JP5875858B2 - Air-entrained stable volume change inhibitor for cement composition and cement composition - Google Patents

Air-entrained stable volume change inhibitor for cement composition and cement composition Download PDF

Info

Publication number
JP5875858B2
JP5875858B2 JP2011284931A JP2011284931A JP5875858B2 JP 5875858 B2 JP5875858 B2 JP 5875858B2 JP 2011284931 A JP2011284931 A JP 2011284931A JP 2011284931 A JP2011284931 A JP 2011284931A JP 5875858 B2 JP5875858 B2 JP 5875858B2
Authority
JP
Japan
Prior art keywords
air
entrained
cement composition
component
volume change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011284931A
Other languages
Japanese (ja)
Other versions
JP2013133261A (en
Inventor
淳 角藤
淳 角藤
裕之 大島
裕之 大島
翔 鈴木
翔 鈴木
祐宣 西
祐宣 西
芳樹 因幡
芳樹 因幡
友弘 松沢
友弘 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyoshi Oil and Fat Co Ltd
Flowric Co Ltd
Original Assignee
Miyoshi Oil and Fat Co Ltd
Flowric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyoshi Oil and Fat Co Ltd, Flowric Co Ltd filed Critical Miyoshi Oil and Fat Co Ltd
Priority to JP2011284931A priority Critical patent/JP5875858B2/en
Publication of JP2013133261A publication Critical patent/JP2013133261A/en
Application granted granted Critical
Publication of JP5875858B2 publication Critical patent/JP5875858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Polyethers (AREA)

Description

本発明は耐久性を要求されるセメント組成物の収縮を低減してクラックの発生を抑止し、練り混ぜ直後から施工まで安定した高品質の連行空気を確保することのできる、セメント組成物用空気連行安定型体積変化抑制剤及び、このセメント組成物用空気連行安定型体積変化抑制剤を用いたセメント組成物に関する。   The present invention reduces the shrinkage of a cement composition that requires durability, suppresses the generation of cracks, and ensures stable high-quality entrained air immediately after kneading to construction. The present invention relates to an entrained stable volume change inhibitor and a cement composition using the air entrained stable volume change inhibitor for cement composition.

一般にセメント組成物は水和反応による自己収縮や、凝結後の乾燥時の脱水に伴う体積減少により収縮が起こる。このようにして生じる収縮は建築物のひび割れの主原因となり、建築物の強度を低下し、ひび割れ部分から浸透した水が内部の鉄筋を腐食させるといった問題を抱えている。このような問題を解決する手段として、有機系収縮低減剤を添加し、収縮を抑制する方法がある。従来の有機系収縮低減剤としては、低級アルコールアルキレンオキシド付加物を主成分とするもの(特許文献1)、ポリプロピレングリコールを主成分とするもの(特許文献2)、鎖状炭化水素基を有するアルキレンオキシドを主成分とするもの(特許文献3)、疎水基部が2-エチルヘキシル基であるグリコールエーテル誘導体を主成分とするもの(特許文献4)等が知られており、そのほとんどがエチレンオキサイド(EO)やプロピレンオキサイド(PO)等のアルキレンオキサイドを付加したグリコール系非イオン活性剤を主成分とするものである。   Generally, a cement composition shrinks due to self-shrinkage due to a hydration reaction or volume reduction due to dehydration during drying after setting. The shrinkage that occurs in this way is the main cause of cracks in the building, which lowers the strength of the building and has the problem that the water penetrated from the cracked part corrodes the internal reinforcing bars. As a means for solving such a problem, there is a method of suppressing shrinkage by adding an organic shrinkage reducing agent. Conventional organic shrinkage reducing agents are mainly composed of adducts of lower alcohol alkylene oxide (Patent Document 1), those based on polypropylene glycol (Patent Document 2), and alkylene having a chain hydrocarbon group. Those having an oxide as a main component (Patent Document 3), those having a glycol ether derivative whose hydrophobic group is a 2-ethylhexyl group as a main component (Patent Document 4) are known, and most of them are ethylene oxide (EO). ) And propylene oxide (PO) and other alkylene oxides added with an alkylene oxide as a main component.

一般に収縮低減剤は、セメントに対して0.5〜3重量%程度添加使用され、セメント組成物用化学混和剤の中でも非常に添加量の多い部類に入るため、セメント組成物のフレッシュ性状(空気量、スランプ値)に対する影響が顕著に現れる。上述した非イオン系活性剤は、EO、POが付加される出発原料の種類、EO、POの付加するモル数によって水溶性、非水溶性となり、水溶性となる非イオン活性剤については粗大空気泡を連行し練り上がりの空気量が増大してしまい、非水溶性となる非イオン活性剤については消泡効果が強く、練り上がりの空気量が不足する等、その空気連行性によりセメント組成物の製品品質が安定しないといった問題があった。   In general, shrinkage reducing agents are used in an amount of about 0.5 to 3% by weight with respect to cement, and are included in the chemical admixture for cement composition, which has a very large amount of addition. The effect on the amount and slump value) appears remarkably. The nonionic activator described above becomes water-soluble or water-insoluble, depending on the type of starting material to which EO and PO are added and the number of moles to which EO and PO are added. The amount of air that is entrained with foam increases and the nonionic active agent that becomes water-insoluble has a strong defoaming effect and lacks the amount of air to be kneaded. There was a problem that the quality of the product was not stable.

これらの問題を解決する手段としては、空気量が増大する場合には消泡剤を使用し、空気量が不足する場合には空気連行剤(AE剤)を使用して、所望の空気量(通常4.5±1.5%)に調整する方法がある。例えば、特定のグリコール系収縮低減剤と消泡剤、更にポリカルボン酸系減水剤や、樹脂酸石鹸、アルキル硫酸エステル、アルキルリン酸エステルなどの空気連行剤とを組み合わせることにより、空気を安定に導入することができる技術(特許文献5)や、ポリオキシアルキレン鎖を分子内に3本以上含む分岐構造を有する分岐化合物を主成分とし、樹脂酸石鹸、飽和又は不飽和脂肪酸などの空気連行剤と消泡剤を組み合わせることによる汎用性の高い収縮低減剤(特許文献6)が提案されている。また、空気連行剤としては樹脂酸ナトリウム塩を用いた場合の経時とともに空気量の減少量が激しくなる欠点(エアーロス)を改善するために、特定粒径にした樹脂酸(ロジン、ロジン酸とも呼ばれている)もしくは樹脂酸の2価以上の金属コンプレックスを用いる技術(特許文献7、8)が報告されている。   As a means for solving these problems, an antifoaming agent is used when the air amount increases, and an air entraining agent (AE agent) is used when the air amount is insufficient. There is usually a method of adjusting to 4.5 ± 1.5%. For example, by combining a specific glycol-based shrinkage reducing agent with an antifoaming agent, a polycarboxylic acid-based water reducing agent, and an air entraining agent such as resin acid soap, alkyl sulfate ester, or alkyl phosphate ester, the air can be stabilized. Technology that can be introduced (Patent Document 5) and air entraining agents such as resin acid soaps, saturated or unsaturated fatty acids based on branched compounds having a branched structure containing three or more polyoxyalkylene chains in the molecule A highly versatile shrinkage-reducing agent (Patent Document 6) has been proposed by combining an antifoaming agent. Also, resin acid (rosin or rosin acid) with a specific particle size is used to improve the defect (air loss) that the amount of air decreases with time when using resin acid sodium salt as an air entrainer. Have been reported) (Patent Documents 7 and 8).

特開昭56−037259号公報Japanese Patent Laid-Open No. 56-037259 特開昭59−152253号公報JP 59-152253 A 特開2001−163653号公報JP 2001-163653 A 特開平2−124750号公報JP-A-2-124750 特開2001−294466号公報JP 2001-294466 A 特開2010−053025号公報JP 2010-053025 A 特開平1−270547号公報JP-A-1-270547 特開平3−065547号公報Japanese Patent Laid-Open No. 3-065547

しかしながら、消泡剤を使用して空気連行量を調整する方法では、練り上がり直後の空気量は調整できても、経時的に空気量が変化してしまい、施工時のセメント組成物中の空気連行量を適正な量に調整することが困難である。また、ロジン酸ナトリウムなどの空気連行剤を使用して空気量を調整する場合には、通常の何十倍もの量を使用しなければならずコストアップに繋がり、同一セメント組成物でもバッチ毎で空気量にバラツキが生じたり、セメント組成物の違いによって連行する空気量が大きく変動することがあり添加量の決定が煩雑になる。また、一時的に連行された空気は経時的にロスしてしまい、施工時に適正な空気量が連行できていない等、空気量のコントロールについて十分な技術が確立されていないのが現状である。また特許文献7、8記載の技術では、融点が高く固形であるロジン酸もしくはロジン酸の2価以上の金属コンプレックスを、特定範囲の粒径の微粒子に調製する必要があり、しかも微粉体もしくは水懸濁液であるため、セメント組成物中での分散性の観点からは劣り、結果として空気連行性にムラが生じ、練り混ぜ直後から施工時に至るまで安定的に適正な空気量が連行できていないという問題があった。また、特許文献1〜4に記載の収縮低減剤は消防法による危険物に該当し、第4類の引火性液体という性質を有することから、貯蔵および取扱いの基準、運搬および移送の基準などの危険物に関する法令に従わなければならず、製造者、取扱使用者ともに非常に扱い難いという問題があった。更に、従来の収縮低減剤は、骨材の違いや同じ組成のセメント組成物でもバッチ間の違いにより、収縮低減効果にバラツキが生じ、一定した効果が得られ難いという問題もあった。   However, in the method of adjusting the air entrainment amount using an antifoaming agent, even if the air amount immediately after kneading can be adjusted, the air amount changes over time, and the air in the cement composition at the time of construction It is difficult to adjust the entrainment amount to an appropriate amount. In addition, when adjusting the amount of air using an air entraining agent such as sodium rosinate, it is necessary to use an amount that is tens of times the normal amount, leading to an increase in cost. The amount of air varies, and the amount of air to be entrained may vary greatly depending on the cement composition, making it difficult to determine the amount of addition. Moreover, the air entrained temporarily loses with time, and the present condition is that sufficient technique is not established about control of air amount, such as the appropriate air amount not being entrained at the time of construction. In the techniques described in Patent Documents 7 and 8, it is necessary to prepare rosin acid having a high melting point or a metal complex having a valence of 2 or more of rosin acid into fine particles having a particle diameter in a specific range, and fine powder or water. Because it is a suspension, it is inferior from the viewpoint of dispersibility in the cement composition. As a result, air entrainment is uneven, and an appropriate amount of air can be stably entrained from just after mixing until construction. There was no problem. In addition, the shrinkage reducing agents described in Patent Documents 1 to 4 correspond to dangerous materials according to the Fire Service Act and have the property of the fourth kind of flammable liquid, so that the standards for storage and handling, the standards for transportation and transport, etc. There was a problem that it was difficult to handle both manufacturers and handling users because they had to follow laws and regulations concerning dangerous goods. Further, the conventional shrinkage reducing agent has a problem that the shrinkage reduction effect varies due to the difference in aggregate or the cement composition having the same composition, and it is difficult to obtain a constant effect.

発明者らは鋭意研究を重ねた結果、平均分子量200〜500のポリプロピレングリコール、ロジン酸、特定のポリオキシアルキレンアルキルエーテル、水を含有する透明液状のセメント組成物用空気連行安定型体積変化抑制剤が、従来併用されていた消泡剤もしくは空気連行剤の使用量を低減、または使用することなく、セメント組成物の練り混ぜ直後から施工まで安定した量の空気を連行でき、上述した問題を顕著に改善できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the inventors have found that an air-entrained stable volume change inhibitor for a transparent liquid cement composition containing polypropylene glycol having an average molecular weight of 200 to 500, rosin acid, a specific polyoxyalkylene alkyl ether, and water. However, without using or reducing the amount of antifoaming agent or air entraining agent used in the past, a stable amount of air can be entrained from just after mixing the cement composition to construction, and the above-mentioned problems are remarkable. As a result, the present invention has been completed.

即ち本発明は、
(1)平均分子量200〜500のポリプロピレングリコール(A成分)、ロジン酸(B成分)、一般式(I)で示されるHLB値が8以下の化合物(C成分)、及び水を含有し、A成分とB成分とを重量比で、A成分:B成分=99.995〜99.500:0.005〜0.500、C成分をA成分とB成分の合計重量の0.005〜0.500重量%、水をA成分、B成分、C成分、水の合計重量中5〜50重量%の割合で含有し、且つ25℃において透明液状であることを特徴とするセメント組成物用空気連行安定型体積変化抑制剤、
That is, the present invention
(1) Polypropylene glycol (A component) having an average molecular weight of 200 to 500, rosin acid (B component), a compound having a HLB value of 8 or less (C component) represented by the general formula (I), and water, and A Ingredients and B are in a weight ratio, A: B: 99.995-99.500: 0.005-0.500, and C is 0.005 to 0.00 of the total weight of A and B. 500% by weight, water is contained in a proportion of 5 to 50% by weight of the total weight of A component, B component, C component and water, and is a transparent liquid at 25 ° C. Stable volume change inhibitor,

(化1)
R−O−(AO)n−H (I)
(Rは炭素数8〜18の炭化水素基であり、AOは炭素数2〜3のオキシアルキレン基であり、nは1〜10の整数である。)
(Chemical formula 1)
R-O- (AO) n-H (I)
(R is a hydrocarbon group having 8 to 18 carbon atoms, AO is an oxyalkylene group having 2 to 3 carbon atoms, and n is an integer of 1 to 10)

(2)上記(1)に記載のセメント組成物用空気連行安定型体積変化抑制剤を含有するセメント組成物、
を要旨とする。
(2) A cement composition containing the air-entrained stable volume change inhibitor for cement composition according to (1),
Is the gist.

本発明のセメント組成物用空気連行安定型体積変化抑制剤は、セメント組成物中における分散性が良く、安定して優れた空気連行効果を発揮し、経時的に空気量が増加したり減少したりする虞がないため、空気連行剤や消泡剤を殆ど添加しないか、全く添加しなくても、セメント組成物中の空気連行量を目的とする量とすることができる。また本発明の空気連行安定型体積変化抑制剤は、所定量の各成分と水とが透明液状となっているため、非危険物として扱うことができ、危険物に指定される収縮低減剤のような法的な規制を受けることがないため、保管時や使用時の取り扱いが非常に容易である。このため本発明の空気連行安定型体積変化抑制剤によれば、セメント組成物中の空気連行量を、練り混ぜ直後から施工時まで安定した量に維持することができ、本発明の空気連行安定型体積変化抑制剤を用いたセメント組成物は、骨材の違いやセメント組成物の調製バッチの違いによって収縮低減効果にバラツキが生じることがなく、安定して硬化時の収縮が低減されるばかりか、本発明のセメント組成物の中性化、硬化後のクラック発生の抑制、それに伴う透水性の低減が図れ、本発明のセメント組成物による構造物の耐久性を向上することができる。また、安定した品質の空気泡の連行により、発明品を使用したセメント組成物は良好な気泡間隔係数を示し、凍結融解抵抗性も従来の収縮低減剤に比べ向上する。   The air-entrained stable volume change inhibitor for a cement composition of the present invention has good dispersibility in the cement composition, exhibits a stable and excellent air-entraining effect, and the amount of air increases or decreases over time. Therefore, the amount of air entrainment in the cement composition can be set to a target amount with little or no air entrainment agent or antifoaming agent added. In addition, the air-entrained stable volume change inhibitor of the present invention has a predetermined amount of each component and water in a transparent liquid state, and therefore can be treated as a non-hazardous material and is a shrinkage reducing agent designated as a hazardous material. Since it is not subject to such legal restrictions, it is very easy to handle during storage and use. Therefore, according to the air-entrained stable volume change inhibitor of the present invention, the air-entrained amount in the cement composition can be maintained at a stable amount from just after kneading until construction, and the air-entrained stable of the present invention. Cement composition using mold volume change inhibitor does not cause variation in shrinkage reduction effect due to differences in aggregates and preparation batches of cement composition, and shrinkage at the time of curing is reduced stably. Alternatively, neutralization of the cement composition of the present invention, suppression of crack generation after curing, and reduction of water permeability associated therewith can be achieved, and the durability of the structure by the cement composition of the present invention can be improved. In addition, due to the entrainment of air bubbles of stable quality, the cement composition using the inventive product exhibits a good bubble spacing coefficient, and the freeze-thaw resistance is also improved as compared with conventional shrinkage reducing agents.

本発明のセメント組成物用空気連行安定型体積変化抑制剤において、A成分であるポリプロピレングリコールは、例えば、プロピレングリコール、ジプロピレングリコール等を出発原料として、水酸化ナトリウム等のアルカリ触媒又は三フッ化ホウ素等の酸触媒存在下で、100〜200℃でプロピレンオキサイドを付加することにより得ることができる。本発明においてポリプロピレングリコールとしては、平均分子量が200〜500のものを用いるが、収縮低減性能、製品の溶液安定性を考慮すると、平均分子量300〜400が好ましい。平均分子量が200未満の場合には所望の収縮低減性能が得られず、500を超える場合には、水を含有させたときに均一な透明液状のセメント組成物用空気連行安定型体積変化抑制剤を得られない虞がある。平均分子量とは、ヒドロキシル価(基準油脂分析試験法2.3.6.2_1996)の測定値から、次式で計算したものである。   In the air-entrained stable volume change inhibitor for cement composition of the present invention, the polypropylene glycol as component A is, for example, an alkali catalyst such as sodium hydroxide or trifluoride starting from propylene glycol, dipropylene glycol or the like. It can be obtained by adding propylene oxide at 100 to 200 ° C. in the presence of an acid catalyst such as boron. In the present invention, polypropylene glycol having an average molecular weight of 200 to 500 is used, and an average molecular weight of 300 to 400 is preferable in view of shrinkage reduction performance and solution stability of the product. When the average molecular weight is less than 200, the desired shrinkage reduction performance cannot be obtained, and when it exceeds 500, the air-entrained stable volume change inhibitor for a transparent liquid cement composition that is uniform when water is contained. You may not be able to get it. The average molecular weight is calculated by the following formula from the measured value of the hydroxyl value (standard oil analysis test method 2.3.6.2_1996).

(数1)
平均分子量=(56108/ヒドロキシル価)×2
(Equation 1)
Average molecular weight = (56108 / hydroxyl number) × 2

B成分であるロジン酸とは、アビエチン酸、ネオアビエチン酸、パラストリン酸などの共役二重結合を持つ酸を主成分とするものであり、ロジン、樹脂酸とも呼ばれ、松の樹幹に傷をつけ、採った生松ヤニを水蒸気蒸留しテレピン油を除いて得られるガムロジン、伐採後10年経過した松の根株をチップ状にして溶剤抽出し、さらに蒸留してテレピン油などを除いたウッドロジン、松材をクラフト法によってパルプ化する工程で、副生する粗トール油を精密蒸留塔で減圧水蒸気蒸留して得られるトール油ロジンなどがある。A成分のポリプロピレングリコールと、B成分のロジン酸との割合は重量比で、A成分:B成分=99.995〜99.500:0.005〜0.500であるが99.990〜99.750:0.010〜0.250が好ましい。ポリプロピレングリコールとロジン酸との合計量に対するロジン酸の割合が0.005重量%未満の場合には、十分な空気連行性を発揮することができない虞があり、粗大空気泡を連行したり、セメント組成物の練り混ぜ直後から施工まで安定した空気を連行できなくなり、0.500重量%を超える場合には、消泡作用が強くなり所望の空気連行性が得られなかったり、経時ではアルカリイオンとロジン酸との反応物を形成するため、空気連行性が強すぎて過剰な空気を連行するだけでなく、セメントの凝集が起こり、流動性が悪くなりワーカビリティーに大きく影響を与える虞がある。また所望の空気連行性を得るために他の空気連行剤又は消泡剤を添加する必要が生じ、結果としてセメント組成物の練り混ぜ直後から施工まで安定した空気を連行できなくなる虞がある。   The B component rosin acid is mainly composed of acids with conjugated double bonds such as abietic acid, neoabietic acid, and parastrinic acid. It is also called rosin or resin acid, and it damages the pine tree trunk. Gum rosin obtained by steam-distilling the raw pine crab collected and removing the turpentine oil, wood rosin from which the pine root stock 10 years after cutting was extracted into a chip, and further distilled to remove turpentine oil, There is a tall oil rosin that is obtained by subjecting crude tall oil produced as a by-product to steam distillation under reduced pressure in a precision distillation tower in the process of pulping pine wood by the kraft method. The ratio of the component A polypropylene glycol and the component B rosin acid is a weight ratio of A component: B component = 99.995 to 99.500: 0.005 to 0.500, but 99.990 to 99.99. 750: 0.010 to 0.250 is preferable. When the ratio of rosin acid to the total amount of polypropylene glycol and rosin acid is less than 0.005% by weight, there is a possibility that sufficient air entrainment may not be exhibited, coarse air bubbles are entrained, cement Stable air cannot be entrained immediately after mixing of the composition until construction, and if it exceeds 0.500% by weight, the defoaming action becomes strong and the desired air entrainment cannot be obtained. Since a reaction product with rosin acid is formed, not only the air entrainment is too strong and excess air is entrained, but also agglomeration of cement occurs, and the fluidity is deteriorated, which may greatly affect the workability. Moreover, in order to obtain a desired air entrainment property, it is necessary to add another air entraining agent or an antifoaming agent. As a result, there is a possibility that stable air cannot be entrained immediately after the cement composition is mixed.

本発明のセメント組成物用空気連行安定型体積変化抑制剤は、C成分である上記一般式(I)で示される化合物を、上記A成分と上記B成分との合計重量に対して0.005〜0.500重量%含有するが、0.010〜0.200重量%が好ましい。C成分がA成分とB成分の合計重量に対して0.005重量%未満の場合には、制泡作用が弱く、粗大な空気、過剰な空気が連行され、0.500重量%を超える場合には消泡作用が強く、セメント組成物中に空気を連行しなくなるので、所望の空気連行性を得るために他の空気連行剤又は消泡剤を多く添加する必要が生じたり、セメント組成物の練り混ぜ直後から施工まで安定した空気を連行できなくなる虞があり、結果として起泡間隔係数が大きくなるとともに、耐久性指数が低下する虞がある。   The air-entrained stable volume change inhibitor for a cement composition according to the present invention is a compound of the above general formula (I), which is a C component, in an amount of 0.005 with respect to the total weight of the A component and the B component. The content is ˜0.500% by weight, preferably 0.010 to 0.200% by weight. When the C component is less than 0.005% by weight with respect to the total weight of the A and B components, the antifoaming action is weak, and coarse air and excess air are entrained, exceeding 0.500% by weight Has a strong antifoaming effect and does not entrain air in the cement composition, so that it is necessary to add a large amount of other air entraining agent or antifoaming agent in order to obtain the desired air entrainment property. There is a possibility that stable air cannot be entrained from immediately after kneading to construction, and as a result, the foaming interval coefficient increases and the durability index may decrease.

一般式(I)で示される化合物において、炭素数8〜18の炭化水素基:Rは、直鎖炭化水素基、分岐炭化水素基のいずれでも良く、例えばオクチル、ラウリル、ミリスチル、セチル、ステアリル等が挙げられるがハンドリングの面からオクチル、ラウリルが好ましい。炭素数2〜3のオキシアルキレン基:AOは、エチレンオキシド、プロピレンオキシドより選ばれたアルキレンオキシドの付加重合により形成され、オキシアルキレン基は同一のアルキレンオキシドで構成されていても、異なるアルキレンオキシドにより構成されていても良く、異なるアルキレンオキシドにより構成される場合には、ブロック付加重合、ランダム付加重合のいずれでも良い。一般式(I)においてnは、オキシアルキレン基の平均付加モル数を表し、n=1〜10であるが、好ましくは2〜8、更に好ましくは3〜7である。本発明において、一般式(I)で示す化合物は、特に好ましくは、AOがオキシプロピレン基であり、nが3〜6のものである。AOがオキシプロピレン基でnが10を超える場合には、均一透明な空気連行安定型体積変化抑制剤が得られなくなるだけでなく、消泡効果が強くなり、空気量調整に必要な空気連行剤の量が多くなるため、セメント組成物の練り混ぜ直後から施工まで安定した空気を連行できなくなる。   In the compound represented by the general formula (I), the hydrocarbon group having 8 to 18 carbon atoms: R may be a linear hydrocarbon group or a branched hydrocarbon group, such as octyl, lauryl, myristyl, cetyl, stearyl, etc. In terms of handling, octyl and lauryl are preferable. C2-C3 oxyalkylene group: AO is formed by addition polymerization of alkylene oxide selected from ethylene oxide and propylene oxide, and the oxyalkylene group is composed of different alkylene oxides even if they are composed of the same alkylene oxide. If it is composed of different alkylene oxides, either block addition polymerization or random addition polymerization may be used. In general formula (I), n represents the average addition mole number of an oxyalkylene group, and is n = 1-10, Preferably it is 2-8, More preferably, it is 3-7. In the present invention, the compound represented by formula (I) is particularly preferably such that AO is an oxypropylene group and n is 3-6. When AO is an oxypropylene group and n exceeds 10, not only a uniform and transparent air-entrained stable volume change inhibitor can be obtained, but also the defoaming effect becomes stronger and the air-entraining agent necessary for air amount adjustment. Therefore, stable air cannot be entrained from immediately after mixing the cement composition until construction.

また、一般式(I)で示される化合物は、グリフィンの式から計算されるHLB値が8以下のものを用いる。一般式(I)におけるAOがオキシプロピレン基のみの場合、一般式(I)で示される化合物は全てHLB値が8以下となるが、AOがオキシエチレン基を含む場合(オキシエチレン基単独又はオキシエチレン基とオキシプロピレン基の混合の場合)、オキシエチレン基とオキシプロピレン基の割合、nの数の違いによってはHLBが8を超える場合があり、HLB値が8を超える場合は、所望の制泡効果が得られないだけでなく、粗大空気泡を連行する虞があるとともに、セメント組成物の練り混ぜ直後から施工まで安定した空気を連行できなくなる虞があるので、出発原料の炭素数8〜18のアルコールに対するエチレンオキシドおよびプロピレンオキシドの各平均付加モル数を調整し、HLB値を8以下とする必要がある。AOはエチレンオキシド単独より、エチレンオキシド、プロピレンオキシドの併用がよく、HLB値は5以下が好ましく、特にエチレンオキシド平均付加モル数は2以下が好ましい。   The compound represented by the general formula (I) has a HLB value calculated from the Griffin formula of 8 or less. When AO in the general formula (I) is only an oxypropylene group, all the compounds represented by the general formula (I) have an HLB value of 8 or less. However, when AO contains an oxyethylene group (an oxyethylene group alone or an oxyethylene group) HLB may exceed 8 depending on the ratio of oxyethylene group and oxypropylene group and the number of n. When the HLB value exceeds 8, In addition to not being able to obtain the foam effect, there is a risk that coarse air bubbles may be entrained, and there is a possibility that stable air cannot be entrained immediately after mixing the cement composition until construction, so the starting material has 8 to 8 carbon atoms. It is necessary to adjust the average number of moles of addition of ethylene oxide and propylene oxide to 18 alcohols so that the HLB value is 8 or less. AO is preferably a combination of ethylene oxide and propylene oxide rather than ethylene oxide alone, and the HLB value is preferably 5 or less, and particularly preferably the ethylene oxide average added mole number is 2 or less.

本発明において、C成分である一般式(I)で示されるHLB値が8以下のエチレンオキシド単独あるいはエチレンオキシド、プロピレンオキシドの併用化合物としては、例えばポリオキシエチレン(2)−2−エチルヘキシルエーテル、ポリオキシエチレン(2)オクチルエーテル、ポリオキシエチレン(2)ポリオキシプロピレン(4)ステアリルエーテル等が挙げられる。   In the present invention, ethylene oxide alone or a combined compound of ethylene oxide and propylene oxide having an HLB value of 8 or less represented by the general formula (I) as the component C includes, for example, polyoxyethylene (2) -2-ethylhexyl ether, polyoxy Examples include ethylene (2) octyl ether, polyoxyethylene (2) polyoxypropylene (4) stearyl ether, and the like.

本発明のセメント組成物用空気連行安定型体積変化抑制剤は、水をA成分、B成分、C成分、水の合計重量中5〜50重量%の割合で含有し、25℃において透明液状を呈するが、更に5〜40℃においても透明液状を呈することが好ましい。ここでの透明液状とは可視光(550nm)の透過率が50%以上のことを言う。上記水の割合は、10〜25重量%が好ましい。水の割合が5重量%未満の場合は引火点を有する虞があり、引火性液体は消防法による危険物に該当し、作業環境、安全性の観点から取扱や保管が煩雑となり、50重量%を超える場合には、みかけの添加量が多くなるため、作業効率が悪くなったり、製品が透明液状を呈さず分離するなどしてセメント組成物中で均一に分散しないため、所望の性能が得られない虞がある。   The air-entrained stable volume change inhibitor for cement composition of the present invention contains water in a proportion of 5 to 50% by weight of the total weight of component A, component B, component C and water, and is a transparent liquid at 25 ° C. Although it exhibits, it is preferable to exhibit a transparent liquid also in 5-40 degreeC. The transparent liquid here means that the transmittance of visible light (550 nm) is 50% or more. The water ratio is preferably 10 to 25% by weight. If the proportion of water is less than 5% by weight, there is a risk of having a flash point, and flammable liquids are dangerous materials according to the Fire Service Act, and handling and storage are complicated from the viewpoint of work environment and safety, 50% by weight If it exceeds 1, the apparent amount added will increase, resulting in poor working efficiency and separation of the product without exhibiting a transparent liquid. There is a risk of not being able to.

本発明のセメント組成物用空気連行安定型体積変化抑制剤の調製方法は特に限定されないが、先ずA成分であるポリプロピレングリコールに、B成分であるロジン酸を加熱しながら溶解させ、冷却後、C成分と水とを混合して調製する方法が好ましい。   The method for preparing the air-entrained stable volume change inhibitor for cement composition of the present invention is not particularly limited. First, rosin acid as B component is dissolved in polypropylene glycol as A component while heating, and after cooling, C A method of preparing a mixture of ingredients and water is preferred.

本発明のセメント組成物は、セメントペースト(水とセメントを混ぜたもの)、モルタル(セメントに細骨材、水を混ぜたもの)またはコンクリート(モルタルに粗骨材を加えたもの)等の水硬性材料に、本発明の空気連行安定型体積変化抑制剤を配合して調製することができる。   The cement composition of the present invention includes water such as cement paste (mixed with water and cement), mortar (mixed with fine aggregate and water) or concrete (added with coarse aggregate into mortar). The hard material can be prepared by blending the air-entrained stable volume change inhibitor of the present invention.

本発明のセメント組成物用空気連行安定型体積変化抑制剤は、水硬性材料に添加し練り混ぜるとB成分の疎水性物質であるロジン酸とC成分の一般式(I)で示される化合物が粗い起泡を消泡もしくは制泡し、その後セメント組成物より溶出するアルカリイオンとロジン酸が徐々に反応し可溶性となり、攪拌により新たに微細で安定な空気泡を連行し消泡した空気量が補われ、適正な空気量が連行できるものと考えられる。また、経時によりアルカリイオンとロジン酸との反応物が増加してくるが、一般式(I)で示される化合物を予め配合してあるため、経時による空気量の増加をバランスよく抑制する。このことから本発明のセメント組成物用空気連行安定型体積変化抑制剤は、セメント組成物の練り混ぜ直後から施工時まで安定した空気を連行、維持することができ、収縮の低減は勿論のこと、凍結融解抵抗性およびクラック抑制に伴う中性化の抑制、透水性の低減が図れ、セメント組成物硬化体の耐久性を向上させることができる。   When the air-entrained stable volume change inhibitor for cement composition of the present invention is added to a hydraulic material and kneaded, a rosin acid which is a hydrophobic substance of B component and a compound represented by the general formula (I) of C component are: Rough foam is removed or controlled, and then the alkali ions and rosin acid eluted from the cement composition react gradually to become soluble, and the amount of air that has been removed by entraining fine and stable air bubbles by stirring. It is assumed that an appropriate amount of air can be taken. In addition, the reaction product of alkali ions and rosin acid increases with time, but since the compound represented by the general formula (I) is blended in advance, an increase in the amount of air over time is suppressed in a well-balanced manner. From this, the air-entrained stable volume change inhibitor for cement composition of the present invention can entrain and maintain stable air from immediately after mixing the cement composition to the time of construction, as well as reducing shrinkage. In addition, it is possible to suppress neutralization associated with freeze-thaw resistance and crack suppression, reduce water permeability, and improve the durability of the cured cement composition.

セメント組成物には、本発明のセメント組成物用空気連行安定型体積変化抑制剤の他に、必要に応じて他の化学混和剤を配合することができる。他の化学混和剤は本発明の空気連行安定型体積変化抑制剤と混合してセメント組成物に配合しても、別々に配合しても良いが、本発明の空気連行安定型体積変化抑制剤の効果を損なわないものを用いることが必要である。他の化学混和剤を本発明の空気連行安定型体積変化抑制剤と混合する場合は、空気連行安定型体積変化抑制剤の透明液状が維持される範囲において混合することが必要である。他の化学混和剤として、例えば空気連行剤(空気連行成分)、消泡剤(消泡成分、制泡成分)、減水剤(標準形、遅延形、促進形)、高性能AE減水剤(標準形、遅延形)、高性能減水剤、硬化促進剤、流動化剤(標準形、遅延形)、収縮低減型(高性能)AE減水剤、凝結遅延剤、促進剤、急結剤、起泡剤、防錆剤、耐寒促進剤、付着モルタル安定剤、黒ずみ抑制剤、増粘剤、分離低減剤、凝集剤、セルフレベリング剤、防黴剤等が挙げられる。上記他の化学混和剤は単独または2種以上を併用してもよい。   In addition to the air-entrained stable volume change inhibitor for cement compositions of the present invention, other chemical admixtures can be blended with the cement composition as necessary. Other chemical admixtures may be mixed with the air-entrained stable volume change inhibitor of the present invention and blended into the cement composition or separately, but the air-entrained stable volume change inhibitor of the present invention. It is necessary to use one that does not impair the effect. When other chemical admixtures are mixed with the air-entrained stable volume change inhibitor of the present invention, it is necessary to mix within a range in which the transparent liquid of the air-entrained stable volume change inhibitor is maintained. Other chemical admixtures include, for example, air entraining agents (air entraining components), antifoaming agents (antifoaming components, antifoaming components), water reducing agents (standard, delayed, accelerated), high performance AE water reducing agents (standard) Shape, delay type), high-performance water reducing agent, curing accelerator, fluidizing agent (standard type, delayed type), shrinkage reduction type (high performance) AE water reducing agent, setting retarder, accelerator, quick setting agent, foaming Agents, rust inhibitors, cold resistance promoters, adhesion mortar stabilizers, darkening inhibitors, thickeners, separation reducers, flocculants, self-leveling agents, antifungal agents and the like. These other chemical admixtures may be used alone or in combination of two or more.

セメント組成物におけるセメントは、水硬性セメントであれば特に限定されない。セメントとしては例えば、普通、低熱、中庸熱、早強、超早強、耐硫酸塩等のポルトランドセメント、ポルトランドセメントの低アルカリ形、高炉セメント(A種、B種、C種)、シリカセメント(A種、B種、C種)、フライアッシュセメント(A種、B種、C種)、エコセメント(普通、速硬)、シリカヒュームセメント、白色ポルトランドセメント、アルミナセメント、超速硬セメント、グラウト用セメント、油井セメント、低発熱セメント、セメント系固化材が挙げられる。また、セメント組成物中に含まれ得る粉体としては、シリカヒューム、フライアッシュ、石炭石微粉末、高炉スラグ微粉末、膨張材、その他の鉱物質微粉末等が例示される。即ち、珪酸カルシウム生成物を生成する水和物全般が適用される。   The cement in the cement composition is not particularly limited as long as it is a hydraulic cement. Examples of the cement include normal, low heat, moderately hot, early strength, super early strength, sulfate resistant portland cement, low alkali type of portland cement, blast furnace cement (type A, type B, type C), silica cement ( A type, B type, C type), fly ash cement (A type, B type, C type), eco cement (ordinary, fast setting), silica fume cement, white Portland cement, alumina cement, super fast setting cement, for grout Examples include cement, oil well cement, low heat cement, and cement-based solidified material. Examples of the powder that can be contained in the cement composition include silica fume, fly ash, fine coal stone powder, fine blast furnace slag powder, expansion material, and other mineral fine powder. That is, all hydrates that produce calcium silicate products are applied.

骨材は粒径によって細骨材と粗骨材に分類され、細骨材としては、川砂、山砂、海砂、砕砂、重量骨材、軽量骨材、スラグ骨材、再生骨材等が例示される。粗骨材としては、川砂利、砕石、重量骨材、軽量骨材、スラグ骨材、再生骨材等が例示される。セメント組成物に使用できる水は特に限定されず、上水道水、上水道水以外の水(河川水、湖沼水、井戸水など)、回収水等が例示される。   Aggregates are classified into fine aggregates and coarse aggregates according to the particle size. Fine aggregates include river sand, mountain sand, sea sand, crushed sand, heavy aggregate, lightweight aggregate, slag aggregate, recycled aggregate, etc. Illustrated. Examples of the coarse aggregate include river gravel, crushed stone, heavy aggregate, lightweight aggregate, slag aggregate, recycled aggregate, and the like. Water that can be used for the cement composition is not particularly limited, and examples thereof include water supply water, water other than water supply water (river water, lake water, well water, etc.), recovered water, and the like.

セメント組成物中における本発明セメント組成物用空気連行安定型体積変化抑制剤の配合割合は、特に限定されないが、通常は実用的効果の面からセメント重量に対して有効分換算で0.1重量%〜5.0重量%であることが好ましく、更に好ましくは0.5重量%〜3.0重量%である。   The blending ratio of the air-entrained stable volume change inhibitor for the cement composition of the present invention in the cement composition is not particularly limited, but usually 0.1 wt. % To 5.0% by weight, more preferably 0.5% to 3.0% by weight.

セメント組成物の製造方法、運搬方法、打設方法、養生方法、管理方法などについて特に制限はなく、通常の方法を採用することができる。   There is no restriction | limiting in particular about the manufacturing method of a cement composition, a conveyance method, a setting method, a curing method, a management method, etc., A normal method can be employ | adopted.

以下に実施例及び比較例を挙げ、本発明の有効性を説明するが、実施例のみに本発明は限定されるものではない。   The effectiveness of the present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to the examples.

A成分のポリプロピレングリコール(PPG)の合成:
1リットルのステンレス製容器に出発原料としてジプロピレングリコール(MW=116)を116gと苛性カリ1.25gを入れ、容器を密閉し攪拌しながら反応系内を窒素置換し100℃まで昇温した。反応系内を真空ポンプで減圧とした後、更に昇温を続け、内温120℃となった時点からプロピレンオキサイド(PO)の導入を開始し、反応圧力0.4MPa、反応温度140〜150℃で所定量のPOを加圧、導入し付加反応させた。所定量のPOを加圧、導入後は、同温度で2時間熟成を行い反応系内に残存するPOを完全に付加反応させ、40℃以下まで冷却した。容器から反応物を取り出し、反応物に対して約1%のキョーワード600S(協和化学製)を添加し、窒素雰囲気下で120℃、1時間吸着処理して脱触媒を行い、No.5Bろ紙(保留粒子4μm)を使用して加圧濾過しキョーワード600Sを除去し、平均分子量150、200、350、500、600の5種のPPGを得た。
Synthesis of component A polypropylene glycol (PPG):
116 g of dipropylene glycol (MW = 116) and 1.25 g of caustic potash were introduced as starting materials into a 1 liter stainless steel container, and the reaction system was purged with nitrogen while the container was sealed and stirred, and the temperature was raised to 100 ° C. After reducing the pressure in the reaction system with a vacuum pump, the temperature was further raised, and when the internal temperature reached 120 ° C., the introduction of propylene oxide (PO) was started, the reaction pressure was 0.4 MPa, and the reaction temperature was 140 to 150 ° C. Then, a predetermined amount of PO was pressurized and introduced to cause addition reaction. After pressurizing and introducing a predetermined amount of PO, aging was carried out at the same temperature for 2 hours to completely add PO remaining in the reaction system, and cooled to 40 ° C. or lower. The reaction product was taken out from the container, and about 1% KYOWARD 600S (manufactured by Kyowa Chemical) was added to the reaction product, followed by adsorption treatment at 120 ° C. for 1 hour in a nitrogen atmosphere to carry out decatalysis. Using 5B filter paper (retained particles 4 μm), pressure filtration was performed to remove KYOWARD 600S, and five types of PPG having an average molecular weight of 150, 200, 350, 500, and 600 were obtained.

C成分の一般式(I)のポリオキシアルキレンアルキルエーテルの合成(括弧内の数値は、オキシアルキレン基の繰り返し数):
(1)C成分1:ポリオキシプロピレン(4)−2−エチルヘキシルエーテルの合成
1リットルのステンレス製容器に2−エチルヘキシルアルコール(オクタノールOA:チッソ株式会社製)を134gと苛性カリ(試薬特級:関東化学株式会社製)0.5gを入れ、容器を密閉し攪拌しながら反応系内を窒素置換し100℃まで昇温した。反応系内を真空ポンプで減圧とし約15分脱水した後、更に昇温を続け、内温150℃となった時点からPOの導入を開始し、反応圧力0.4MPa、反応温度175〜185℃で4モル分のPOを加圧導入し付加反応させた。PO導入終了後は、同温度で1時間熟成を行い反応系内に残存するPOを完全に付加反応させ、40℃以下まで冷却した。容器から反応物を取り出し、酢酸(試薬特級:関東化学株式会社製)0.5gを入れて苛性カリを中和し目的とするC成分化合物のポリオキシプロピレン(4)−2−エチルヘキシルエーテルを得た。
Synthesis of polyoxyalkylene alkyl ether of general formula (I) of component C (the number in parentheses is the number of repeating oxyalkylene groups):
(1) C component 1: Synthesis of polyoxypropylene (4) -2-ethylhexyl ether 134 g of 2-ethylhexyl alcohol (octanol OA: manufactured by Chisso Corporation) and caustic potash (reagent special grade: Kanto Chemical) in a 1 liter stainless steel container (Made by Co., Ltd.) 0.5 g was added, and the reaction system was purged with nitrogen while stirring and stirring the vessel, and the temperature was raised to 100 ° C. The inside of the reaction system was depressurized with a vacuum pump and dehydrated for about 15 minutes, and then the temperature was further raised. PO introduction was started when the internal temperature reached 150 ° C., reaction pressure 0.4 MPa, reaction temperature 175 to 185 ° C. Then, 4 mol of PO was introduced under pressure to cause addition reaction. After the introduction of PO, aging was carried out at the same temperature for 1 hour, and PO remaining in the reaction system was completely added and cooled to 40 ° C. or lower. The reaction product was taken out from the container, and 0.5 g of acetic acid (special grade reagent: manufactured by Kanto Chemical Co., Inc.) was added to neutralize caustic potash to obtain the target C component compound polyoxypropylene (4) -2-ethylhexyl ether. .

(2)C成分2:ポリオキシエチレン(2)−2−エチルヘキシルエーテルの合成
上記ポリオキシプロピレン(4)−2−エチルヘキシルエーテルと同様の合成方法で2モル分のEOを付加反応させ、目的とするC成分化合物のポリオキシエチレン(2)−2−エチルヘキシルエーテルを得た。尚、グリフィンの式から計算されるHLB値は7.9である。
(2) Component C 2: Synthesis of polyoxyethylene (2) -2-ethylhexyl ether 2 mol of EO was added and reacted by the same synthesis method as polyoxypropylene (4) -2-ethylhexyl ether. C-component compound polyoxyethylene (2) -2-ethylhexyl ether was obtained. The HLB value calculated from the Griffin equation is 7.9.

(3)C成分3:ポリオキシプロピレン(3)ラウリルエーテルの合成
出発原料にラウリルアルコール(コノール20P:新日本理化株式会社製)を201g使用して、上記ポリオキシプロピレン(4)−2−エチルヘキシルエーテルと同様の合成方法で3モル分のPOを付加反応させ、目的とするC成分化合物のポリオキシプロピレン(3)ラウリルエーテルを得た。
(3) C component 3: Polyoxypropylene (3) Synthesis of lauryl ether 201 g of lauryl alcohol (Conol 20P: manufactured by Shin Nippon Chemical Co., Ltd.) was used as a starting material, and the above polyoxypropylene (4) -2-ethylhexyl was used. A 3 mol portion of PO was subjected to an addition reaction by the same synthesis method as that for ether to obtain a target C component compound polyoxypropylene (3) lauryl ether.

(4)C成分4:ポリオキシエチレン(2)ポリオキシプロピレン(4)ステアリルエーテルの合成
出発原料にステアリルアルコール(カルコール8098:花王株式会社製)を270gと苛性カリ(試薬特級:関東化学株式会社製)0.5gを入れ、容器を密閉し攪拌しながら反応系内を窒素置換し100℃まで昇温した。反応系内を真空ポンプで減圧とし約15分脱水した後、更に昇温を続け、内温150℃となった時点からEOの導入を開始し、反応圧力0.4MPa、反応温度175〜185℃で先ず2モル分のEOを加圧導入し付加反応させた。EO導入終了後は、同温度で30分熟成を行い、次いでPOを加圧導入し4モル分のPOを付加反応させた。PO導入終了後、同温度で約1時間熟成を行い反応系内に残存するPOを完全に付加反応させ、40℃以下まで冷却した。容器から反応物を取り出し、酢酸(試薬特級:関東化学株式会社製)0.5gを入れて苛性カリを中和し目的とするC成分化合物のポリオキシエチレン(2)ポリオキシプロピレン(4)ステアリルエーテルを得た。尚、グリフィンの式から計算されるHLB値は3.0である。
(4) C component 4: Polyoxyethylene (2) Polyoxypropylene (4) Synthesis of stearyl ether 270 g of stearyl alcohol (Calcoal 8098: manufactured by Kao Corporation) and caustic potash (reagent special grade: manufactured by Kanto Chemical Co., Ltd.) ) 0.5 g was added, and the reaction system was purged with nitrogen while the vessel was sealed and stirred, and the temperature was raised to 100 ° C. The reaction system was depressurized with a vacuum pump and dehydrated for about 15 minutes, and then the temperature was further raised. The introduction of EO was started when the internal temperature reached 150 ° C, the reaction pressure was 0.4 MPa, the reaction temperature was 175 to 185 ° C. First, 2 mol of EO was introduced under pressure to cause addition reaction. After completion of EO introduction, aging was carried out at the same temperature for 30 minutes, and then PO was introduced under pressure to cause addition reaction of 4 moles of PO. After the introduction of PO, the mixture was aged at the same temperature for about 1 hour to completely add PO remaining in the reaction system, and cooled to 40 ° C. or lower. The reaction product is taken out from the container, 0.5 g of acetic acid (special grade reagent: manufactured by Kanto Chemical Co., Inc.) is added to neutralize caustic potash, and the target C component compound is polyoxyethylene (2) polyoxypropylene (4) stearyl ether Got. The HLB value calculated from the Griffin equation is 3.0.

(5)C成分5:ポリオキシエチレン(7)ポリオキシプロピレン(2)ラウリルエーテルの合成
出発原料にラウリルアルコール(コノール20P:新日本理化株式会社製)を201g使用して、上記ポリオキシエチレン(2)ポリオキシプロピレン(4)ステアリルエーテルと同様の合成方法で7モル分のEO、2モル分のPOを付加反応させ、目的とするC成分化合物のポリオキシエチレン(7)ポリオキシプロピレン(2)ラウリルエーテルを得た。尚、グリフィンの式から計算されるHLB値は10.1である。
(5) Synthesis of C component 5: polyoxyethylene (7) polyoxypropylene (2) lauryl ether 201 g of lauryl alcohol (Conol 20P: manufactured by Shin Nippon Rika Co., Ltd.) was used as a starting material, and the above polyoxyethylene ( 2) Polyoxypropylene (4) Polyoxyethylene (7) polyoxypropylene (2) which is the target C component compound by addition reaction of 7 mol of EO and 2 mol of PO by the same synthesis method as stearyl ether ) Lauryl ether was obtained. Note that the HLB value calculated from the Griffin equation is 10.1.

空気連行安定型体積変化抑制剤の調製
A成分化合物のPPGに、B成分であるロジン酸(中国ロジンX:荒川化学工業株式会社製)を加え、60℃で透明均一に溶解した後、40℃以下まで冷却した。次いでC成分化合物のポリオキシアルキレンアルキルエーテルを添加して均一に溶解した後、水を混合して目的とする空気連行安定型体積変化抑制剤を得た。各空気連行安定型体積変化抑制剤の組成および調製した空気連行安定型体積変化抑制剤の25℃での外観を表1に示す。
Preparation of Air-Entrained Stable Volume Change Inhibitor Addition of B component rosin acid (Chinese rosin X: manufactured by Arakawa Chemical Co., Ltd.) to PPG of component A compound, and after dissolving uniformly and uniformly at 60 ° C, 40 ° C Cooled to: Next, the polyoxyalkylene alkyl ether of component C was added and dissolved uniformly, and then mixed with water to obtain the intended air-entrained stable volume change inhibitor. Table 1 shows the composition of each air-entrained stable volume change inhibitor and the appearance of the prepared air-entrained stable volume change inhibitor at 25 ° C.

Figure 0005875858
Figure 0005875858

実施例1〜2、比較例1〜2、参考例1
表1に組成を示した空気連行安定型体積変化抑制剤(薬剤)を用い、表2に示すコンクリート調合条件1を基本に、普通ポルトランドセメント3種等量混合(密度=3.16g/cm)、細骨材及び粗骨材は表3の骨材種1を使用して環境温度20℃の室内でコンクリートを製造した。
製造方法は、強制二軸練りミキサーを使用し、セメントと細骨材をまず均一にし、次いで水および化学混和剤と空気連行安定型体積変化抑制剤を添加し、60秒間モルタルを混練した後、粗骨材を投入、90秒間混練してコンクリートを製造した。実施例、比較例、参考例のコンクリートにはAE減水剤(標準形フローリックS:株式会社フローリック社製)をセメント重量に対して1重量%となるように、コンクリートの水量と内割置換して添加した。目標スランプ値を18±2.5cm、目標空気量を4.5±1.5%に設定し、空気量調整剤として空気連行剤(AE−4(主成分ロジン酸カリウム塩型界面活性剤):株式会社フローリック社製)および/または消泡剤(トリミンDF−325(主成分ポリアルキレングリコール脂肪酸エステル):ミヨシ油脂株式会社製)を用いて目標空気量となるように調整し、コンクリートを製造した。空気連行安定型体積変化抑制剤はセメントに対して有効分換算で1重量%となるように予め水量に内割置換して添加した。
上記試験でのコンクリートは、空気連行安定型体積変化抑制剤の種類毎にミキサーを洗浄し、バッチ毎にはミキサーを洗浄せずに連続して3バッチコンクリートを製造した。1バッチ目は、空気連行安定型体積変化抑制剤を添加したコンクリートとし、2バッチ目は、空気連行安定型体積変化抑制剤を添加していないコンクリートを製造し,3バッチ目は1バッチ目と同様とし、バッチ毎のコンクリート混練直後、30分後、60分後の空気量、スランプ値を測定し、コンクリート混練直後のフレッシュコンクリート試験結果(空気量、スランプ値)から、前バッチの薬剤添加による影響を確認した。結果を表4に示す。
Examples 1-2, Comparative Examples 1-2, Reference Example 1
Using an air-entrained stable volume change inhibitor (chemical) whose composition is shown in Table 1, based on the concrete mixing condition 1 shown in Table 2, three equal amounts of ordinary Portland cement (density = 3.16 g / cm 3) ), Fine aggregates and coarse aggregates were produced in the room at an ambient temperature of 20 ° C. using the aggregate type 1 in Table 3.
The manufacturing method uses a forced biaxial kneading mixer, first uniform the cement and fine aggregate, then add water and chemical admixture and air-entrained stable volume change inhibitor, knead the mortar for 60 seconds, Coarse aggregate was charged and kneaded for 90 seconds to produce concrete. For concrete in Examples, Comparative Examples, and Reference Examples, AE water reducing agent (standard type Floric S: manufactured by Floric Co., Ltd.) is replaced with the water content of the concrete so that it becomes 1% by weight with respect to the cement weight. And added. The target slump value is set to 18 ± 2.5 cm, the target air amount is set to 4.5 ± 1.5%, and an air entraining agent (AE-4 (potassium rosin acid potassium salt type surfactant) as an air amount adjusting agent. : Made by Floric Co., Ltd.) and / or antifoaming agent (Trimin DF-325 (main component polyalkylene glycol fatty acid ester): made by Miyoshi Oil & Fat Co., Ltd.) Manufactured. The air-entrained stable volume change inhibitor was added in advance to the amount of water so as to be 1% by weight in terms of effective component with respect to the cement.
For the concrete in the above test, the mixer was washed for each type of air-entrained stable volume change inhibitor, and three batch concrete was continuously produced without washing the mixer for each batch. The first batch is made of concrete with an air-entrained stable volume change inhibitor added, the second batch is made with no air-entrained stable volume change inhibitor added, and the third batch is made up of the first batch In the same manner, the amount of air and slump value immediately after, 30 minutes, and 60 minutes after concrete mixing for each batch were measured. From the fresh concrete test results (air amount, slump value) immediately after concrete kneading, The effect was confirmed. The results are shown in Table 4.

Figure 0005875858
Figure 0005875858

Figure 0005875858
Figure 0005875858

フレッシュコンクリート試験
フレッシュコンクリート試験として、得られたコンクリートの空気量(混練直後、30分、60分後)、スランプ値を以下の方法に準拠し測定した。
空気量 : JIS A 1128:2005
スランプ: JIS A 1101:2005
Fresh Concrete Test As a fresh concrete test, the amount of air of the obtained concrete (immediately after kneading, after 30 minutes and 60 minutes) and the slump value were measured according to the following method.
Air volume: JIS A 1128: 2005
Slump: JIS A 1101: 2005

Figure 0005875858
Figure 0005875858

表4の結果より、実施例1、2では本発明のセメント組成物用空気連行安定型体積変化抑制剤(薬剤)の添加有無に係らず、同一試験条件(空気量調整剤が同量)において空気量、スランプ値に変動はなく、ベースコンクリート(参考例1)における同一試験条件でのフレッシュコンクリート試験結果とも同等であった。一方、比較例1では前バッチに添加した薬剤の影響を受けているため、バッチ毎で空気量にバラツキが生じ、目標空気量とするためには、空気連行剤又は消泡剤の添加量の調整が必要であり、制御が難しいことがわかる。比較例2では35Aと多量の空気連行剤を添加しても、目標空気量、目標スランプ値には至らなかった。
すなわち、本発明のセメント組成物用空気連行安定型体積変化抑制剤は、透明液状の非危険物で、分散性の観点から空気連行性にムラが生じる虞がなく、バッチ毎での空気量、スランプ値の顕著なバラツキや前バッチに添加した薬剤の影響を受けないことから、製造上の管理に関する手間が省け、ベースコンクリートと同程度の空気連行剤、消泡剤の添加量で、所望のフレッシュ性状を有するセメント組成物を得られることが認められた。
From the results of Table 4, in Examples 1 and 2, in the same test conditions (the same amount of air amount adjusting agent) regardless of the presence or absence of the air-entrained stable volume change inhibitor (chemical) for the cement composition of the present invention. There was no change in the air amount and slump value, and the results were the same as the results of the fresh concrete test under the same test conditions in the base concrete (Reference Example 1). On the other hand, in Comparative Example 1, since it is influenced by the chemicals added to the previous batch, the amount of air varies from batch to batch, and in order to obtain the target air amount, the amount of air entrainment agent or antifoaming agent added It can be seen that adjustment is necessary and control is difficult. In Comparative Example 2, even when 35A and a large amount of air entraining agent were added, the target air amount and the target slump value were not reached.
That is, the air-entrained stable volume change inhibitor for cement composition of the present invention is a transparent liquid non-hazardous material, and there is no risk of unevenness in air entrainment from the viewpoint of dispersibility, the amount of air per batch, Because it is not affected by the variation in the slump value and the chemicals added to the previous batch, it eliminates the need for manufacturing management, and the desired amount of air-entraining agent and antifoaming agent is the same as the base concrete. It was found that a cement composition having fresh properties could be obtained.

実施例3〜4、比較例3〜4、参考例2
上記例示した空気連行安定型体積変化抑制剤(薬剤)を用い、表2に示すコンクリート調合条件2を基本に、普通ポルトランドセメント3種等量混合(密度=3.16g/cm)、細骨材及び粗骨材は表3に示す骨材種2を使用して、前述した製造方法と同様の方法でコンクリートを1バッチ製造した。尚、ミキサーは空気連行安定型体積変化抑制剤の種類毎に毎回洗浄した。
コンクリート混練直後の空気量、スランプ値を測定し、骨材種1、調合条件1を用いた先の実施例1、2、比較例1、2、参考例1のフレッシュコンクリート試験結果と対比し、骨材種・調合条件の違いによる影響を確認した。結果を先の実施例1、2、比較例1、2及び参考例1の1バッチ目の結果とともに表5に示す。
Examples 3-4, Comparative Examples 3-4, Reference Example 2
Using the above-exemplified air-entrained stable volume change inhibitor (medicine), based on the concrete mixing condition 2 shown in Table 2, three equal amounts of ordinary Portland cement (density = 3.16 g / cm 3 ), fine bone As the aggregate and coarse aggregate, one batch of concrete was produced by using the aggregate type 2 shown in Table 3 by the same method as described above. The mixer was washed every time for each type of air-entrained stable volume change inhibitor.
The amount of air immediately after the concrete kneading and the slump value were measured, and compared with the results of the fresh concrete test of Examples 1, 2, Comparative Examples 1, 2 and Reference Example 1 using the aggregate type 1, mixing condition 1. The effect of the difference in aggregate type and blending conditions was confirmed. The results are shown in Table 5 together with the results of the first batch of Examples 1 and 2, Comparative Examples 1 and 2 and Reference Example 1.

Figure 0005875858
Figure 0005875858

実施例1、3、実施例2、4の結果より、本発明のセメント組成物用空気連行安定型体積変化抑制剤は、骨材種・調合条件の違いによる空気量、スランプ値への影響は認められなかった。一方、比較例1、3、比較例2、4の結果より、使用骨材・調合条件の変更に伴い、大幅に空気量およびスランプ値が変動する。
すなわち、本発明のセメント組成物用空気連行安定型体積変化抑制剤は、セメント組成物に使用する骨材・調合条件が変わっても、セメント組成物のフレッシュ性状は安定しており、空気連行剤、消泡剤の煩雑な添加量決定作業を軽減できることが認められた。
From the results of Examples 1 and 3 and Examples 2 and 4, the air-entrained stable volume change inhibitor for cement composition of the present invention has an effect on the air amount and slump value due to the difference in aggregate type and blending conditions. I was not able to admit. On the other hand, from the results of Comparative Examples 1 and 3, and Comparative Examples 2 and 4, the air amount and the slump value fluctuate significantly with changes in the aggregate used and the mixing conditions.
That is, the air-entrained stable volume change inhibitor for a cement composition of the present invention has a stable fresh property of the cement composition even if the aggregate and blending conditions used in the cement composition are changed. It was confirmed that the complicated work of determining the amount of addition of the antifoaming agent can be reduced.

実施例5〜10、比較例5〜12
表1に組成を示した空気連行安定型体積変化抑制剤(薬剤)を用い、表2に示すコンクリート調合条件1を基本に、普通ポルトランドセメント3種等量混合(密度=3.16g/cm)、細骨材及び粗骨材は表3の骨材種1を使用して、前述した製造方法と同様の方法でコンクリートを1バッチ製造した。尚、ミキサーは空気連行安定型体積変化抑制剤の種類毎に毎回洗浄した。
空気連行安定型体積変化抑制剤はセメントに対して有効分換算で0.5、1.0、3.5重量%となるように予めコンクリートの水量と置換して添加した。
コンクリート混練直後、30分後、60分後の空気量およびスランプ値を測定し、先の実施例1、2及び比較例1、2、参考例1の1バッチ目のコンクリート混練直後、30分後、60分後の空気量、スランプ値の結果とあわせて表6に示す。
Examples 5-10, Comparative Examples 5-12
Using an air-entrained stable volume change inhibitor (chemical) whose composition is shown in Table 1, based on the concrete mixing condition 1 shown in Table 2, three equal amounts of ordinary Portland cement (density = 3.16 g / cm 3) ), Fine aggregate and coarse aggregate were produced in batches of concrete by the same method as described above using the aggregate type 1 shown in Table 3. The mixer was washed every time for each type of air-entrained stable volume change inhibitor.
The air-entrained stable volume change inhibitor was added in advance to the amount of concrete water so that it would be 0.5, 1.0, and 3.5% by weight in terms of effective component relative to the cement.
The amount of air and slump value were measured immediately after concrete kneading, after 30 minutes and after 60 minutes, and after the first batch of concrete kneading in Examples 1 and 2 and Comparative Examples 1 and 2 and Reference Example 1, after 30 minutes. Table 6 shows the air amount and slump value after 60 minutes.

Figure 0005875858
Figure 0005875858

実施例1、2、5〜10の結果より、本発明のセメント組成物用空気連行安定型体積変化抑制剤は、空気量の経時安定性が良好であり、また、それに伴ったスランプロスも小さく抑えられている。一方、比較例に関しては、経時後の空気量が増加もしくは著しい低下を示し、経時安定性が確保できず、それに伴いスランプ値も経時により著しく変動する。また、ロジン酸を過多に配合した場合(比較例5)は、経時により凝集が起こり、流動性が悪くなりコンクリートのこわばりが確認された。
すなわち、本発明のセメント組成物用空気連行安定型体積変化抑制剤は、安定した量および品質の空気泡の連行により、セメント組成物中の空気連行量を、練り混ぜ直後から施工時まで維持できることが認められた。
From the results of Examples 1, 2, 5 to 10, the air-entrained stable volume change inhibitor for cement composition of the present invention has good air volume stability over time, and the associated slump loss is small. It is suppressed. On the other hand, with respect to the comparative example, the amount of air after the lapse of time increases or significantly decreases, the aging stability cannot be ensured, and the slump value fluctuates significantly with the lapse of time. Moreover, when rosin acid was compounded excessively (Comparative Example 5), aggregation occurred over time, the fluidity deteriorated, and the stiffness of the concrete was confirmed.
That is, the air-entrained stable volume change inhibitor for cement composition according to the present invention can maintain the air-entrained amount in the cement composition from immediately after kneading to the time of construction by entraining air bubbles of a stable amount and quality. Was recognized.

実施例11〜18、比較例13〜22
実施例1、2、5〜10、比較例1、2、5〜12で得られたコンクリートを用いて、以下の方法により気泡間隔係数測定、乾燥収縮試験、凍結融解試験を行った。結果を表7に示す。
Examples 11-18, Comparative Examples 13-22
Using the concrete obtained in Examples 1, 2, 5 to 10 and Comparative Examples 1, 2, and 5-12, the bubble spacing coefficient measurement, the drying shrinkage test, and the freeze / thaw test were performed by the following methods. The results are shown in Table 7.

起泡間隔係数測定
起泡間隔係数は、ASTM C 457−98に準拠してリニアトラバース法にて測定した。ミキサー排出後の実施例1、2、5〜10、比較例1、2、5〜12の各コンクリートをφ10×20cmの鋼製型枠に採取し、注水24時間後に脱形した。脱形後直ちに4週間20℃の水に浸漬し、高さ方向10cmから上下1cmをカットし検体とした。尚、一般に起泡間隔係数が250μm以下であると、耐凍害性が良好とされている。
Foaming interval coefficient measurement The foaming interval coefficient was measured by the linear traverse method in accordance with ASTM C 457-98. Each concrete of Examples 1, 2, 5 to 10 and Comparative Examples 1, 2 and 5 to 12 after being discharged from the mixer was collected in a steel mold having a diameter of 10 × 20 cm and demolded after 24 hours of water injection. Immediately after demolding, the sample was immersed in water at 20 ° C. for 4 weeks, and the sample was cut from the height of 10 cm to 1 cm above and below. In general, when the foaming interval coefficient is 250 μm or less, the frost damage resistance is considered good.

乾燥収縮試験
乾燥収縮試験はJIS A 1129:2001に準拠して行った。実施例1、2、5〜10、比較例1、2、5〜12の各コンクリート打設後、直ちに10×10×40cmの供試体を作成し、24時間後に脱型を行い、刻線を引いた後、20℃の水中で1週間養生を行い、その後、20℃、60%RHの恒温恒湿室で保存し乾燥収縮率の測定を行った。尚、各コンクリートの乾燥材齢13週における乾燥収縮率およびベースコンクリート(参考例3)に対する収縮低減率(%)である。
Drying shrinkage test The drying shrinkage test was performed in accordance with JIS A 1129: 2001. Immediately after each concrete placement in Examples 1, 2, 5 to 10 and Comparative Examples 1, 2 and 5 to 12, a 10 × 10 × 40 cm specimen was prepared, and after 24 hours, the mold was removed, and the marking was made. After pulling, it was cured in water at 20 ° C. for 1 week, and then stored in a constant temperature and humidity chamber at 20 ° C. and 60% RH, and the drying shrinkage rate was measured. In addition, it is a shrinkage | contraction reduction rate (%) with respect to base concrete (reference example 3) in the dry material age 13 weeks of each concrete.

凍結融解試験(耐久性指数)
凍結融解試験はJIS A 1148:2001(A法)に準拠して行った。実施例1、2、5〜10、比較例1、2、5〜12の各コンクリート打設後、直ちに10×10×40cmの供試体を作成し、24時間後に脱型を行い、20℃の水中で4週間養生を行い、300サイクル(c)凍結融解試験を行い、耐久性指数を求めた。尚、一般にセメント組成物の耐久性指数は60%以上であると、耐凍害性が良好とされている。
Freeze-thaw test (durability index)
The freeze-thaw test was conducted according to JIS A 1148: 2001 (Method A). Immediately after each concrete placement in Examples 1, 2, 5 to 10 and Comparative Examples 1, 2 and 5 to 12, a 10 × 10 × 40 cm specimen was prepared, and demolded after 24 hours. Curing was carried out in water for 4 weeks, a 300-cycle (c) freeze-thaw test was performed, and a durability index was obtained. In general, when the durability index of the cement composition is 60% or more, the frost damage resistance is considered good.

Figure 0005875858
Figure 0005875858

実施例11〜18の結果より、本発明のセメント組成物用空気連行安定型体積変化抑制剤は、乾燥収縮低減効果を有するとともに、気泡間隔係数250μm以下、耐久性指数60%以上のコンクリートを製造でき、耐凍害性に優れることが認められた。一方、比較例に関しては、気泡間隔係数が大きく、粗い空気泡を連行しており、耐久性指数からも耐凍害性に劣ることが認められた。
すなわち、本発明のセメント組成物用空気連行安定型体積変化抑制剤は、安定した品質の空気が連行され、体積変化を抑制する効果、耐凍害性にも優れるセメント組成物が得られることから、クラック発生の抑制、それに伴う透水性の低減にも繋がり、結果として本発明のセメント組成物による構造物の耐久性向上を図れることが判明した。
From the results of Examples 11 to 18, the air-entrained stable volume change inhibitor for cement composition of the present invention produces a concrete having a drying shrinkage reducing effect, a bubble spacing coefficient of 250 μm or less, and a durability index of 60% or more. It was recognized that it was excellent in frost resistance. On the other hand, with respect to the comparative example, it was confirmed that the bubble spacing coefficient was large and coarse air bubbles were entrained, and inferior in frost damage resistance from the durability index.
That is, since the air-entrained stable volume change inhibitor for cement composition of the present invention is entrained with stable quality air, the effect of suppressing volume change, a cement composition that is excellent in frost damage resistance is obtained. It was also found that cracking was suppressed and water permeability was reduced accordingly, and as a result, the durability of the structure could be improved with the cement composition of the present invention.

Claims (2)

平均分子量200〜500のポリプロピレングリコール(A成分)、ロジン酸(B成分)、一般式(I)で示されるHLB値が8以下の化合物(C成分)、及び水を含有し、A成分とB成分とを重量比で、A成分:B成分=99.995〜99.500:0.005〜0.500、C成分をA成分とB成分の合計重量の0.005〜0.500重量%、水をA成分、B成分、C成分、水の合計重量中5〜50重量%の割合で含有し、且つ25℃において透明液状であることを特徴とするセメント組成物用空気連行安定型体積変化抑制剤。
(化1)
R−O−(AO)n−H (I)
(Rは炭素数8〜18の炭化水素基であり、AOは炭素数2〜3のオキシアルキレン基であり、nは1〜10の整数である。)
Contains polypropylene glycol (component A) having an average molecular weight of 200 to 500, rosin acid (component B), a compound (C component) having an HLB value of 8 or less represented by formula (I), and water. A component: B component = 99.995-99.500: 0.005-0.500 by weight ratio, C component is 0.005-0.500% by weight of the total weight of A component and B component An air-entrained stable volume for a cement composition containing 5 to 50% by weight of water in the total weight of component A, component B, component C and water, and being a transparent liquid at 25 ° C. Change inhibitor.
(Chemical formula 1)
R-O- (AO) n-H (I)
(R is a hydrocarbon group having 8 to 18 carbon atoms, AO is an oxyalkylene group having 2 to 3 carbon atoms, and n is an integer of 1 to 10)
請求項1記載のセメント組成物用空気連行安定型体積変化抑制剤を含有するセメント組成物。   A cement composition comprising the air-entrained stable volume change inhibitor for cement composition according to claim 1.
JP2011284931A 2011-12-27 2011-12-27 Air-entrained stable volume change inhibitor for cement composition and cement composition Active JP5875858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011284931A JP5875858B2 (en) 2011-12-27 2011-12-27 Air-entrained stable volume change inhibitor for cement composition and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011284931A JP5875858B2 (en) 2011-12-27 2011-12-27 Air-entrained stable volume change inhibitor for cement composition and cement composition

Publications (2)

Publication Number Publication Date
JP2013133261A JP2013133261A (en) 2013-07-08
JP5875858B2 true JP5875858B2 (en) 2016-03-02

Family

ID=48910206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284931A Active JP5875858B2 (en) 2011-12-27 2011-12-27 Air-entrained stable volume change inhibitor for cement composition and cement composition

Country Status (1)

Country Link
JP (1) JP5875858B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152253A (en) * 1983-02-15 1984-08-30 竹本油脂株式会社 Dry shrinkage reducing agent for hydraulic cement
JPS6148480A (en) * 1984-08-14 1986-03-10 竹本油脂株式会社 Hydraulic cement composition
JP2592495B2 (en) * 1988-04-20 1997-03-19 花王株式会社 Admixture for concrete
JP2558577B2 (en) * 1992-05-16 1996-11-27 鹿島建設株式会社 How to improve frost resistance of concrete
JP3504346B2 (en) * 1994-08-12 2004-03-08 株式会社エヌエムビー Air entrainer for cement composition and cement composition
JP2001163653A (en) * 1999-12-06 2001-06-19 Asahi Denka Kogyo Kk Shrinkage reducing agent for cement or the like
MY141254A (en) * 2003-01-24 2010-03-31 Handy Chemicals Ltd Sacrificial agents for fly ash concrete
WO2010131707A1 (en) * 2009-05-15 2010-11-18 国立大学法人北海道大学 Durability improving agent and cement composition

Also Published As

Publication number Publication date
JP2013133261A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP6263522B2 (en) Shrinkage reducing agent for hydraulic materials
JP4707197B2 (en) Method for preparing low shrinkage AE concrete for civil engineering and low shrinkage AE concrete for civil engineering
CN107778418B (en) A kind of efficient defoaming type polycarboxylate water-reducer and preparation method thereof
JP6147055B2 (en) Shrinkage reducing agent for cement and cement composition
KR101740872B1 (en) Water-settable composition
JP5811461B2 (en) Powdery drying shrinkage reducing agent for premix cement
JP6573435B2 (en) Admixture for aqueous cement composition and method of air entrainment to mortar or concrete using the same and manufacturing method
JP5730758B2 (en) Durability improver and cement composition
JP5875858B2 (en) Air-entrained stable volume change inhibitor for cement composition and cement composition
JP5523189B2 (en) Shrinkage reducing agent composition for hydraulic material
US10294158B2 (en) Hydraulic composition
JP5120651B2 (en) Shrinkage reducing agent for cement composition
EP0813507B1 (en) Cement composition
JP2009249227A (en) Ultralow-shrinkage ae concrete composition
JP3993679B2 (en) Shrinkage reducing agent for cement
JP5869903B2 (en) Additive for hydraulic materials
JP7456685B2 (en) Additives for hydraulic compositions
KR20180086148A (en) Hydraulic composition
JP5777451B2 (en) Hydraulic material modifier
JP7300651B2 (en) Method for manufacturing concrete composition
JP5777452B2 (en) Concrete improver
JP2011102202A (en) Blast furnace cement concrete composition
JP5798469B2 (en) Improving agent for hydraulic materials
JP2024097219A (en) Shrinkage-reducing agent for hydraulic composition and hydraulic composition
JP2012162436A (en) Shrinkage reducer for use in hydraulic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160120

R150 Certificate of patent or registration of utility model

Ref document number: 5875858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250