JP5876808B2 - Process for producing hydrocracked oil from heavy oil - Google Patents

Process for producing hydrocracked oil from heavy oil Download PDF

Info

Publication number
JP5876808B2
JP5876808B2 JP2012225937A JP2012225937A JP5876808B2 JP 5876808 B2 JP5876808 B2 JP 5876808B2 JP 2012225937 A JP2012225937 A JP 2012225937A JP 2012225937 A JP2012225937 A JP 2012225937A JP 5876808 B2 JP5876808 B2 JP 5876808B2
Authority
JP
Japan
Prior art keywords
fraction
oil
heavy oil
iron
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012225937A
Other languages
Japanese (ja)
Other versions
JP2014077079A (en
Inventor
利明 奥井
利明 奥井
元晴 安室
元晴 安室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012225937A priority Critical patent/JP5876808B2/en
Publication of JP2014077079A publication Critical patent/JP2014077079A/en
Application granted granted Critical
Publication of JP5876808B2 publication Critical patent/JP5876808B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、重質油からの水素化分解油の製造方法に関し、詳細には、重質油を水素化分解してより軽質化された水素化分解油を得る際に灯軽油留分の割合を増やすことができる水素化分解油の製造方法に関する。   The present invention relates to a method for producing hydrocracked oil from heavy oil, and more particularly, the ratio of kerosene oil fraction when hydrocracked heavy oil to obtain a lighter hydrocracked oil. The present invention relates to a method for producing hydrocracked oil that can increase the amount of oil.

原油は様々な留分から構成され、低沸点留分の軽質分から高沸点留分の重質分まで様々な成分が含まれている。しかし、供給原油として近年、重質分の含有率の高い重質原油が増えつつある。一方、需要サイドからは、軽質油の需要が依然として高い。この需給ギャップを解消するために、余剰の重質油から軽質油を製造する重質油分解技術が注目されている。   Crude oil is composed of various fractions, and contains various components from light fractions of low boiling fractions to heavy fractions of high boiling fractions. However, in recent years, heavy crude oil with a high heavy content has been increasing as supply crude oil. On the other hand, demand for light oil is still high from the demand side. In order to eliminate this supply-demand gap, heavy oil decomposition technology for producing light oil from surplus heavy oil has attracted attention.

重質油の分解方法として、これまで様々な方法が提案されている。例えば特許文献1には、重質油を、スラリー床反応器中、鉄系触媒と水素ガスの存在下、430℃〜455℃の温度で30分〜180分間加熱して水素化分解する方法が開示され、特許文献2には、重質油を、スラリー床反応器中、鉄系触媒と水素ガスの存在下、430℃〜455℃の温度で30分〜180分間加熱する前に、320℃〜420℃の温度で10分〜60分間加熱する(予備加熱)ことにより、水素化分解する方法が開示されている。そして、特許文献2に開示された方法によれば、重質油(沸点:525℃以上)を水素化分解する際に320℃〜420℃の温度で予備加熱をすることにより、オイル(沸点:C5−525℃)の収率を高めることができる。   Various methods have been proposed so far for decomposing heavy oil. For example, Patent Document 1 discloses a method in which heavy oil is hydrocracked in a slurry bed reactor by heating at a temperature of 430 ° C. to 455 ° C. for 30 minutes to 180 minutes in the presence of an iron-based catalyst and hydrogen gas. Disclosed in US Pat. No. 6,057,056, before heating heavy oil in a slurry bed reactor in the presence of an iron-based catalyst and hydrogen gas at a temperature of 430 ° C. to 455 ° C. for 30 minutes to 180 minutes, A method of hydrocracking by heating (preheating) at a temperature of ˜420 ° C. for 10 minutes to 60 minutes is disclosed. And according to the method disclosed in Patent Document 2, when hydrocracking heavy oil (boiling point: 525 ° C. or higher), preheating is performed at a temperature of 320 ° C. to 420 ° C. to obtain oil (boiling point: C5-525 ° C) can be increased.

特開2001−89772号公報JP 2001-87772 A 特開2003−327971号公報JP 2003-327971 A

ところで、オイル(沸点:C5−525℃)には、VGO(Vacuum Gas Oil)留分(沸点:343−525℃)、灯軽油留分(沸点:171−343℃)、ナフサ留分(沸点:C5−171℃)が含まれ、この中でも特に灯軽油留分の需要が高く、比較的高価で取り引きされている。灯軽油留分の収量を高めるために、例えば、VGO留分をFCC(Fluid Catalytic Cracking)法等により軽質化して灯軽油留分を得ることもできるが、この方法では、重質油の水素化分解処理に加えて軽質化処理を別途行う必要があり、効率的とはいえない。従って、重質油を水素化分解する際に灯軽油留分の収率を高めることができれば、得られた水素化分解油の価値が高まり、経済的にはより好ましい。   By the way, oil (boiling point: C5-525 ° C) includes a VGO (Vacuum Gas Oil) fraction (boiling point: 343-525 ° C), a kerosene oil fraction (boiling point: 171-343 ° C), and a naphtha fraction (boiling point: C5-171 [deg.] C.), and among them, the demand for kerosene oil fraction is particularly high, and it is traded at a relatively high price. In order to increase the yield of kerosene oil fraction, for example, the VGO fraction can be lightened by FCC (Fluid Catalytic Cracking) method or the like to obtain a kerosene oil fraction. In addition to the decomposition process, it is necessary to perform a lightening process separately, which is not efficient. Therefore, if the yield of kerosene oil fraction can be increased when hydrocracking heavy oil, the value of the obtained hydrocracked oil is increased, which is more economical.

本発明は前記事情に鑑みてなされたものであり、その目的は、重質油から灯軽油留分を高収率で得ることができる水素化分解油の製造方法を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the manufacturing method of hydrocracked oil which can obtain a kerosene oil fraction with a high yield from heavy oil.

上記課題を解決することができた本発明の水素化分解油の製造方法とは、重質油を、スラリー床反応器中、鉄系触媒と水素ガスの存在下、420℃超440℃以下の温度で10分〜45分間加熱する工程(a)と、工程(a)の後に、重質油を、スラリー床反応器中、鉄系触媒と水素ガスの存在下、440℃超の温度で加熱する工程(b)を有するところに特徴を有する。本発明の水素化分解油の製造方法によれば、工程(a)で420℃超440℃以下の温度で重質油を加熱することにより、重質油中の沸点525℃以上の留分の一部が分解してVGO留分の含有比率が高められ、その後工程(b)で440℃超の温度で加熱することによりVGO留分が水素化分解して、得られる水素化分解油の灯軽油留分の含有比率が高められ、灯軽油留分の収率を高めることができる。   The method for producing hydrocracked oil of the present invention that has been able to solve the above-mentioned problem is that heavy oil is heated in a slurry bed reactor in the presence of an iron-based catalyst and hydrogen gas to a temperature of more than 420 ° C. and not more than 440 ° C. Heating at a temperature of 10 minutes to 45 minutes, and after step (a), heavy oil is heated in a slurry bed reactor at a temperature above 440 ° C. in the presence of an iron-based catalyst and hydrogen gas It is characterized in that it has a step (b). According to the method for producing hydrocracked oil of the present invention, the fraction having a boiling point of 525 ° C. or higher in the heavy oil is heated by heating the heavy oil at a temperature of more than 420 ° C. and not more than 440 ° C. in the step (a). A part of the VGO fraction is decomposed and the content ratio of the VGO fraction is increased, and then the VGO fraction is hydrocracked by heating at a temperature higher than 440 ° C. in the step (b). The content ratio of the gas oil fraction can be increased, and the yield of the kerosene oil fraction can be increased.

工程(b)では、重質油を440℃超455℃以下の温度で30分〜120分間加熱することが好ましい。このような温度と時間で重質油を加熱することにより、灯軽油留分をより高収率で得ることが容易になる。また、工程(a)および工程(b)では、重質油を8MPa〜18MPaの圧力下で加熱することが好ましい。本発明の製造方法によれば、工程(a)に供される重質油が沸点525℃以上の留分を85質量%以上含有するものであっても、灯軽油留分を高収率で得ることが可能となる。   In the step (b), it is preferable to heat the heavy oil at a temperature higher than 440 ° C. and lower than 455 ° C. for 30 minutes to 120 minutes. By heating the heavy oil at such temperature and time, it becomes easy to obtain a kerosene oil fraction with a higher yield. In the step (a) and the step (b), it is preferable to heat the heavy oil under a pressure of 8 MPa to 18 MPa. According to the production method of the present invention, the kerosene oil fraction is obtained in a high yield even if the heavy oil to be used in the step (a) contains a fraction having a boiling point of 525 ° C. or higher of 85% by mass or more. Can be obtained.

本発明の製造方法は、さらに、工程(b)で得られた反応生成物を気液分離して液相流体を得る工程(c)と、液相流体の少なくとも一部を工程(b)に返送する工程(d)を有することが好ましい。工程(b)で得られた反応生成物を気液分離して得られた液相流体は沸点525℃以上の留分やVGO留分を含んでいるため、その少なくとも一部を工程(b)に返送することで、液相流体に含まれる沸点525℃以上の留分やVGO留分が工程(b)で水素化分解され、結果的に、得られる水素化分解油の灯軽油留分の含有比率を高めて、灯軽油留分の収率を高めることができる。このとき、工程(b)に返送する液相流体の沸点525℃以上の留分の量が、工程(a)に供される重質油の量の10質量%以上70質量%以下となるように、液相流体を工程(b)に返送することが好ましく、これによりオイル(沸点:C5−525℃)の収率を高めることができる。   The production method of the present invention further includes a step (c) of obtaining a liquid phase fluid by gas-liquid separation of the reaction product obtained in the step (b), and at least a part of the liquid phase fluid in the step (b). It is preferable to have a step (d) of returning. Since the liquid phase fluid obtained by gas-liquid separation of the reaction product obtained in the step (b) contains a fraction having a boiling point of 525 ° C. or higher and a VGO fraction, at least a part thereof is obtained in the step (b). , The fraction having a boiling point of 525 ° C. or higher and the VGO fraction contained in the liquid phase fluid are hydrocracked in the step (b). As a result, the kerosene fraction of the obtained hydrocracked oil is obtained. The yield can be increased by increasing the content ratio. At this time, the amount of the fraction having a boiling point of 525 ° C. or higher of the liquid phase fluid returned to the step (b) is 10% by mass or more and 70% by mass or less of the amount of heavy oil to be provided to the step (a). In addition, it is preferable to return the liquid phase fluid to step (b), whereby the yield of oil (boiling point: C5-525 ° C.) can be increased.

本発明の水素化分解油の製造方法によれば、重質油を比較的穏和な温度条件で水素化分解した後、それより高温の条件で水素化分解することにより、得られる水素化分解油の灯軽油留分の含有比率が高められ、灯軽油留分の収率を高めることができる。   According to the method for producing hydrocracked oil of the present invention, hydrocracked oil obtained by hydrocracking heavy oil under relatively mild temperature conditions and then hydrocracked under higher temperature conditions The kerosene oil fraction content can be increased and the yield of kerosene oil fraction can be increased.

実施例で重質油から水素化分解油を製造する際に用いた設備のプロセスフローを表す。The process flow of the equipment used when manufacturing hydrocracked oil from heavy oil in an Example is represented. 比較例で重質油から水素化分解油を製造する際に用いた設備のプロセスフローを表す。The process flow of the equipment used when manufacturing hydrocracked oil from heavy oil in a comparative example is represented.

本発明に係る重質油からの水素化分解油の製造方法は、重質油を、スラリー床反応器中、鉄系触媒と水素ガスの存在下、420℃超440℃以下の温度で10分〜45分間加熱する工程(a)と、工程(a)の後に、重質油を、スラリー床反応器中、鉄系触媒と水素ガスの存在下、440℃超の温度で加熱する工程(b)を有する。工程(a)と工程(b)で、重質油をスラリー床反応器中、鉄系触媒と水素ガスの存在下で加熱することにより、重質油が水素化分解されて低分子化され水素化分解油が得られる。この際、工程(a)で420℃超440℃以下の温度で重質油を加熱することにより、重質油中の沸点525℃以上の留分の一部が分解してVGO留分の含有比率が高められ、その後工程(b)で440℃超の温度で加熱することにより、最終的に得られる水素化分解油の灯軽油留分の含有比率が高められ、灯軽油留分の収率を高めることができる。以下、本発明の水素化分解油の製造方法について詳しく説明する。   The method for producing hydrocracked oil from heavy oil according to the present invention comprises a heavy oil in a slurry bed reactor in the presence of an iron-based catalyst and hydrogen gas at a temperature of 420 ° C. to 440 ° C. for 10 minutes. Heating step (a) for ~ 45 minutes, and after step (a), heating the heavy oil in a slurry bed reactor at a temperature above 440 ° C. in the presence of an iron-based catalyst and hydrogen gas (b ). In steps (a) and (b), the heavy oil is heated in a slurry bed reactor in the presence of an iron-based catalyst and hydrogen gas, so that the heavy oil is hydrocracked and reduced in molecular weight to hydrogen. A cracked oil is obtained. At this time, by heating the heavy oil at a temperature of more than 420 ° C. and not more than 440 ° C. in the step (a), a part of the fraction having a boiling point of 525 ° C. or more in the heavy oil is decomposed to contain the VGO fraction. The ratio is increased, and the content of the kerosene fraction of the hydrocracked oil finally obtained is increased by heating at a temperature higher than 440 ° C. in the step (b), and the yield of the kerosene fraction is increased. Can be increased. Hereinafter, the manufacturing method of the hydrocracked oil of this invention is demonstrated in detail.

原料として用いられる重質油としては、例えば、原油の常圧蒸留残渣、減圧蒸留残渣や、天然に存在するビチューメン(タールサンド、オイルサンド等)のような重金属を含有する超重質油を用いてもよい。重質油としては、例えば、沸点525℃以上の留分が50質量%以上であるような油を用いることができる。なお本発明は、沸点525℃以上の留分の含有比率が高い重質油を用いた方が灯軽油留分の収率を高める効果がより奏されることから、工程(a)に供される重質油は、沸点525℃以上の留分を80質量%以上含有することが好ましく、85質量%以上含有することがより好ましい。   As the heavy oil used as a raw material, for example, an ultra-heavy oil containing heavy metals such as atmospheric distillation residue, reduced-pressure distillation residue, or naturally occurring bitumen (tar sand, oil sand, etc.) is used. Also good. As the heavy oil, for example, an oil whose fraction having a boiling point of 525 ° C. or higher is 50% by mass or more can be used. In addition, since the effect which raises the yield of a kerosene oil fraction is more show | played by using heavy oil with a high content ratio of a fraction with a boiling point of 525 degreeC or more, this invention is provided to process (a). The heavy oil preferably contains 80% by mass or more of a fraction having a boiling point of 525 ° C. or more, more preferably 85% by mass or more.

スラリー床反応器としては、例えば、気泡塔型反応器を用いればよい。このような反応器を用いれば、液体媒体(重質油)と触媒粒子の懸濁物に水素ガスを導入した際、固体、液体、気体の3相が好適に共存しやすくなり、重質油の水素化分解が良好に行われるようになる。   As the slurry bed reactor, for example, a bubble column reactor may be used. If such a reactor is used, when hydrogen gas is introduced into the suspension of the liquid medium (heavy oil) and the catalyst particles, the solid, liquid, and gas phases are more likely to coexist suitably. The hydrocracking of can be performed satisfactorily.

鉄系触媒としては、触媒活性を有する鉄化合物を与えるものであれば特に限定されず、例えば、リモナイト、パイライト(FeS2)、ヘマタイト(α−酸化鉄;Fe23)、硫酸鉄等を用いることができる。中でも、鉄系触媒としては、重質油の水素化分解反応に対する触媒活性が高い点から、リモナイトを用いることが好ましい。リモナイトは、α−オキシ水酸化鉄(α−FeOOH)を含有し、褐鉄鉱とも称される鉱物である。 The iron-based catalyst is not particularly limited as long as it provides an iron compound having catalytic activity. Examples thereof include limonite, pyrite (FeS 2 ), hematite (α-iron oxide; Fe 2 O 3 ), and iron sulfate. Can be used. Among these, limonite is preferably used as the iron-based catalyst because it has a high catalytic activity for hydrocracking reaction of heavy oil. Limonite is a mineral that contains α-iron oxyhydroxide (α-FeOOH) and is also called limonite.

工程(a),(b)では、重質油に鉄系触媒を添加して懸濁液(スラリー)とし、ここに水素を供給して、重質油の水素化分解を行う。この際、助触媒として、前記懸濁液に硫黄(単体硫黄)または硫黄化合物を添加する。水素としては、水素ガス(分子状水素)を直接供給してもよいが、例えば、分子状水素を与える化合物として一酸化炭素と水蒸気を供給して、CO+H2O → CO2+H2 の反応式で示されるシフト反応により生成した分子状水素を供給してもよい。 In steps (a) and (b), an iron-based catalyst is added to heavy oil to form a suspension (slurry), and hydrogen is supplied thereto to hydrocrack heavy oil. At this time, sulfur (elemental sulfur) or a sulfur compound is added to the suspension as a promoter. As hydrogen, hydrogen gas (molecular hydrogen) may be directly supplied. For example, carbon monoxide and water vapor are supplied as a compound that gives molecular hydrogen, and a reaction formula of CO + H 2 O → CO 2 + H 2 Alternatively, molecular hydrogen generated by the shift reaction shown in FIG.

工程(a),(b)では、次のように鉄系触媒が活性化されると考えられる。鉄系触媒は助触媒として添加された硫黄や硫黄化合物により硫化され、ピロータイト(pyrrhotite;Fe1-xS)と称される硫化鉄が生成し、これが触媒活性を発現する活性種となる。このとき、鉄系触媒は、ピロータイトに転換する温度が低い程、触媒活性が高くなる。ピロータイトへの転換温度が低い鉄系触媒は、重質油が熱分解し始める前に高い触媒活性を有しやすくなり、重質油の熱分解ラジカルに対し、鉄系触媒から速やかに水素供与されるようになる。その結果、重質油の熱分解ラジカルどうしの重合化が抑制され、重質油の軽量化が効率良く行われるようになる。この点、リモナイトはピロータイトへの転換温度が低く、触媒活性が高い。例えば、リモナイトを構成するα−オキシ水酸化鉄はピロータイトへの転換温度が250℃であり、ヘマタイト(Fe23)のピロータイトへの転換温度350℃やパイライト(FeS2)のピロータイトへの転換温度350℃と比べて転換温度が低いことが分かる。このような理由から、本発明においては、鉄系触媒としてリモナイトを用いることが好ましい。また、天然のリモナイトには不純物としてヘマタイトが含まれる場合があるが、鉄系触媒としてリモナイトを用いる場合は、同様の理由から、鉄系触媒中のヘマタイト(α−酸化鉄)含有量ができるだけ低いことが好ましい。具体的には、X線回折分析で分析されるα−酸化鉄の量が10質量%以下であることが好ましく、8質量%以下であることがより好ましい。 In steps (a) and (b), the iron-based catalyst is considered to be activated as follows. The iron-based catalyst is sulfided by sulfur or a sulfur compound added as a co-catalyst to produce iron sulfide called pyrrhotite (Fe 1-x S), which becomes an active species that exhibits catalytic activity. At this time, the catalyst activity of the iron-based catalyst becomes higher as the temperature at which it is converted to pyrotite is lower. Iron-based catalysts with a low conversion temperature to pyrotite tend to have high catalytic activity before heavy oil begins to thermally decompose, and donate hydrogen quickly from the iron-based catalyst to the pyrolytic radicals of heavy oil. Will come to be. As a result, polymerization of pyrolytic radicals of heavy oil is suppressed, and the weight of heavy oil is efficiently reduced. In this respect, limonite has a low conversion temperature to pyrotite and a high catalytic activity. For example, α-iron oxyhydroxide composing limonite has a conversion temperature to pyrotite of 250 ° C., conversion temperature of hematite (Fe 2 O 3 ) to pyrotite, 350 ° C. and pyrite of pyrite (FeS 2 ). It can be seen that the conversion temperature is lower than the conversion temperature to 350 ° C. For these reasons, it is preferable to use limonite as the iron-based catalyst in the present invention. Natural limonite may contain hematite as an impurity. However, when limonite is used as an iron-based catalyst, the content of hematite (α-iron oxide) in the iron-based catalyst is as low as possible. It is preferable. Specifically, the amount of α-iron oxide analyzed by X-ray diffraction analysis is preferably 10% by mass or less, and more preferably 8% by mass or less.

鉄系触媒としてリモナイトを用いる場合、リモナイトは、重質油の供給量に対し鉄成分として0.3質量%〜2.0質量%の範囲で添加することが好ましい。リモナイトを重質油に対し0.3質量%以上の割合で添加すれば、水素化分解の際にコーク生成量が低く抑えられる。一方、リモナイトを重質油に対し2.0質量%を超える割合で添加しても、得られる軽質化された油の収率がそれ以上大きく増加せず、かえってコスト高となる。   When using limonite as an iron-based catalyst, it is preferable to add limonite in the range of 0.3% by mass to 2.0% by mass as an iron component with respect to the amount of heavy oil supplied. If limonite is added at a ratio of 0.3% by mass or more based on heavy oil, the amount of coke produced can be kept low during hydrocracking. On the other hand, even if limonite is added at a ratio exceeding 2.0 mass% with respect to heavy oil, the yield of the lightened oil obtained does not increase any more, and the cost is increased.

リモナイト等の鉄系触媒は、平均粒子径が2μm以下であることが好ましく、1μm以下であることがより好ましい。鉄系触媒の平均粒子径が2μm以下であれば、鉄系触媒の実効表面積が十分確保され、触媒活性を高めることができる。鉄系触媒の平均粒子径は、鉄系触媒を分散溶媒(エタノール、2−プロパノール等)に分散させて、レーザー回折式粒度分布測定装置を用いて体積基準の粒度分布を測定してメジアン径を求め、得られたメジアン径を平均粒子径とする。   The iron-based catalyst such as limonite preferably has an average particle size of 2 μm or less, and more preferably 1 μm or less. When the average particle diameter of the iron-based catalyst is 2 μm or less, the effective surface area of the iron-based catalyst is sufficiently ensured and the catalytic activity can be enhanced. The average particle size of the iron-based catalyst is obtained by dispersing the iron-based catalyst in a dispersion solvent (ethanol, 2-propanol, etc.), measuring the volume-based particle size distribution using a laser diffraction particle size distribution measuring device, and calculating the median diameter. The obtained median diameter is taken as the average particle diameter.

例えば、平均粒子径が2μm以下のリモナイトを得る場合には、リモナイト鉱を石油系溶媒中で機械的に粉砕することが好ましい。気流式粉砕機等を用いて乾式粉砕して得られたリモナイトは、重質油と鉄系触媒を含む懸濁液中で凝集して分散性が悪くなるところ、石油系溶剤中で機械的に粉砕して得られたリモナイトは、重質油と鉄系触媒を含む懸濁液中での凝集が起こりにくく分散性が向上し、触媒活性を高めやすくなるためである。   For example, when obtaining limonite having an average particle size of 2 μm or less, it is preferable to mechanically grind the limonite ore in a petroleum solvent. Limonite obtained by dry pulverization using an airflow pulverizer or the like aggregates in a suspension containing heavy oil and an iron-based catalyst and becomes poorly dispersed. This is because the limonite obtained by pulverization hardly aggregates in a suspension containing heavy oil and an iron-based catalyst, improves dispersibility, and easily increases the catalytic activity.

助触媒として硫黄を用いる場合、硫黄は、懸濁液に供給される鉄系触媒の鉄成分の量に対し、原子比で1倍モル以上の割合で添加することが好ましい。このような割合で硫黄を添加すれば、鉄系触媒からピロータイトが十分に生成しやすくなる。一方、硫黄添加量が多すぎても、過剰の硫黄と水素ガスとの反応により水素が多量に消費されやすくなり、経済的観点から好ましくない。従って、硫黄は、懸濁液に供給される鉄系触媒の鉄成分の量に対し、3倍モル以下の割合で添加することが好ましい。   When using sulfur as a co-catalyst, it is preferable to add sulfur in an atomic ratio of 1 or more moles with respect to the amount of iron component of the iron-based catalyst supplied to the suspension. If sulfur is added at such a ratio, it becomes easy to sufficiently generate pyrotite from the iron-based catalyst. On the other hand, if the amount of sulfur added is too large, a large amount of hydrogen tends to be consumed due to the reaction between excess sulfur and hydrogen gas, which is not preferable from an economical viewpoint. Therefore, it is preferable to add sulfur at a ratio of 3 times mol or less with respect to the amount of iron component of the iron-based catalyst supplied to the suspension.

工程(a)では、重質油を、鉄系触媒と水素ガスの存在下、420℃超440℃以下の温度で10分〜45分間加熱する。重質油を420℃超の温度で10分間以上加熱することにより、重質油中の沸点525℃以上の留分の一部が分解して、重質油中のVGO留分の含有比率を高めることができる。一方、重質油を440℃以下の温度で45分間以下加熱することにより、沸点525℃以上の留分の分解が進行し過ぎるのが抑制され、工程(a)で灯軽油留分が過剰に生成するのが抑えられる。工程(a)で灯軽油留分が過剰に生成すると、引き続く工程(b)で灯軽油留分が水素化分解されて、灯軽油留分の収率を高めることが困難となる。工程(a)では、重質油の加熱時間を15分〜30分間とすることがより好ましい。   In the step (a), the heavy oil is heated at a temperature higher than 420 ° C. and not higher than 440 ° C. for 10 minutes to 45 minutes in the presence of an iron-based catalyst and hydrogen gas. By heating the heavy oil at a temperature above 420 ° C. for 10 minutes or more, a part of the fraction having a boiling point of 525 ° C. or higher in the heavy oil is decomposed, and the content ratio of the VGO fraction in the heavy oil is increased. Can be increased. On the other hand, by heating the heavy oil at a temperature of 440 ° C. or lower for 45 minutes or less, the decomposition of the fraction having a boiling point of 525 ° C. or higher is suppressed, and the kerosene oil fraction is excessive in step (a). Generation is suppressed. If the kerosene fraction is excessively produced in step (a), the kerosene fraction is hydrocracked in the subsequent step (b), making it difficult to increase the yield of the kerosene fraction. In the step (a), the heating time of the heavy oil is more preferably 15 minutes to 30 minutes.

工程(b)では、工程(a)で処理された重質油を、鉄系触媒と水素ガスの存在下、440℃超の温度で加熱する。工程(a)でVGO留分の含有比率が高められた重質油を、工程(b)で440℃超の温度で加熱することにより、沸点525℃以上の留分とVGO留分が水素化分解して、灯軽油留分を高収率で得ることが可能となる。工程(b)では、重質油を440℃超455℃以下の温度で30分〜120分間(より好ましくは45分〜100分間)加熱することが好ましく、このような温度と時間で重質油を加熱することにより、灯軽油留分をより高収率で得ることが容易になる。すなわち、工程(a)で処理された重質油を440℃超の温度で30分間以上加熱することで、沸点525℃以上の留分とVGO留分の水素化分解が十分に進行しやすくなる。工程(a)で処理された重質油を455℃以下の温度で120分間以下加熱することで、灯軽油留分がさらに水素化分解されてナフサ留分等に変換されにくくなり、灯軽油留分の収率低下が抑えられる。   In the step (b), the heavy oil treated in the step (a) is heated at a temperature higher than 440 ° C. in the presence of an iron-based catalyst and hydrogen gas. By heating the heavy oil whose content of the VGO fraction is increased in step (a) at a temperature higher than 440 ° C. in step (b), the fraction having a boiling point of 525 ° C. or more and the VGO fraction are hydrogenated. The kerosene oil fraction can be obtained in high yield by decomposition. In the step (b), the heavy oil is preferably heated at a temperature of 440 ° C. to 455 ° C. for 30 minutes to 120 minutes (more preferably 45 minutes to 100 minutes). It becomes easy to obtain a kerosene oil fraction in a higher yield by heating. That is, by heating the heavy oil treated in the step (a) at a temperature higher than 440 ° C. for 30 minutes or more, hydrocracking of a fraction having a boiling point of 525 ° C. or higher and a VGO fraction can be sufficiently advanced. . By heating the heavy oil treated in step (a) at a temperature of 455 ° C. or less for 120 minutes or less, the kerosene fraction is further hydrocracked and is not easily converted into a naphtha fraction, etc. Minor yield reduction is suppressed.

工程(a),(b)では、重質油を8MPa〜18MPaの圧力下で加熱することが好ましい。加熱の際の圧力を8MPa以上とすることで、反応器内の水素分圧を高めて、コークの生成量を抑えることができる。一方、加熱の際の圧力を18MPaより大きくしても、水素化分解反応にあまり影響を及ぼさなくなり、かえってコスト高となるため、加熱の際の圧力は18MPa以下とすることが好ましい。   In the steps (a) and (b), it is preferable to heat the heavy oil under a pressure of 8 MPa to 18 MPa. By setting the pressure during heating to 8 MPa or more, the hydrogen partial pressure in the reactor can be increased, and the amount of coke produced can be suppressed. On the other hand, even if the pressure at the time of heating is higher than 18 MPa, the hydrocracking reaction is not affected so much and the cost is increased. Therefore, the pressure at the time of heating is preferably 18 MPa or less.

工程(a)と工程(b)は、異なるスラリー床反応器で重質油を処理することが好ましい。すなわち、重質油を前段スラリー床反応器で420℃超440℃以下の温度で加熱した後、前段スラリー床反応器で処理された重質油を後段スラリー床反応器に導入して440℃超の温度で加熱することが好ましい。   Step (a) and step (b) preferably process heavy oil in different slurry bed reactors. That is, after heavy oil is heated at a temperature of more than 420 ° C. and not more than 440 ° C. in the upstream slurry bed reactor, the heavy oil treated in the upstream slurry bed reactor is introduced into the downstream slurry bed reactor and exceeds 440 ° C. It is preferable to heat at the temperature.

工程(b)で得られた反応生成物、すなわち重質油の水素化分解生成物は、水素化分解の程度により気体または液体の生成物として得られる。スラリー床反応器では、気液混合した状態で様々な沸点を有する生成物が得られるため、工程(b)で得られた反応生成物を気液分離することが好ましい(工程(c))。工程(b)で得られた反応生成物を気液分離することにより、気相流体と液相流体が得られる。気相流体には比較的低沸点の留分と未反応の水素ガス等が含まれ、液相流体には沸点525℃以上の留分やVGO留分といった比較的高沸点の留分等が含まれる。   The reaction product obtained in step (b), that is, the hydrocracking product of heavy oil, is obtained as a gas or liquid product depending on the degree of hydrocracking. In the slurry bed reactor, products having various boiling points are obtained in a gas-liquid mixed state, and therefore it is preferable to gas-liquid separate the reaction product obtained in the step (b) (step (c)). A gas phase fluid and a liquid phase fluid are obtained by gas-liquid separation of the reaction product obtained in the step (b). The gas phase fluid contains a fraction having a relatively low boiling point and unreacted hydrogen gas, and the liquid phase fluid contains a fraction having a boiling point of 525 ° C. or higher and a fraction having a relatively high boiling point such as a VGO fraction. It is.

工程(c)で得られた液相流体は、沸点525℃以上の留分やVGO留分を含んでいるため、その少なくとも一部を工程(b)に返送することが好ましい(工程(d))。液相流体を工程(b)に返送することにより、液相流体に含まれる沸点525℃以上の留分やVGO留分が工程(b)で水素化分解され、結果的に、得られる水素化分解油の灯軽油留分の含有比率を高めて、灯軽油留分の収率を高めることができる。   Since the liquid phase fluid obtained in the step (c) contains a fraction having a boiling point of 525 ° C. or higher and a VGO fraction, it is preferable to return at least a part thereof to the step (b) (step (d)). ). By returning the liquid phase fluid to step (b), the fraction having a boiling point of 525 ° C. or higher and the VGO fraction contained in the liquid phase fluid are hydrocracked in step (b), resulting in hydrogenation obtained. The yield of kerosene fraction can be increased by increasing the content ratio of kerosene fraction of cracked oil.

工程(c)で得られる液相流体は、沸点525℃以上の留分やVGO留分の含有比率を高めて、灯軽油留分やナフサ留分ができるだけ含まれないようにすることが好ましい。従って、工程(c)では減圧下で気液分離を行って、工程(b)で得られた反応生成物に含まれる灯軽油留分やナフサ留分を気相流体に移行させるようにすることが好ましい。具体的には、反応生成物を減圧下でフラッシュ分離することが好ましく、フラッシュ分離により得られた液相流体を工程(b)に返送することが好ましい。工程(c)で得られ工程(b)に返送する液相流体は、実質的に沸点525℃以上の留分とVGO留分からなることが好ましい。   It is preferable that the liquid phase fluid obtained in the step (c) increases the content ratio of the fraction having a boiling point of 525 ° C. or higher and the VGO fraction so that the kerosene oil fraction and the naphtha fraction are not contained as much as possible. Therefore, in the step (c), gas-liquid separation is performed under reduced pressure so that the kerosene fraction or naphtha fraction contained in the reaction product obtained in the step (b) is transferred to the gas phase fluid. Is preferred. Specifically, the reaction product is preferably flash-separated under reduced pressure, and the liquid phase fluid obtained by flash separation is preferably returned to step (b). The liquid phase fluid obtained in step (c) and returned to step (b) preferably consists essentially of a fraction having a boiling point of 525 ° C. or higher and a VGO fraction.

工程(c)で得られた気相流体は、高品位化するために、Ni−Mo系触媒またはCo−Mo系触媒を用いて、水素化処理を施すことが好ましい。具体的には、例えば、工程(c)で得られた気相流体を水素ガスとともにNi−Mo系触媒またはCo−Mo系触媒が充填された固定床反応器に導入して、反応温度310℃〜380℃で接触水素化させればよい。水素化処理により工程(b)からのガス状反応生成物がさらに軽質化されるとともに、脱硫および脱窒される。   In order to improve the quality of the gas phase fluid obtained in the step (c), it is preferable to perform a hydrogenation treatment using a Ni—Mo based catalyst or a Co—Mo based catalyst. Specifically, for example, the gas phase fluid obtained in the step (c) is introduced into a fixed bed reactor filled with a Ni—Mo catalyst or a Co—Mo catalyst together with hydrogen gas, and a reaction temperature of 310 ° C. What is necessary is just to perform catalytic hydrogenation at -380 degreeC. The gaseous reaction product from step (b) is further lightened by the hydrogenation treatment, and desulfurized and denitrified.

工程(c)で得られ工程(b)に返送する液相流体の量は、次のように調整することが好ましい。すなわち、工程(b)に返送する液相流体の沸点525℃以上の留分の量が、工程(a)に供される重質油の量の10質量%以上70質量%以下(より好ましくは20質量%以上60質量%以下)となるように、液相流体を工程(d)に返送することが好ましい。工程(b)に返送する液相流体の沸点525℃以上の留分の量が工程(a)に供される重質油の量の10質量%以上であれば、得られる水素化分解油のオイル(沸点:C5−525℃)の収率を高めることができる。一方、工程(b)に返送する液相流体の沸点525℃以上の留分の量を工程(a)に供される重質油の量の70質量%より増やしても、オイル収率の向上効果が飽和し、かえって工程(b)で用いるスラリー床反応器の容量が増えて設備費が高くなる結果となるため、工程(b)に返送する液相流体の沸点525℃以上の留分の量は工程(a)に供される重質油の量の70質量%以下とすることが好ましい。   The amount of liquid phase fluid obtained in step (c) and returned to step (b) is preferably adjusted as follows. That is, the amount of the fraction having a boiling point of 525 ° C. or higher of the liquid phase fluid returned to the step (b) is 10% by mass or more and 70% by mass or less (more preferably) of the amount of heavy oil to be provided to the step (a). It is preferable to return the liquid phase fluid to the step (d) so as to be 20% by mass or more and 60% by mass or less. If the amount of the fraction having a boiling point of 525 ° C. or higher of the liquid phase fluid returned to the step (b) is 10% by mass or more of the amount of heavy oil to be supplied to the step (a), the hydrocracked oil obtained The yield of oil (boiling point: C5-525 ° C.) can be increased. On the other hand, even if the amount of the fraction having a boiling point of 525 ° C. or higher of the liquid phase fluid returned to the step (b) is increased from 70% by mass of the amount of heavy oil to be used in the step (a), the oil yield is improved. Since the effect is saturated and the capacity of the slurry bed reactor used in step (b) is increased, resulting in an increase in equipment costs, the fraction of boiling point of 525 ° C. or higher of the liquid phase fluid returned to step (b) The amount is preferably 70% by mass or less of the amount of heavy oil to be used in step (a).

工程(b)に返送する液相流体は、VGO留分の沸点525℃以上の留分に対する質量比(VGO/+525℃比)が1.0以上であることが好ましい。工程(b)に返送する液相流体のVGO/+525℃比が1.0以上であれば、工程(b)で得られる水素化分解油の灯軽油留分の含有比率を高めて、灯軽油留分を高収率で得ることができる。例えば、沸点525℃以上の留分を85質量%含有する重質油(この場合、通常残りの留分は全てVGO留分となる)を原料として用いて水素化分解を行う場合、工程(a)を行わずに工程(b)〜工程(d)を行うと、工程(b)に返送する液相流体のVGO/+525℃比を1.0以上とすることは難しい。これに対し、沸点525℃以上の留分を85質量%含有する重質油を、本発明に従って工程(a)でまず処理することで、重質油中のVGO留分の含有比率を高めることができ、VGO留分の含有比率が高められた重質油を工程(b)で処理してさらに工程(c)と工程(d)を行うことにより、工程(b)に返送する液相流体のVGO/+525℃比を1.0以上とすることができる。その結果、工程(b)で得られる水素化分解油の灯軽油留分の含有比率を高めて、灯軽油留分の収率を高めることができる。   The liquid phase fluid to be returned to the step (b) preferably has a mass ratio (VGO / + 525 ° C. ratio) to a fraction having a boiling point of 525 ° C. or higher of the VGO fraction of 1.0 or higher. If the VGO / + 525 ° C. ratio of the liquid phase fluid returned to the step (b) is 1.0 or more, the content of the kerosene fraction of the hydrocracked oil obtained in the step (b) is increased. A fraction can be obtained in high yield. For example, when hydrocracking is performed using a heavy oil containing 85% by mass of a fraction having a boiling point of 525 ° C. or higher (in this case, all the remaining fractions are usually VGO fractions) as a raw material, the step (a If step (b) to step (d) are performed without performing (), it is difficult to set the VGO / + 525 ° C. ratio of the liquid phase fluid returned to step (b) to 1.0 or more. In contrast, the heavy oil containing 85% by mass of a fraction having a boiling point of 525 ° C. or higher is first treated in step (a) according to the present invention, thereby increasing the content ratio of the VGO fraction in the heavy oil. Liquid phase fluid that can be returned to step (b) by treating heavy oil with increased VGO fraction content in step (b) and further performing steps (c) and (d) The VGO / + 525 ° C. ratio can be 1.0 or more. As a result, the content ratio of the kerosene fraction of the hydrocracked oil obtained in the step (b) can be increased, and the yield of the kerosene fraction can be increased.

本発明の水素化分解油の製造方法によれば、重質油からオイル(沸点:C5−525℃)を、例えば80質量%以上という高収率で得ることができる。さらに、オイル中の灯軽油留分の含有比率を高めて、灯軽油留分を高収率で得ることができる。例えば、沸点525℃以上の留分を85質量%以上含有する重質油を用いた場合、従来の製造方法では、オイル中の灯軽油留分の含有比率は45質量%程度に留まっていたところ、本発明の製造方法によれば、オイル中の灯軽油留分の含有比率を55質量%以上に高めることも可能となる。   According to the method for producing hydrocracked oil of the present invention, oil (boiling point: C5-525 ° C.) can be obtained from heavy oil in a high yield of, for example, 80% by mass or more. Furthermore, the kerosene fraction can be obtained in high yield by increasing the content ratio of the kerosene fraction in the oil. For example, when heavy oil containing 85% by mass or more of a fraction having a boiling point of 525 ° C. or higher is used, the content ratio of the kerosene oil fraction in the oil remains at about 45% by mass in the conventional production method. According to the production method of the present invention, the content ratio of the kerosene oil fraction in the oil can be increased to 55% by mass or more.

本発明の製造方法は、特開2001−89772号公報、特開2003−327971号公報、特開2006−241317号公報、特開2007−246719号公報、特開2008−163097号公報に開示された内容を合わせて実施することができ、本発明はこれらの文献に開示された内容も包含する。   The production method of the present invention was disclosed in Japanese Patent Application Laid-Open Nos. 2001-87772, 2003-327971, 2006-241317, 2007-246719, and 2008-163097. The present invention can be carried out in combination, and the present invention includes the contents disclosed in these documents.

以下に、実施例を示すことにより本発明を更に詳細に説明するが、本発明の範囲はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the scope of the present invention is not limited thereto.

実施例
図1に示すプロセスフローに従い、石油系重質油の水素化分解を行い、水素化分解油を製造した。原料となる重質油として表1に示す留分組成の減圧蒸留残渣(以下、「VR」と称する場合がある)を用い、鉄系触媒としてリモナイトを用いた。鉄系触媒は、原料VR100質量部に対し鉄原子として1質量部加え、助触媒として硫黄を鉄系触媒の鉄添加量の1.2倍モル加えた。スラリー床反応器として前段反応器と後段反応器を用い、前段反応器にまず、原料VR、鉄系触媒、助触媒、水素ガスをそれぞれ供給し、反応圧力10MPa、反応温度425℃、反応時間20分の条件で水素化分解を行い、次いで後段反応器で、反応圧力10MPa、反応温度450℃、反応時間70分の条件で水素化分解を行った。後段反応器で得られた反応生成物は、高温高圧気液分離器と低圧気液分離器と減圧フラッシャーで順次気液分離し、気相流体からガス、ナフサ、灯軽油、VGOを得た。減圧フラッシャーで得られた液相流体は、一部を後段反応器に返送し、他部を重質反応生成物として得た。後段反応器に返送した液相流体は、沸点525℃以上の留分(+525℃留分)と沸点343℃〜525℃の留分(VGO留分)から構成され、+525℃留分が50.0%VRであり、VGO留分が62.4%VRであった。なお、原料VRに対する質量基準の割合を「%VR」で表記する。このように原料VRの水素化分解を行った結果、各留分が表2に示す収率で得られた。オイル(沸点:C5−525℃)収率は81.8%VRであり、オイル中灯軽油留分の含有比率は58%であった。
Example Hydrocracking of petroleum heavy oil was performed according to the process flow shown in FIG. 1 to produce hydrocracked oil. A vacuum distillation residue (hereinafter sometimes referred to as “VR”) having a fraction composition shown in Table 1 was used as a heavy oil as a raw material, and limonite was used as an iron-based catalyst. The iron-based catalyst was added in an amount of 1 part by mass as an iron atom with respect to 100 parts by mass of the raw material VR, and sulfur was added as an auxiliary catalyst in an amount 1.2 times the amount of iron added to the iron-based catalyst. A first stage reactor and a second stage reactor are used as slurry bed reactors. First, a raw material VR, an iron-based catalyst, a cocatalyst, and hydrogen gas are respectively supplied to the front stage reactor, and the reaction pressure is 10 MPa, the reaction temperature is 425 ° C., and the reaction time is 20 Hydrocracking was carried out under the conditions of minutes, and then hydrocracking was carried out in the subsequent reactor under conditions of a reaction pressure of 10 MPa, a reaction temperature of 450 ° C., and a reaction time of 70 minutes. The reaction product obtained in the latter reactor was sequentially gas-liquid separated by a high-temperature high-pressure gas-liquid separator, a low-pressure gas-liquid separator and a vacuum flasher to obtain gas, naphtha, kerosene oil, and VGO from the gas phase fluid. Part of the liquid phase fluid obtained by the vacuum flasher was returned to the subsequent reactor, and the other part was obtained as a heavy reaction product. The liquid phase fluid returned to the latter reactor is composed of a fraction having a boiling point of 525 ° C. or higher (+ 525 ° C. fraction) and a fraction having a boiling point of 343 ° C. to 525 ° C. (VGO fraction). The VGO fraction was 62.4% VR. In addition, the ratio of the mass standard with respect to the raw material VR is described as “% VR”. As a result of hydrocracking the raw material VR in this way, each fraction was obtained in the yield shown in Table 2. The oil (boiling point: C5-525 ° C.) yield was 81.8% VR, and the content ratio of the kerosene fraction in the oil was 58%.

Figure 0005876808
Figure 0005876808

Figure 0005876808
Figure 0005876808

比較例
図2に示すプロセスフローに従い、実施例と同様に石油系重質油の水素化分解を行い、水素化分解油を製造した。なお、反応器(スラリー床反応器)の反応条件は、反応圧力10MPa、反応温度450℃、反応時間80分とした。減圧フラッシャーで得られた液相流体は一部を反応器に返送し、液相流体は、+525℃留分が50.0%VRであり、VGO留分が43.0%VRであった。このように原料VRの水素化分解を行った結果、各留分が表2に示す収率で得られた。オイル(沸点:C5−525℃)収率は82.0%VRであり、オイル中灯軽油留分の含有比率は45%と実施例より低い値となった。
Comparative Example According to the process flow shown in FIG. 2, hydrocracking of petroleum heavy oil was carried out in the same manner as in Example to produce hydrocracked oil. The reaction conditions of the reactor (slurry bed reactor) were a reaction pressure of 10 MPa, a reaction temperature of 450 ° C., and a reaction time of 80 minutes. A part of the liquid phase fluid obtained by the vacuum flasher was returned to the reactor, and the liquid phase fluid had a + 525 ° C. fraction of 50.0% VR and a VGO fraction of 43.0% VR. As a result of hydrocracking the raw material VR in this way, each fraction was obtained in the yield shown in Table 2. The oil (boiling point: C5-525 ° C.) yield was 82.0% VR, and the content ratio of the light gas oil fraction in oil was 45%, which was a lower value than in the examples.

本発明は、原油の常圧蒸留残渣や減圧蒸留残渣等の重質油から水素化分解油を得るのに適用できる。   The present invention can be applied to obtain hydrocracked oil from heavy oil such as atmospheric distillation residue or vacuum distillation residue of crude oil.

Claims (3)

(a)沸点525℃以上の留分を85質量%以上含有する重質油を、スラリー床反応器中、鉄系触媒と水素ガスの存在下、420℃超440℃以下の温度で10分〜45分間加熱する工程と、
(b)前記工程(a)の後に、前記重質油を、スラリー床反応器中、鉄系触媒と水素ガスの存在下、440℃超の温度で加熱する工程と、
(c)前記工程(b)で得られた反応生成物を気液分離して、液相流体を得る工程と、
(d)前記工程(c)で得られた液相流体の少なくとも一部を前記工程(b)に返送する工程と、を有し、
前記工程(b)に返送する液相流体の沸点525℃以上の留分の量が、前記工程(a)に供される重質油の量の10質量%以上70質量%以下となるように、且つ、前記工程(c)で得られた液相流体の一部であるVGO留分の沸点525℃以上の留分に対する質量比(VGO/+525℃比)が1.0以上となるように前記工程(c)で得られた液相流体を前記工程(b)に返送することを特徴とする重質油からの水素化分解油の製造方法。
(A) A heavy oil containing 85% by mass or more of a fraction having a boiling point of 525 ° C. or higher in a slurry bed reactor at a temperature of 420 ° C. or higher and 440 ° C. or lower in the presence of an iron-based catalyst and hydrogen gas for 10 minutes to Heating for 45 minutes;
(B) after the step (a), heating the heavy oil in a slurry bed reactor at a temperature above 440 ° C. in the presence of an iron-based catalyst and hydrogen gas;
(C) gas-liquid separation of the reaction product obtained in the step (b) to obtain a liquid phase fluid;
(D) returning at least a part of the liquid phase fluid obtained in the step (c) to the step (b),
The amount of the fraction having a boiling point of 525 ° C. or higher of the liquid phase fluid returned to the step (b) is 10% by mass or more and 70% by mass or less of the amount of heavy oil to be supplied to the step (a). In addition, the mass ratio (VGO / + 525 ° C. ratio) of the VGO fraction, which is a part of the liquid phase fluid obtained in the step (c), to a fraction having a boiling point of 525 ° C. or higher is 1.0 or higher. A method for producing hydrocracked oil from heavy oil, wherein the liquid phase fluid obtained in the step (c) is returned to the step (b).
前記工程(b)において、重質油を440℃超455℃以下の温度で30分〜120分間加熱する請求項1に記載の水素化分解油の製造方法。   The method for producing hydrocracked oil according to claim 1, wherein in the step (b), the heavy oil is heated at a temperature of 440 ° C to 455 ° C for 30 minutes to 120 minutes. 前記工程(a)および工程(b)において、重質油を8MPa〜18MPaの圧力下で加熱する請求項1または2に記載の水素化分解油の製造方法。   The method for producing hydrocracked oil according to claim 1 or 2, wherein in the step (a) and the step (b), the heavy oil is heated under a pressure of 8 MPa to 18 MPa.
JP2012225937A 2012-10-11 2012-10-11 Process for producing hydrocracked oil from heavy oil Expired - Fee Related JP5876808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012225937A JP5876808B2 (en) 2012-10-11 2012-10-11 Process for producing hydrocracked oil from heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012225937A JP5876808B2 (en) 2012-10-11 2012-10-11 Process for producing hydrocracked oil from heavy oil

Publications (2)

Publication Number Publication Date
JP2014077079A JP2014077079A (en) 2014-05-01
JP5876808B2 true JP5876808B2 (en) 2016-03-02

Family

ID=50782662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012225937A Expired - Fee Related JP5876808B2 (en) 2012-10-11 2012-10-11 Process for producing hydrocracked oil from heavy oil

Country Status (1)

Country Link
JP (1) JP5876808B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102315378B1 (en) * 2020-05-28 2021-10-21 한국화학연구원 Method for upgrading heavy oil using byproducts from manufacturing cokes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866501A (en) * 1996-02-23 1999-02-02 Pradhan; Vivek R. Dispersed anion-modified iron oxide catalysts for hydroconversion processes
JP3502499B2 (en) * 1996-02-29 2004-03-02 財団法人石油産業活性化センター Hydrocracking method for heavy oils
JP3824464B2 (en) * 1999-04-28 2006-09-20 財団法人石油産業活性化センター Method for hydrocracking heavy oils
JP2003327971A (en) * 2002-05-15 2003-11-19 Kobe Steel Ltd Method for hydrocracking petroleum-based heavy oil
JP5270508B2 (en) * 2009-10-15 2013-08-21 株式会社神戸製鋼所 Hydrocracking method of heavy petroleum oil

Also Published As

Publication number Publication date
JP2014077079A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
EP2325285B1 (en) Hydroconversion process for heavy and extra heavy oils and residuals
JP5630928B2 (en) Hydrocracking method
Del Bianco et al. Thermocatalytic hydroconversion of heavy petroleum cuts with dispersed catalyst
JP6643426B2 (en) Combined hydrotreating method to produce high quality fuel from medium and low temperature coal tar
NL8100012A (en) HYDRO TREATMENT METHOD FOR HEAVY HYDROCARBONS IN PRESENCE OF A MOLYBdenum CATALYST.
WO2014183429A1 (en) Heterogeneous suspension-bed hydrogenation method for coal-based oil product
JP2008163097A (en) Method for hydrocracking heavy oil
RU2666735C2 (en) Process for reining crude oil
RU2707294C2 (en) Method of heavy oil and oil residue hydrocracking
CN109082302B (en) Method for producing distillate oil by mild hydrogenation of inferior/heavy oil slurry bed
CA2961020C (en) Method for hydrocracking, method for producing hydrocracked oil, hydrocracking device, and device for producing hydrocracked oil
KR101318146B1 (en) catalytic thermal pyrolysis method of heavy carbonaceous materials
JP5270508B2 (en) Hydrocracking method of heavy petroleum oil
JP2003327971A (en) Method for hydrocracking petroleum-based heavy oil
JP5876808B2 (en) Process for producing hydrocracked oil from heavy oil
WO2014205185A1 (en) Slurry hydroconversion using enhanced slurry catalysts
JP5524887B2 (en) Process for producing hydrocracked oil from heavy oil
MX2012010030A (en) Ultra-dispersed catalyst and method for preparing same.
Schacht-Hernández et al. Processing and Recovery of Heavy Crude Oil Using an HPA-Ni Catalyst and Natural Gas
Kadiev et al. Novel Technologies for Upgrading Heavy and Extra‐Heavy Oil
CA2774169A1 (en) Process for the hydroconversion of hydrocarbon feedstocks via slurry technology allowing the recovery of metals from the catalyst and feedstock using a gasification step
RU2636309C1 (en) Method for conversion of heavy oil raw material
Luo et al. Effect of active site size in dispersed MoS2 nanocatalysts on slurry-phase hydrocracking of residue
JPS58219292A (en) Heavy hydrocarbon oil hydrogenolysis
Anderson et al. Advanced progress concepts for direct coal liquefaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160122

R150 Certificate of patent or registration of utility model

Ref document number: 5876808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees