JP5878629B2 - Method for applying a protective layer - Google Patents

Method for applying a protective layer Download PDF

Info

Publication number
JP5878629B2
JP5878629B2 JP2014513181A JP2014513181A JP5878629B2 JP 5878629 B2 JP5878629 B2 JP 5878629B2 JP 2014513181 A JP2014513181 A JP 2014513181A JP 2014513181 A JP2014513181 A JP 2014513181A JP 5878629 B2 JP5878629 B2 JP 5878629B2
Authority
JP
Japan
Prior art keywords
layer
diffusion layer
diffusion
metal substrate
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014513181A
Other languages
Japanese (ja)
Other versions
JP2014520205A (en
Inventor
ノルベルト・チェフ
シャラド・チャンドラ
ローラント・ヘルツォーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Energy Solutions SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Energy Solutions SE filed Critical MAN Energy Solutions SE
Publication of JP2014520205A publication Critical patent/JP2014520205A/en
Application granted granted Critical
Publication of JP5878629B2 publication Critical patent/JP5878629B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/48Aluminising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、請求項1のプレアンブルに記載される特徴を有する、金属基材に保護層を付けるための方法、およびガスタービンの高温領域で使用するためのこの種の保護層で被覆された構成部品、およびこの種の構成部品を備えるガスタービンに関する。   The present invention provides a method for applying a protective layer to a metal substrate having the characteristics described in the preamble of claim 1 and a construction coated with such a protective layer for use in the high temperature region of a gas turbine. Parts and a gas turbine provided with this kind of component.

上述のような方法は、例えば欧州特許出願第1637622号により知られている。   Such a method is known, for example, from European Patent Application No. 1637622.

現行のガスタービンにおいて、高温ガス領域内の表面はほぼ全体に被覆を備える。場合によっては、後部タービン列のブレードは除外される場合がある。この目的で使用される遮熱コーティング(TBC)は、冷却された構成部品の材料温度を下げるように働く。このようにして、構成部品の寿命を延ばすことができ、冷却用空気を節約することができ、またはガスタービンを高い入力温度で運転することができる。   In current gas turbines, the surface in the hot gas region is provided with a coating almost entirely. In some cases, rear turbine row blades may be excluded. The thermal barrier coating (TBC) used for this purpose serves to lower the material temperature of the cooled component. In this way, component life can be extended, cooling air can be saved, or the gas turbine can be operated at high input temperatures.

遮熱コーティング系は、基材(金属基材)に拡散接合された金属結合層と結合層の上のセラミック層とで常に形成される。このセラミック層は熱伝導性が低く、熱流に対して実際の障壁を提供し、腐食および浸食による高温劣化から金属基材を保護する。遮熱コーティングに関して一般的に認められるセラミック材料は、約7重量%の酸化イットリウムで部分的に安定化された酸化ジルコニウムである(イットリアで部分的に安定化されたジルコニアの国際的な頭字語はYPSZである)。   The thermal barrier coating system is always formed by a metal bonding layer diffusion bonded to a substrate (metal substrate) and a ceramic layer on the bonding layer. This ceramic layer has low thermal conductivity, provides an actual barrier to heat flow, and protects the metal substrate from high temperature degradation due to corrosion and erosion. A commonly accepted ceramic material for thermal barrier coatings is zirconium oxide partially stabilized with about 7% by weight yttrium oxide (the international acronym for zirconia partially stabilized with yttria is YPSZ).

遮熱コーティングは利用方法に応じて2つの異なるカテゴリーに分類することができる。   Thermal barrier coatings can be classified into two different categories, depending on how they are used.

第一のカテゴリーは、電子ビーム物理的気相成長法(EB−PVD法)により気相堆積された遮熱コーティングからなる。特定の堆積条件が維持されるとき、これらの遮熱コーティングはカラム状の、耐歪性構造を有し、その結果熱サイクル疲労(TCF)に対して特に良好な耐性を与える。遮熱コーティングを付ける際付随する方法において、遮熱コーティングは、その形成の間、およびその後のアルミナ−ジルコニア混合物の形成を通じた供給の間、結合層により形成される純アルミナ層(熱成長酸化物、TGO)に化学的に結合される。一方では、この方法は結合層上の酸化物成長に関する特定の要求を課すが、他方ではこれは特に強い結合を保証する。   The first category consists of thermal barrier coatings vapor deposited by electron beam physical vapor deposition (EB-PVD). When specific deposition conditions are maintained, these thermal barrier coatings have a columnar, strain-resistant structure that results in particularly good resistance to thermal cycle fatigue (TCF). In the accompanying method of applying the thermal barrier coating, the thermal barrier coating is a pure alumina layer (thermally grown oxide) formed by the tie layer during its formation and subsequent feeding through the formation of the alumina-zirconia mixture. , TGO). On the one hand, this method imposes specific requirements on oxide growth on the tie layer, while on the other hand it guarantees a particularly strong bond.

第2のカテゴリーは溶射された(通常大気プラズマ溶射(APS)による)遮熱コーティングを含む。これらの遮熱コーティングは、所望の層厚みおよび応力分布に依存して約10体積%〜25体積%の間の細孔率を有する。この場合、セラミック層が機械的に結合層に結合される事実に起因して、溶射時に、界面、およびその結果接着力を最大にするために、結合層は意図的に粗い状態となっている。特定の化学結合が、長期の供給の後にのみ、TGO形成により与えられる。この応用方法は比較的簡単であり、その結果コーティングのコストは比較的好ましい。   The second category includes thermal barrier coatings (usually by atmospheric plasma spraying (APS)). These thermal barrier coatings have a porosity of between about 10% and 25% by volume, depending on the desired layer thickness and stress distribution. In this case, due to the fact that the ceramic layer is mechanically bonded to the bonding layer, the bonding layer is intentionally rough during spraying in order to maximize the interface and consequently the adhesion. . A specific chemical bond is provided by TGO formation only after long-term feeding. This application method is relatively simple, so that the cost of the coating is relatively favorable.

欧州特許出願第1637622号明細書European Patent Application No. 1637622

本発明は、請求項1のプレアンブルに記載される方法を、方法が簡単に実施できるようにしたままで、保護層において熱疲労に対して良好な耐性が実現されるように、さらに発展させることを目的とする。この目的は請求項1の特徴部に記載される特徴を通じて達成される。   The present invention further develops the method described in the preamble of claim 1 so that a good resistance to thermal fatigue is achieved in the protective layer while still allowing the method to be carried out easily. With the goal. This object is achieved through the features described in the characterizing part of claim 1.

本発明のさらなる目的は、ガスタービンの高温ガス領域で使用される構成部品を提供することであり、構成部品は腐食および浸食による高温劣化に耐性を有する保護層で被覆され、またこの種の構成部品を有するガスタービンを提供することであり、保護層は簡単な方法で構成部品上に製造することができ、熱疲労に対して良好な抵抗を有する。この目的は請求項7に記載される構成部品によって、および請求項8に記載されるガスタービンによって達成される。   A further object of the present invention is to provide a component for use in the hot gas region of a gas turbine, the component being coated with a protective layer that is resistant to high temperature degradation due to corrosion and erosion, and this kind of configuration. It is to provide a gas turbine having a part, the protective layer can be produced on the component in a simple manner and has a good resistance to thermal fatigue. This object is achieved by a component as claimed in claim 7 and by a gas turbine as claimed in claim 8.

本発明のさらなる発展形態が各従属項に規定される。   Further developments of the invention are defined in the respective dependent claims.

結合層(好ましくは定置ガスタービン内)に関しては、溶射されたMCrAlY(M=Ni,Co)を主成分とする下塗りが使用される。MCrAlY層はアルミニウムがNiCoCr(「Y」)マトリックス内に保持されるとき金属間β相NiCoAlを含む。しかしこれは脆化の効果も有するので、実際にMCrAlY層内で実現され得るAl含有量は12重量%以下となる。   For the tie layer (preferably in the stationary gas turbine), a primer layer based on sprayed MCrAlY (M = Ni, Co) is used. The MCrAlY layer comprises intermetallic β-phase NiCoAl when the aluminum is retained in a NiCoCr (“Y”) matrix. However, since this also has the effect of embrittlement, the Al content that can actually be realized in the MCrAlY layer is 12 wt% or less.

酸化に対する耐性をさらに強めるために、MCrAlY被覆はAl拡散層でオーバーアルミナイズされる。脆化のリスクがあるので、これは低アルミニウム(Al≦8%)の開始層に大きく制限される。   To further increase resistance to oxidation, the MCrAlY coating is overaluminized with an Al diffusion layer. Due to the risk of embrittlement, this is greatly limited to low aluminum (Al ≦ 8%) starting layers.

オーバーアルミナイズされたMCrAlY層の構造は、内部の、実質的に変化がない、混合されたY、β相、すなわち拡散領域、その内部でAl含有量が約20%まで増加する、かつ外側の、Al比率が約30%であるβ−NiAl相を含む。この外側のβ−NiAl相は、層システムにおける脆性およびクラック形成に対する感度に関して特定の欠点を示す。したがって、オーバーアルミナイズされた被覆は外側のβ−NiAl相が拡散領域に至るまで除去されるようにアブレーション処理を受ける。このことは、アルミニウムの活性にも好ましい効果を有し、その結果TGO形成性能を向上させる。   The structure of the over-aluminized MCrAlY layer is the inner, substantially unchanged, mixed Y, β phase, i.e. the diffusion region, in which the Al content is increased to about 20% and the outer And a β-NiAl phase having an Al ratio of about 30%. This outer β-NiAl phase presents certain drawbacks with regard to brittleness and sensitivity to crack formation in the layer system. Accordingly, the overaluminized coating is ablated so that the outer β-NiAl phase is removed until it reaches the diffusion region. This has a favorable effect on the activity of aluminum, and as a result, improves TGO formation performance.

その際、粗い結合層を存在させる必要なしにセラミック層の良好な結合を実現することができ、とりわけ低圧プラズマ溶射(LPPS)または例えば高速フレーム溶射(HVOF)または真空プラズマ溶射などの溶射を用いてMCrAlY層を付けることを可能にする。高速フレーム溶射は、より経済的であり、かつ滑らかな表面を生成する傾向がある。   In doing so, good bonding of the ceramic layers can be achieved without the need for the presence of a rough bonding layer, especially using low pressure plasma spraying (LPPS) or spraying such as, for example, high-speed flame spraying (HVOF) or vacuum plasma spraying. It makes it possible to apply a MCrAlY layer. High velocity flame spraying is more economical and tends to produce a smooth surface.

本発明の第1の局面によれば、金属基材に対する腐食および浸食による高温劣化に耐性を有する保護層を付けるための方法が提供され、ここでMCrAlYを主成分とする結合層が金属基材に付けられ、結合層がAl拡散層でオーバーアルミナイズされることによって被覆され、Al拡散層がアブレーション処理を受け、外側に重ねられた層がAl拡散層から除去され、イットリア部分安定化ジルコニアのセラミック遮熱コーティングが残ったAl拡散層に付けられる。本発明による方法は、セラミック遮熱コーティングが大気プラズマ溶射によって残りのAl拡散層に付けられることを特徴としている。   According to a first aspect of the present invention, there is provided a method for applying a protective layer resistant to high temperature degradation due to corrosion and erosion on a metal substrate, wherein the bonding layer comprising MCrAlY as a main component is a metal substrate. The tie layer is coated by being overaluminized with an Al diffusion layer, the Al diffusion layer is subjected to ablation treatment, and the outer layer is removed from the Al diffusion layer, and the yttria partially stabilized zirconia A ceramic thermal barrier coating is applied to the remaining Al diffusion layer. The method according to the invention is characterized in that a ceramic thermal barrier coating is applied to the remaining Al diffusion layer by atmospheric plasma spraying.

本発明による方法の実施形態によれば、オーバーアルミナイズされる前に、付けられた結合層は研磨処理を受ける。研磨処理によって2μm以下の表面粗さRaが結合層に生成される。   According to an embodiment of the method according to the invention, the applied tie layer is subjected to a polishing treatment before being overaluminised. By the polishing treatment, a surface roughness Ra of 2 μm or less is generated in the bonding layer.

本発明による方法の他の実施形態によれば、結合層は例えば高速フレーム溶射(HVOF)または真空プラズマ溶射などの溶射または気相からの堆積によって金属基材に付けられる。   According to another embodiment of the method according to the invention, the bonding layer is applied to the metal substrate by spraying, such as, for example, high-speed flame spraying (HVOF) or vacuum plasma spraying or deposition from the gas phase.

本発明の方法のさらなる実施形態によれば、Al拡散層はアブレーション処理の後研磨処理を受け、残りのAl拡散層に2μm以下の表面粗さRaが生成される。   According to a further embodiment of the method of the present invention, the Al diffusion layer is subjected to a polishing process after the ablation process, and a surface roughness Ra of 2 μm or less is generated in the remaining Al diffusion layer.

本発明の方法のさらに他の実施形態によれば、結合層のオーバーアルミナイズの後、Al拡散層のアブレーション処理の前に、金属基材の機械的性質に影響を及ぼすために熱処理が実施される。   According to yet another embodiment of the method of the invention, a heat treatment is performed to affect the mechanical properties of the metal substrate after the over-aluminization of the tie layer and before the ablation treatment of the Al diffusion layer. The

本発明の方法のさらに他の実施形態によれば、オーバーアルミナイズの間、Al含有量が約20重量%の内部拡散領域がAl拡散層の中に形成され、Al含有量が約30重量%の外側に重ねられた層が拡散領域上に形成され、Al拡散層の外側に重ねられた層は、残りのAl拡散層表面のAl含有量が18重量%よりも大きく、かつ30重量%未満になるまで、アブレーション処理によって除去される。   According to yet another embodiment of the method of the present invention, during overaluminization, an internal diffusion region having an Al content of about 20% by weight is formed in the Al diffusion layer, and the Al content is about 30% by weight. A layer superposed on the outside of the Al diffusion layer is formed on the diffusion region, and the layer superposed on the outside of the Al diffusion layer has an Al content of the remaining Al diffusion layer surface of greater than 18 wt% and less than 30 wt% Until it is removed by ablation.

本発明の第2の局面によれば、ガスタービンの高温ガス領域で使用するための構成部品が提供され、構成部品は、考えられ得る組み合わせの本発明の上述の実施形態の1つ、または2つ以上、または全てによる方法で付けられた、腐食および浸食による高温劣化に耐性を有する保護層を少なくとも部分的に備える表面を有する。   According to a second aspect of the present invention, a component for use in the hot gas region of a gas turbine is provided, the component being one of the above-described embodiments of the present invention in conceivable combinations, or two. It has a surface that is at least partially provided with a protective layer that is resistant to high temperature degradation due to corrosion and erosion, applied in one or more or all ways.

本発明の第3の局面によれば、高温ガス領域を有し、内部に配置された本発明の第2の局面による構成成分を備えたガスタービン、が提供される。   According to a third aspect of the present invention, there is provided a gas turbine comprising a component according to the second aspect of the present invention having a hot gas region and disposed therein.

構成部品上に保護層を形成するための本発明による方法を用いることで、保護層は熱疲労に対して良好な耐性を有し、それにもかかわらず簡単な方法で形成することができる。   By using the method according to the invention for forming a protective layer on a component, the protective layer has good resistance to thermal fatigue and can nevertheless be formed in a simple manner.

最後に、本発明は結合層とセラミック層との間を化学的に結合することの利点と、APS法の好ましいコストとを組み合わせた遮熱コーティングの考えを提供する。このようにして、TCF挙動を従来のAPS層の挙動に対して向上することができる。したがって、熱疲労に対する耐性が向上された遮熱コーティングを簡単な方法で作ることができ、その結果EB−PVD法と比較してコストが低い。   Finally, the present invention provides the idea of a thermal barrier coating that combines the advantages of chemically bonding between the bond layer and the ceramic layer with the preferred cost of the APS process. In this way, the TCF behavior can be improved relative to the behavior of the conventional APS layer. Therefore, a thermal barrier coating with improved resistance to thermal fatigue can be produced by a simple method, and as a result, the cost is low compared to the EB-PVD method.

本発明が請求項を明示的に参照することによる特徴の組み合わせによって与えられない実施形態にも拡張されることは明らかであり、本発明の開示された特徴は技術的に意味がある場合において如何様にも他のものと組み合わせることができる。   Obviously, the invention extends to embodiments not given by a combination of features by explicitly referring to the claims, and the disclosed features of the invention are not Can also be combined with others.

以下では、本発明が好ましい実施形態を参照して、また添付の図面を参照して記述される。   In the following, the present invention will be described with reference to preferred embodiments and with reference to the accompanying drawings.

本発明の実施形態によるガスタービンの構成部品の領域の断面図を示す。構成部品は高温ガス領域に配置され、保護層を備える。1 shows a cross-sectional view of a region of a gas turbine component according to an embodiment of the invention. The component is disposed in the hot gas region and includes a protective layer.

図1は本発明の実施形態によるガスタービン1の構成部品10の領域を示す断面図であり、構成部品10は高温ガス領域に配置され、保護層12−14を備える。   FIG. 1 is a cross-sectional view illustrating a region of a component 10 of a gas turbine 1 according to an embodiment of the present invention, where the component 10 is disposed in a hot gas region and includes a protective layer 12-14.

腐食および浸食による高温劣化からの保護のために、構成部品10、例えば、高温ガスに接触する、ガスタービン1のタービンブレードまたは他の構成部品は、その全体または部分に高温腐食および浸食に耐性を有するセラミック遮熱コーティングを備えた表面を有する金属基材11(基材)を含む。セラミック遮熱コーティング13は約7重量%の酸化イットリウムで部分的に安定化された酸化ジルコニウムで形成される(イットリアで部分的に安定化されたジルコニアの国際的な頭字語はYPSZである)。   In order to protect against high temperature degradation due to corrosion and erosion, components 10, for example, turbine blades or other components of gas turbine 1 that contact hot gas, are resistant to high temperature corrosion and erosion in whole or in part. A metal substrate 11 (substrate) having a surface with a ceramic thermal barrier coating. The ceramic thermal barrier coating 13 is formed of zirconium oxide partially stabilized with about 7 wt% yttrium oxide (the international acronym for zirconia partially stabilized with yttria is YPSZ).

金属基材11に対する遮熱コーティング13の接着性を向上するために、下塗りまたは結合層12が最初にこの金属基材11(その表面)に付けられる。結合層12は、MCrAlY(例えばLCO22)に基づく特別な合金を含む。ここで文字MはNiまたはCoまたはそれらの組み合わせを表す。結合層12は低圧プラズマ溶射(LPPS)またはこの場合において好ましい、高速フレーム溶射(HVOF)によって付けることができる。   In order to improve the adhesion of the thermal barrier coating 13 to the metal substrate 11, an undercoat or tie layer 12 is first applied to the metal substrate 11 (its surface). The tie layer 12 comprises a special alloy based on MCrAlY (eg LCO 22). Here, the letter M represents Ni or Co or a combination thereof. The tie layer 12 can be applied by low pressure plasma spray (LPPS) or high velocity flame spray (HVOF), which is preferred in this case.

付けられた結合層12はその後研磨処理(例えば精密仕上げ)を受け、それによって結合層12上に2μm以下の表面粗さが形成される。   The applied tie layer 12 is then subjected to a polishing process (eg, precision finishing), thereby forming a surface roughness of 2 μm or less on the tie layer 12.

結合層12のAl含有量を増加させるために、この結合層12はその後Al拡散層14でオーバーアルミナイズすることによって被覆される。オーバーアルミナイズは反応性Al含有ガス(場合によってはAlハロゲン化物(AlX)である)がAlの内部への拡散および同時にNiの外側への拡散を引き起こす処理、例えば高温における化学気相蒸着(CVD)を用いて実施されてよい。 In order to increase the Al content of the bonding layer 12, this bonding layer 12 is then coated by overaluminizing with an Al diffusion layer 14. Overaluminization is a process in which a reactive Al-containing gas (sometimes Al halide (AlX 2 )) causes diffusion into the interior of Al and at the same time to the exterior of Ni, such as chemical vapor deposition at high temperatures ( CVD).

オーバーアルミナイズはほぼ変化のない結合層12上のAl拡散層14の内部にAl含有量が約20重量%である内部拡散領域14.1を生じさせ、その上にAl含有量が約30重量%の脆性のβ−NiAl相を含む外側に重ねられた層4.2を生じさせる。   Overaluminization produces an internal diffusion region 14.1 having an Al content of about 20% by weight within the Al diffusion layer 14 on the bonding layer 12 with almost no change, on which an Al content of about 30% is formed. This results in an overlying layer 4.2 containing 1% brittle β-NiAl phase.

結合層12のオーバーアルミナイズの後、金属基材11の機械的性質に影響を与え、または調整するために熱処理が行われてよい。   After overaluminization of the tie layer 12, a heat treatment may be performed to affect or adjust the mechanical properties of the metal substrate 11.

続いて、外側に重ねられた層14.2は、例えば硬い粒子(例えばコランダム、炭化ケイ素、カットメタルワイヤなど)でのブラスト処理、または他の既知の研削媒体または研磨媒体での処理などのアブレーション処理によって、Al拡散層14の内部拡散領域14.1に至るまで取り除かれる。アブレーション処理は、残りのAl拡散層14(拡散領域14.1)の表面が約18重量%よりも大きく、かつ約30重量%未満のAl含有量を有するようになるまで実施される。   Subsequently, the overlying layer 14.2 is ablated such as by blasting with hard particles (eg corundum, silicon carbide, cut metal wire, etc.) or with other known grinding or polishing media. By the treatment, the Al diffusion layer 14 is removed until reaching the inner diffusion region 14.1. The ablation process is performed until the surface of the remaining Al diffusion layer 14 (diffusion region 14.1) has an Al content greater than about 18% by weight and less than about 30% by weight.

摩耗の後、Al拡散層14は研磨処理(例えば精密仕上げ)を受け、残りのAl拡散層14(拡散領域14.1)において表面粗さがRa≦2μmとなるようにされる。   After the abrasion, the Al diffusion layer 14 is subjected to a polishing process (for example, precision finishing) so that the surface roughness of the remaining Al diffusion layer 14 (diffusion region 14.1) is Ra ≦ 2 μm.

その後セラミック遮熱コーティング(YPSZセラミック層)13が、大気プラズマ溶射(APS)により、上述したように製造された残りのAl拡散層14の表面に付けられる。従来の結合層に関するAPS法と同じパラメータを使用することができる。   A ceramic thermal barrier coating (YPSZ ceramic layer) 13 is then applied to the surface of the remaining Al diffusion layer 14 produced as described above by atmospheric plasma spraying (APS). The same parameters as the APS method for conventional tie layers can be used.

1 ガスタービン
10 構成部品
11 金属基材
12 結合層
13 遮熱コーティング
14 Al拡散層
14.1 内部拡散領域
14.2 外側に重ねられた層
DESCRIPTION OF SYMBOLS 1 Gas turbine 10 Component part 11 Metal base material 12 Bonding layer 13 Thermal barrier coating 14 Al diffusion layer 14.1 Internal diffusion area 14.2 Layer overlaid outside

Claims (4)

MCrAlYを主成分とする結合層(12)が金属基材(11)に付けられ、結合層(12)がAl拡散層(14)でオーバーアルミナイズされることによって被覆され、Al拡散層(14)がアブレーション処理を受け、外側に重ねられた層(14.2)がAl拡散層(14)から除去され、イットリア部分安定化ジルコニアのセラミック遮熱コーティング(13)が残ったAl拡散層に付けられ、ここでセラミック遮熱コーティング(13)は大気プラズマ溶射によって残りのAl拡散層(14)に付けられる、金属基材(11)の腐食および浸食による高温劣化に耐性を有する保護層を付けるための方法であって、
付けられた結合層(12)がオーバーアルミナイズの前に研磨処理を受け、結合層(12)において表面粗さがRa≦2μmとなり、
Al拡散層(14)がアブレーション処理の後研磨処理を受け、残りのAl拡散層(14)において表面粗さがRa≦2μmとなるようにすることを特徴とする、方法。
A bonding layer (12) containing MCrAlY as a main component is attached to the metal substrate (11), and the bonding layer (12) is covered by being overaluminized with the Al diffusion layer (14), and the Al diffusion layer (14 ) Was ablated and the outer layer (14.2) was removed from the Al diffusion layer (14) and the yttria partially stabilized zirconia ceramic thermal barrier coating (13) was applied to the remaining Al diffusion layer. Where the ceramic thermal barrier coating (13) is applied to the remaining Al diffusion layer (14) by atmospheric plasma spraying to provide a protective layer resistant to high temperature degradation due to corrosion and erosion of the metal substrate (11). The method of
The attached tie layer (12) is subjected to a polishing treatment prior to overaluminization, and the tie layer (12) has a surface roughness Ra ≦ 2 μm,
A method characterized in that the Al diffusion layer (14) is subjected to a polishing process after the ablation process, and the surface roughness of the remaining Al diffusion layer (14) is Ra ≦ 2 μm.
結合層(12)が溶射法によって金属基材(11)に付けられることを特徴とする、請求項1に記載の方法。   2. Method according to claim 1, characterized in that the tie layer (12) is applied to the metal substrate (11) by thermal spraying. 金属基材(11)の機械的性質に影響を与えるために、結合層(12)のオーバーアルミナイズの後、Al拡散層(14)の摩耗の前に、熱処理が実施されることを特徴とする、請求項1または2に記載の方法。   In order to influence the mechanical properties of the metal substrate (11), a heat treatment is performed after the over-aluminization of the bonding layer (12) and before the wear of the Al diffusion layer (14). The method according to claim 1 or 2. オーバーアルミナイズの間、Al拡散層(14)の内部にAl含有量が約20重量%である内部拡散領域(14.1)が形成され、内部拡散領域(14.1)の上にAl含有量が約30重量%である外側に重ねられた層(14.2)が形成され、Al拡散層(14)の外側に重ねられた層(14.2)が拡散領域(14.1)上に形成され、Al拡散層(14)の外側に重ねられた層(14.2)が、残りのAl拡散層(14)の表面のAl含有量が18重量%よりも大きく、かつ30重量%未満の量になるまでアブレーション処理によって除去されることを特徴とする、請求項1から3の何れか1項に記載の方法。   During overaluminization, an internal diffusion region (14.1) having an Al content of about 20% by weight is formed inside the Al diffusion layer (14), and Al content is contained on the internal diffusion region (14.1). An outer overlying layer (14.2) having an amount of about 30% by weight is formed, and the outer layer (14.2) overlying the Al diffusion layer (14) is on the diffusion region (14.1). The layer (14.2) formed on the outer side of the Al diffusion layer (14) has an Al content on the surface of the remaining Al diffusion layer (14) greater than 18% by weight and 30% by weight. 4. A method according to any one of claims 1 to 3, characterized in that it is removed by an ablation process until an amount of less than.
JP2014513181A 2011-05-31 2012-05-31 Method for applying a protective layer Expired - Fee Related JP5878629B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011103731.8 2011-05-31
DE102011103731A DE102011103731A1 (en) 2011-05-31 2011-05-31 Method for applying a protective layer, with a protective layer coated component and gas turbine with such a component
PCT/EP2012/060195 WO2012163991A1 (en) 2011-05-31 2012-05-31 Method for applying a protective layer, component coated with a protective layer, and gas turbine comprising such a component

Publications (2)

Publication Number Publication Date
JP2014520205A JP2014520205A (en) 2014-08-21
JP5878629B2 true JP5878629B2 (en) 2016-03-08

Family

ID=46201638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014513181A Expired - Fee Related JP5878629B2 (en) 2011-05-31 2012-05-31 Method for applying a protective layer

Country Status (6)

Country Link
US (1) US20140141276A1 (en)
EP (1) EP2714957A1 (en)
JP (1) JP5878629B2 (en)
CA (1) CA2837415C (en)
DE (1) DE102011103731A1 (en)
WO (1) WO2012163991A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002239B1 (en) * 2013-02-15 2015-04-10 Messier Bugatti Dowty METHOD FOR MANUFACTURING AN AIRCRAFT PART COMPRISING A SUBSTRATE AND A COATING LAYER OF THE SUBSTRATE
US9518325B2 (en) * 2013-03-19 2016-12-13 General Electric Company Treated coated article and process of treating a coated article
CN104404436B (en) * 2014-11-25 2017-02-22 西安交通大学 Method for preparing columnar ceramic coating layer by low-pressure plasma spraying based on liquid phase filtration
DE102016103664A1 (en) 2016-03-01 2017-09-07 Lufthansa Technik Ag Flow element and method for coating a flow element
GB201903484D0 (en) * 2019-03-14 2019-05-01 Rolls Royce Plc A method of removing a ceramic coating from a ceramic coated metallic article

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236745A (en) * 1991-09-13 1993-08-17 General Electric Company Method for increasing the cyclic spallation life of a thermal barrier coating
JP3219594B2 (en) * 1994-04-27 2001-10-15 三菱重工業株式会社 Thermal barrier coating method for high temperature oxidation prevention
DE69603183T2 (en) * 1995-04-27 2000-03-23 Siemens Ag METAL COMPONENT WITH HIGH TEMPERATURE PROTECTIVE COATING AND METHOD FOR COATING A COMPONENT
JP3571052B2 (en) * 1995-07-25 2004-09-29 シーメンス アクチエンゲゼルシヤフト Products with metal body
US6555179B1 (en) * 1998-01-14 2003-04-29 General Electric Company Aluminizing process for plasma-sprayed bond coat of a thermal barrier coating system
DE19801424B4 (en) * 1998-01-16 2004-08-05 Forschungszentrum Jülich GmbH Thermal insulation for high temperatures and its use
US6203685B1 (en) * 1999-01-20 2001-03-20 International Business Machines Corporation Apparatus and method for selective electrolytic metallization/deposition utilizing a fluid head
US6472018B1 (en) * 2000-02-23 2002-10-29 Howmet Research Corporation Thermal barrier coating method
US6576067B2 (en) * 2001-08-31 2003-06-10 General Electric Co. Fabrication of an article having a protective coating with a polished, pre-oxidized protective-coating surface
DE102004045049A1 (en) * 2004-09-15 2006-03-16 Man Turbo Ag Protection layer application, involves applying undercoating with heat insulating layer, and subjecting diffusion layer to abrasive treatment, so that outer structure layer of diffusion layer is removed by abrasive treatment
DE102005053531A1 (en) * 2005-11-08 2007-05-10 Man Turbo Ag Heat-insulating protective layer for a component within the hot gas region of a gas turbine
DE102005060243A1 (en) * 2005-12-14 2007-06-21 Man Turbo Ag Process for coating hollow internally cooled gas turbine blades with adhesive-, zirconium oxide ceramic- and Cr diffusion layers useful in gas turbine engine technology has adhesive layer applied by plasma or high rate spraying method
WO2007112783A1 (en) * 2006-04-06 2007-10-11 Siemens Aktiengesellschaft Layered thermal barrier coating with a high porosity, and a component
US20090162692A1 (en) * 2007-12-24 2009-06-25 Bangalore Aswatha Nagaraj Coated Superalloy Articles
DE102008007870A1 (en) * 2008-02-06 2009-08-13 Forschungszentrum Jülich GmbH Thermal barrier coating system and process for its preparation

Also Published As

Publication number Publication date
WO2012163991A1 (en) 2012-12-06
US20140141276A1 (en) 2014-05-22
EP2714957A1 (en) 2014-04-09
CA2837415C (en) 2016-11-08
CA2837415A1 (en) 2012-12-06
DE102011103731A1 (en) 2012-12-06
JP2014520205A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
US9139896B2 (en) Heat-insulating protective layer for a component located within the hot gas zone of a gas turbine
CA2517298C (en) Process for applying a protective layer
US9109279B2 (en) Method for coating a blade and blade of a gas turbine
JP5554488B2 (en) Alumina-based protective coating for thermal barrier coating
US6607789B1 (en) Plasma sprayed thermal bond coat system
JP5762709B2 (en) Single layer bond coat and its construction method
US7862901B2 (en) Yttria containing thermal barrier coating topcoat layer and method for applying the coating layer
US6190124B1 (en) Columnar zirconium oxide abrasive coating for a gas turbine engine seal system
RU2594092C2 (en) Turbo machine component with erosion- and corrosion-resistant coating, as well as method of making said component
US20080145694A1 (en) Thermal barrier coating system and method for coating a component
EP1686199B1 (en) Thermal barrier coating system
US20090162670A1 (en) Method for applying ceramic coatings to smooth surfaces by air plasma spray techniques, and related articles
JP2005313644A (en) Peeling resistance metal articles and peeling reduction method of metal article
US20110048017A1 (en) Method of depositing protective coatings on turbine combustion components
JP5878629B2 (en) Method for applying a protective layer
JP2009161859A (en) Erosion and corrosion-resistant coating system and process therefor
US20140030497A1 (en) Localized transitional coating of turbine components
JP2003041358A (en) Process for applying heat shielding coating system on metallic substrate
JP2016500756A (en) Articles formed by plasma spray
JP2007239101A (en) Bond coating process for thermal barrier coating
WO2014126633A2 (en) Spallation-resistant thermal barrier coating
US20190203333A1 (en) Thermal barrier coating with improved adhesion

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160128

R150 Certificate of patent or registration of utility model

Ref document number: 5878629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees