JP5120651B2 - Shrinkage reducing agent for cement composition - Google Patents
Shrinkage reducing agent for cement composition Download PDFInfo
- Publication number
- JP5120651B2 JP5120651B2 JP2008330568A JP2008330568A JP5120651B2 JP 5120651 B2 JP5120651 B2 JP 5120651B2 JP 2008330568 A JP2008330568 A JP 2008330568A JP 2008330568 A JP2008330568 A JP 2008330568A JP 5120651 B2 JP5120651 B2 JP 5120651B2
- Authority
- JP
- Japan
- Prior art keywords
- reducing agent
- cement
- shrinkage
- mass
- agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明はモルタルやコンクリート等のセメント類の収縮低減剤に関する。更に詳しくは、セメント硬化体表面の外観を良好に維持させることができる、収縮低減効果及び凍結融解抵抗性を有するセメント組成物用収縮低減剤、並びに該収縮低減剤を含有するセメント混和剤に関する。 The present invention relates to a shrinkage reducing agent for cements such as mortar and concrete. More specifically, the present invention relates to a shrinkage reducing agent for a cement composition having a shrinkage-reducing effect and freeze-thaw resistance, and a cement admixture containing the shrinkage-reducing agent, which can maintain the appearance of the hardened cement surface.
硬化コンクリートは水とセメントとの反応よりなる水硬性組成物であり、その硬化過程において水分の蒸発または水和に伴う水分の損失が生じ、コンクリート収縮の発生につながる。硬化コンクリートの収縮は部材内でのひずみを生じ、やがては部材面でのひび割れにつながり、漏水等によるコンクリート構造物の劣化を促進し、ひいては構造的欠陥に繋がる虞がある。
また、セメント硬化体中の水分移動や、外部への水分蒸散などにより硬化体表面に発生する白華現象(エフロレッセンス)は、コンクリート構造物の美観を損なうだけでなく、施工時の初期欠陥やひび割れ発生、中性化等の変状の有無を表わすことがあるために注意が必要である。
Hardened concrete is a hydraulic composition composed of a reaction between water and cement. During the hardening process, water loss occurs due to water evaporation or hydration, which leads to the occurrence of concrete shrinkage. The shrinkage of the hardened concrete causes distortion in the member, eventually leading to cracks on the member surface, promoting deterioration of the concrete structure due to water leakage and the like, and possibly resulting in structural defects.
In addition, the white flower phenomenon (eflorescence) that occurs on the surface of the hardened body due to moisture movement in the hardened cement body and moisture transpiration to the outside, etc. not only impairs the aesthetics of the concrete structure, Care must be taken because it may indicate the presence or absence of deformation such as cracking or neutralization.
このような硬化過程におけるコンクリート収縮等への対策として、収縮低減剤の使用が提案されている。例えば、特許文献1には、炭素原子数1ないし4の低級アルコールのアルキレンオキシド付加物をセメント用収縮低減剤として使用することが記載されている。また、特許文献2には、低級アルコールのアルキレンオキシド付加物の、エチレンオキシドとプロピレンオキシドの共重合比率を最適化することで、より収縮低減効果に優れた収縮低減剤が得られることが記載されている。さらに、特許文献3には収縮低減剤のセメントスラリー中での分散状態を改善し、起泡性を低減することで硬化体の強度低下を防止できることが記載されている。
一方、セメント硬化体の表面外観を向上させる従来の手段としては、ポリエチレングリコールのポリプロピレンオキシド付加物および/またはエチレンジアミンポリエチレンオキシド付加物のポリプロピレンオキシド付加物を含有する表面美観改良剤(特許文献4)や、脂肪酸アルカリ金属塩を用いた液状のエフロレッセンス防止剤(特許文献5)が提案されている。
On the other hand, as a conventional means for improving the surface appearance of a hardened cement body, a surface aesthetics improving agent containing a polypropylene oxide adduct of polyethylene glycol and / or a polypropylene oxide adduct of ethylenediamine polyethylene oxide adduct (Patent Document 4) or A liquid efflorescence inhibitor using a fatty acid alkali metal salt (Patent Document 5) has been proposed.
これまで提案されたセメント用収縮低減剤は、上述の文献にも示されているように、セメント硬化体の収縮低減や、または硬化体の強度の低下などを抑制することを主目的とするものであった。
近年、実際にコンクリートを打設し硬化した後、経時的使用を経て発生する、硬化体の表面外観の問題、例えばコンクリート表面に網目状に発生するひび(硬化体の表面を溝状に走る、従来問題とされたひび割れとは異なる)や白華の発生状態、汚れに対する抵抗性などが新たな問題として浮上してきた。
また、コンクリート硬化体の凍結・融解によって硬化体表面に網目状や亀甲模様状のひびが発生し、その後の更なる凍結・融解作用によってひびの開き幅が拡大し、ついには硬
化体全体の強度低下につながることから、寒冷地などにおいてはコンクリートの凍結融解抵抗性の改善も重要な課題となっている。しかしながら、従来のセメント収縮低減剤の中には、コンクリートに混和するとそのコンクリートの凍結融解抵抗性を低下させるものもあり、凍結融解抵抗性に悪影響を与えないセメント用収縮低減剤が求められていた。
The proposed shrinkage reducing agent for cement has the main purpose of suppressing shrinkage reduction of the hardened cement body or decrease in strength of the hardened body as shown in the above-mentioned literature. Met.
In recent years, after concrete is actually placed and hardened, problems with the appearance of the surface of the hardened body that occur over time, such as cracks that occur in a mesh form on the concrete surface (running the surface of the hardened body in the form of grooves, (It is different from the conventional cracks), white flower generation, resistance to dirt, etc. have emerged as new problems.
In addition, freezing and thawing of the hardened concrete causes cracks in the form of meshes and turtle shells on the surface of the hardened body, and the subsequent freezing and thawing action increases the crack opening width. Finally, the strength of the entire hardened body Improvement in the resistance to freezing and thawing of concrete is also an important issue in cold districts because it leads to a decrease. However, some conventional cement shrinkage reducing agents, when mixed with concrete, reduce the freeze-thaw resistance of the concrete, and there has been a need for a cement shrinkage-reducing agent that does not adversely affect the freeze-thaw resistance. .
本発明はこれまでの収縮低減効果を勿論備えた上で、「経時使用を通して良好な表面外観の維持」ならびに「凍結融解抵抗性の改良」という新たな課題を解決する観点の下、新規な製品設計によってセメント用収縮低減剤の性能を改良すべくなされたものであって、長年に亘る使用を経てもセメント硬化体の表面外観を良好に維持でき、また寒冷地での使用においてセメント硬化体の凍結融解抵抗性の低下を有効に抑制できる、収縮低減剤および該収縮低減剤を含有するセメント混和剤を提供することを課題とする。 Of course, the present invention has a conventional shrinkage reducing effect and is a novel product under the viewpoint of solving new problems of “maintaining a good surface appearance through use over time” and “improving freeze-thaw resistance”. Designed to improve the performance of cement shrinkage reducing agents, the surface appearance of hardened cement can be maintained well even after many years of use. It is an object of the present invention to provide a shrinkage reducing agent and a cement admixture containing the shrinkage reducing agent that can effectively suppress a decrease in freeze-thaw resistance.
本発明者等は収縮低減効果と凍結融解抵抗性の維持という複数の性能の発現の程度について検討し、研究を進めた結果、低級アルコールのアルキレンオキシド付加化合物において、低級アルコールの種類やアルキレンオキシドの付加モル数を限定し、さらに低沸点分の化合物の含有量を抑制したものを収縮低減剤として適用することにより、硬化時のコンクリート収縮は勿論のこと、硬化後の経時的な使用を経てコンクリート表面に発生する網目状ひび等の表面性状の劣化を有効に抑制でき、優れた外観を維持することができるコンクリート硬化体が得られること、しかも、寒冷地での使用における凍害の発生を効果的に防止できることを見出した。 The present inventors examined the degree of expression of a plurality of performances of shrinkage reduction effect and maintenance of freeze-thaw resistance, and as a result of research, as a result of lower oxide alkylene oxide addition compounds, By limiting the number of added moles and further reducing the content of low boiling point compounds as a shrinkage reducing agent, concrete shrinkage at the time of curing, as well as use over time after curing Deterioration of surface properties such as mesh cracks on the surface can be effectively suppressed, and a hardened concrete body that can maintain an excellent appearance can be obtained. In addition, the occurrence of frost damage when used in cold regions is effective. I found that I can prevent it.
すなわち本発明は、下記一般式(1)で表される少なくとも一種の化合物を含み、且つ該化合物のうち140℃以下の沸点を有するものの含有割合は、該化合物全体の質量に基づいて5質量%未満であることを特徴とする、セメント組成物用収縮低減剤に関する。
RO−(AO)n−H (1)
(式中、Rはメチル基又はエチル基を表し、(AO)nは1〜7モルのエチレンオキシドと0〜1モルのプロピレンオキシドとの重合により構成されたポリオキシアルキレン基を表し、nは1乃至8の整数を表す。)
That is, the present invention includes at least one compound represented by the following general formula (1), and the content of the compound having a boiling point of 140 ° C. or less is 5% by mass based on the mass of the whole compound. It is related with the shrinkage reducing agent for cement compositions characterized by being less than.
RO- (AO) n-H (1)
(In the formula, R represents a methyl group or an ethyl group, (AO) n represents a polyoxyalkylene group constituted by polymerization of 1 to 7 mol of ethylene oxide and 0 to 1 mol of propylene oxide, and n represents 1 Represents an integer from 1 to 8. )
さらに本発明は、前記セメント組成物用収縮低減剤、並びに、高性能AE減水剤、高性能減水剤、AE減水剤、減水剤、AE剤、起泡剤、消泡剤、養生剤、撥水剤、凝結促進剤及び凝結遅延剤からなる群から選択される少なくとも一種の他のコンクリート添加剤を含有することを特徴とする、セメント混和剤に関する。 Furthermore, the present invention relates to the shrinkage reducing agent for cement composition, high performance AE water reducing agent, high performance water reducing agent, AE water reducing agent, water reducing agent, AE agent, foaming agent, antifoaming agent, curing agent, water repellent. A cement admixture characterized by containing at least one other concrete additive selected from the group consisting of an agent, a setting accelerator and a setting retarder.
本発明により、硬化過程における収縮やひび割れ、並びにコンクリート硬化後に長期間の使用を経て進行する硬化体表面の収縮欠陥ならびにひび等の外観劣化の発生を有効に低減・抑制することができる、セメント組成物用収縮低減剤を提供することができる。
しかも本発明のセメント組成物用収縮低減剤は、コンクリート硬化体の凍結融解抵抗性の低下を有効に抑制することができる。
また本発明のセメント混和剤は、コンクリートに混和させることにより、減水効果等とともに、そのコンクリートを長期間に亘って外観の劣化を抑制でき、且つ、硬化体の凍結融解抵抗性を著しく改良することができるという効果を発揮することができる。
According to the present invention, it is possible to effectively reduce / suppress the occurrence of shrinkage and cracks in the curing process, and shrinkage defects on the surface of the cured body that progress through long-term use after concrete hardening and appearance deterioration such as cracks. A shrinkage reducing agent for physical objects can be provided.
Moreover, the shrinkage reducing agent for a cement composition of the present invention can effectively suppress a decrease in freeze-thaw resistance of a hardened concrete.
Moreover, the cement admixture of the present invention can suppress the deterioration of the appearance of the concrete over a long period of time and can significantly improve the freeze-thaw resistance of the cured body by mixing with the concrete, as well as a water reducing effect. The effect that it is possible can be demonstrated.
以下、本発明について更に詳しく説明する。
上記一般式(1)で表される化合物において、Rはメチル基又はエチル基を表す。
また上記(AO)nは、1〜7モルのエチレンオキシドと、0〜1モルのプロピレンオキシドとの重合により構成されたポリオキシアルキレン基を表し、nは該オキシアルキレン基の重合数であって1〜8の数を表すものである。
Hereinafter, the present invention will be described in more detail.
In the compound represented by the general formula (1), R represents a methyl group or an ethyl group.
The above (AO) n represents a polyoxyalkylene group constituted by polymerization of 1 to 7 mol of ethylene oxide and 0 to 1 mol of propylene oxide, and n is the number of polymerization of the oxyalkylene group, Represents the number of ~ 8 .
上記化合物において、エチレンオキシドとプロピレンオキシドとの重合形態は特に限定されず、ランダム共重合体、ブロック共重合体またはランダム/ブロック共重合体のいずれの形態でも良いが、ブロック共重合体であることが好ましい。
好ましくはポリエチレングリコールポリプロピレングリコールモノメチルエーテル、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールポリプロピレングリコールモノエチルエーテル、ポリエチレングリコールモノエチルエーテルであることが望ましい。
In the above compound, the polymerization form of ethylene oxide and propylene oxide is not particularly limited, and may be any form of a random copolymer, a block copolymer, or a random / block copolymer, but may be a block copolymer. preferable.
Preferred are polyethylene glycol polypropylene glycol monomethyl ether, polyethylene glycol monomethyl ether, polyethylene glycol polypropylene glycol monoethyl ether, and polyethylene glycol monoethyl ether.
また本発明のセメント組成物用収縮低減剤は、そこに含まれる化合物の沸点が140℃以下の化合物の含有率が5質量%未満であることを特徴とし、好ましくは該含有率は3質量%以下であることが望ましい。このような沸点が140℃以下の化合物としては、例えば前記一般式(1)で表される化合物の製造時に未反応の成分あるいは副生成物として生成する成分が挙げられる。
こうした化合物の含有率を5質量%未満、とりわけ3質量%以下とすることにより、コンクリート硬化体表面に発生する、粗大な空気孔の数を減少でき、また収縮ひびを低減でき、長期間経過後の硬化体の表面性状の向上につながる。
The shrinkage reducing agent for cement composition according to the present invention is characterized in that the content of a compound having a boiling point of 140 ° C. or lower is less than 5% by mass, and preferably the content is 3% by mass. The following is desirable. Examples of such a compound having a boiling point of 140 ° C. or lower include an unreacted component or a component generated as a by-product when the compound represented by the general formula (1) is produced.
By setting the content of these compounds to less than 5% by mass, especially 3% by mass or less, the number of coarse air holes generated on the surface of the hardened concrete can be reduced, and shrinkage cracks can be reduced. This leads to improved surface properties of the cured product.
140℃以下の化合物の含有率を低減させるには従来公知の方法が利用可能であるが、例えば、前記式(1)で表される化合物の製造後に未精製の反応溶液を蒸留することにより、該化合物の含有割合を低減させることができる。 Conventionally known methods can be used to reduce the content of the compound at 140 ° C. or lower. For example, by distilling the unpurified reaction solution after the production of the compound represented by the formula (1), The content ratio of the compound can be reduced.
前記一般式(1)で表される化合物と共にセメント組成物用収縮低減剤に配合され得るその他の成分としては、汎用的に使用される収縮低減剤が挙げられる。例えば、炭素原子数1ないし8のアルキル基またはアルケニル基を有し、炭素原子数2ないし4のアルキレンオキシドの平均付加モル数が1ないし20モルのポリオキシアルキレンモノアルキルエーテル類;炭素原子数1ないし8のアルキレン基またはアルケニル基を有し、炭素原子数2ないし4のアルキレンオキシドの平均付加モル数が1ないし20モルのポリオキシアルキレングリコール類;或いは、炭素原子数1ないし8のアルキル基またはアルケニル基を有し、炭素原子数2ないし4のアルキレンオキシドの平均付加モル数が1〜20モルのポリオキシアルキレンジアルキルエーテル類などが挙げられる。
これら併用される化合物の配合比は前記一般式(1)化合物との質量比で、一般式(1)で表される化合物(質量):併用される化合物(質量)=50:50〜99:1の割合で、好ましくは70:30〜99:1である。
Other components that can be blended in the shrinkage reducing agent for cement composition together with the compound represented by the general formula (1) include shrinkage reducing agents that are used for general purposes. For example, polyoxyalkylene monoalkyl ethers having an alkyl group or alkenyl group having 1 to 8 carbon atoms and an average addition mole number of alkylene oxide having 2 to 4 carbon atoms of 1 to 20 moles; A polyoxyalkylene glycol having an alkylene group or alkenyl group having from 8 to 8 carbon atoms and an average addition mole number of an alkylene oxide having 2 to 4 carbon atoms of 1 to 20 moles; or an alkyl group having 1 to 8 carbon atoms or Examples thereof include polyoxyalkylene dialkyl ethers having an alkenyl group and an alkylene oxide having 2 to 4 carbon atoms and an average addition mole number of 1 to 20 moles.
The compounding ratio of these compounds used in combination is a mass ratio with the compound of the general formula (1), the compound (mass) represented by the general formula (1): the compound (mass) used in combination = 50: 50 to 99: The ratio of 1 is preferably 70:30 to 99: 1.
本発明のセメント組成物用収縮低減剤は、セメント類に配合して使用される。セメントとしては、特に限定はなく、例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、耐硫酸塩ポルトランドセメント、中庸熱ポルトランドセメント、白色ポルトランドセメント、超速硬ポルトランドセメント、膨張セメント、酸性リン酸塩セメント、自硬性セメント、石灰スラグセメント、高炉セメント、高硫酸塩スラグセメント、フライアッシュセメント、キーンスセメント、ポゾランセメント、アルミナセメント、ローマンセメント、白セメント、マグネシアセメント、水滓セメント、カルシウムアルミネート、シリカセメント、シリカフュームセメント、ジェットセメント、石膏等が挙げられる。
また、これらのセメントに、砂、小石、石灰等を配合したコンクリート(コンクリート製品、生コンクリート、軽量コンクリート)やモルタルに、本発明の収縮低減剤を用いることができる。
The shrinkage reducing agent for a cement composition of the present invention is used by blending with cements. The cement is not particularly limited. For example, ordinary Portland cement, early-strength Portland cement, ultra-early-strength Portland cement, sulfate-resistant Portland cement, moderately hot Portland cement, white Portland cement, super-hard Portland cement, expanded cement, acidic cement Phosphate cement, self-hardening cement, lime slag cement, blast furnace cement, high sulfate slag cement, fly ash cement, keens cement, pozzolanic cement, alumina cement, roman cement, white cement, magnesia cement, starch syrup cement, calcium Examples include aluminate, silica cement, silica fume cement, jet cement, and gypsum.
Further, the shrinkage reducing agent of the present invention can be used for concrete (concrete product, ready-mixed concrete, lightweight concrete) or mortar in which sand, pebbles, lime or the like is blended with these cements.
本発明のセメント組成物用収縮低減剤の配合量はコンクリートの設計配合などにより異
なるが、通常、セメントの質量に対して0.1〜3質量%が好ましい。但しコンクリートの材料、配合条件により異なるので本発明のコンクリート用収縮低減剤及び収縮低減剤組成物の添加量はこれに限定されるものではない。
The blending amount of the shrinkage reducing agent for cement composition according to the present invention varies depending on the design blend of concrete and the like, but is usually preferably 0.1 to 3% by mass with respect to the cement mass. However, the amount of addition of the shrinkage-reducing agent for concrete and the shrinkage-reducing agent composition of the present invention is not limited to this because it varies depending on the concrete material and blending conditions.
本発明のセメント組成物用収縮低減剤の使用態様は特に限定されず、従来公知の収縮低減剤と同様の使用態様、例えば、セメント類の練り水に添加して使用する態様、セメント類を混練しながらそこに添加する態様、シリカ等の吸油性粉体に吸収させて固体状とし、それをセメント類に添加する態様、或いは、半硬化したセメント硬化体表面に塗布して含浸させる態様等を適用できる。 The usage mode of the shrinkage reducing agent for a cement composition of the present invention is not particularly limited, and the usage mode is similar to that of a conventionally known shrinkage reducing agent, for example, an mode in which the shrinkage reducing agent is added to the kneading water of cement, or the cement is kneaded. While being added thereto, an aspect in which it is absorbed into an oil-absorbing powder such as silica to form a solid and added to cement, or an aspect in which it is applied and impregnated on the surface of a semi-cured cement cured body, etc. Applicable.
本発明のセメント組成物用収縮低減剤は、他のセメント用添加剤と混和し、所謂セメント混和剤の形態として使用することもできる。配合され得る他のセメント用添加剤としては、高性能AE減水剤、高性能減水剤、AE減水剤、減水剤、AE剤、起泡剤、消泡剤、養生剤、撥水剤、凝結促進剤、凝結遅延剤等が挙げられる。
これらのほか、増粘剤、膨張材、防錆剤、有機繊維、無機繊維、有機ポリマー、顔料など、セメント組成物に通常用いる種々の混和材料を使用できる。
The shrinkage reducing agent for cement composition of the present invention can be mixed with other cement additives and used in the form of so-called cement admixture. Other cement additives that can be formulated include high-performance AE water reducing agents, high-performance water reducing agents, AE water reducing agents, water reducing agents, AE agents, foaming agents, antifoaming agents, curing agents, water repellents, and setting accelerators. Agents, setting retarders and the like.
In addition to these, various admixtures commonly used in cement compositions such as thickeners, expansion agents, rust inhibitors, organic fibers, inorganic fibers, organic polymers, and pigments can be used.
次に実施例に基づいて本発明をより詳しく説明する。なお本発明は下記の実施例に限定されるものではない。 Next, based on an Example, this invention is demonstrated in detail. The present invention is not limited to the following examples.
以下の実施例並びに比較例において使用した一般式(1)で表される化合物は下記表1に示す通りである。なお表1中、「EO」はオキシエチレン基、「PO」はオキシプロピレン基を表し、EO、PO欄の数字は平均付加モル数を表す。
なお下記表における「沸点140℃以下の化合物の割合(質量%)」は、ガスクロマトグラフィーによって測定した値である。以下に測定条件を示す。
[ガスクロマトグラフィー測定条件]
機種:島津製作所(株)製 GC−14A
カラム:GLサイエンス社製 OV−17
昇温プログラム:100℃→300℃(10℃/1分)、インジェクション 330℃、ディテクタ 340℃
キャリアガス:窒素ガス、40ml/分
注入量:1μl
The compounds represented by the general formula (1) used in the following Examples and Comparative Examples are as shown in Table 1 below. In Table 1, “EO” represents an oxyethylene group, “PO” represents an oxypropylene group, and the numbers in the EO and PO columns represent the average number of moles added.
The “ratio (mass%) of a compound having a boiling point of 140 ° C. or lower” in the following table is a value measured by gas chromatography. The measurement conditions are shown below.
[Gas chromatography measurement conditions]
Model: Shimadzu Corporation GC-14A
Column: OV-17 manufactured by GL Sciences
Temperature rising program: 100 ° C. → 300 ° C. (10 ° C./1 minute), injection 330 ° C., detector 340 ° C.
Carrier gas: Nitrogen gas, 40 ml / min Injection volume: 1 μl
[モルタル試験]
JIS R 5201の規定に従い、下記表2に示すモルタル配合にてモルタルを調製
し、モルタル試験に供した。
詳細には、モルタルの練り混ぜにはホバートミキサーを使用し、はじめに水とセメントを低速で30秒間練り混ぜたのち、砂を投入し低速で30秒練り混ぜた。なお、下記実施例及び比較例において添加した上記化合物は、セメント質量に対して一律2質量%の添加量で練り水と共に加えた。その後高速で30秒練り混ぜたのちに撹拌を停止し、90秒間静置した。静置開始から15秒間で容器の壁に付着したモルタルを掻き落とし、静置後、高速で60秒練り混ぜを行った。ここでモルタルの空気量は7〜9%となるように、適宜AE剤と消泡剤にて調整した。
[Mortar test]
In accordance with JIS R 5201, mortar was prepared with the mortar formulation shown in Table 2 below, and subjected to a mortar test.
Specifically, a Hobart mixer was used for kneading the mortar. First, water and cement were kneaded at low speed for 30 seconds, then sand was added and kneaded at low speed for 30 seconds. In addition, the said compound added in the following Example and Comparative Example was added with kneading water with the addition amount of 2 mass% uniformly with respect to cement mass. Then, after kneading at high speed for 30 seconds, stirring was stopped and the mixture was allowed to stand for 90 seconds. The mortar adhering to the wall of the container was scraped off in 15 seconds from the start of standing, and after standing, kneading was performed at high speed for 60 seconds. Here, the amount of air in the mortar was appropriately adjusted with an AE agent and an antifoaming agent so as to be 7 to 9%.
<モルタルフロー及び空気量>
モルタルフローの測定にはJISコーンを使用し、空気量の測定には、全質量方式を採用し、メスシリンダーを用いて測定し、下記式により空気量を算出した。結果を表3に示す。
空気量(%)=[1−(モルタル質量)/(配合から求める空気量0%でのモルタル質量
)]×100
<Mortar flow and air volume>
A JIS cone was used for the measurement of the mortar flow, the total mass method was adopted for the measurement of the air amount, the measurement was performed using a graduated cylinder, and the air amount was calculated by the following formula. The results are shown in Table 3.
Air amount (%) = [1- (Mortar mass) / (Mortar mass at 0% of air amount determined from formulation)] × 100
<収縮低減率及び乾燥質量減少率>
収縮低減率の測定は、JIS R 5201に従い、4×4×16cmの型枠に充填して作製したモルタルの供試体を用いて行なった。硬化後の供試体を24時間後に脱型し、その後1週間の水中養生(20℃)を行った。水中養生終了後、JIS A 1129−2記載のコンタクトゲージ方法にて供試体の寸法を測定し、これを基準値とした。その後、供試体を温度20℃、湿度60%の条件にて保存し、材齢56日に再度供試体の寸法を測定し、長さ変化率を算出した。さらに、長さ変化率の測定と並行して、モルタル供試体の質量変化も測定した。
<Shrinkage reduction rate and dry mass reduction rate>
The shrinkage reduction rate was measured using a mortar specimen prepared by filling a 4 × 4 × 16 cm mold in accordance with JIS R 5201. The cured specimen was demolded after 24 hours, and then subjected to water curing (20 ° C.) for 1 week. After the underwater curing, the dimensions of the specimen were measured by the contact gauge method described in JIS A 1129-2, and this was used as a reference value. Thereafter, the specimen was stored under conditions of a temperature of 20 ° C. and a humidity of 60%, and the dimensions of the specimen were measured again on the age of 56 days, and the rate of change in length was calculated. Furthermore, in parallel with the measurement of the rate of change in length, the change in mass of the mortar specimen was also measured.
収縮低減率の値は、前述のモルタル供試体の長さ変化率と、ブランクとして収縮低減剤を使用していないモルタル供試体の長さ変化率を用いて、下記式により算出した。結果を表3に示す。尚、収縮低減率の値が大きい供試体ほど、収縮を抑制できていることを意味する。
収縮低減率(%)=[1−(実施例・比較例の長さ変化率)/(ブランク長さ変化率)]×100
The value of the shrinkage reduction rate was calculated by the following formula using the above-mentioned rate of change of the mortar specimen and the rate of change of the mortar specimen that did not use the shrinkage reducing agent as a blank. The results are shown in Table 3. In addition, it means that shrinkage | contraction can be suppressed, so that the value of a shrinkage | contraction reduction rate is large.
Shrinkage reduction rate (%) = [1- (length change rate of examples and comparative examples) / (blank length change rate)] × 100
乾燥質量減少率は、測定開始時の各供試体の質量と、試験後の供試体質量の値を用い、下記式により算出した。結果を表3に示す。なお、乾燥質量減少率が小さい供試体ほど、供試体中の水分逸散を抑制できていることを意味する。
乾燥質量減少率(%)=(供試体の質量変化量)/(試験開始時の供試体質量)×100
The dry mass reduction rate was calculated by the following formula using the mass of each specimen at the start of measurement and the value of the specimen mass after the test. The results are shown in Table 3. In addition, it means that the moisture dissipation in a test body has been suppressed, so that the dry mass reduction rate is small.
Dry mass reduction rate (%) = (mass change amount of test specimen) / (test specimen mass at start of test) × 100
<凍結融解抵抗性(凍結融解前後の質量減少率)>
凍結融解抵抗性の評価には、凍結融試験解前後の質量減少率の値を用いた。この測定に
はJIS A 1148 A法(水中凍結水融解法)を参考にした簡易法を採用した。
詳細には、まず上記収縮低減率及び乾燥質量低減率の測定と同様の型枠、方法にて供試体を作成し、水中養生を行なった。その後供試体表面の水分を軽く拭き取り、凍結融解前の供試体質量を測定した。この後、+20℃〜−20℃の温度範囲で温度を上下させ、供試体の凍結と融解を繰り返し、1回の凍結と融解を1サイクルとし、計60サイクルの凍結融解試験を行った。なお、凍結並びに融解工程以下のとおりである。
・凍結工程:1時間かけて+20℃から−20℃まで降下し、−20℃を7時間保持する。
・融解行程:1時間かけて−20℃から+20℃まで上昇し、+20℃を3時間保持する。
なお、温度の誤算範囲は±2℃以内とする。
<Freeze-thaw resistance (mass reduction rate before and after freeze-thaw)>
For the evaluation of the freeze-thaw resistance, the value of the mass reduction rate before and after the freeze-thaw test solution was used. A simple method referring to the JIS A 1148 A method (in-water frozen water thawing method) was employed for this measurement.
Specifically, first, a specimen was prepared by the same mold form and method as those for the measurement of the shrinkage reduction rate and the dry mass reduction rate, and was cured in water. Thereafter, water on the surface of the specimen was gently wiped off, and the mass of the specimen before freezing and thawing was measured. Thereafter, the temperature was raised and lowered in the temperature range of + 20 ° C. to −20 ° C., and the specimen was repeatedly frozen and thawed. One freeze and thaw was taken as one cycle, and a total of 60 cycles of freeze / thaw tests were performed. The freezing and thawing steps are as follows.
Freezing step: Decrease from + 20 ° C. to −20 ° C. over 1 hour and hold at −20 ° C. for 7 hours.
Melting process: Rise from −20 ° C. to + 20 ° C. over 1 hour and hold at + 20 ° C. for 3 hours.
The temperature miscalculation range shall be within ± 2 ° C.
凍結融解試験終了後、供試体の表面の水分を軽く拭き取り、質量を測定し、試験前よりの質量減少率を下記式より算出した。結果を表3に示す。ここで求める質量減少率が小さい供試体ほど、凍結融解に対する抵抗性が高いと評価できる。
質量減少率(%)=[(試験前供試体質量)−(試験後供試体質量)]/(試験前供試体質量)×100
After completion of the freeze-thaw test, the moisture on the surface of the specimen was wiped lightly, the mass was measured, and the mass reduction rate before the test was calculated from the following formula. The results are shown in Table 3. It can be evaluated that a specimen having a smaller mass reduction rate obtained here has higher resistance to freezing and thawing.
Mass reduction rate (%) = [(sample weight before test) − (sample weight after test)] / (sample weight before test) × 100
<外観変化:白華発生及び空気孔の有無>
供試体の全面の表面外観を目視にて観察し、白華の発生を確認した。結果を表4に示す。
また、前記供試体の型枠接触面のうち、2側面及び底面の3面につき、目視にて直径1mm以上の粗大な空気孔と直径1mm以下の微小な空気孔の個数を計測した。結果を表4に示す。この空気孔測定における外観の判定基準は、粗大な空気孔の数が多く、微小な空気孔の数が少ないほど、表面外観の状態が悪いと評価できる。
<Appearance change: generation of white flower and presence of air holes>
The appearance of the entire surface of the specimen was visually observed to confirm the occurrence of white flower. The results are shown in Table 4.
In addition, the number of coarse air holes having a diameter of 1 mm or more and minute air holes having a diameter of 1 mm or less were visually measured on two surfaces of the mold contact surface of the specimen, ie, two side surfaces and a bottom surface. The results are shown in Table 4. It can be evaluated that the appearance criterion in this air hole measurement is that the larger the number of coarse air holes and the smaller the number of minute air holes, the worse the surface appearance.
表3及び表4に示すように、本発明のセメント組成物用収縮低減剤を使用した実施例1のモルタルは、収縮低減剤を使用していない比較例1並びに沸点140℃以下の化合物の含有割合が高い収縮低減剤を使用した比較例2ないし比較例3のモルタルと同程度もしくはそれ以上に、材齢56日後も収縮低減率、乾燥質量減少率が低いとする結果が得られた。また、凍結・融解サイクルを経た後も質量減少が少なく、凍結融解抵抗性が高いとする結果が得られた。
また、実施例1のモルタルは、表面の空気孔粗大な空気孔数に比べて微小な空気孔数が多いという結果が得られ、表面性状に優れるコンクリート硬化体を得られことが確認された。
すなわち、本発明のセメント組成物用収縮低減剤は、収縮低減効果と凍結融解による影響防止効果とを均衡してともに良好に発揮することができ、且つ、経時的な使用を通してコンクリート硬化体の表面外観を良好に維持させることができることが確認された。
As shown in Tables 3 and 4, the mortar of Example 1 using the shrinkage reducing agent for cement composition of the present invention contains Comparative Example 1 not using the shrinkage reducing agent and a compound having a boiling point of 140 ° C. or lower. The results were obtained that the shrinkage reduction rate and the dry mass reduction rate were low even after 56 days of age, at the same level or higher than the mortars of Comparative Examples 2 to 3 using a shrinkage reducing agent having a high ratio. In addition, the results showed that there was little mass loss after freeze / thaw cycles and the resistance to freeze-thaw was high.
Moreover, the result that the mortar of Example 1 had many fine air holes compared with the number of air holes with a rough surface air hole was obtained, and it was confirmed that the concrete hardened | cured material excellent in surface property can be obtained.
That is, the shrinkage reducing agent for a cement composition according to the present invention can balance the shrinkage reducing effect and the effect of preventing the effect of freezing and thawing, and can exert both well, and the surface of the hardened concrete body through use over time. It was confirmed that the appearance can be maintained well.
Claims (2)
RO−(AO)n−H (1)
(式中、Rはメチル基又はエチル基を表し、(AO)nは1〜7モルのエチレンオキシドと0〜1モルのプロピレンオキシドとの重合により構成されたポリオキシアルキレン基を表し、nは1乃至8の整数を表す。) The content ratio of the compound having at least one compound represented by the following general formula (1) and having a boiling point of 140 ° C. or lower among the compounds is less than 5% by mass based on the mass of the whole compound. A shrinkage reducing agent for a cement composition, which is characterized.
RO- (AO) n-H (1)
(In the formula, R represents a methyl group or an ethyl group, (AO) n represents a polyoxyalkylene group constituted by polymerization of 1 to 7 mol of ethylene oxide and 0 to 1 mol of propylene oxide, and n represents 1 Represents an integer from 1 to 8. )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008330568A JP5120651B2 (en) | 2008-12-25 | 2008-12-25 | Shrinkage reducing agent for cement composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008330568A JP5120651B2 (en) | 2008-12-25 | 2008-12-25 | Shrinkage reducing agent for cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010150085A JP2010150085A (en) | 2010-07-08 |
JP5120651B2 true JP5120651B2 (en) | 2013-01-16 |
Family
ID=42569605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008330568A Active JP5120651B2 (en) | 2008-12-25 | 2008-12-25 | Shrinkage reducing agent for cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5120651B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6173155B2 (en) * | 2013-10-01 | 2017-08-02 | 東邦化学工業株式会社 | Shrinkage reducing agent for cement composition |
JP7313951B2 (en) * | 2019-07-26 | 2023-07-25 | 太平洋セメント株式会社 | Efflorescence inhibitor and method for inhibiting efflorescence of hardened cementitious material |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5637259A (en) * | 1979-08-30 | 1981-04-10 | Sanyo Chemical Ind Ltd | Cement contraction reducing agent |
CA2117585C (en) * | 1993-09-14 | 2001-06-05 | Edward T. Shawl | Cement composition |
JP3599397B2 (en) * | 1995-01-30 | 2004-12-08 | 旭化成ケミカルズ株式会社 | Resin mortar composition |
JP4551506B2 (en) * | 1997-12-26 | 2010-09-29 | Basfポゾリス株式会社 | Surface appearance improver for cement molded products |
JP2001163653A (en) * | 1999-12-06 | 2001-06-19 | Asahi Denka Kogyo Kk | Shrinkage reducing agent for cement or the like |
JP2003171155A (en) * | 2001-12-03 | 2003-06-17 | Lion Corp | Drying shrinkage-reducing agent for cement |
JP2004091259A (en) * | 2002-08-30 | 2004-03-25 | Kajima Corp | Cement blend and method for using the same |
JP4330131B2 (en) * | 2003-11-10 | 2009-09-16 | 鹿島建設株式会社 | Shrinkage reducing agent for cement compound and cement compound containing the same |
-
2008
- 2008-12-25 JP JP2008330568A patent/JP5120651B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010150085A (en) | 2010-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6263522B2 (en) | Shrinkage reducing agent for hydraulic materials | |
JP6621737B2 (en) | Admixture for hydraulic composition | |
JP6192208B2 (en) | Preparation method of non-shrink AE concrete and non-shrink AE concrete | |
JP6371213B2 (en) | Admixture for hydraulic composition | |
JP2007153652A (en) | Method of producing ae concrete and ae concrete | |
JP4459912B2 (en) | Drying shrinkage reducing agent and hardened cement using the same | |
EP3321242A1 (en) | Cement additive, cement composition, raw material for cement additive | |
JP2008189526A (en) | Admixture for grout and cement composition for grout | |
JP2010229016A (en) | Concrete composition | |
JP2018140920A (en) | Additive for cement, and cement composition | |
JP5883215B2 (en) | Shrinkage reducing agent for blast furnace cement | |
JP5120651B2 (en) | Shrinkage reducing agent for cement composition | |
JP5046472B2 (en) | Cement admixture and cement composition | |
WO2010131707A1 (en) | Durability improving agent and cement composition | |
JP5670041B2 (en) | Self-shrinkage reducing agent for cement and cement composition | |
JP6970383B2 (en) | Self-shrinkage reducing agent and cement composition for cement composition | |
JP2010053025A (en) | Shrinkage-reducing agent composition for concrete | |
JP4822498B2 (en) | Cement admixture and cement composition | |
JP5523189B2 (en) | Shrinkage reducing agent composition for hydraulic material | |
JP2009249227A (en) | Ultralow-shrinkage ae concrete composition | |
EP0813507B1 (en) | Cement composition | |
JP2004091259A (en) | Cement blend and method for using the same | |
JP2011102202A (en) | Blast furnace cement concrete composition | |
JP2010150115A (en) | Shrinkage reducing agent for cement | |
JP2018008860A (en) | Cement composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101014 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120118 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20120314 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20120319 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120418 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120926 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121010 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151102 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5120651 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |