジスタTrdのゲートG及びソースSがそれぞれVss1及びVss2に初期化される。その際、ドライブトランジスタTrdのドレイン及びソースは共にVss2であり、電位差は0Vである。   The operation of the display device according to the present invention will be described in detail with reference to FIGS. FIG. 5 shows the potential state of the pixel in the preparation period T2-T3. In this preparation period, the signal line SL is set to the reference potential Vss1, and the sampling transistor Tr1 is turned on. As a result, the reference potential Vss1 is written to the gate G of the drive transistor Trd. On the other hand, the power supply line is at the low potential Vss2, which is a value lower than the Vth by Vth1, so that the drive transistor Trd is in the on state and its source potential is also Vss2. In this way, in the preparation period T2-T3, the gate G and the source S of the drive transistor Trd are initialized to Vss1 and Vss2, respectively. At this time, the drain and source of the drive transistor Trd are both Vss2, and the potential difference is 0V.

図6は閾電圧補正期間T3‐T4における画素の電位状態を表している。この閾電圧補正期間になると、電源電圧をVcc2まで上げ閾電圧補正動作を実行する。ドライブトランジスタTrdにはVgsに比例してドレイン電流Idsが流れ、ドライブトランジスタTrdがカットオフするまでソース電位は上昇する。ここで参考例では高電位Vccと低電位Vss2の電位差が15V以上であったが、本実施形態ではVcc2とVss2の電位差は12V以下となるように設定する。ここでドライブトランジスタTrdのゲート電位であるVss1は前述したようにVss2+Vthより多少大きい程度であるので、ドライブトランジスタTrdはVcc2に対して飽和領域で動作している。   FIG. 6 shows the potential state of the pixel in the threshold voltage correction period T3-T4. In this threshold voltage correction period, the power supply voltage is raised to Vcc2 and the threshold voltage correction operation is executed. A drain current Ids flows through the drive transistor Trd in proportion to Vgs, and the source potential rises until the drive transistor Trd is cut off. Here, in the reference example, the potential difference between the high potential Vcc and the low potential Vss2 is 15 V or more, but in this embodiment, the potential difference between Vcc2 and Vss2 is set to be 12 V or less. Here, since the gate potential Vss1 of the drive transistor Trd is slightly larger than Vss2 + Vth as described above, the drive transistor Trd operates in a saturation region with respect to Vcc2.

図7は移動度補正期間T5‐T6における画素の電位状態を表している。前述した閾電圧補正動作が終わると一旦サンプリングトランジスタTr1をオフし、信号線SLを信号電位Vsigに書き換えた後、再びサンプリングトランジスタTr1をオンする。これによりドライブトランジスタTrdのゲートGに対して信号電位Vsigを書込みつつ、ドレイン電流Idsを保持容量Csに負帰還することで移動度補正動作を行っている。このとき電源電圧は中間のVcc2のままである。一般的に信号セレクタの電圧設定の関係で、Vsigの電位はVss1+5V程度に設定している。上記によりVcc2=Vss2+12=Vss1−Vth+12≒Vss1+10となり(ただしVthは2Vとする)、Vcc2>Vsigであるので、この移動度補正動作中ドライブトランジスタTrdは常に飽和領域で動作している。移動度補正動作を正確に行うためには、ドライブトランジスタTrdは飽和領域で動作する必要があり、本発明では正確な動作がなされている。   FIG. 7 shows the potential state of the pixel in the mobility correction period T5-T6. When the threshold voltage correction operation described above is completed, the sampling transistor Tr1 is once turned off, the signal line SL is rewritten to the signal potential Vsig, and then the sampling transistor Tr1 is turned on again. Thus, the mobility correction operation is performed by negatively feeding back the drain current Ids to the storage capacitor Cs while writing the signal potential Vsig to the gate G of the drive transistor Trd. At this time, the power supply voltage remains at the intermediate Vcc2. Generally, the potential of Vsig is set to about Vss1 + 5V due to the voltage setting of the signal selector. Thus, Vcc2 = Vss2 + 12 = Vss1−Vth + 12≈Vss1 + 10 (where Vth is 2V), and Vcc2> Vsig. Therefore, during this mobility correction operation, the drive transistor Trd always operates in the saturation region. In order to accurately perform the mobility correction operation, the drive transistor Trd needs to operate in the saturation region, and the present invention performs an accurate operation.

図8は発光期間における画素の電位状態を表している。サンプリングトランジスタTr1をオフして移動度補正動作を終了した後、画素の電源電圧をVccに上昇させる。サンプリングトランジスタTr1をオフすると、ドライブトランジスタTrdのゲートGのインピーダンスは高くなるので、発光素子ELのアノード電位(即ちドライブトランジスタTrdのソース電位)はドレイン電流Idsに依存して上昇し、これに合わせてゲートGの電位もブートストラップする。ここで白表示の場合では、ソース電位が5V以上上昇してしまう。そのため電源電圧が中間のVcc2のままであると、Vg(ゲート電位)>Vcc2+Vthとなってしまい、ドライブトランジスタTrdが線形駆動になってしまう恐れがある。線形駆動では画質ユニフォーミティが低下してしまう。そこで本発明では発光期間において電源電圧Vccが、Vg<Vcc+Vthを満たすように設定している。これにより発光期間中ドライブトランジスタTrdは飽和領域で動作し、高いユニフォーミティを得ることができる。但しこの高電位VccはドライブトランジスタTrdのソース/ドレイン間電圧が12V以内となるような設定にする。   FIG. 8 shows the potential state of the pixel in the light emission period. After the sampling transistor Tr1 is turned off to complete the mobility correction operation, the pixel power supply voltage is raised to Vcc. When the sampling transistor Tr1 is turned off, the impedance of the gate G of the drive transistor Trd increases, so the anode potential of the light emitting element EL (that is, the source potential of the drive transistor Trd) rises depending on the drain current Ids, and accordingly The potential of the gate G is also bootstrapped. Here, in the case of white display, the source potential rises by 5 V or more. Therefore, if the power supply voltage remains at the middle Vcc2, Vg (gate potential)> Vcc2 + Vth, and the drive transistor Trd may be linearly driven. With linear drive, image quality uniformity is degraded. Therefore, in the present invention, the power supply voltage Vcc is set to satisfy Vg <Vcc + Vth during the light emission period. As a result, the drive transistor Trd operates in the saturation region during the light emission period, and high uniformity can be obtained. However, the high potential Vcc is set so that the source-drain voltage of the drive transistor Trd is within 12V.

以上により本発明では全ての動作においてドライブトランジスタTrdのソース/ドレイン間電圧を許容耐圧の12V以下に抑えることができ、ゲート絶縁膜薄膜化などのプロセスが適用できるようになり、更なる高精細化が可能になる。   As described above, according to the present invention, the source / drain voltage of the drive transistor Trd can be suppressed to 12 V or less of the allowable withstand voltage in all operations, and a process such as thinning the gate insulating film can be applied. Is possible.

図9は、図1及び図2に示した表示装置に含まれる電源スキャナの構成を示す部分回路図である。電源スキャナはシフトレジスタとその各段に接続した出力バッファとで構成されている。シフトレジスタは線順次走査に同期して各段ごとに順次パルスを出力する。出力バッファはシフトレジスタの各段ごとに配されている。図9は一段分の出力バッファを示している。この出力バッファは電源電圧ラインとGND電圧ラインとの間に配されたインバータからなる。このインバータは一対のPチャネルトランジスタTrP及びNチャネルトランジスタTrNからなり、入力側がシフトレジスタの各段に対応し、出力側は対応する給電線に接続している。   FIG. 9 is a partial circuit diagram illustrating the configuration of the power supply scanner included in the display device illustrated in FIGS. 1 and 2. The power scanner includes a shift register and an output buffer connected to each stage. The shift register sequentially outputs pulses for each stage in synchronization with line sequential scanning. An output buffer is provided for each stage of the shift register. FIG. 9 shows an output buffer for one stage. This output buffer is composed of an inverter arranged between the power supply voltage line and the GND voltage line. This inverter is composed of a pair of P-channel transistor TrP and N-channel transistor TrN, the input side corresponding to each stage of the shift register, and the output side connected to the corresponding feeder.

電源電圧ラインには外部のパルス電源からVccとVcc2の2レベルに変化する電源パルスが供給される。GND接地ラインはVss2に固定されている。インバータは入力信号がローベルのときPチャネルトランジスタTrPが導通し、電源電圧ラインに供給されたVccまたはVcc2の電位を出力する。一方入力信号がハイレベルになるとNチャネルトランジスタTrNが導通し低電位Vss2を出力側の給電線に供給する。この様にして入力信号のローレベルとハイレベルの切り換えタイミングに応じて、出力側に所定のシーケンスで第1高電位Vcc、第2高電位Vcc2、低電位Vss2が供給される。   The power supply voltage line is supplied with a power supply pulse that changes to two levels of Vcc and Vcc2 from an external pulse power supply. The GND ground line is fixed at Vss2. When the input signal is low, the inverter turns on the P-channel transistor TrP and outputs the potential of Vcc or Vcc2 supplied to the power supply voltage line. On the other hand, when the input signal becomes high level, the N-channel transistor TrN becomes conductive and supplies the low potential Vss2 to the output-side power supply line. In this way, the first high potential Vcc, the second high potential Vcc2, and the low potential Vss2 are supplied to the output side in a predetermined sequence according to the switching timing of the low level and the high level of the input signal.

図10は、図9に示した出力バッファの変形例を表している。理解を容易にするため対応する部分には対応する参照番号を付してある。異なる点は出力バッファを構成するインバータのGND電圧ライン(接地ライン)に、第1低電位Vss3とこれより低い第2低電位Vss2が切り換りながら外部のパルス電源から供給されている。この様に電源電圧ライン側の高電位をVccとVcc2で切り換えると同時に、GND電圧ライン側の低電位もVss3とVss2で切り換えることにより、出力バッファを構成するトランジスタTrP,TrNのソースとドレイン間に加わる電圧が絶縁耐圧を超えないようにしている。この様にすることで、画素アレイ部側のトランジスタと周辺駆動部に含まれる電源スキャナのトランジスタを、同一の薄膜プロセスで集積形成することができる。   FIG. 10 shows a modification of the output buffer shown in FIG. Corresponding parts are given corresponding reference numbers for ease of understanding. The difference is that the first low potential Vss3 and the second low potential Vss2 lower than the first low potential Vss2 are supplied from an external pulse power supply to the GND voltage line (ground line) of the inverter constituting the output buffer. In this way, the high potential on the power supply voltage line side is switched between Vcc and Vcc2, and at the same time, the low potential on the GND voltage line side is switched between Vss3 and Vss2, so that the transistors TrP and TrN constituting the output buffer are connected between the source and drain. The applied voltage does not exceed the withstand voltage. In this way, the transistor on the pixel array side and the transistor of the power supply scanner included in the peripheral driver can be integrated and formed by the same thin film process.

図11は図9に示した出力バッファの動作説明に示すタイミングチャートである。前述したように電源電圧は所定のシーケンスに従ってVcc2とVccの間で切り換る。出力バッファを構成するインバータは入力パルスに応じて動作し、電源電圧側のVccまたはVcc2と接地ライン側のVss2を適宜選択し、出力パルスとして対応する給電線に供給する。図示するように、電源電圧パルスと入力パルスは所定の関係で位相調整されており、その結果出力パルスは非発光期間で低電位Vss2となり、閾電圧補正期間や信号書込み期間では中間のVcc2となり、発光期間では高電位Vccに順次切り換っていく。   FIG. 11 is a timing chart for explaining the operation of the output buffer shown in FIG. As described above, the power supply voltage is switched between Vcc2 and Vcc according to a predetermined sequence. The inverter constituting the output buffer operates in response to the input pulse, selects Vcc or Vcc2 on the power supply voltage side and Vss2 on the ground line side as appropriate, and supplies it as an output pulse to the corresponding feeder line. As shown in the figure, the power supply voltage pulse and the input pulse are phase-adjusted in a predetermined relationship. As a result, the output pulse becomes the low potential Vss2 in the non-light emission period, and becomes an intermediate Vcc2 in the threshold voltage correction period and the signal writing period. In the light emission period, the potential is sequentially switched to the high potential Vcc.

図12は、図10に示した出力バッファの動作説明に供するタイミングチャートである。理解を容易にするため、図11に示したタイミングチャートと同様の表記を採用している。前述したように、電源電圧はVcc2とVccとの間で切り換る。これに合わせてGND電圧(接地電圧)はVss2とVss3との間で切り換る。具体的には、電源ライン側で第1高電位Vcc2から第2高電位Vcc2に切り換った後、接地ライン側で第1低電位Vss3から第2低電位Vss2に切り換え、接地ライン側で第2低電位Vss2から第1低電位Vss3に戻った後、電源ライン側で第2高電位Vcc2から第1高電位Vccに戻している。かかる電位設定により、インバータを構成するPチャネルトランジスタやNチャネルトランジスタのソースとドレイン間に過剰な電圧が加わらないようにしている。   FIG. 12 is a timing chart for explaining the operation of the output buffer shown in FIG. In order to facilitate understanding, the same notation as the timing chart shown in FIG. 11 is adopted. As described above, the power supply voltage is switched between Vcc2 and Vcc. In accordance with this, the GND voltage (ground voltage) is switched between Vss2 and Vss3. Specifically, after switching from the first high potential Vcc2 to the second high potential Vcc2 on the power supply line side, the first low potential Vss3 is switched to the second low potential Vss2 on the ground line side, and the first low potential Vss2 is switched on the ground line side. 2 After returning from the low potential Vss2 to the first low potential Vss3, the second high potential Vcc2 is returned to the first high potential Vcc on the power supply line side. Such potential setting prevents excessive voltage from being applied between the source and drain of the P-channel transistor and N-channel transistor constituting the inverter.

図13は、図10に示した出力バッファの動作説明に供するタイミングチャートである。理解を容易にするため、図12に示したタイミングチャートと同様の表記を採用している。異なる点は、入力パルスの立ち上りタイミングが図12の実施例に比べて前方にシフトしていることである。この設定でも、インバータを構成するPチャネルトランジスタやNチャネルトランジスタのソースとドレイン間に過剰な電圧が加わらないようにできる。   FIG. 13 is a timing chart for explaining the operation of the output buffer shown in FIG. In order to facilitate understanding, the same notation as the timing chart shown in FIG. 12 is adopted. The difference is that the rising timing of the input pulse is shifted forward compared to the embodiment of FIG. Even with this setting, it is possible to prevent an excessive voltage from being applied between the source and drain of the P-channel transistor and N-channel transistor constituting the inverter.

本発明にかかる表示装置は、図14に示すような薄膜デバイス構成を有する。本図は、絶縁性の基板に形成された画素の模式的な断面構造を表している。図示するように、画素は、複数の薄膜トランジタを含むトランジスター部(図では1個のTFTを例示)、保持容量などの容量部及び有機EL素子などの発光部とを含む。基板の上にTFTプロセスでトランジスター部や容量部が形成され、その上に有機EL素子などの発光部が積層されている。その上に接着剤を介して透明な対向基板を貼り付けてフラットパネルとしている。   The display device according to the present invention has a thin film device configuration as shown in FIG. This figure shows a schematic cross-sectional structure of a pixel formed on an insulating substrate. As shown in the figure, the pixel includes a transistor part (a single TFT is illustrated in the figure) including a plurality of thin film transistors, a capacitor part such as a storage capacitor, and a light emitting part such as an organic EL element. A transistor portion and a capacitor portion are formed on a substrate by a TFT process, and a light emitting portion such as an organic EL element is laminated thereon. A transparent counter substrate is pasted thereon via an adhesive to form a flat panel.

本発明にかかる表示装置は、図15に示すようにフラット型のモジュール形状のものを含む。例えば絶縁性の基板上に、有機EL素子、薄膜トランジスタ、薄膜容量等からなる画素をマトリックス状に集積形成した画素アレイ部を設ける、この画素アレイ部(画素マトリックス部)を囲むように接着剤を配し、ガラス等の対向基板を貼り付けて表示モジュールとする。この透明な対向基板には必要に応じて、カラーフィルタ、保護膜、遮光膜等を設けてももよい。表示モジュールには、外部から画素アレイ部への信号等を入出力するためのコネクタとして例えばFPC(フレキシブルプリントサーキット)を設けてもよい。   The display device according to the present invention includes a flat module-shaped display as shown in FIG. For example, a pixel array unit in which pixels made up of organic EL elements, thin film transistors, thin film capacitors and the like are integrated in a matrix is provided on an insulating substrate, and an adhesive is disposed so as to surround the pixel array unit (pixel matrix unit). Then, a counter substrate such as glass is attached to form a display module. If necessary, this transparent counter substrate may be provided with a color filter, a protective film, a light shielding film, and the like. For example, an FPC (flexible printed circuit) may be provided in the display module as a connector for inputting / outputting a signal to / from the pixel array unit from the outside.

以上説明した本発明における表示装置は、フラットパネル形状を有し、様々な電子機器、例えば、デジタルカメラ、ノート型パーソナルコンピューター、携帯電話、ビデオカメラなど、電子機器に入力された、若しくは、電子機器内で生成した駆動信号を画像若しくは映像として表示するあらゆる分野の電子機器のディスプレイに適用することが可能である。以下この様な表示装置が適用された電子機器の例を示す。   The display device according to the present invention described above has a flat panel shape and is input to an electronic device such as a digital camera, a notebook personal computer, a mobile phone, or a video camera, or an electronic device. It is possible to apply to the display of the electronic device of all fields which display the drive signal generated in the inside as an image or a picture. Examples of electronic devices to which such a display device is applied are shown below.

図16は本発明が適用されたテレビであり、フロントパネル12、フィルターガラス13等から構成される映像表示画面11を含み、本発明の表示装置をその映像表示画面11に用いることにより作製される。   FIG. 16 shows a television to which the present invention is applied, which includes a video display screen 11 including a front panel 12, a filter glass 13, and the like, and is manufactured by using the display device of the present invention for the video display screen 11. .

図17は本発明が適用されたデジタルカメラであり、上が正面図で下が背面図である。このデジタルカメラは、撮像レンズ、フラッシュ用の発光部15、表示部16、コントロールスイッチ、メニュースイッチ、シャッター19等を含み、本発明の表示装置をその表示部16に用いることにより作製される。   FIG. 17 shows a digital camera to which the present invention is applied, in which the top is a front view and the bottom is a back view. This digital camera includes an imaging lens, a light emitting unit 15 for flash, a display unit 16, a control switch, a menu switch, a shutter 19, and the like, and is manufactured by using the display device of the present invention for the display unit 16.

図18は本発明が適用されたノート型パーソナルコンピュータであり、本体20には文字等を入力するとき操作されるキーボード21を含み、本体カバーには画像を表示する表示部22を含み、本発明の表示装置をその表示部22に用いることにより作製される。   FIG. 18 shows a notebook personal computer to which the present invention is applied. The main body 20 includes a keyboard 21 that is operated when characters and the like are input, and the main body cover includes a display unit 22 that displays an image. This display device is used for the display portion 22.

図19は本発明が適用された携帯端末装置であり、左が開いた状態を表し、右が閉じた状態を表している。この携帯端末装置は、上側筐体23、下側筐体24、連結部(ここではヒンジ部)25、ディスプレイ26、サブディスプレイ27、ピクチャーライト28、カメラ29等を含み、本発明の表示装置をそのディスプレイ26やサブディスプレイ27に用いることにより作製される。   FIG. 19 shows a mobile terminal device to which the present invention is applied. The left side shows an open state and the right side shows a closed state. The portable terminal device includes an upper housing 23, a lower housing 24, a connecting portion (here, a hinge portion) 25, a display 26, a sub-display 27, a picture light 28, a camera 29, and the like, and includes the display device of the present invention. The display 26 and the sub-display 27 are used.

図20は本発明が適用されたビデオカメラであり、本体部30、前方を向いた側面に被写体撮影用のレンズ34、撮影時のスタート/ストップスイッチ35、モニター36等を含み、本発明の表示装置をそのモニター36に用いることにより作製される。   FIG. 20 shows a video camera to which the present invention is applied. The video camera includes a main body 30, a lens 34 for photographing a subject, a start / stop switch 35 at the time of photographing, a monitor 36, etc. on the side facing forward. It is manufactured by using the device for its monitor 36.

1・・・画素アレイ部、2・・・画素、3・・・水平セレクタ、4・・・ライトスキャナ、6・・・電源スキャナ、Tr1・・・サンプリングトランジスタ、Trd・・・ドライブトランジスタ、Cs・・・保持容量、EL・・・発光素子、WS・・・走査線、VL・・・給電線、SL・・・信号線   DESCRIPTION OF SYMBOLS 1 ... Pixel array part, 2 ... Pixel, 3 ... Horizontal selector, 4 ... Write scanner, 6 ... Power supply scanner, Tr1 ... Sampling transistor, Trd ... Drive transistor, Cs ... Retention capacitor, EL ... Light emitting element, WS ... Scanning line, VL ... Power supply line, SL ... Signal line

Claims (13)

画素アレイ部と駆動部とからなり、
前記画素アレイ部は、第1の電位とこれよりも低い第2の電位とが選択的に供給される給電線、行状の走査線、列状の信号線、及び、各走査線と各信号線とが交差する部分に配された行列状の画素を備え、
前記画素アレイ部の各画素は、少なくとも、サンプリングトランジスタ、ドライブトランジスタ、発光素子、及び、保持容量を備え、
前記サンプリングトランジスタは、前記信号線と前記保持容量との間に挿入され、その制御端に接続された前記走査線からの制御信号に応じて映像信号の書き込みを行うように構成され、
前記ドライブトランジスタは、前記発光素子と前記給電線との間に挿入され、その制御端に印加された電圧に応じて、前記発光素子への駆動電流を制御するように構成され、
前記保持容量は、前記ドライブトランジスタの制御端に接続され、その保持電圧に応じた電圧を前記ドライブトランジスタの制御端に印加するように構成され、
前記駆動部は、所定のシーケンスに従って前記制御信号及び前記映像信号を供給し且つ前記給電線の電位を切り換えて各画素を駆動し、以って、前記駆動電流の前記ドライブトランジスタの閾電圧に対する依存性を補正するための閾電圧補正動作と、前記映像信号の信号電位を前記保持容量に書き込む書込動作と、前記保持容量に書き込まれた信号電位に応じて前記発光素子を発光させる発光動作とを含む一連の動作を行うように構成され、
前記ドライブトランジスタのゲートの電位をVg、閾電圧をVthとし、第1の電位をVccとするとき、発光期間における第1の電位は、Vg<Vcc+Vthを満たすように設定されており、
前記駆動部は、前記給電線に第2の電位を供給した状態で、前記閾電圧補正動作及び前記書込動作を行い、
前記書込動作の終了時において前記サンプリングトランジスタをオフしてから、前記給電線から前記ドライブトランジスタを介した電流によって前記ドライブトランジスタの前記発光素子側のソース/ドレインの電位が上昇し、これに合わせて前記ドライブトランジスタのゲートの電位が上昇し、その上昇の終了後に前記給電線の電位が第2の電位から第1の電位に上昇するように構成されている表示装置。
It consists of a pixel array part and a drive part,
The pixel array unit includes a power supply line, a row-shaped scanning line, a column-shaped signal line, and each scanning line and each signal line to which a first potential and a second potential lower than the first potential are selectively supplied. With matrix-like pixels arranged at the intersection of
Each pixel of the pixel array unit includes at least a sampling transistor, a drive transistor, a light emitting element, and a storage capacitor,
The sampling transistor is inserted between the signal line and the storage capacitor, and is configured to write a video signal in accordance with a control signal from the scanning line connected to a control end of the sampling transistor,
The drive transistor is inserted between the light emitting element and the power supply line, and is configured to control a drive current to the light emitting element according to a voltage applied to a control terminal thereof.
The storage capacitor is connected to the control terminal of the drive transistor, and is configured to apply a voltage corresponding to the storage voltage to the control terminal of the drive transistor,
The driving unit supplies the control signal and the video signal in accordance with a predetermined sequence, and drives each pixel by switching the potential of the power supply line, so that the driving current depends on the threshold voltage of the drive transistor. A threshold voltage correcting operation for correcting the characteristics, a writing operation for writing the signal potential of the video signal to the holding capacitor, and a light emitting operation for causing the light emitting element to emit light according to the signal potential written to the holding capacitor. Configured to perform a series of operations including
When the gate potential of the drive transistor is Vg, the threshold voltage is Vth, and the first potential is Vcc, the first potential in the light emission period is set to satisfy Vg <Vcc + Vth ,
The drive unit performs the threshold voltage correction operation and the write operation in a state where a second potential is supplied to the power supply line,
Since the sampling transistor is turned off at the end of the write operation, the current from the power supply line through the drive transistor increases the potential of the source / drain on the light emitting element side of the drive transistor. The display device is configured such that the potential of the gate of the drive transistor rises, and the potential of the feeder line rises from the second potential to the first potential after the end of the rise.
前記駆動部は、前記発光期間の終了後の消光期間において、前記給電線に、第1の電位及び第2の電位のいずれよりも低い低電位を供給するように構成されている請求項1に記載の表示装置。   2. The drive unit according to claim 1, wherein the drive unit is configured to supply a low potential lower than either the first potential or the second potential to the power supply line in the extinction period after the end of the light emission period. The display device described. 第1の電位と低電位の電位差は15V以上に設定され、
画素の一連の動作で、前記ドライブトランジスタのソースとドレインに加わる電圧が12Vを超えないように第2の電位が設定されている請求項2に記載の表示装置。
The potential difference between the first potential and the low potential is set to 15V or more,
The display device according to claim 2, wherein the second potential is set so that a voltage applied to a source and a drain of the drive transistor does not exceed 12 V in a series of operations of the pixels.
画素の一連の動作で、前記ドライブトランジスタのソースとドレインに加わる電圧が絶縁耐圧を超えないように構成されている請求項1乃至請求項3のいずれか1項に記載の表示装置。   4. The display device according to claim 1, wherein a voltage applied to a source and a drain of the drive transistor does not exceed a withstand voltage in a series of operations of the pixel. 5. 前記駆動部は、画素の全ての動作で前記ドライブトランジスタのソースとドレイン間に加わる電圧が飽和動作領域に入るように、第1の電位、第2の電位、及び、低電位のレベルを設定するように構成されている請求項2乃至請求項4のいずれか1項に記載の表示装置。   The driving unit sets a first potential level, a second potential level, and a low potential level so that a voltage applied between the source and drain of the drive transistor enters a saturation operation region in all operations of the pixel. The display device according to claim 2, configured as described above. 前記駆動部は、前記給電線の電位を制御する電源スキャナを含み、
前記電源スキャナは、シフトレジスタとその各段に接続された出力バッファとを備え、
前記シフトレジスタは、順次各段毎に切り換え信号を生成し、
前記出力バッファは、電源ラインと接地ラインとの間に配され、前記切り換え信号に応じて電源ライン側の第1の電位又第2の電位と接地ライン側の低電位を切り換えて、対応する給電線に印加するように構成されている請求項2乃至請求項5のいずれか1項に記載の表示装置。
The drive unit includes a power scanner that controls the potential of the power supply line,
The power scanner includes a shift register and an output buffer connected to each stage thereof.
The shift register sequentially generates a switching signal for each stage,
The output buffer is arranged between the power supply line and the ground line, and switches the first potential on the power supply line side or the second potential and the low potential on the ground line side in accordance with the switching signal, and supplies the corresponding power supply. The display device according to claim 2, wherein the display device is configured to be applied to an electric wire.
前記出力バッファは、電源ライン側に第1の電位と第2の電位が切り換わりながら供給される一方、これと対応して接地ライン側に第1低電位とこれよりも低い第2低電位が切
り換わりながら供給されており、
電源ラインと接地ラインとの間に配された前記出力バッファを構成するトランジスタのソースとドレイン間に加わる電圧が絶縁耐圧を超えないように構成されている請求項6に記載の表示装置。
The output buffer is supplied while the first potential and the second potential are switched to the power supply line side, while the first low potential and the second low potential lower than the first low potential are correspondingly supplied to the ground line side. It is supplied while switching,
The display device according to claim 6, wherein a voltage applied between a source and a drain of a transistor constituting the output buffer disposed between a power supply line and a ground line is configured not to exceed a withstand voltage.
前記出力バッファは、電源ライン側で第1の電位から第2の電位に切り換った後、接地ライン側で第1低電位から第2低電位に切り換え、接地ライン側で第2低電位から第1低電位に戻った後、電源ライン側で第2の電位から第1の電位に戻すように構成されている請求項7に記載の表示装置。   The output buffer switches from the first potential to the second potential on the power supply line side, and then switches from the first low potential to the second low potential on the ground line side, and from the second low potential on the ground line side. 8. The display device according to claim 7, wherein the display device is configured to return from the second potential to the first potential on the power supply line side after returning to the first low potential. 第1の電位とこれよりも低い第2の電位とが選択的に供給される給電線、行状の走査線、列状の信号線、及び、各走査線と各信号線とが交差する部分に配された行列状の画素を備える画素アレイ部を有し、
前記画素アレイ部の各画素は、少なくとも、サンプリングトランジスタ、ドライブトランジスタ、発光素子、及び、保持容量を備え、
前記サンプリングトランジスタは、前記信号線と前記保持容量との間に挿入され、その制御端に接続された前記走査線からの制御信号に応じて映像信号の書き込みを行うように構成され、
前記ドライブトランジスタは、前記発光素子と前記給電線との間に挿入され、その制御端に印加された電圧に応じて、前記発光素子への駆動電流を制御するように構成され、
前記保持容量は、前記ドライブトランジスタの制御端に接続され、その保持電圧に応じた電圧を前記ドライブトランジスタの制御端に印加するように構成された表示装置の駆動方法であって、
前記ドライブトランジスタの閾電圧に応じた電圧を前記保持容量に設定する閾電圧補正工程と、
前記映像信号の信号電位を前記保持容量に書き込む書込工程と、
前記書込工程の終了時において前記サンプリングトランジスタをオフしてから、前記給電線から前記ドライブトランジスタを介した電流によって、前記発光素子の等価容量を充電し、以って、前記ドライブトランジスタの前記発光素子側のソース/ドレインの電位を上昇させ、これに合わせて前記ドライブトランジスタのゲートの電位を上昇させる電位上昇工程と、
前記保持容量に書き込まれた信号電位に応じて前記発光素子を発光させる発光工程とを有し、
前記ドライブトランジスタのゲートの電位をVg、閾電圧をVthとし、第1の電位をVccとするとき、発光期間における第1の電位は、Vg<Vcc+Vthを満たすように設定されており、
前記閾電圧補正工程及び前記書込工程は、前記給電線に第2の電位が供給された状態で実行され、
前記電位上昇工程の処理が開始し前記ドライブトランジスタのゲートの電位の上昇の終了後に前記給電線の電位を第2の電位から第1の電位に上昇させる表示装置の駆動方法。
A power supply line to which a first potential and a second potential lower than the first potential are selectively supplied, a row-shaped scanning line, a column-shaped signal line, and a portion where each scanning line and each signal line cross each other It has a pixel array unit comprising arranged matrix pixels,
Each pixel of the pixel array unit includes at least a sampling transistor, a drive transistor, a light emitting element, and a storage capacitor,
The sampling transistor is inserted between the signal line and the storage capacitor, and is configured to write a video signal in accordance with a control signal from the scanning line connected to a control end of the sampling transistor,
The drive transistor is inserted between the light emitting element and the power supply line, and is configured to control a drive current to the light emitting element according to a voltage applied to a control terminal thereof.
The storage capacitor is connected to the control terminal of the drive transistor, and is a method for driving a display device configured to apply a voltage corresponding to the storage voltage to the control terminal of the drive transistor,
A threshold voltage correction step of setting a voltage corresponding to the threshold voltage of the drive transistor in the storage capacitor;
A writing step of writing the signal potential of the video signal to the storage capacitor;
The sampling transistor is turned off at the end of the writing step, and then the equivalent capacitance of the light emitting element is charged by the current through the drive transistor from the power supply line, whereby the light emission of the drive transistor A potential increasing step of increasing the potential of the source / drain on the element side and increasing the potential of the gate of the drive transistor in accordance with this,
A light emitting step of causing the light emitting element to emit light according to a signal potential written in the storage capacitor,
When the gate potential of the drive transistor is Vg, the threshold voltage is Vth, and the first potential is Vcc, the first potential in the light emission period is set to satisfy Vg <Vcc + Vth ,
The threshold voltage correcting step and the writing step are executed in a state where a second potential is supplied to the power supply line,
A display device driving method in which the potential of the power supply line is increased from a second potential to a first potential after the processing of the potential increasing step is started and the increase of the potential of the gate of the drive transistor is completed.
前記発光期間の終了後の消光期間において、前記給電線に、第1の電位及び第2の電位のいずれよりも低い低電位を供給する請求項9に記載の表示装置の駆動方法。   The method for driving a display device according to claim 9, wherein a low potential lower than both the first potential and the second potential is supplied to the power supply line in the extinction period after the light emission period ends. 第1の電位と低電位の電位差は15V以上に設定され、
画素の一連の動作で、前記ドライブトランジスタのソースとドレインに加わる電圧が12Vを超えないように第2の電位が設定されている請求項10に記載の表示装置の駆動方法。
The potential difference between the first potential and the low potential is set to 15V or more,
11. The display device driving method according to claim 10, wherein the second potential is set so that a voltage applied to a source and a drain of the drive transistor does not exceed 12 V in a series of operations of the pixels.
画素の一連の動作で、前記ドライブトランジスタのソースとドレインに加わる電圧が絶縁耐圧を超えないように駆動する請求項9乃至請求項11のいずれか1項に記載の表示装置の駆動方法。   12. The display device driving method according to claim 9, wherein driving is performed so that a voltage applied to a source and a drain of the drive transistor does not exceed a withstand voltage in a series of operations of the pixels. 画素の全ての動作で前記ドライブトランジスタのソースとドレイン間に加わる電圧が飽和動作領域に入るように、第1の電位、第2の電位、及び、低電位のレベルを設定する請求項10乃至請求項12のいずれか1項に記載の表示装置の駆動方法。   11. The first potential, the second potential, and the low potential level are set so that a voltage applied between the source and drain of the drive transistor in all the operations of the pixel enters a saturation operation region. Item 13. A display device driving method according to any one of Items 12 to 12.
JP2012271150A 2012-12-12 2012-12-12 Display device and driving method thereof Active JP5879585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012271150A JP5879585B2 (en) 2012-12-12 2012-12-12 Display device and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012271150A JP5879585B2 (en) 2012-12-12 2012-12-12 Display device and driving method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007131006A Division JP2008286953A (en) 2007-05-16 2007-05-16 Display device, its driving method, and electronic equipment

Publications (2)

Publication Number Publication Date
JP2013101358A JP2013101358A (en) 2013-05-23
JP5879585B2 true JP5879585B2 (en) 2016-03-08

Family

ID=48621967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012271150A Active JP5879585B2 (en) 2012-12-12 2012-12-12 Display device and driving method thereof

Country Status (1)

Country Link
JP (1) JP5879585B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612749B2 (en) * 2003-03-04 2009-11-03 Chi Mei Optoelectronics Corporation Driving circuits for displays
JP3925435B2 (en) * 2003-03-05 2007-06-06 カシオ計算機株式会社 Light emission drive circuit, display device, and drive control method thereof
CA2490858A1 (en) * 2004-12-07 2006-06-07 Ignis Innovation Inc. Driving method for compensated voltage-programming of amoled displays

Also Published As

Publication number Publication date
JP2013101358A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP4600780B2 (en) Display device and driving method thereof
JP4297169B2 (en) Display device, driving method thereof, and electronic apparatus
JP4245057B2 (en) Display device, driving method thereof, and electronic apparatus
JP4715850B2 (en) Display device, driving method thereof, and electronic apparatus
JP4306753B2 (en) Display device, driving method thereof, and electronic apparatus
KR101425892B1 (en) Display apparatus, method of driving a display, and electronic device
JP5804732B2 (en) Driving method, display device, and electronic apparatus
KR101432768B1 (en) Display apparatus, driving method thereof, and electronic system
KR101498571B1 (en) Display, method for driving display, electronic apparatus
JP5309470B2 (en) Display device, driving method thereof, and electronic apparatus
JP5186888B2 (en) Display device, driving method thereof, and electronic apparatus
JP2008287139A (en) Display device, its driving method, and electronic equipment
JP5194781B2 (en) Display device, driving method thereof, and electronic apparatus
US8138999B2 (en) Display device and electronic apparatus
JP2008287141A (en) Display device, its driving method, and electronic equipment
JP4591511B2 (en) Display device and electronic device
JP2008203661A (en) Image display and its driving method
US20130057457A1 (en) Pixel circuit, display panel, display unit, and electronic system
KR20090085516A (en) Display apparatus, driving method for display apparatus and electronic apparatus
JP4985303B2 (en) Display device, driving method thereof, and electronic apparatus
JP2010139897A (en) Display device and its driving method, and electronic apparatus
JP2010091641A (en) Display device, drive method therefor, and electronic apparatus
JP5879585B2 (en) Display device and driving method thereof
JP2009103871A (en) Display device, driving method therefor and electronic equipment
JP2008287140A (en) Display device and electronic equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150616

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5879585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350