JP5877094B2 - Method for producing lubricating base oil - Google Patents
Method for producing lubricating base oil Download PDFInfo
- Publication number
- JP5877094B2 JP5877094B2 JP2012057455A JP2012057455A JP5877094B2 JP 5877094 B2 JP5877094 B2 JP 5877094B2 JP 2012057455 A JP2012057455 A JP 2012057455A JP 2012057455 A JP2012057455 A JP 2012057455A JP 5877094 B2 JP5877094 B2 JP 5877094B2
- Authority
- JP
- Japan
- Prior art keywords
- base oil
- lubricating base
- oil
- producing
- adsorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Lubricants (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は、原油の精製処理により得られたラフィネートを用いた潤滑油基油の製造方法および得られた潤滑油基油に関する。 The present invention relates to a method for producing a lubricating base oil using raffinate obtained by refining crude oil, and the obtained lubricating base oil.
鉱油系の潤滑油基油は、原油を精製して製造されている。特にナフテン系原油の精製においては、原油を常圧蒸留あるいは減圧蒸留して得られた比較的重質な留分を好適な条件で溶剤精製し、得られたラフィネートを更に水素化精製して色相の改善、酸価低減、安定性の向上などを図るのが従来からの一般的な精製フローとなっている(例えば、非特許文献1参照)。 Mineral oil base oils are manufactured by refining crude oil. In particular, in the purification of naphthenic crude oil, a relatively heavy fraction obtained by atmospheric distillation or vacuum distillation of the crude oil is subjected to solvent purification under suitable conditions, and the resulting raffinate is further hydrorefined to obtain a hue. Improvements in acid, reduction in acid value, improvement in stability, etc. have become a conventional general purification flow (see, for example, Non-Patent Document 1).
ところで、従来の水素化精製では基油の酸化安定性の改善は進むものの耐候性の改善は十分ではなかった。そこで、従来から、水素化精製によって耐候性を改善するために様々な検討がなされてきた。しかしながら、依然として酸化安定性と耐候性のバランスに優れた潤滑油基油の製造方法は得られていない。 By the way, the conventional hydrorefining has improved the oxidation stability of the base oil, but the weather resistance has not been improved sufficiently. Therefore, various studies have been made to improve weather resistance by hydrorefining. However, a method for producing a lubricating base oil having an excellent balance between oxidation stability and weather resistance has not been obtained.
本発明の目的は、従来と同等の酸化安定性を維持しながら耐候性にも優れる潤滑油基油の製造方法、およびその製造方法で得られた潤滑油基油を提供することにある。 An object of the present invention is to provide a method for producing a lubricating base oil that is excellent in weather resistance while maintaining oxidation stability equivalent to that of the prior art, and a lubricating base oil obtained by the production method.
シリケート系吸着剤は、従来、劣化した食用油や、有害もしくは不要な褐変・着色成分を含有する液状食品等に対し、その酸価の低減、着色度の低減に有用なものとして用いられてきた(特開2005−6510号公報、特開2001−207187号公報参照)。しかしながら、原油から潤滑油基油を製造する際の精製処理にシリケート系吸着剤を適用した例は知られていない。
本発明者らは、シリケート系吸着剤、特にシリカ・マグネシア系吸着剤をラフィネートの精製に適用すべく鋭意検討した結果、色相の改善、酸価の低減、臭気の改善に止まらず、予想に反して、従来の水素化精製と比較して同等の酸化安定性を維持しつつ、なおかつ水素化精製よりも著しく耐候性が改善されることを見出した。本発明は、この知見をもとに完成されたものである。
すなわち、本発明は、以下のような潤滑油基油の製造方法、およびその製造方法で得られた潤滑油基油を提供するものである。
Silicate-based adsorbents have been used as useful for reducing the acid value and coloring level of edible oils and liquid foods containing harmful or unnecessary browning / coloring components. (Refer to Unexamined-Japanese-Patent No. 2005-6510, Unexamined-Japanese-Patent No. 2001-207187). However, there is no known example in which a silicate-based adsorbent is applied to a refining process when producing a lubricating base oil from crude oil.
As a result of intensive studies to apply silicate-based adsorbents, especially silica-magnesia-based adsorbents for the purification of raffinate, the present inventors have not only improved the hue, reduced the acid value, and improved the odor. Thus, it has been found that the weather resistance is remarkably improved as compared with hydrorefining while maintaining the same oxidation stability as compared with conventional hydrorefining. The present invention has been completed based on this finding.
That is, the present invention provides the following method for producing a lubricant base oil and the lubricant base oil obtained by the method.
(1)原油を蒸留することにより得られた重質油留分を溶剤で精製し、得られたラフィネートに対しシリケート系吸着剤を用いて吸着処理を行う潤滑油基油の製造方法であって、
前記シリケート系吸着剤が顆粒状である
ことを特徴とする潤滑油基油の製造方法。
(2)上述の(1)に記載の潤滑油基油の製造方法において、前記シリケート系吸着剤の顆粒平均粒径が100μm以上250μmであることを特徴とする潤滑油基油の製造方法。
(3)上述の(1)または(2)に記載の潤滑油基油の製造方法において、前記シリケート系吸着剤の比表面積が600m 2 /g以上900m 2 /g以下であることを特徴とする潤滑油基油の製造方法。
(4)上述の(1)から(3)までのいずれか1つに記載の潤滑油基油の製造方法において、前記シリケート系吸着剤の細孔容積が0.8cc/g以上1.1cc/g以下であることを特徴とする潤滑油基油の製造方法。
(5)上述の(1)から(4)までのいずれか1つに記載の潤滑油基油の製造方法において、前記シリケート系吸着剤がシリカ・マグネシア系吸着剤であることを特徴とする潤滑油基油の製造方法。
(6)上述の(1)から(5)までのいずれか1つに記載の潤滑油基油の製造方法において、前記原油がナフテン基系原油であり、前記重質油留分の常圧換算沸点が230℃以上600℃以下であることを特徴とする潤滑油基油の製造方法。
(7)上述の(1)から(6)までのいずれか1つに記載の潤滑油基油の製造方法において、前記ラフィネートに対し前記吸着剤を0.1質量%以上5質量%以下混合して吸着処理を行うことを特徴とする潤滑油基油の製造方法。
(1) A method for producing a lubricating base oil in which a heavy oil fraction obtained by distilling crude oil is purified with a solvent, and the resulting raffinate is adsorbed using a silicate adsorbent. ,
A method for producing a lubricating base oil, wherein the silicate-based adsorbent is granular .
(2) The method for producing a lubricating base oil according to (1), wherein the silicate-based adsorbent has an average particle diameter of 100 μm or more and 250 μm.
(3) In the method for producing a lubricating base oil according to (1) or (2) above, the specific surface area of the silicate-based adsorbent is 600 m 2 / g or more and 900 m 2 / g or less. A method for producing a lubricating base oil.
(4) In the method for producing a lubricating base oil according to any one of (1) to (3), the pore volume of the silicate-based adsorbent is 0.8 cc / g or more and 1.1 cc / The manufacturing method of the lubricating base oil characterized by being below g.
( 5 ) The method for producing a lubricating base oil according to any one of (1) to (4) above, wherein the silicate-based adsorbent is a silica-magnesia-based adsorbent. A method for producing an oil base oil.
( 6 ) In the method for producing a lubricating base oil according to any one of (1) to (5) above, the crude oil is a naphthenic base crude oil, and converted to normal pressure of the heavy oil fraction. A method for producing a lubricating base oil having a boiling point of 230 ° C or higher and 600 ° C or lower.
(7) In the method for manufacturing a lubricant base oil according to any one of the above (1) to (6), wherein the adsorbent is mixed 0.1 wt% to 5 wt% or less with respect to the raffinate A method for producing a lubricating base oil, characterized by carrying out an adsorption treatment.
本発明によれば、従来と同等の酸化安定性を維持しながら耐候性にも優れる潤滑油基油の製造方法、および前記した特性を有する潤滑油基油を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the lubricating base oil which is excellent also in a weather resistance, maintaining the oxidation stability equivalent to the past, and the lubricating base oil which has the above-mentioned characteristic can be provided.
本発明の潤滑油基油の製造方法は、原油を蒸留することにより得られた重質油留分を溶剤で精製し、得られたラフィネートに対しシリケート系吸着剤を用いて吸着処理を行うことを特徴とする。以下、詳細に説明する。 The method for producing a lubricating base oil of the present invention comprises refining a heavy oil fraction obtained by distilling crude oil with a solvent, and subjecting the resulting raffinate to an adsorption treatment using a silicate adsorbent. It is characterized by. Details will be described below.
[ラフィネート(潤滑油基油中間体)の製造]
本発明で使用される原油は特に限定されない。パラフィン系原油、中間基系原油あるいはナフテン系原油などのいずれでもよいが、潤滑油として低温流動性や溶解性(低アニリン点)などが要求される場合はナフテン系原油を用いることが好ましい。
これらの原油を常圧蒸留するか、あるいは常圧蒸留残渣油を減圧蒸留して所定の重質油留分を分離できればよく、運転条件は特に限定されない。
得られた重質油留分に対して溶剤抽出を行うが、溶剤としてはフルフラールやN−メチルピロリドンなど、汎用されている抽出溶剤を使用すればよい。抽出条件は特に限定されないが、好ましくは以下の性状を満足するように溶剤比、温度などを適宜調整・設定すればよい。
沸点(JIS K 2254準拠):蒸留初留点の常圧換算温度が200℃以上600℃以下、より好ましくは220℃以上550℃以下
100℃動粘度(JIS K 2283準拠):2mm2/s以上20mm2/s以下、より好ましくは3mm2/s以上15mm2/s以下
PCA(IP346(92)法準拠):3質量%未満
[Production of raffinate (lubricant base oil intermediate)]
The crude oil used in the present invention is not particularly limited. Any of paraffinic crude oil, intermediate base crude oil, naphthenic crude oil, and the like may be used, but naphthenic crude oil is preferably used when low-temperature fluidity and solubility (low aniline point) are required as the lubricating oil.
There is no particular limitation on the operating conditions as long as these crude oils are distilled at atmospheric pressure, or the atmospheric distillation residue is distilled under reduced pressure to separate a predetermined heavy oil fraction.
Solvent extraction is performed on the obtained heavy oil fraction, and a commonly used extraction solvent such as furfural or N-methylpyrrolidone may be used as the solvent. The extraction conditions are not particularly limited, but preferably the solvent ratio, temperature, etc. may be appropriately adjusted and set so as to satisfy the following properties.
Boiling point (according to JIS K 2254): Normal pressure conversion temperature of distillation initial boiling point is 200 ° C. or more and 600 ° C. or less, more preferably 220 ° C. or more and 550 ° C. or less 100 ° C. kinematic viscosity (according to JIS K 2283): 2 mm 2 / s or more 20 mm 2 / s or less, more preferably 3 mm 2 / s or more and 15 mm 2 / s or less PCA (based on IP346 (92) method): less than 3% by mass
[吸着剤]
本発明は、ラフィネートに対して従来行っていた水素化精製の代わりに吸着処理を行うものである。この吸着に使用するシリケート系吸着剤としては、発明の効果の観点より平均粒径、BET比表面積および細孔径の少なくともいずれかが以下の範囲であることが好ましい。
平均粒径(レーザー回折法):2μm以上8μm以下
(MALVERN社製MASTERSIZER Sで測定)
比表面積(ガス吸着法 BET法):600m2/g以上900m2/g以下
細孔容積(窒素吸着法):0.8cc/g以上1.1cc/g以下
このような、シリケート系吸着剤としては、発明の効果の観点より、特にシリカ・マグネシア系吸着剤が好ましい。シリカ・マグネシア系吸着剤の場合、マグネシア(MgO)の含有量は、吸着剤全量基準で、10質量%以上60質量%以下が好ましく、より好ましくは15質量%以上60質量%以下であり、特に好ましくは20質量%以上50質量%以下である。
[Adsorbent]
In the present invention, an adsorption treatment is performed on raffinate instead of the conventional hydrorefining. As the silicate-based adsorbent used for this adsorption, it is preferable that at least one of the average particle diameter, the BET specific surface area and the pore diameter is in the following range from the viewpoint of the effect of the invention.
Average particle diameter (laser diffraction method): 2 μm or more and 8 μm or less (measured with MASTERSIZER S manufactured by MALVERN)
Specific surface area (gas adsorption method BET method): 600 m 2 / g or more and 900 m 2 / g or less Pore volume (nitrogen adsorption method): 0.8 cc / g or more and 1.1 cc / g or less As such a silicate-based adsorbent From the viewpoint of the effects of the invention, a silica / magnesia-based adsorbent is particularly preferable. In the case of a silica-magnesia-based adsorbent, the content of magnesia (MgO) is preferably 10% by mass or more and 60% by mass or less, more preferably 15% by mass or more and 60% by mass or less, particularly based on the total amount of the adsorbent. Preferably they are 20 mass% or more and 50 mass% or less.
シリケート系吸着剤としては微粉末、粉末、粒状いずれの形態も適用可能である。吸着時の油(ラフィネート)と吸着剤との接触効率を考えると、微粉末形態のほうが接触効率は高いものとなるが、後述するろ過時の抵抗が大きくなり安定した運転を維持することが困難となる。従って、吸着効率とろ過抵抗両面から吸着剤の形態を決定することが好ましい。ろ過速度の観点からは、吸着剤は粉末状であるより顆粒状に成型してあることが好ましく、また、顆粒平均粒径は100μm以上250μm以下であることが好ましい。顆粒平均粒径の測定法は上述のレーザー回折法である。 As the silicate-based adsorbent, any of fine powder, powder and granular forms can be applied. Considering the contact efficiency between the oil (raffinate) and the adsorbent during adsorption, the fine powder form has higher contact efficiency, but the resistance during filtration described later increases and it is difficult to maintain stable operation. It becomes. Therefore, it is preferable to determine the form of the adsorbent from both the adsorption efficiency and the filtration resistance. From the viewpoint of the filtration rate, the adsorbent is preferably molded into a granule rather than a powder, and the granule average particle size is preferably 100 μm or more and 250 μm or less. The method for measuring the average particle size of the granules is the laser diffraction method described above.
[吸着条件]
ラフィネートに対する吸着処理後のプロダクトの酸価、色相、臭いが規定の数値になるように、シリケート系吸着剤の添加量、吸着処理時の温度、吸着処理時間を適宜調整すればよい。これらの各パラメータの好ましい範囲は以下の通りである。
ラフィネートへの添加量:0.1質量%以上5質量%以下
吸着処理時の温度:60℃以上100℃以下
吸着処理時間:3時間以上
また、撹拌速度を高める等の工夫で撹拌効率(吸着効率)を高めることも重要である。
[Adsorption conditions]
What is necessary is just to adjust suitably the addition amount of the silicate type adsorbent, the temperature at the time of the adsorption treatment, and the adsorption treatment time so that the acid value, the hue, and the odor of the product after the adsorption treatment with respect to the raffinate become the prescribed numerical values. Preferred ranges for each of these parameters are as follows.
Addition amount to raffinate: 0.1 mass% or more and 5 mass% or less Temperature during adsorption treatment: 60 ° C. or more and 100 ° C. or less Adsorption treatment time: 3 hours or more In addition, stirring efficiency (adsorption efficiency) by increasing the stirring speed, etc. ) Is also important.
[吸着処理後の分離方法]
吸着処理後のプロダクトと吸着剤との分離方法はろ過が好ましい。ろ過を行う場合、従来から広範に使用されているプレス法、あるいは、遠心分離による方法等、いずれの方法でもよい。但し、吸着剤のろ過油への漏れ込みがないように二段プレス法を採用したり、アフターフィルターを設置することが好ましい。
[Separation method after adsorption treatment]
Filtration is preferable as a method for separating the product after the adsorption treatment and the adsorbent. In the case of performing filtration, any method such as a press method that has been widely used conventionally or a method by centrifugation may be used. However, it is preferable to adopt a two-stage press method or install an after filter so that the adsorbent does not leak into the filter oil.
上述したシリケート系吸着剤によりラフィネートを吸着処理することにより、酸化安定性(耐熱性)と耐候性の双方に優れる潤滑油基油の製造が可能となる。これは、従来の水素化精製では達成できなかったものである。 By adsorbing raffinate with the above-described silicate-based adsorbent, it becomes possible to produce a lubricating base oil that is excellent in both oxidation stability (heat resistance) and weather resistance. This cannot be achieved by conventional hydrorefining.
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
具体的には、ナフテン系原油から減圧蒸留と溶剤抽出を行って得られた2種のラフィネートに対し、精製処理を行った後、耐熱性と耐候性を評価した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Specifically, two kinds of raffinate obtained by performing vacuum distillation and solvent extraction from naphthenic crude oil were subjected to purification treatment, and then heat resistance and weather resistance were evaluated.
〔ラフィネートの製造〕
(ラフィネートA)
ナフテン系原油を減圧蒸留して得た重質油留分に対し、フルフラールを抽出溶剤として溶剤抽出を行い、常圧換算温度でIBP:255℃、EP:427℃、PCA3質量%未満のラフィネートAを得た。このラフィネートAは、100N相当品であり、実施例1、比較例1、および比較例3で用いた。
(ラフィネートB)
ラフィネートAと同様に、減圧蒸留およびフルフラール溶剤抽出により、常圧換算温度でIBP:276℃、EP:525℃、PCA3質量%未満のラフィネートBを得た。このラフィネートBは、500N相当品であり、実施例2、比較例2、および比較例4で用いた。
[Production of raffinate]
(Raffinate A)
A heavy oil fraction obtained by distilling naphthenic crude oil under reduced pressure is subjected to solvent extraction using furfural as an extraction solvent, and raffinate A with IBP: 255 ° C, EP: 427 ° C, and PCA of less than 3% by mass at normal pressure conversion temperature. Got. This raffinate A was 100N equivalent and was used in Example 1, Comparative Example 1 and Comparative Example 3.
(Raffinate B)
Similarly to raffinate A, raffinate B having IBP: 276 ° C., EP: 525 ° C. and less than 3% by mass of PCA was obtained by distillation under reduced pressure and extraction with furfural solvent. This raffinate B was equivalent to 500N and was used in Example 2, Comparative Example 2, and Comparative Example 4.
〔ラフィネートの性状〕
表1には、上述の方法で得られた各ラフィネートの性状を示す。各ラフィネートの性状、耐熱性および耐候性の評価方法は以下の通りである。なお、これらの性状等の評価方法は、後述する精製処理後のプロダクト(潤滑油基油)についても同様である。
[Properties of raffinate]
Table 1 shows the properties of each raffinate obtained by the above-described method. The evaluation method of the properties, heat resistance and weather resistance of each raffinate is as follows. In addition, the evaluation method of these properties etc. is the same also about the product (lubricant base oil) after the refinement | purification process mentioned later.
・臭い
実際に試料油の臭いを嗅ぎ、悪臭や異臭がしないものを○、悪臭あるいは異臭がするものを×とした。
・色相(ASTM色)
JIS K2580に準拠して測定した。
・密度
JIS K2249に準拠して測定した。
・動粘度、粘度指数
JIS K2283に準拠して測定した。
・酸価
JIS K2501に準拠して測定した。
・PCA
IP346(92)法に準拠して測定した。
・蒸留性状
JIS K2254に準拠して測定した。
・ Smell The sample oil was actually smelled, and “O” indicates that there was no odor or odor.
・ Hue (ASTM color)
The measurement was made according to JIS K2580.
-Density Measured according to JIS K2249.
-Kinematic viscosity, viscosity index Measured according to JIS K2283.
-Acid value It measured based on JISK2501.
・ PCA
It measured based on IP346 (92) method.
-Distillation property It measured based on JISK2254.
・耐熱性
50mLのガラス瓶に試料油を30mL入れ、恒温槽中で150℃、5時間加熱した後、油の色相(ASTM)、酸価を測定した(JIS K 2501準拠)。いずれの試料油も色相の変化および酸価の上昇が著しかった。
-Heat resistance 30 mL of sample oil was put in a 50 mL glass bottle, heated in a thermostat at 150 ° C for 5 hours, and then the hue (ASTM) and acid value of the oil were measured (according to JIS K 2501). All of the sample oils showed remarkable changes in hue and increase in acid value.
・耐候性
50mLのガラス瓶に試料油を30mL入れ、65℃でキセノンランプによる光の照射を5時間行った後、油の色相(ASTM)、酸価を測定した(JIS K 2501準拠)。いずれの試料油も色相の変化および酸価の上昇が著しかった。
-Weather resistance 30 mL of sample oil was put into a 50 mL glass bottle, and light irradiation with a xenon lamp was performed at 65 ° C for 5 hours, and then the hue (ASTM) and acid value of the oil were measured (according to JIS K 2501). All of the sample oils showed remarkable changes in hue and increase in acid value.
〔ラフィネートの精製〕
(実施例1)
ラフィネートAに、顆粒状のシリカ・マグネシア系吸着剤を、ラフィネートに対し、0.5質量%添加し、撹拌温度70℃で、3時間混合撹拌し、次いで油と吸着剤を十分ろ過分離して潤滑油基油を得た。なお、用いたシリカ・マグネシア系吸着剤の性状は以下の通りである。
顆粒平均粒径 :180μm
シリカ(SiO2) :50質量%
マグネシア(MgO):30質量%
BET比表面積 :670m2/g
細孔容積 :0.95cc/g
[Purification of raffinate]
Example 1
Add 0.5% by mass of granular silica / magnesia adsorbent to raffinate A with respect to raffinate, mix and stir at a stirring temperature of 70 ° C. for 3 hours, and then filter and separate the oil and adsorbent sufficiently. A lubricating base oil was obtained. The properties of the silica-magnesia adsorbent used are as follows.
Granule average particle size: 180 μm
Silica (SiO 2 ): 50% by mass
Magnesia (MgO): 30% by mass
BET specific surface area: 670 m 2 / g
Pore volume: 0.95 cc / g
(実施例2)
ラフィネートBに、シリカ・マグネシア系吸着剤(同上)を、ラフィネートに対し、0.9質量%添加し、撹拌温度90℃で、3時間混合撹拌し、次いで油と吸着剤を十分ろ過分離して潤滑油基油を得た。
(Example 2)
Add 0.9% by mass of silica / magnesia adsorbent (same as above) to raffinate B, mix and stir for 3 hours at a stirring temperature of 90 ° C., then filter and separate the oil and adsorbent sufficiently. A lubricating base oil was obtained.
(比較例1)
ラフィネートAを、次の条件で水素化精製し、軽質分が除去された潤滑油基油を得た。
触媒:シリカアルミナにコバルト(Co)とモリブデン(Mo)を担持させた一般的な水素化脱硫触媒
水素化条件:
水素分圧:5MPa
水素モル比:200Nm3/KL
LHSV:1.0hr−1
反応温度:260℃
(Comparative Example 1)
Raffinate A was hydrorefined under the following conditions to obtain a lubricating base oil from which light components were removed.
Catalyst: General hydrodesulfurization catalyst in which cobalt (Co) and molybdenum (Mo) are supported on silica alumina
Hydrogenation conditions:
Hydrogen partial pressure: 5 MPa
Hydrogen molar ratio: 200 Nm 3 / KL
LHSV: 1.0 hr −1
Reaction temperature: 260 ° C
(比較例2)
ラフィネートBを、次の条件で水素化精製し、軽質分が除去された潤滑油基油を得た。
触媒:シリカアルミナにコバルト(Co)とモリブデン(Mo)を担持させた一般的な水素化脱硫触媒
水素化条件:
水素分圧:5MPa
水素モル比:200Nm3/KL
LHSV:0.9hr−1
反応温度:260℃
(Comparative Example 2)
Raffinate B was hydrorefined under the following conditions to obtain a lubricating base oil from which light components were removed.
Catalyst: A general hydrodesulfurization catalyst in which cobalt (Co) and molybdenum (Mo) are supported on silica alumina. Hydrogenation conditions:
Hydrogen partial pressure: 5 MPa
Hydrogen molar ratio: 200 Nm 3 / KL
LHSV: 0.9 hr −1
Reaction temperature: 260 ° C
(比較例3)
ラフィネートAを、カセイソーダ水溶液で中和洗浄し、白土処理・ろ過を行って潤滑油基油を得た。
(Comparative Example 3)
Raffinate A was neutralized and washed with an aqueous caustic soda solution, and was treated with white clay and filtered to obtain a lubricating base oil.
(比較例4)
ラフィネートBを、カセイソーダ水溶液で中和洗浄し、白土処理・ろ過を行って潤滑油基油を得た。
(Comparative Example 4)
Raffinate B was neutralized and washed with an aqueous caustic soda solution, treated with white clay, and filtered to obtain a lubricating base oil.
〔評価結果〕
表2の結果より、シリケート系吸着剤を用いて精製した実施例1、2の基油は、動粘度の高低を問わず、耐熱性(酸化安定性)および耐候性の双方に優れることがわかる。一方、水素化精製を行った比較例1、2の基油は、耐熱性はよいものの、耐候性に劣っている。なお、中和洗浄と白土処理を行って得られた比較例3、4の基油は、精製が十分でないため臭気がひどく、潤滑油基油としての使用が困難である。
〔Evaluation results〕
From the results in Table 2, it can be seen that the base oils of Examples 1 and 2 purified using a silicate-based adsorbent are excellent in both heat resistance (oxidation stability) and weather resistance regardless of the kinematic viscosity. . On the other hand, the base oils of Comparative Examples 1 and 2 subjected to hydrorefining have poor heat resistance, although they have good heat resistance. In addition, the base oils of Comparative Examples 3 and 4 obtained by performing neutralization washing and white clay treatment have a bad odor because of insufficient purification, and are difficult to use as lubricating base oils.
本発明の方法で得られた潤滑油基油は、耐熱性および耐候性の双方に優れるため、プロセス油を初め各種の潤滑油の製造に好適である。 Since the lubricating base oil obtained by the method of the present invention is excellent in both heat resistance and weather resistance, it is suitable for the production of various lubricating oils including process oils.
Claims (7)
前記シリケート系吸着剤が顆粒状である
ことを特徴とする潤滑油基油の製造方法。 A method for producing a lubricating base oil comprising refining a heavy oil fraction obtained by distilling crude oil with a solvent, and subjecting the resulting raffinate to an adsorption treatment using a silicate adsorbent ,
A method for producing a lubricating base oil, wherein the silicate-based adsorbent is granular .
前記シリケート系吸着剤の顆粒平均粒径が100μm以上250μmであるThe average particle diameter of the silicate-based adsorbent is 100 μm or more and 250 μm.
ことを特徴とする潤滑油基油の製造方法。A method for producing a lubricating base oil.
前記シリケート系吸着剤の比表面積が600mThe specific surface area of the silicate adsorbent is 600 m. 22 /g以上900m/ G or more 900m 22 /g以下である/ G or less
ことを特徴とする潤滑油基油の製造方法。A method for producing a lubricating base oil.
前記シリケート系吸着剤の細孔容積が0.8cc/g以上1.1cc/g以下であるThe pore volume of the silicate-based adsorbent is 0.8 cc / g or more and 1.1 cc / g or less.
ことを特徴とする潤滑油基油の製造方法。A method for producing a lubricating base oil.
前記シリケート系吸着剤がシリカ・マグネシア系吸着剤である
ことを特徴とする潤滑油基油の製造方法。 In the manufacturing method of the lubricating base oil of any one of Claim 1 to Claim 4 ,
The method for producing a lubricating base oil, wherein the silicate-based adsorbent is a silica-magnesia-based adsorbent.
前記原油がナフテン基系原油であり、前記重質油留分の常圧換算沸点が230℃以上600℃以下である
ことを特徴とする潤滑油基油の製造方法。 In the manufacturing method of the lubricating base oil of any one of Claim 1 to Claim 5 ,
The method for producing a lubricating base oil, wherein the crude oil is a naphthenic-based crude oil, and the boiling point in terms of atmospheric pressure of the heavy oil fraction is 230 ° C or higher and 600 ° C or lower.
前記ラフィネートに対し前記吸着剤を0.1質量%以上5質量%以下混合して吸着処理を行う
ことを特徴とする潤滑油基油の製造方法。 In the manufacturing method of the lubricating base oil of any one of Claim 1- Claim 6 ,
A method for producing a lubricating base oil, wherein the adsorbent is mixed in an amount of 0.1% by mass to 5% by mass with respect to the raffinate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012057455A JP5877094B2 (en) | 2012-03-14 | 2012-03-14 | Method for producing lubricating base oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012057455A JP5877094B2 (en) | 2012-03-14 | 2012-03-14 | Method for producing lubricating base oil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013189563A JP2013189563A (en) | 2013-09-26 |
JP5877094B2 true JP5877094B2 (en) | 2016-03-02 |
Family
ID=49390162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012057455A Active JP5877094B2 (en) | 2012-03-14 | 2012-03-14 | Method for producing lubricating base oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5877094B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106433768B (en) * | 2016-08-31 | 2018-10-19 | 湖南宏旺环保科技有限公司 | A kind of technique improving lube base oil quality |
CN107868673B (en) * | 2016-09-28 | 2019-11-15 | 中国石油化工股份有限公司 | A kind of refining methd of lube base oil |
WO2023101031A1 (en) * | 2021-12-03 | 2023-06-08 | 出光興産株式会社 | Mineral oil, and process oil and grease |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59147083A (en) * | 1983-02-10 | 1984-08-23 | Idemitsu Kosan Co Ltd | Production of lubricant base oil |
US4600502A (en) * | 1984-12-24 | 1986-07-15 | Exxon Research And Engineering Co. | Adsorbent processing to reduce basestock foaming |
US8088277B2 (en) * | 2008-06-11 | 2012-01-03 | General Electric Company | Methods and system for removing impurities from heavy fuel |
-
2012
- 2012-03-14 JP JP2012057455A patent/JP5877094B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013189563A (en) | 2013-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4943522B2 (en) | High viscosity base oil and method for producing high viscosity base oil | |
JP5292017B2 (en) | Method for producing rubber process oil | |
JP2009013421A (en) | Process oil and process for its production | |
JP6278587B2 (en) | High aromatic base oil and method for producing high aromatic base oil | |
JP5877094B2 (en) | Method for producing lubricating base oil | |
JP2008031211A (en) | Process oil for rubber | |
JP5410807B2 (en) | Rubber compounding oil and method for producing the same | |
KR20010033483A (en) | Clay treatment process for white mineral oil | |
JP4850472B2 (en) | Process oil production method | |
JP4344826B2 (en) | Method for producing medicinal and industrial white oil | |
CN105087059A (en) | Anti-gassing component of transformer oil and preparation method of component | |
CN111560268B (en) | Process for producing HVI base oil and aromatic base mineral oil | |
JP4351654B2 (en) | kerosene | |
JP4480292B2 (en) | Process oil, high-viscosity base oil, and production method thereof | |
WO2010110144A1 (en) | Rubber compounding oil, aromatic compound-containing base oil, and methods for producing same | |
JP5781262B2 (en) | Production method of petroleum products | |
CN104560172B (en) | The rubber filling oil producing method that a kind of stability is excellent | |
JP5390233B2 (en) | Rubber compounding oil and method for producing the same | |
JP2008540792A (en) | Compositions containing the use of Fischer-Tropsch derived white oil for food contact applications | |
CN115322805B (en) | Preparation method of food-grade white oil | |
JP3079091B2 (en) | Rubber process oil and method for producing the same | |
CN102600868A (en) | Liquid-phase catalyst for regenerating diesel oil from waste oil by cracking method and method for preparing liquid-phase catalyst | |
CN115353928A (en) | Regenerated lubricating oil based on chemical method treatment | |
JP5837910B2 (en) | Manufacturing method of rubber compounding oil | |
CN111054313A (en) | Aromatic hydrocarbon adsorbing material for refining white oil and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140912 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150609 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160125 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Ref document number: 5877094 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |