JP5877855B2 - Multilayer thin film based reverse osmosis separation membrane using cross-linking between organic monomers and method for producing the same - Google Patents

Multilayer thin film based reverse osmosis separation membrane using cross-linking between organic monomers and method for producing the same Download PDF

Info

Publication number
JP5877855B2
JP5877855B2 JP2014029460A JP2014029460A JP5877855B2 JP 5877855 B2 JP5877855 B2 JP 5877855B2 JP 2014029460 A JP2014029460 A JP 2014029460A JP 2014029460 A JP2014029460 A JP 2014029460A JP 5877855 B2 JP5877855 B2 JP 5877855B2
Authority
JP
Japan
Prior art keywords
separation membrane
layer
reverse osmosis
porous support
osmosis separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014029460A
Other languages
Japanese (ja)
Other versions
JP2014161847A (en
Inventor
イ・ジョン−ヒョン
グ・ジョン−ウン
チェ・ワンスク
パン・ジュナ
キム・ボ−ヨン
イ・スンヘ
ペク・キョンユル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea University Research and Business Foundation
Original Assignee
Korea University Research and Business Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea University Research and Business Foundation filed Critical Korea University Research and Business Foundation
Publication of JP2014161847A publication Critical patent/JP2014161847A/en
Application granted granted Critical
Publication of JP5877855B2 publication Critical patent/JP5877855B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Description

本発明は、有機単量体間の架橋を利用した多層薄膜基盤の逆浸透分離膜及びその製造方法に関する。   The present invention relates to a reverse osmosis separation membrane based on a multilayer thin film utilizing cross-linking between organic monomers and a method for producing the same.

半透過性膜にて隔離された二つの溶液の間において溶媒が溶質の濃度の低い溶液から高い溶液の方へ分離膜を通って移動する現象を浸透現象といい、このとき、溶媒の移動で溶質の濃度の高い溶液側へ作用する圧力を浸透圧という。   The phenomenon in which the solvent moves through the separation membrane from a solution having a low solute concentration to a solution having a high solute concentration between two solutions separated by a semipermeable membrane is called an osmosis phenomenon. The pressure acting on the solution side where the concentration of solute is high is called osmotic pressure.

このような浸透圧よりも高い外部圧力を印加すると、溶媒は溶質の濃度の低い溶液の方へ移動するようになり、これを逆浸透という。逆浸透の原理を用い圧力勾配を駆動力として半透過性膜を介して各種の塩や有機物質を分離することができる。このような逆浸透現象を用いた逆浸透分離膜は、分子レベルの物質を分離し、また塩水または海水から塩を除去して家庭用や建築用、産業用用水として供給するのに核心的な素材として使用される。   When an external pressure higher than the osmotic pressure is applied, the solvent moves toward a solution having a low solute concentration, which is called reverse osmosis. Various salts and organic substances can be separated through a semipermeable membrane using the principle of reverse osmosis and a pressure gradient as a driving force. Reverse osmosis separation membranes using such reverse osmosis phenomenon are essential for separating substances at the molecular level and removing salt from salt water or sea water and supplying it as household, architectural, or industrial water. Used as a material.

商用化分離膜は、一般に、多孔性支持体上に水溶液状のMPD(m−phenylene diamine)単量体と有機溶媒状のTMC(trimesoyl chloride)単量体間の界面重合を通じてポリアミド(polyamide)選択層を製造する複合体の形態で生産されてきた。   Commercial separation membranes are generally selected from polyamides through interfacial polymerization between an aqueous MPD (m-phenylene diamine) monomer and an organic solvent-like TMC (trimesoyl chloride) monomer on a porous support. It has been produced in the form of a composite for producing layers.

このようなポリアミド系分離膜は、優れた塩除去性能を有することから、30年余りにわたり逆浸透分離膜として広く使用されてきた。しかしながら、相対的に低い水透過率と膜汚染(fouling)による深刻な性能低下が問題点として指摘されていた。   Such a polyamide-based separation membrane has been widely used as a reverse osmosis separation membrane for over 30 years because of its excellent salt removal performance. However, a serious decrease in performance due to relatively low water permeability and membrane fouling has been pointed out as problems.

したがって、海水淡水化工程に要されるエネルギーやコストを削減するためには、高い塩除去率と共に、高い水透過度及び汚染抵抗性を有する新規な逆浸透分離膜の開発が必要な状況である。   Therefore, in order to reduce the energy and cost required for the seawater desalination process, it is necessary to develop a new reverse osmosis separation membrane having high water permeability and contamination resistance as well as a high salt removal rate. .

これに関する従来の逆浸透分離膜技術としての界面重合による選択層製造方式は、バルク合成の特性上、選択層の厚さや表面構造、架橋密度の構造を制御しにくいという問題点があった。したがって、これを克服するために、近年、水溶液状で高分子電解質間の静電気的な引力を用いたLbL(Layer−by−Layer)、すなわち繰り返しの積層技術を基盤とした多層薄膜選択層を製造しようとする努力が試みられてきた。しかしながら、積層される物質が水溶性でなければならないという限界によって製造できる薄膜の物理化学的構造が制限的であることから、結果的に分離膜の塩除去率及び水透過率が従来の商用化逆浸透膜の性能レベルに及ばないという問題点がある。   The conventional selective layer manufacturing method using interfacial polymerization as a reverse osmosis separation membrane technology has a problem that it is difficult to control the thickness of the selective layer, the surface structure, and the structure of the crosslinking density due to the characteristics of bulk synthesis. Therefore, in recent years, in order to overcome this, LbL (Layer-by-Layer) using an electrostatic attractive force between polymer electrolytes in the form of an aqueous solution, that is, a multilayer thin film selective layer based on repeated lamination technology is manufactured. Attempts have been made to try. However, since the physicochemical structure of the thin film that can be manufactured is limited due to the limitation that the material to be laminated must be water-soluble, the salt removal rate and water permeability of the separation membrane are consequently reduced to the conventional commercialization. There is a problem that it does not reach the performance level of reverse osmosis membranes.

近年、有機溶媒状で有機単量体間の架橋結合を繰り返すことで多様な化学構造を有する多層薄膜の製造方法が報告されたことがあるが、これまでのところ、支持体、有機単量体、溶媒、及び濃度などにおいて工程の最適化がなされておらず、特に多孔性支持体上へのLbL多層薄膜の積層の際に組立体が支持体の気孔内に満たされるポアフィリング(pore filling)現象によって過剰の積層過程が必要となるという不具合がある。このような過剰積層は、製造工程上のコストをアップさせるだけでなく、製造された分離膜の水透過率を急激に下げるという逆効果を引き起こすようになる。   In recent years, there have been reports of methods for producing multilayer thin films having various chemical structures by repeating cross-linking between organic monomers in the form of organic solvents. There is no optimization of the process in terms of solvent, concentration, etc., and pore filling in which the assembly fills the pores of the support, especially when laminating the LbL multilayer thin film on the porous support. There is a problem that an excessive stacking process is required depending on the phenomenon. Such excessive lamination not only increases the cost in the manufacturing process, but also causes the adverse effect of rapidly decreasing the water permeability of the manufactured separation membrane.

韓国登録特許公報第10-1076221号Korean Registered Patent Publication No. 10-1076221

Park et al. Journal of Materials Chemistry, 20, 2085-2091(2010)Park et al. Journal of Materials Chemistry, 20, 2085-2091 (2010) Johnson et al. Journal of Polymer Science B, 50, 168-173(2012)Johnson et al. Journal of Polymer Science B, 50, 168-173 (2012) Qian et al. Langmuir, 28, 17803-17810(2012)Qian et al. Langmuir, 28, 17803-17810 (2012)

本発明は、海水の淡水化に使用される逆浸透分離膜の製造時に、有機単量体間の架橋結合を利用して多様な化学構造を有する多層薄膜基盤の逆浸透分離膜を製造し、多孔性支持体上に中間層を導入することで、LbL多層薄膜の積層過程で生じる支持体のポアフィリング(pore filling)現象を防止すると共に、最小の積層数にて高い水透過率、汚染抵抗性、及び塩除去率を達成する逆浸透分離膜及びその製造方法を提供することをその目的とする。   The present invention, when producing a reverse osmosis separation membrane used for desalination of seawater, produces a multilayer thin film-based reverse osmosis separation membrane having various chemical structures using cross-linking between organic monomers, By introducing an intermediate layer on the porous support, the pore filling phenomenon of the support that occurs in the process of laminating the LbL multilayer thin film is prevented, and a high water permeability and contamination resistance are achieved with a minimum number of layers. It is an object of the present invention to provide a reverse osmosis separation membrane and a method for producing the same that achieves the property and the salt removal rate.

前記のような目的を達成するために、本発明に係る具現例は、多孔性支持体及びその上部に積層されたLbL(Layer−by−Layer)選択層を含み、前記多孔性支持体と前記LbL選択層との間に高分子ナノ薄膜からなる中間層を含み、前記LbL選択層は、第1の有機単量体を含む第1の選択層及び第2の有機単量体を含む第2の選択層が積層された構造を含む逆浸透分離膜を提供する。   In order to achieve the above object, an embodiment of the present invention includes a porous support and an LbL (Layer-by-Layer) selection layer laminated thereon, An intermediate layer composed of a polymer nano thin film is included between the LbL selection layer, and the LbL selection layer includes a first selection layer including a first organic monomer and a second layer including a second organic monomer. A reverse osmosis separation membrane including a structure in which selective layers are stacked.

また、本発明に係る具現例は、前記のような逆浸透分離膜を製造する方法であって、多孔性支持体を高分子ナノ薄膜形成溶液に浸漬(dipping)して、多孔性支持体上に中間層を形成する中間層形成段階、前記中間層が形成された多孔性支持体を第1の有機単量体を含む有機溶媒に浸漬して、前記中間層上に第1の選択層を形成する第1の選択層形成段階、及び前記第1の選択層が形成された多孔性支持体を第2の有機単量体を含む有機溶媒に浸漬して、前記第1の選択層上に第2の選択層を形成する第2の選択層形成段階を含むことを特徴とする逆浸透分離膜製造方法を提供する。   An embodiment of the present invention is a method of manufacturing a reverse osmosis separation membrane as described above, wherein a porous support is dipped in a polymer nano thin film forming solution, and the porous support is formed on the porous support. Forming an intermediate layer on the intermediate layer, immersing the porous support on which the intermediate layer is formed in an organic solvent containing a first organic monomer, and forming a first selective layer on the intermediate layer A first selective layer forming step to be formed, and a porous support on which the first selective layer is formed are immersed in an organic solvent containing a second organic monomer, and the first selective layer is formed on the first selective layer. A reverse osmosis separation membrane manufacturing method comprising a second selective layer forming step of forming a second selective layer is provided.

本発明に係る有機単量体架橋を利用した多層薄膜基盤の逆浸透分離膜及びその製造方法によれば、従来の界面重合法によって製造された逆浸透分離膜に比べて、高いレベルの塩除去率だけでなく、顕著に向上した水透過率及び汚染抵抗性を達成する逆浸透分離膜を製造することができる。   According to the reverse osmosis separation membrane based on the multilayer thin film using the organic monomer cross-linking according to the present invention and the manufacturing method thereof, compared with the reverse osmosis separation membrane manufactured by the conventional interfacial polymerization method, a high level of salt removal is achieved. Reverse osmosis separation membranes that achieve not only rates but also significantly improved water permeability and contamination resistance can be produced.

また、本発明に係る有機単量体架橋を利用した多層薄膜基盤の逆浸透分離膜及びその製造方法によれば、有機単量体間の共有結合を用いて多層薄膜基盤の逆浸透分離膜を製造し且つ多孔性支持体上に中間層を導入することで、LbL多層薄膜の積層過程で生じるポアフィリング(pore filling)現象を防止する効果を達成すると共に、最小の積層数を用いながらも分離性能に優れる選択層薄膜を実現することができるようにする。   In addition, according to the present invention, a multilayer thin film-based reverse osmosis separation membrane using organic monomer cross-linking and a method for manufacturing the same are used. By manufacturing and introducing an intermediate layer on the porous support, the effect of preventing the pore filling phenomenon that occurs during the lamination process of the LbL multilayer thin film is achieved, and separation is performed while using the minimum number of layers. A selective layer thin film having excellent performance can be realized.

本発明の一具現例に係る逆浸透分離膜の構造を示す模式図である。It is a schematic diagram which shows the structure of the reverse osmosis separation membrane which concerns on one implementation example of this invention. 本発明の一具現例に従い逆浸透分離膜を製造する工程を示す概念図である。It is a conceptual diagram which shows the process of manufacturing a reverse osmosis separation membrane according to one embodiment of the present invention. 本発明の一具現例に係る逆浸透分離膜に含まれた有機単量体間の共有自己組み立て(LbL)にて形成された分離膜選択層の表面SEMイメージを示す図である。It is a figure which shows the surface SEM image of the separation membrane selection layer formed by the covalent self-assembly (LbL) between the organic monomers contained in the reverse osmosis separation membrane which concerns on one implementation example of this invention. 本発明の比較例としての従来技術に従い界面重合にて形成された分離膜選択層の表面SEMイメージを示す図である。It is a figure which shows the surface SEM image of the separation membrane selection layer formed by the interfacial polymerization according to the prior art as a comparative example of the present invention.

本明細書における、特許請求の範囲及び要約書を含む本明細書の全般にわたって用いられる用語である「自己組み立て」または「LbL(Layer−by−Layer)」は、層と層とが静電気的な引力、水素結合または共有結合にてつながれて構造的に極めて安定し、且つ支持体の大きさまたは形態にかかわらず多層超薄膜を実現することができる技術のことを意味する。また、本明細書における用語「選択層」は、それぞれ一回以上相互に繰り返し積層された第1の選択層及び第2の選択層を包括する意味として用いられる。本明細書における用語「多孔性支持体」は、前記多層から構成された薄膜の下層に位置して薄膜の形態を保たせる構造体であって、内部、表面または構造体を貫通する複数のポア(pore)が存在する構造体のことを意味する。本明細書における用語「浸漬(dipping)」は、特定の物体を溶液中に浸して特定の物体の表面に被膜を形成させることを意味する。   As used herein, the term “self-assembly” or “LbL (Layer-by-Layer)” as used throughout this specification, including the claims and abstract, This means a technology that is extremely structurally stable by being connected by attractive force, hydrogen bond or covalent bond, and can realize a multilayer ultra-thin film regardless of the size or form of the support. In addition, the term “selective layer” in the present specification is used to include a first selective layer and a second selective layer that are repeatedly laminated one or more times. In this specification, the term “porous support” refers to a structure that is located in the lower layer of a thin film composed of multiple layers and maintains the form of the thin film, and includes a plurality of pores that penetrate the interior, the surface, or the structure. It means a structure in which (pore) exists. As used herein, the term “dipping” means that a specific object is immersed in a solution to form a film on the surface of the specific object.

本発明は逆浸透分離膜に関し、以下、本発明の具現例について添付した図面を参照して詳細に説明する。   The present invention relates to a reverse osmosis separation membrane. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

添付された図1は、本発明に係る逆浸透分離膜の例示的な形態を示した図である。図1を参照して説明すると、本発明の具現例に係る逆浸透分離膜は、多孔性支持体A及びその上部に積層されたLbL(Layer−by−Layer)選択層C、Dを含み、前記多孔性支持体Aと前記LbL選択層C、Dとの間に高分子ナノ薄膜からなる中間層Bを含み、前記LbL選択層は、第1の有機単量体を含む第1の選択層C及び第2の有機単量体を含む第2の選択層Dが積層された構造を含む。そして、一具現例として、前記逆浸透分離膜のLbL選択層は、前記第1の選択層C及び第2の選択層Dが積層された構造を一層以上含んでいてよい。   FIG. 1 attached herewith is a view showing an exemplary form of a reverse osmosis separation membrane according to the present invention. Referring to FIG. 1, a reverse osmosis separation membrane according to an embodiment of the present invention includes a porous support A and LbL (Layer-by-Layer) selection layers C and D stacked on the porous support A, Between the porous support A and the LbL selective layers C and D, an intermediate layer B made of a polymer nano thin film is included, and the LbL selective layer is a first selective layer containing a first organic monomer. It includes a structure in which a second selective layer D containing C and a second organic monomer is laminated. As an example, the LbL selection layer of the reverse osmosis separation membrane may include one or more structures in which the first selection layer C and the second selection layer D are stacked.

本発明の具現例によれば、前記多孔性支持体は、その成分や形態が特に制限されないが、逆浸透分離膜の一部として各種の塩や有機物質の分離能を保持するためという観点から、具体的には、有機溶媒に対する溶解抵抗性が強い限外ろ過(ultrafiltration)レベルの多孔性支持体であってよい。より具体的に、前記多孔性支持体は、ポリアクリロニトリル(PAN)、ポリビニリデンフルオライド(PVDF)またはポリスルホン(polysulfone)などを含むものを例に挙げられる。また、一具現例において前記多孔性支持体の空径は1〜500nmである。
v また、本発明の具現例によれば、前記多孔性支持体は、その上部に積層されたLbL選択層との間に中間層を含み、前記中間層は、多孔性支持体の表面ポアを塞ぐことで、その上に積層されるLbL選択層の積層数を減らすと共に、前記LbL選択層が効果的に形成できるようにする。本発明の具現例によれば、前記中間層は、高い水透過率を有し、且つ前記多孔性支持体の表面においてポア(pore)を塞ぐことができるものであれば特に制限されるものではなく、具体的には、界面重合または自己組み立てによって形成された高分子ナノ薄膜であってよい。
According to an embodiment of the present invention, the component and form of the porous support are not particularly limited, but from the viewpoint of maintaining the separation ability of various salts and organic substances as part of the reverse osmosis separation membrane. Specifically, it may be an ultrafiltration level porous support having strong dissolution resistance to an organic solvent. More specifically, examples of the porous support include polyacrylonitrile (PAN), polyvinylidene fluoride (PVDF), polysulfone, and the like. In one embodiment, the porous support has an air diameter of 1 to 500 nm.
v According to an embodiment of the present invention, the porous support includes an intermediate layer between the LbL selection layer stacked on the porous support, and the intermediate layer has a surface pore of the porous support. By closing, the number of LbL selection layers stacked thereon is reduced, and the LbL selection layer can be effectively formed. According to an embodiment of the present invention, the intermediate layer is not particularly limited as long as it has a high water permeability and can block pores on the surface of the porous support. Specifically, it may be a polymer nano thin film formed by interfacial polymerization or self-assembly.

一具現例として、前記中間層は、多官能アミンと多官能酸クロリド(acid chloride)間の界面重合によって形成されたナノ薄膜であってよい。このとき、前記多官能アミンと多官能酸クロリドは特に制限されないが、例えば、前記多官能アミンと多官能酸クロリドは、それぞれピペラジン(Piperazine、以下、PIP)アミンとトリメソイルクロリド(trimesoyl chloride、以下、TMC)であってよい。または、それぞれピペラジン(PIP)アミンと脂肪族三官能基クロリド(aliphatic trifuctional chloride)であってよい。他の一具現例として、前記中間層は、電荷を呈する支持体の表面上にアニオン性高分子電解質とカチオン性高分子電解質との自己組み立てによって形成された高分子ナノ薄膜であってよい。このとき、前記アニオン性高分子電解質は、特に制限されないが、例えば、ポリエチレンイミン(polyethylenimine、PEI)またはポリ(アリルアミンヒドロクロリド)(poly(allylamine hydrochloride)、以下、PAH)であってよい。また、前記カチオン性高分子電解質は、特に制限されないが、ポリ(アクリル酸)(poly(acrylic acid)、以下、PAA)を例に挙げられる。一具現例として、前記電荷を呈する支持体は、本発明において用いられていてよい一般的な多孔性支持体(PAN、PVDF、Polysulfone)をいずれも含むことができる。これは、前記多孔性支持体の場合、特別な処理を施さなくても中性水溶液上で弱い負電荷を呈するからである。または、前記電荷を呈する支持体は、必要に応じて負電荷の強度を増加させるために、NaOH水溶液処理、UV−Ozone、あるいは酸素プラズマ表面処理を施された多孔性支持体であってよい。   For example, the intermediate layer may be a nano thin film formed by interfacial polymerization between a polyfunctional amine and a polyfunctional acid chloride. At this time, the polyfunctional amine and the polyfunctional acid chloride are not particularly limited. , TMC). Alternatively, each may be piperazine (PIP) amine and an aliphatic trifunctional chloride. As another embodiment, the intermediate layer may be a polymer nano thin film formed by self-assembly of an anionic polyelectrolyte and a cationic polyelectrolyte on a surface of a support exhibiting a charge. At this time, the anionic polymer electrolyte is not particularly limited, and may be, for example, polyethylenimine (PEI) or poly (allylamine hydrochloride) (hereinafter, PAH). The cationic polymer electrolyte is not particularly limited, and examples thereof include poly (acrylic acid) (hereinafter referred to as PAA). In one embodiment, the charge-bearing support may include any general porous support (PAN, PVDF, Polysulfone) that may be used in the present invention. This is because the porous support exhibits a weak negative charge on the neutral aqueous solution without any special treatment. Alternatively, the support that exhibits the charge may be a porous support that has been subjected to NaOH aqueous solution treatment, UV-zone, or oxygen plasma surface treatment in order to increase the intensity of negative charge as necessary.

本発明の具現例によれば、前記中間層の厚さは特に制限されず、最終的に製造される逆浸透分離膜の水透過率の確保という面から、薄ければ薄いほどよい。前記中間層の厚さは、具体的に0.1nm〜100nmを例に挙げられる。   According to the embodiment of the present invention, the thickness of the intermediate layer is not particularly limited, and the thinner the better, from the viewpoint of securing the water permeability of the finally manufactured reverse osmosis separation membrane. Specific examples of the thickness of the intermediate layer include 0.1 nm to 100 nm.

本発明の具現例によれば、前記LbL選択層は、前記中間層の上部に積層されたものであって、第1の有機単量体を含む第1の選択層及び第2の有機単量体を含む第2の選択層が積層された構造から構成される。前記第1の選択層及び第2の選択層は、それぞれに含まれる第1の有機単量体及び第2の有機単量体間における共有結合によって積層される。一具現例として、前記LbL選択層は、前記第1の選択層及び第2の選択層が積層された構造を一層以上繰り返し含んでいてよく、前記第1及び第2の選択層の積層数及び最下層及び最上層に積層された選択層の種類は、必要に応じて調節されていてよい。   According to an embodiment of the present invention, the LbL selection layer is stacked on the intermediate layer, and includes a first selection layer including a first organic monomer and a second organic monomer. The second selection layer including the body is configured to be stacked. The first selection layer and the second selection layer are stacked by a covalent bond between the first organic monomer and the second organic monomer contained in each. As an example, the LbL selection layer may repeatedly include a structure in which the first selection layer and the second selection layer are stacked one or more times, and the number of stacked first and second selection layers and The kind of the selection layer laminated | stacked on the lowest layer and the uppermost layer may be adjusted as needed.

一具現例として、前記各第1または第2の選択層の一層の厚さは、特に制限されないが、最終的に製造される逆浸透分離膜の水透過率の確保という面から、薄ければ薄いほどよい。例えば、一つの第1または第2の選択層の厚さは、0.1nm〜3.0nmであってよい。また、単一または複数の第1の選択層及び第2の選択層を含むLbL選択層の総厚さは、特に制限されないが、最終的に製造される逆浸透分離膜の水透過率の確保という面から、薄ければ薄いほどよい。一具現例において、前記LbL選択層の総厚さは、0.1nm〜100nmの範囲を有していてよい。   As an embodiment, the thickness of each of the first or second selective layers is not particularly limited. However, from the viewpoint of ensuring the water permeability of the reverse osmosis separation membrane to be finally produced, The thinner the better. For example, the thickness of one first or second selection layer may be 0.1 nm to 3.0 nm. In addition, the total thickness of the LbL selection layer including a single or a plurality of first selection layers and a second selection layer is not particularly limited, but ensuring the water permeability of the finally manufactured reverse osmosis separation membrane. Therefore, the thinner the better. In one embodiment, the total thickness of the LbL selection layer may have a range of 0.1 nm to 100 nm.

一具現例として、前記第1の選択層に含まれる第1の有機単量体は、有機溶媒に溶解されて前記中間層の表面と共有結合または水素結合を形成することができ、前記第2の選択層に含まれる第2の有機単量体と相互共有結合(架橋)して積層され得るものであれば特に制限されず、具体的に芳香族ジアミンが挙げられる。例えば、前記第1の有機単量体は、オルト−、メタ−、またはパラ−フェニレンジアミン(OPD、MPD、PPD)を含む芳香族ジアミンが挙げられる。   For example, the first organic monomer included in the first selective layer may be dissolved in an organic solvent to form a covalent bond or a hydrogen bond with the surface of the intermediate layer. If it can be laminated | stacked by mutually covalent-bonding (crosslinking) with the 2nd organic monomer contained in this selective layer, it will not restrict | limit, Specifically, aromatic diamine is mentioned. For example, the first organic monomer may be an aromatic diamine including ortho-, meta-, or para-phenylenediamine (OPD, MPD, PPD).

一具現例として、前記第2の選択層に含まれる第2の有機単量体は、有機溶媒に溶解されて、前記第1の選択層の第1の有機単量体と共有結合(架橋)して積層され得るものであれば特に制限されず、具体的に、多官能基クロリド(multifuctional chloride)が挙げられる。例えば、前記第2の有機単量体は、TMCを含む多官能基クロリドが挙げられる。   As one embodiment, the second organic monomer contained in the second selective layer is dissolved in an organic solvent and covalently bonded (crosslinked) with the first organic monomer in the first selective layer. As long as they can be laminated, there is no particular limitation, and specific examples thereof include multifunctional chloride. For example, the second organic monomer may be a polyfunctional group chloride containing TMC.

一具現例として、前記第1及び第2の有機単量体は、それぞれ1nm以下の大きさを有していてよく、このような分子大きさの単位で架橋反応を制御することで、常用逆浸透分離膜製法、すなわちバルク界面重合の時よりも小さい分子レベルでの構造制御を可能にする効果がある。   As one embodiment, the first and second organic monomers may each have a size of 1 nm or less, and the reverse reaction can be achieved by controlling the crosslinking reaction in units of such molecular size. There is an effect of enabling structure control at a molecular level smaller than that in the osmosis separation membrane manufacturing method, that is, bulk interfacial polymerization.

本発明の具現例によれば、前記のような構成を有する逆浸透分離膜を製造する方法は、多孔性支持体を高分子ナノ薄膜形成溶液に浸漬(dipping)して、多孔性支持体上に中間層を形成する中間層形成段階;前記中間層が形成された多孔性支持体を第1の有機単量体を含む有機溶媒に浸漬して、前記中間層上に第1の選択層を形成する第1の選択層形成段階;及び前記第1の選択層が形成された多孔性支持体を第2の有機単量体を含む有機溶媒に浸漬して、前記第1の選択層上に第2の選択層を形成する第2の選択層形成段階を含んでいてよい。また、一具現例として、前記第1の選択層形成段階及び第2の選択層形成段階は、相互に1回以上繰り返し行っていてよい。   According to an embodiment of the present invention, a method of manufacturing a reverse osmosis separation membrane having the above-described configuration includes dipping a porous support in a polymer nano thin film forming solution, and then on the porous support. Forming an intermediate layer on the intermediate layer; immersing the porous support on which the intermediate layer is formed in an organic solvent containing a first organic monomer; and forming a first selective layer on the intermediate layer. A first selective layer forming step to be formed; and a porous support on which the first selective layer is formed is immersed in an organic solvent containing a second organic monomer, and the first selective layer is formed on the first selective layer. A second selective layer forming step of forming a second selective layer may be included. As one embodiment, the first selective layer forming step and the second selective layer forming step may be repeated one or more times.

一具現例によれば、前記中間層形成段階は、多孔性支持体を多官能アミン水溶液に浸漬してから多官能酸クロリド(acid chloride)水溶液に浸漬して界面重合させ、多孔性支持体の上部に中間層を形成することを含んでいてよい。または、前記中間層形成段階は、一具現例として、前記多孔性支持体をアニオン性高分子電解質水溶液に浸漬してからカチオン性高分子電解質水溶液に浸漬して自己組み立てさせ、多孔性支持体の上部に中間層を形成することを含んでいてよい。   According to one embodiment, the intermediate layer forming step includes immersing the porous support in an aqueous polyfunctional amine solution, and then interfacially polymerizing the porous support in an aqueous solution of a polyfunctional acid chloride. It may include forming an intermediate layer on top. Alternatively, in one embodiment, the intermediate layer forming step may be performed by immersing the porous support in an anionic polymer electrolyte aqueous solution and then in a cationic polymer electrolyte aqueous solution for self-assembly, It may include forming an intermediate layer on top.

本発明の具現例によれば、前記製造方法は、前記第1及び第2の選択層形成段階後に、それぞれ前記選択層が形成された多孔性支持体を有機溶媒で洗浄する洗浄段階をさらに含んでいてよい。また、前記洗浄段階は、洗浄液(rinsing solution)で洗浄する段階をさらに含んでいてよい。   According to an embodiment of the present invention, the manufacturing method further includes a washing step of washing the porous support on which the selective layer is formed with an organic solvent after the first and second selective layer forming steps. You can leave. In addition, the cleaning step may further include a step of cleaning with a cleaning solution.

本発明の一具現例としてより詳細に説明すれば、前記第1の選択層は、前記中間層が形成された多孔性支持体を第1の有機単量体が溶解された有機溶媒中に一定の時間浸漬して製造することができる。前記浸漬コーティング方式は、従来のスピンキャスティング(spin−casting)などに比べて、商業化の面で有利である。前記有機溶媒中に浸漬された多孔性支持体の中間層上には、有機溶媒中に溶解された第1の有機単量体と前記中間層表面間の共有結合または水素結合によって第1の選択層が形成される。   In more detail, the first selective layer is formed by fixing the porous support on which the intermediate layer is formed in an organic solvent in which the first organic monomer is dissolved. It can be manufactured by dipping for a period of time. The dip coating method is advantageous in terms of commercialization as compared with conventional spin-casting. On the intermediate layer of the porous support immersed in the organic solvent, a first selection is made by a covalent bond or a hydrogen bond between the first organic monomer dissolved in the organic solvent and the surface of the intermediate layer. A layer is formed.

また、一具現例として、前記製造方法は、前記第1の選択層が形成された後に、前記第1の選択層が形成された多孔性支持体を有機溶媒で洗浄する洗浄段階をさらに含んでいてよい。前記洗浄段階では、洗浄液をさらに含んで洗浄することができる。すなわち、前記第1の選択層形成段階の後の洗浄段階では、未反応した第1の有機単量体を除去するために、前記選択層が形成された多孔性支持体を有機溶媒に浸漬させ、このとき、さらに洗浄液を含ませていてよく、このとき、前記洗浄液は、前記第1の有機単量体を洗浄することができるものであれば特に制限されないが、第1の有機単量体に対する溶解度が高い溶媒であるほどよい。前記洗浄液の一具現例としては、アセトン、アルコール、テトラヒドロフラン(THF)、または水を例に挙げられる。   In one embodiment, the manufacturing method further includes a cleaning step of cleaning the porous support on which the first selective layer is formed with an organic solvent after the first selective layer is formed. May be. In the cleaning step, the cleaning may further include a cleaning liquid. That is, in the washing step after the first selective layer forming step, the porous support on which the selective layer is formed is immersed in an organic solvent in order to remove the unreacted first organic monomer. In this case, a cleaning liquid may be further included. At this time, the cleaning liquid is not particularly limited as long as it can clean the first organic monomer. The higher the solubility in the solvent, the better. Examples of the cleaning liquid include acetone, alcohol, tetrahydrofuran (THF), and water.

また、一具現例として、前記第2の選択層は、前記第1の選択層が形成された多孔性支持体を第2の有機単量体が溶解された有機溶媒中に一定の時間浸漬して製造することができる。前記有機溶媒中に浸漬された多孔性支持体の第1の選択層上には、有機溶媒中に溶解された第2の有機単量体と前記第1の選択層上の第1の有機単量体間の共有(架橋)結合によって第2の選択層が形成される。   In one embodiment, the second selective layer includes immersing the porous support in which the first selective layer is formed in an organic solvent in which the second organic monomer is dissolved for a certain period of time. Can be manufactured. On the first selective layer of the porous support immersed in the organic solvent, the second organic monomer dissolved in the organic solvent and the first organic monolayer on the first selective layer. A second selective layer is formed by covalent (cross-linking) bonding between the monomers.

一具現例として、前記製造方法は、前記第2の選択層が形成された後に、前記第2の選択層が形成された多孔性支持体を有機溶媒で洗浄する洗浄段階をさらに含んでいてよい。前記洗浄段階では、洗浄液をさらに含んで洗浄することができる。すなわち、前記第2の選択層形成段階の後の洗浄段階では、未反応した第2の有機単量体を除去するために前記選択層が形成された多孔性支持体を有機溶媒に浸漬させ、このとき、さらに洗浄液を含ませていてよい。このとき、前記洗浄液は、前記第2の有機単量体を洗浄することができるものであれば特に制限されないが、第2の有機単量体に対する溶解度が高い溶媒であるほどよい。前記洗浄液は、一具現例として、トルエン、テトラヒドロフラン(THF)を用いていてよい。   As an example, the manufacturing method may further include a cleaning step of cleaning the porous support on which the second selective layer is formed with an organic solvent after the second selective layer is formed. . In the cleaning step, the cleaning may further include a cleaning liquid. That is, in the washing step after the second selective layer forming step, the porous support on which the selective layer is formed is immersed in an organic solvent in order to remove the unreacted second organic monomer, At this time, a cleaning liquid may be further included. At this time, the cleaning liquid is not particularly limited as long as it can clean the second organic monomer, but a solvent having higher solubility in the second organic monomer is better. For example, toluene and tetrahydrofuran (THF) may be used as the cleaning liquid.

一具現例として、前記有機溶媒は、多孔性支持体を溶解させず且つ第1の有機単量体及び第2の有機単量体を溶解させることができるものであれば、特に制限されない。例示的な具現例において、前記有機溶媒は、トルエン、テトラヒドロフラン(THF)などを用いていてよい。   As an embodiment, the organic solvent is not particularly limited as long as it does not dissolve the porous support and can dissolve the first organic monomer and the second organic monomer. In an exemplary embodiment, the organic solvent may be toluene, tetrahydrofuran (THF), or the like.

本発明の具現例として、前記した一連の段階を含む逆浸透分離膜の製造過程で形成される第1及び第2の選択層の物理化学的構造と、最終的に製造される逆浸透分離膜の分離性能は、前記中間層、第1の有機単量体、第2の有機単量体、洗浄液(rinsing solution)または有機溶媒によって制御されるようになる。また、最終的に製造される逆浸透分離膜の分離性能は、前記第1及び第2の選択層の積層回数と厚さ、初期及び最終積層段階によって決められ得る。   As an embodiment of the present invention, the physicochemical structure of the first and second selective layers formed in the manufacturing process of the reverse osmosis separation membrane including the series of steps described above, and the reverse osmosis separation membrane finally produced The separation performance is controlled by the intermediate layer, the first organic monomer, the second organic monomer, the rinsing solution, or the organic solvent. Further, the separation performance of the reverse osmosis separation membrane to be finally produced can be determined by the number and thickness of the first and second selective layers, and the initial and final lamination stages.

前記した逆浸透分離膜の製造技術は、有機単量体間の架橋結合を利用した自己組み立て(LbL)技術であって、界面重合による選択層の製造技術などをはじめとした従来技術に比べて、より小さい分子レベルの構造制御が可能であり、その結果、製造される逆浸透分離膜の厚さ、物理化学的構造、架橋密度または表面粗さなどを制御することが容易となる。また、前記のような自己組み立てにて選択層を形成する場合は、最小の積層数(厚さ)を有しつつも高い架橋密度を有する多層薄膜層が製造できるので、優れた塩除去率を確保すると共に水分子の拡散抵抗を下げることで水透過率を極大化するようになる。さらには、形成される多層薄膜層の表面粗さを最小化できるので、前記逆浸透分離膜の汚染性を改善するようになる。したがって、本発明に従って製造される逆浸透分離膜を海水淡水化工程に適用した場合、海水淡水化工程に要されるエネルギーやコストの削減に寄与する効果を得ることができる。また、前記逆浸透分離膜製造工程において、多孔性支持体上に中間層を導入することで、続く選択層(LbL多層薄膜)の積層過程で生じるポアフィリング(pore filling)現象を予め防止することで、前記選択層の形成時に、不要な過剰積層を防止するだけでなく製造効率性を向上することができる。   The reverse osmosis separation membrane manufacturing technology described above is a self-assembly (LbL) technology that utilizes cross-linking between organic monomers, compared to conventional technologies such as a selective layer manufacturing technology by interfacial polymerization. Therefore, it is possible to control the structure at a smaller molecular level, and as a result, it becomes easy to control the thickness, physicochemical structure, crosslink density or surface roughness of the manufactured reverse osmosis separation membrane. In addition, when forming the selective layer by self-assembly as described above, a multilayer thin film layer having a high crosslink density while having the minimum number of layers (thickness) can be manufactured, so that an excellent salt removal rate is obtained. The water permeability can be maximized by securing the diffusion resistance of the water molecules as well as ensuring it. Furthermore, since the surface roughness of the formed multilayer thin film layer can be minimized, the contamination of the reverse osmosis separation membrane is improved. Therefore, when the reverse osmosis separation membrane produced according to the present invention is applied to the seawater desalination process, it is possible to obtain an effect that contributes to energy and cost reduction required for the seawater desalination process. Also, in the reverse osmosis separation membrane manufacturing process, by introducing an intermediate layer on the porous support, the pore filling phenomenon that occurs in the subsequent laminating process of the selective layer (LbL multilayer thin film) can be prevented in advance. Thus, at the time of forming the selection layer, not only unnecessary excessive lamination can be prevented, but also the production efficiency can be improved.

以下、実施例を挙げて本発明をより詳しく説明することにする。これらの実施例は、単に本発明を例示するためのものに過ぎず、本発明の範囲がこれらの実施例によって制限されると解釈されるものではないことは、当業界における通常の知識を有する者にとって自明なことである。   Hereinafter, the present invention will be described in more detail with reference to examples. These examples are merely for the purpose of illustrating the present invention and have ordinary knowledge in the art that the scope of the present invention should not be construed as being limited by these examples. It is obvious to the person.

実施例1
本発明の一具現例に係る逆浸透分離膜を下記の方法にて製造した。
Example 1
A reverse osmosis separation membrane according to an embodiment of the present invention was manufactured by the following method.

先ず、多孔性支持体としてポリアクリロニトリル(PAN)を用意し、これを精製水で洗浄後、1wt%のPIP水溶液に5分間浸漬した。次いで、ローラー(Roller)を利用して表面に付着した過量のPIP溶液を除去した後、0.05wt%のTMCヘキサン溶液を支持体の表面に注いで3分間反応させた。その後、過量のヘキサンで表面を洗浄してから、70℃のオーブンで2分間乾燥させた。   First, polyacrylonitrile (PAN) was prepared as a porous support, washed with purified water, and then immersed in a 1 wt% PIP aqueous solution for 5 minutes. Subsequently, after removing an excessive amount of PIP solution adhering to the surface using a roller, a 0.05 wt% TMC hexane solution was poured onto the surface of the support and allowed to react for 3 minutes. Thereafter, the surface was washed with an excessive amount of hexane and then dried in an oven at 70 ° C. for 2 minutes.

前記のような過程を通じて中間層が形成された支持体を、先ずトルエンに20分間浸漬して支持体を媒質に充分に浸した後、1wt%のMPDトルエン溶液に支持体を40秒間浸漬した。反応後、アセトンとトルエンに順次1分ずつ洗浄及び浸漬し、1wt%のTMCトルエン溶液にサンプルを40秒間浸漬した。以降、トルエンで1分間ずつ2回にわたって洗浄を行った。このとき、前記一連の過程を積層数1と定義した。かかる積層過程を繰り返し行って多層薄膜を製造し、前記積層数が10層である多層薄膜を製造した(実施例1)。   The support on which the intermediate layer was formed through the above process was first immersed in toluene for 20 minutes to fully soak the support in a medium, and then the support was immersed in a 1 wt% MPD toluene solution for 40 seconds. After the reaction, the sample was washed and immersed in acetone and toluene sequentially for 1 minute, and the sample was immersed in a 1 wt% TMC toluene solution for 40 seconds. Thereafter, washing was performed twice with toluene for 1 minute. At this time, the above-described series of processes was defined as the number of stacked layers. A multi-layer thin film was manufactured by repeating such a stacking process, and a multi-layer thin film having 10 layers was manufactured (Example 1).

実施例2及び3
本発明の一具現例に係る逆浸透分離膜を、前記実施例1と中間層形成段階を除いては同一の方法にて下記のように製造した。
Examples 2 and 3
A reverse osmosis separation membrane according to an embodiment of the present invention was manufactured in the same manner as in Example 1 except for the intermediate layer forming step.

先ず、多孔性支持体としてのPAN支持体を、40℃の2MのNaOH水溶液に2時間浸した。過量の精製水で支持体を洗浄した後、0.2wt%のPAH水溶液(pH7.5)に10分間浸漬し、過量の精製水(pH7.5)で1分間2回にわたってサンプルを洗浄した。以降、0.2wt%のPAA水溶液(pH3.5)に10分間浸漬した後、過量の精製水(pH3.5)で1分間2回にわたってサンプルを洗浄して中間層を形成した。そして、続く実施例2と実施例3におけるLbL選択層形成段階は、実施例1と同様に行った。なお、第1の選択層積層後の洗浄段階で用いた洗浄液は、トルエン(実施例2)とアセトン(実施例3)とにそれぞれ相違するものとした。   First, a PAN support as a porous support was immersed in a 2M NaOH aqueous solution at 40 ° C. for 2 hours. After washing the support with an excessive amount of purified water, the substrate was immersed in an aqueous 0.2 wt% PAH solution (pH 7.5) for 10 minutes, and the sample was washed twice with an excessive amount of purified water (pH 7.5) for 1 minute. Thereafter, the sample was immersed in a 0.2 wt% PAA aqueous solution (pH 3.5) for 10 minutes, and then the sample was washed twice with an excessive amount of purified water (pH 3.5) to form an intermediate layer. The subsequent LbL selective layer formation steps in Example 2 and Example 3 were performed in the same manner as in Example 1. Note that the cleaning liquid used in the cleaning step after the first selective layer lamination was different for toluene (Example 2) and acetone (Example 3).

実施例4
本発明の一具現例に係る逆浸透分離膜を下記のように製造した。
Example 4
A reverse osmosis separation membrane according to an embodiment of the present invention was manufactured as follows.

先ず、PAN支持体を40℃の2MのNaOH水溶液に2時間浸した。過量の精製水で支持体を洗浄した後、0.1wt%のPEI/0.5wt%のNaCl水溶液(pH7.0)に30分間浸漬し、過量の精製水(pH7.0)で2分間4回にわたってサンプルを洗浄した。次いで、0.1wt%のTMCトルエン溶液に3分間浸漬してから過量のトルエンで洗浄して中間層を形成した。続く実施例4におけるLbL選択層形成段階は、実施例1と同様に行った。なお、最終的に積層される積層数は0、2、5、10層(それぞれ実施例4a、4b、4c、4d)で、それぞれ相違するものとした。   First, the PAN support was immersed in a 2M NaOH aqueous solution at 40 ° C. for 2 hours. After washing the support with an excessive amount of purified water, the substrate was immersed in 0.1 wt% PEI / 0.5 wt% NaCl aqueous solution (pH 7.0) for 30 minutes, and then an excessive amount of purified water (pH 7.0) for 2 minutes. The sample was washed multiple times. Subsequently, it was immersed in a 0.1 wt% TMC toluene solution for 3 minutes and then washed with an excessive amount of toluene to form an intermediate layer. The subsequent LbL selective layer formation step in Example 4 was performed in the same manner as in Example 1. The final number of layers to be stacked is 0, 2, 5, 10 layers (Examples 4a, 4b, 4c, 4d, respectively), which are different from each other.

比較例1
従来技術に従って多孔性支持体であるポリアクリロニトリル(PAN)を用意し、MPDとTMC間の界面重合を用いて前記多孔性支持体上に選択層を製造した。これにより、常用分離膜製法である界面重合法と架橋積層を用いたLbL製法によって製造された分離膜の分離性能を比較してみることとする。
Comparative Example 1
According to the prior art, polyacrylonitrile (PAN) as a porous support was prepared, and a selective layer was manufactured on the porous support using interfacial polymerization between MPD and TMC. Thus, the separation performance of the separation membrane produced by the interfacial polymerization method, which is a conventional separation membrane production method, and the LbL production method using a cross-linked laminate will be compared.

具体的に、多孔性支持体としてポリアクリロニトリル(PAN)を用意し、これを精製水で洗浄後、1wt%のMPD水溶液に5分間浸漬した。ローラーを利用して表面に付着した過量のMPD溶液を除去した後、0.1wt%のTMCヘキサン溶液を支持体の表面に注いで3分間反応させた。その後、過量のヘキサンで表面を洗浄してから、70℃のオーブンで2分間乾燥させて逆浸透分離膜を製造した。   Specifically, polyacrylonitrile (PAN) was prepared as a porous support, washed with purified water, and then immersed in a 1 wt% MPD aqueous solution for 5 minutes. After removing the excessive amount of MPD solution adhering to the surface using a roller, a 0.1 wt% TMC hexane solution was poured onto the surface of the support and allowed to react for 3 minutes. Thereafter, the surface was washed with an excessive amount of hexane and then dried in an oven at 70 ° C. for 2 minutes to produce a reverse osmosis separation membrane.

実験例1
前記実施例1〜4と比較例1に従って製造された逆浸透分離膜を対象に、海水淡水化における分離性能を測定した。
Experimental example 1
Separation performance in seawater desalination was measured for reverse osmosis separation membranes manufactured according to Examples 1 to 4 and Comparative Example 1.

具体的に、前記それぞれの実施例1〜4と比較例1に従って製造した逆浸透分離膜を、径4.9cm大きさのサンプルとして切り出し、クロスフローセル(cross−flow cell)に付着した。このとき、供給水は2、000ppmのNaCl水溶液を用い、工程圧力は15.5barにセットした。2時間の安定化以降から分離膜にてろ過される溶液の量と溶液中に含まれたNaClの濃度を測定して水透過率(L/mh)と塩(NaCl、%)除去率を測定し、前記実験によって測定された結果を次の表1に表した。 Specifically, the reverse osmosis separation membranes manufactured according to Examples 1 to 4 and Comparative Example 1 were cut out as a sample having a diameter of 4.9 cm and attached to a cross-flow cell. At this time, the feed water was a 2,000 ppm NaCl aqueous solution, and the process pressure was set to 15.5 bar. The water permeability (L / m 2 h) and salt (NaCl,%) removal rate were measured by measuring the amount of the solution filtered through the separation membrane and the concentration of NaCl contained in the solution after stabilization for 2 hours. Table 1 below shows the results measured by the experiment.

前記表に表された逆浸透分離膜の分離性能を見てみると、前記実施例3の場合、従来技術に係る比較例1の逆浸透分離膜に比べて、優れた塩除去率(98.2%)を示すことを確認することができる。また、前記実施例3を除く他の全ての実施例は、前記比較例1に比べて向上した水透過率を示す確認することができた。   Looking at the separation performance of the reverse osmosis separation membrane shown in the above table, in the case of Example 3, the salt removal rate (98. 9) superior to the reverse osmosis separation membrane of Comparative Example 1 according to the prior art. 2%) can be confirmed. In addition, it was confirmed that all the examples other than Example 3 showed improved water permeability as compared with Comparative Example 1.

特に、実施例1の場合、比較例1に比べて塩除去率がわずかな差で低いが、水透過率が3倍以上も増加した結果を示した。また実施例4dの場合、比較例1に比べて同等レベルの塩除去率を示しながらも水透過率が67%程度増加した結果を示した。   In particular, in the case of Example 1, the salt removal rate was slightly lower than that of Comparative Example 1, but the water permeability increased by 3 times or more. In addition, in the case of Example 4d, the water permeability increased by about 67% while showing the same level of salt removal rate as compared with Comparative Example 1.

したがって、前記実験結果を参照すれば、本発明に従って逆浸透分離膜の製造工程条件(有機単量体の濃度、溶媒、洗浄液、中間層、積層数など)をさらに最適化することによって、商用化分離膜に比べて同等以上の塩除去率を示しながらも水透過率が一層向上した逆浸透分離膜を得ることができるものと判断される。   Therefore, referring to the experimental results, commercialization can be achieved by further optimizing the manufacturing process conditions of the reverse osmosis separation membrane (organic monomer concentration, solvent, washing liquid, intermediate layer, number of layers, etc.) according to the present invention. It is judged that a reverse osmosis separation membrane having a further improved water permeability while exhibiting a salt removal rate equal to or higher than that of the separation membrane can be obtained.

また、逆浸透分離膜において滑らかな表面は、ラフな表面に比べてファウリング(fouling)抵抗性が高いものと知られており、したがって、本発明の図3a及び図3bに示された結果を参照するとき、LbL製法による分離膜の汚染安定性が常用製法による分離膜に比べて優れるものと予想される。   In addition, a smooth surface in a reverse osmosis separation membrane is known to have higher fouling resistance than a rough surface, and thus the results shown in FIGS. 3a and 3b of the present invention are obtained. When referred to, it is expected that the contamination stability of the separation membrane by the LbL manufacturing method is superior to the separation membrane by the conventional manufacturing method.

以上、本発明内容の特定の部分を詳しく記述したところ、当業界における通常の知識を有する者にとって斯様な具体的技術は単に好適な実施態様であるに過ぎず、これによって本発明の範囲が制限されるものではない点は明白であろう。よって、本発明の実質的な範囲は請求項とそれらの等価物によって定義されると言えよう。   As described above, specific portions of the present invention have been described in detail, and such specific techniques are merely preferred embodiments for those having ordinary knowledge in the art, and the scope of the present invention is thereby limited. It will be clear that it is not limited. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

A 多孔性支持体
B 中間層
C 第1の選択層
D 第2の選択層
E 有機溶媒
F 洗浄液(rinsing solution)
A porous support B intermediate layer C first selective layer D second selective layer E organic solvent F washing solution (rinsing solution)

Claims (14)

多孔性支持体及びその上部に積層されたLbL(Layer−by−Layer)選択層を含み、
前記多孔性支持体と前記LbL選択層との間に高分子ナノ薄膜からなる中間層を含み、
前記LbL選択層は、第1の有機単量体を含む第1の選択層及び第2の有機単量体を含む第2の選択層が積層された構造を含み、
前記中間層は、多官能アミンと多官能酸クロリド(acid chloride)間の界面重合によって形成されるか、または電荷を呈する支持体表面の上にアニオン性高分子電解質とカチオン性高分子電解質との自己組み立てによって形成された、厚さが100nm以下の高分子ナノ薄膜であり、
前記第1の有機単量体は芳香族ジアミンを含み、
前記第2の有機単量体は多官能基クロリド(multifuctional chloride)を含む、逆浸透分離膜。
A porous support and an LbL (Layer-by-Layer) selective layer laminated on top of the porous support;
Including an intermediate layer composed of a polymer nano thin film between the porous support and the LbL selective layer;
The LbL selection layer is seen containing a second selected layer are stacked structure including a first selective layer and the second organic monomer containing a first organic monomer,
The intermediate layer may be formed by interfacial polymerization between a polyfunctional amine and a polyfunctional acid chloride, or an anionic polyelectrolyte and a cationic polyelectrolyte may be formed on a surface of a support having a charge. A polymer nano thin film with a thickness of 100 nm or less formed by self-assembly,
The first organic monomer includes an aromatic diamine;
The reverse osmosis separation membrane , wherein the second organic monomer includes a multi-functional group chloride .
前記LbL選択層は、前記第1の選択層及び第2の選択層が積層された構造を一層以上含むことを特徴とする請求項1に記載の逆浸透分離膜。   The reverse osmosis separation membrane according to claim 1, wherein the LbL selection layer includes one or more structures in which the first selection layer and the second selection layer are stacked. 前記多孔性支持体は、ポリアクリロニトリル(PAN)、ポリビニリデンフルオライド(PVDF)またはポリスルホン(polysulfone)を含むことを特徴とする請求項1または2に記載の逆浸透分離膜。 The reverse osmosis separation membrane according to claim 1 or 2 , wherein the porous support includes polyacrylonitrile (PAN), polyvinylidene fluoride (PVDF), or polysulfone. 前記芳香族ジアミンが、オルト−、メタ−、またはパラ−フェニレンジアミンを含む請求項1〜3の何れかに記載の逆浸透分離膜 The reverse osmosis separation membrane according to any one of claims 1 to 3, wherein the aromatic diamine contains ortho-, meta-, or para-phenylenediamine . 前記多官能基クロリドが、トリメソイルクロリドを含む請求項1〜4の何れかに記載の逆浸透分離膜 The reverse osmosis separation membrane according to any one of claims 1 to 4, wherein the polyfunctional group chloride contains trimesoyl chloride . 前記多官能アミンが、ピペラジンを含む請求項1〜5の何れかに記載の逆浸透分離膜 The reverse osmosis separation membrane according to any one of claims 1 to 5, wherein the polyfunctional amine contains piperazine . 前記多官能酸クロリドが、トリメソイルクロリドを含む請求項1〜6の何れかに記載の逆浸透分離膜 The reverse osmosis separation membrane according to any one of claims 1 to 6, wherein the polyfunctional acid chloride contains trimesoyl chloride . 前記LbL選択層の総厚さは100nm以下であることを特徴とする請求項1〜7の何れかに記載の逆浸透分離膜。 The reverse osmosis separation membrane according to any one of claims 1 to 7, wherein the total thickness of the LbL selection layer is 100 nm or less. 請求項1〜の何れかに記載の逆浸透分離膜を製造する方法であって、
多孔性支持体を高分子ナノ薄膜形成溶液に浸漬(dipping)して、多孔性支持体上に中間層を形成する中間層形成段階;
前記中間層が形成された多孔性支持体を第1の有機単量体を含む有機溶媒に浸漬して、前記中間層上に第1の選択層を形成する第1の選択層形成段階;及び
前記第1の選択層が形成された多孔性支持体を第2の有機単量体を含む有機溶媒に浸漬して、前記第1の選択層上に第2の選択層を形成する第2の選択層形成段階;
を含むことを特徴とする逆浸透分離膜の製造方法。
A method for producing a reverse osmosis separation membrane according to any one of claims 1 to 8 ,
An intermediate layer forming step of dipping the porous support in the polymer nanofilm forming solution to form an intermediate layer on the porous support;
A first selective layer forming step of immersing the porous support having the intermediate layer formed in an organic solvent containing a first organic monomer to form a first selective layer on the intermediate layer; and A porous support on which the first selective layer is formed is immersed in an organic solvent containing a second organic monomer to form a second selective layer on the first selective layer. Selective layer formation step;
A process for producing a reverse osmosis separation membrane, comprising:
前記中間層形成段階は、多孔性支持体を多官能アミン水溶液に浸漬してから多官能酸クロリド(acid chloride)溶液に浸漬して界面重合させ、多孔性支持体の上部に中間層を形成することを含むことを特徴とする請求項に記載の逆浸透分離膜の製造方法。 The intermediate layer forming step, the porous support immersed in the polyfunctional amine solution after immersion in the polyfunctional acid chloride (acid chloride) dissolved liquid is interfacial polymerization, forming an intermediate layer on top of the porous support The method for producing a reverse osmosis separation membrane according to claim 9 , comprising: 前記中間層形成段階は、多孔性支持体をアニオン性高分子電解質水溶液に浸漬してからカチオン性高分子電解質水溶液に浸漬して自己組み立てさせ、多孔性支持体の上部に中間層を形成することを含むことを特徴とする請求項に記載の逆浸透分離膜の製造方法。 In the intermediate layer forming step, the porous support is immersed in an anionic polymer electrolyte aqueous solution and then immersed in a cationic polymer electrolyte aqueous solution to be self-assembled to form an intermediate layer on the porous support. The method for producing a reverse osmosis separation membrane according to claim 9 , comprising: 前記第1及び第2の選択層形成段階後に、第1の選択層が形成された多孔性支持体及び第2の選択層が形成された多孔性支持体のそれぞれを有機溶媒で洗浄する洗浄段階をさらに含むことを特徴とする請求項9〜11の何れかに記載の逆浸透分離膜の製造方法。 After the first and second selective layer forming steps, a washing step of washing each of the porous support formed with the first selective layer and the porous support formed with the second selective layer with an organic solvent. The method for producing a reverse osmosis separation membrane according to any one of claims 9 to 11 , further comprising: 前記洗浄段階は、洗浄液(rinsing solution)で洗浄する段階をさらに含むことを特徴とする請求項12に記載の逆浸透分離膜の製造方法。 The method of manufacturing a reverse osmosis separation membrane according to claim 12 , wherein the washing step further comprises a step of washing with a rinsing solution. 前記第1の選択層形成段階及び第2の選択層形成段階を交互に1回以上繰り返し行うことを特徴とする請求項9〜13の何れかに記載の逆浸透分離膜の製造方法。 The method for producing a reverse osmosis separation membrane according to any one of claims 9 to 13 , wherein the first selective layer forming step and the second selective layer forming step are alternately repeated one or more times.
JP2014029460A 2013-02-21 2014-02-19 Multilayer thin film based reverse osmosis separation membrane using cross-linking between organic monomers and method for producing the same Expired - Fee Related JP5877855B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130018655A KR101450723B1 (en) 2013-02-21 2013-02-21 Reverse osmosis membranes based on multilayered thin films using a layerbylayer crosslinking assembly of organic monomers and method for preparing the same
KR10-2013-0018655 2013-02-21

Publications (2)

Publication Number Publication Date
JP2014161847A JP2014161847A (en) 2014-09-08
JP5877855B2 true JP5877855B2 (en) 2016-03-08

Family

ID=51612994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014029460A Expired - Fee Related JP5877855B2 (en) 2013-02-21 2014-02-19 Multilayer thin film based reverse osmosis separation membrane using cross-linking between organic monomers and method for producing the same

Country Status (2)

Country Link
JP (1) JP5877855B2 (en)
KR (1) KR101450723B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101519026B1 (en) 2014-02-17 2015-05-12 한국과학기술연구원 Forward osmosis membranes based on multilayered thin films using a molecular layer-by-layer crosslinking assembly of organic monomers and method for fabricating the same
KR101804026B1 (en) * 2015-12-31 2017-12-28 고려대학교 산학협력단 One-step fabrication of thin film composite membranes using a dual layer-slot coating
US20210245111A1 (en) * 2018-04-23 2021-08-12 Korea University Research And Business Foundation Technique for manufacturing high solute-selective thin film composite membranes using aromatic hydrocarbon solvents
CN116747715B (en) * 2023-04-14 2024-01-23 浙江大学 High-water flux nanofiltration membrane with gradient structure separation layer and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19528706A1 (en) * 1995-08-04 1997-02-06 Hoechst Ag Polyetherimide membrane
JPH10337454A (en) * 1997-04-10 1998-12-22 Nitto Denko Corp Reverse osmotic multipie membrane and reverse osmosis treatment of water using the same
JP4505576B2 (en) 2003-05-29 2010-07-21 独立行政法人理化学研究所 Method for manufacturing thin film material
JP2006102594A (en) * 2004-10-01 2006-04-20 Nitto Denko Corp Method for manufacturing composite semipermeable membrane
JP2006187731A (en) * 2005-01-06 2006-07-20 Kurita Water Ind Ltd Separation membrane and water treatment apparatus
JP5283311B2 (en) * 2005-08-11 2013-09-04 学校法人明治大学 Modified porous support membrane and method for producing the same
KR101076221B1 (en) 2009-02-20 2011-10-26 광주과학기술원 Method for fabricating of reverse osmosis membrane from polyelectrolyte multilayers and reverse osmosis membrane of fabricated using the same
CN102762287B (en) * 2010-02-16 2014-12-03 日东电工株式会社 Composite separation membrane and separation membrane element using same
WO2011118486A1 (en) * 2010-03-23 2011-09-29 東レ株式会社 Separation membrane and method for producing same

Also Published As

Publication number Publication date
KR20140105082A (en) 2014-09-01
JP2014161847A (en) 2014-09-08
KR101450723B1 (en) 2014-10-17

Similar Documents

Publication Publication Date Title
Joseph et al. Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation
AU2010289795B2 (en) Forward osmosis membranes
KR101519026B1 (en) Forward osmosis membranes based on multilayered thin films using a molecular layer-by-layer crosslinking assembly of organic monomers and method for fabricating the same
JP5692885B2 (en) Reverse osmosis membrane including silver nanowire layer and method for producing the same
US10786786B2 (en) Method for manufacturing membrane using selective layer prepared through support-free interfacial polymerization
KR20160027196A (en) Multiple channel membranes
KR20130059869A (en) Hybrid porous structured material, method of preparing hybrid porous structure material, membrane including hybrid porous structured material, and water treatment device including membrane including hybrid porous structured material
WO2012137635A1 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for manufacturing composite semipermeable membrane
JP6534607B2 (en) Reverse osmosis membrane or nanofiltration membrane and method for producing them
JP5877855B2 (en) Multilayer thin film based reverse osmosis separation membrane using cross-linking between organic monomers and method for producing the same
WO2017091645A1 (en) Support layers for forward osmosis membranes
KR101949369B1 (en) Method to Fabricate Thin Film Composite Membranes using Multi-structured Core-shell Materials
KR100813908B1 (en) Preparation method of highly permeable composite polyamide nanofiltration membranes
KR20140131810A (en) Semi-permeable film, membrane including the semi-permeable film,and method of manufacturing the semi-permeable film
WO2015118894A1 (en) Method for producing composite semipermeable membrane
KR102550877B1 (en) Manufacturing method of spiral type separator element
KR20170061662A (en) Composite semipermeable membrane and method for producing same, and spiral separation membrane element
JP2006102594A (en) Method for manufacturing composite semipermeable membrane
KR101076221B1 (en) Method for fabricating of reverse osmosis membrane from polyelectrolyte multilayers and reverse osmosis membrane of fabricated using the same
JP6521422B2 (en) Spiral type separation membrane element
KR101433841B1 (en) Composite Membrane and Manufacturing Method Thereof
KR101653414B1 (en) Method for Manufacturing Polyamide-based Reverse Osmosis Membrane having Antifouling Property
KR20230138883A (en) Composite semipermeable membrane and spiral membrane element
AU2015227384A1 (en) Forward osmosis membranes
JP2011016097A (en) Composite semipermeable membrane

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160126

R150 Certificate of patent or registration of utility model

Ref document number: 5877855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees