JP5875576B2 - Benzotriazole compound, cosmetic ultraviolet absorber and skin external preparation using the same - Google Patents

Benzotriazole compound, cosmetic ultraviolet absorber and skin external preparation using the same Download PDF

Info

Publication number
JP5875576B2
JP5875576B2 JP2013273858A JP2013273858A JP5875576B2 JP 5875576 B2 JP5875576 B2 JP 5875576B2 JP 2013273858 A JP2013273858 A JP 2013273858A JP 2013273858 A JP2013273858 A JP 2013273858A JP 5875576 B2 JP5875576 B2 JP 5875576B2
Authority
JP
Japan
Prior art keywords
compound
benzotriazol
phenoxy
hydroxy
benzotriazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013273858A
Other languages
Japanese (ja)
Other versions
JP2014141487A (en
Inventor
田中 直樹
直樹 田中
誠二 坪井
誠二 坪井
智恵 守谷
智恵 守谷
佐々木 健二
健二 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shipro Kasei Kaisha Ltd
Original Assignee
Shipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shipro Kasei Kaisha Ltd filed Critical Shipro Kasei Kaisha Ltd
Priority to JP2013273858A priority Critical patent/JP5875576B2/en
Publication of JP2014141487A publication Critical patent/JP2014141487A/en
Application granted granted Critical
Publication of JP5875576B2 publication Critical patent/JP5875576B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

本発明は、紫外線吸収効果とMMP阻害活性とを併せ持つ、2−(2,4−ジヒドロキシフェニル)−2H−ベンゾトリアゾール誘導体である新規ベンゾトリアゾール化合物及びこれを用いた化粧用紫外線吸収剤と皮膚外用剤に関するものである。  The present invention relates to a novel benzotriazole compound which is a 2- (2,4-dihydroxyphenyl) -2H-benzotriazole derivative having both an ultraviolet absorption effect and an MMP inhibitory activity, and a cosmetic ultraviolet absorber using the same and a skin external application. It relates to the agent.

化粧品には化粧品自体の成分の光に対する安定性をあげるために、あるいは、人体の皮膚を保護するために紫外線吸収剤が配合されている。例えば、サンケア化粧品(日焼け止め用、日焼け用化粧品)等の皮膚外用剤以外にも消臭剤、芳香剤、ヘアケアー、ボディーケアー等のトイレタリー分野など、様々な用途に使用されている。また工業用途において、樹脂、塗料、電子部品材料などにも必要とされ、汎用すべき用途は多岐にわたる。
紫外線領域としては、UV−A領域(320〜400nm),UV−B領域(290〜320nm),UV−C領域(〜290nm)に分けられるが、このうちUV−C領域の紫外線は、通常、地上に達することはない。またUV−A領域(320〜400nm)の紫外線は皮膚を黒く侵すが、UV−B領域(290〜320nm)の紫外線のようにサンバーンを起こし、皮膚の老化を促進させるものではないと考えられていた。
In cosmetics, an ultraviolet absorber is blended in order to increase the light stability of the components of the cosmetics themselves or to protect the human skin. For example, in addition to skin external preparations such as sun care cosmetics (sunscreen and sunscreen cosmetics), they are used in various applications such as deodorants, fragrances, hair care, body care and other toiletries. In industrial applications, they are also required for resins, paints, electronic component materials, etc.
The ultraviolet region is divided into a UV-A region (320 to 400 nm), a UV-B region (290 to 320 nm), and a UV-C region (up to 290 nm). Never reach the ground. In addition, UV rays in the UV-A region (320 to 400 nm) invade the skin blackly, but it is not considered to cause sunburn like the UV-B region (290 to 320 nm) and promote skin aging. It was.

ところが近年になってUV−B領域の紫外線が比較的、皮膚の表面部分にとどまるのに対してUV−A領域の紫外線が、皮膚の深部にまで達し、皮膚の老化はもとより皮膚癌を誘発する原因となることがわかってきた。  However, in recent years, ultraviolet rays in the UV-B region stay relatively on the surface of the skin, whereas ultraviolet rays in the UV-A region reach the deep part of the skin, and induce skin cancer as well as skin aging. It has been found to be the cause.

今日までに使用されている化粧品用紫外線吸収剤は、構造面から分類すると1)安息香酸誘導体、2)ケイ皮酸誘導体、3)ベンゾフェノン誘導体、4)ジベンゾイルメタン誘導体、5)サリチル酸誘導体等があり、近年よく使用される紫外線吸収剤としては2)、4)が挙げられる。  Cosmetic UV absorbers used to date are classified into 1) benzoic acid derivatives, 2) cinnamic acid derivatives, 3) benzophenone derivatives, 4) dibenzoylmethane derivatives, 5) salicylic acid derivatives, etc. There are 2) and 4) as ultraviolet absorbers which are often used in recent years.

しかしながら、上記の紫外線吸収剤は、実用面から見るとそれぞれに問題がある。
1)では、例えばp−ジメチルアミノ安息香酸−2−エチルヘキシルエステルは、液状、透明であり、扱いやすい長所はあるが、これらの誘導体を含めて発ガン性の疑いがあり、近年は使用されていない。また極大吸収波長が290nm付近にあり、UV−B領域のみの紫外線を吸収する。
2)では、現在市販されているサンケア化粧品に最もよく使用されている紫外線吸収剤としてp−メトキシケイ皮酸−2−エチルヘキシルエステルがあるが、極大吸収波長は310nm付近にあり、吸収域がUV−A領域には及ばない。
3)では、例えば2−ヒドロキシ−4−メトキシベンゾフェノンがUV−A,UV−B領域にわたって吸収があり、比較的化粧基材への溶解性も良いが、極大吸収波長がややUV−B領域に近いところにあり、吸光度もあまり大きくない。また近年では基本骨格の構造物(ベンゾフェノン)が環境ホルモンとして指摘されている。
4)の化合物は、4−tert−ブトキシ−4−メトキシジベンゾイルメタンがよく使用されている。極大吸収が360nm付近にあり、吸光度も大きく、UV−A領域の紫外線吸収剤として優れている。しかしながらUV−B領域での吸収が小さく、光安定性に問題があるといわれている。また化粧基材に対しての相溶性が悪く、配合量が限られる点においても問題がある。
5)のサリチル酸誘導体では、サリチル酸オクチルが使われている。UV−B領域に極大吸収波長をもち、オイル状であり、パラフィンオイル等の相溶性に優れるが吸光度が低いため、あまり実用化されていない。
However, the above-mentioned ultraviolet absorbers have their respective problems from a practical viewpoint.
In 1), for example, p-dimethylaminobenzoic acid-2-ethylhexyl ester is liquid and transparent and has the advantages of being easy to handle. However, these derivatives have been suspected of causing carcinogenicity and have not been used in recent years. Absent. Further, the maximum absorption wavelength is in the vicinity of 290 nm, and absorbs ultraviolet rays only in the UV-B region.
In 2), p-methoxycinnamic acid-2-ethylhexyl ester is the most commonly used UV absorber for suncare cosmetics currently on the market, but the maximum absorption wavelength is around 310 nm, and the absorption range is UV. -It does not reach the A area.
In 3), for example, 2-hydroxy-4-methoxybenzophenone absorbs over the UV-A and UV-B regions and has relatively good solubility in cosmetic bases, but the maximum absorption wavelength is slightly in the UV-B region. It is close and the absorbance is not very high. In recent years, a basic skeleton structure (benzophenone) has been pointed out as an environmental hormone.
As the compound 4), 4-tert-butoxy-4-methoxydibenzoylmethane is often used. The maximum absorption is in the vicinity of 360 nm, the absorbance is large, and it is excellent as an ultraviolet absorber in the UV-A region. However, absorption in the UV-B region is small, and it is said that there is a problem in light stability. There is also a problem in that the compatibility with the decorative base material is poor and the blending amount is limited.
In the salicylic acid derivative 5), octyl salicylate is used. It has a maximum absorption wavelength in the UV-B region, is oily, and is excellent in compatibility with paraffin oil or the like, but is not practically used because of its low absorbance.

このため、UV−B領域の紫外線吸収目的では、2)のp−メトキシケイ皮酸−2−エチルヘキシルエステルが使用され、一方、UV−A領域の紫外線吸収目的では、4)の4−tert−ブトキシ−4−メトキシジベンゾイルメタンが使用されることが多い。そして全領域をカバーする必要がある場合には、両者を併用することが多い。  For this reason, 2) p-methoxycinnamic acid-2-ethylhexyl ester is used for UV-B region UV absorption purposes, whereas 4) 4-tert- for UV-A region UV absorption purposes. Butoxy-4-methoxydibenzoylmethane is often used. And when it is necessary to cover the whole area, both are often used together.

特にUV−A領域に関しては、事実上、化粧用途向け紫外線吸収剤としては、先に述べた4−tert−ブトキシ−4−メトキシジベンゾイルメタン(商品名「Parsol1789」)以外に良好な紫外線吸収剤が見つかっていないため、特にUV−A領域の紫外線吸収能に優れる化粧基材であって、相溶性に優れ、かつ光安定性に優れ、化合物自体が長期にわたって分解、劣化し難い紫外線吸収剤が求められている。加えて、紫外線吸収剤を皮膚外用剤に配合する場合には、皮膚への感作性がなく、安全性の高い化合物でなければならない。更にその化合物自体が日光暴露によって分解されない、いわゆる耐光性に優れた安定性を有することが重要である。  Particularly in the UV-A region, as a UV absorber for cosmetic use, a good UV absorber other than 4-tert-butoxy-4-methoxydibenzoylmethane (trade name “Parsol 1789”) described above is practically used. Therefore, a UV absorbent that is particularly excellent in UV-A region UV-absorbing ability, has excellent compatibility, is excellent in light stability, and is difficult to decompose and deteriorate over a long period of time. It has been demanded. In addition, when a UV absorber is blended in a topical skin preparation, it must be a highly safe compound without sensitization to the skin. Furthermore, it is important that the compound itself has a so-called light-resistant stability that is not decomposed by exposure to sunlight.

ところで、皮膚は紫外線の影響に加え、油分やコラーゲンの喪失など、様々な要因により、しわ、たるみなどのいわゆる皮膚の老化につながることが知られている。皮膚の構造は、最上層から「表皮」「真皮」「皮下組織」の3層に分かれている。表皮の最上層にある「角質層」は、皮膚の最も外側にあって、外気や紫外線など様々な外的な刺激にさらされている。  By the way, it is known that the skin leads to so-called skin aging such as wrinkles and sagging due to various factors such as the loss of oil and collagen in addition to the influence of ultraviolet rays. The structure of the skin is divided into three layers of “epidermis”, “dermis” and “subcutaneous tissue” from the top layer. The “stratum corneum” at the top of the epidermis is on the outermost side of the skin and is exposed to various external stimuli such as outside air and ultraviolet rays.

皮膚は、それぞれの層において、肌を保護し健やかに保ち、免疫情報を介して生体を防御する機能を有しているが、加齢による免疫力の低下・気温等の外部環境の変化・紫外線・外界の刺激・異物の過剰摂取等様々な要因により肌の健康機能は衰えてシワ・シミ・クスミ・タルミ・肌荒れなどの肌トラブルや老化現象が表れる。  In each layer, the skin protects and keeps the skin healthy and has a function of protecting the living body through immune information. However, aging reduces immunity, changes in external environment such as temperature, ultraviolet rays・ Skin health functions decline due to various factors such as external irritation, excessive intake of foreign substances, and skin troubles such as wrinkles, stains, kusumi, tarmi, and rough skin, and aging phenomena appear.

近年研究が進み、シワ形成の原因としては、コラーゲン、エラスチン等の真皮マトリックスの線維減少、変性によるものであることが明らかになってきた。これを誘導する因子として、特にマトリックスメタロプロテアーゼ(和名:マトリックス金属タンパク分解酵素、以下「MMPs」と記す。)の関与が指摘されている。  In recent years, research has progressed and it has become clear that the cause of wrinkle formation is due to fiber reduction and degeneration of the dermal matrix such as collagen and elastin. As a factor for inducing this, the involvement of matrix metalloprotease (Japanese name: matrix metalloproteinase, hereinafter referred to as “MMPs”) has been pointed out.

MMPsは、活性部位に亜鉛(II)イオンを保有する細胞外マトリックス分解酵素の総称である。また、MMPsはその構造と基質特異性の違いから、コラゲナーゼ(MMP−1)、ゼラチナーゼ(MMP−2及び9)、ストロメライシン(MMP−3及び10)などのサブファミリーが知られている。コラゲナーゼ(MMP−1)及びゼラチナーゼ(MMP−2)はゼラチン、IV型コラーゲン(基底膜)、V型コラーゲン、フィブロネクチン(軟結合組織及び基底膜に存在する高度にクロスリンクした高分子の多機能性糖タンパク質)及びエラスチン(動脈、腱、皮膚などの弾性組織の特殊成分をなす構造タンパク質)を変性させることが知られている。  MMPs is a general term for extracellular matrix degrading enzymes having zinc (II) ions in the active site. Further, MMPs are known to have subfamilies such as collagenase (MMP-1), gelatinase (MMP-2 and 9), stromelysin (MMP-3 and 10) due to differences in structure and substrate specificity. Collagenase (MMP-1) and gelatinase (MMP-2) are multifunctional of gelatin, type IV collagen (basement membrane), type V collagen, fibronectin (soft cross-linked macromolecules present in soft connective tissue and basement membrane) It is known to denature glycoproteins) and elastin (structural proteins that form a special component of elastic tissues such as arteries, tendons and skin).

MMPsの中でも、MMP−1は皮膚の真皮マトリックスの主な構成成分であるコラーゲンを分解する酵素であり、紫外線の照射(UV−B)により障害を受けた表皮細胞でIL−1βという炎症性サイトカインを真皮に放出し、IL−1βは真皮細胞に移行し、MMP−1を産生させ、コラーゲン減少および変性の原因の一つとなり、シワ形成の一つの大きな要因であると考えられている(特許文献1参照)。  Among MMPs, MMP-1 is an enzyme that degrades collagen, which is a main component of the dermal matrix of the skin, and is an inflammatory cytokine called IL-1β in epidermal cells damaged by ultraviolet irradiation (UV-B). Is released into the dermis, and IL-1β migrates to dermal cells to produce MMP-1, which is one of the causes of collagen loss and degeneration, and is considered to be one major factor in wrinkle formation (patent) Reference 1).

また、MMPsは、ガン(癌)疾患、潰瘍形成、慢性関節リュウマチ、骨粗鬆症、歯周炎、歯肉炎等の種々の病態での細胞外マトリックスの分解において中心的な役割を果たす物質である(非特許文献1参照)。紫外線などの外部刺激によって活性の亢進したMMPsは、皮膚の構造維持に重要な成分を分解してしまうため、MMPsは紫外線によって活性化する皮膚の老化促進因子としての側面も併せ持っている。  MMPs are substances that play a central role in the degradation of extracellular matrix in various pathologies such as cancer (cancer) disease, ulceration, rheumatoid arthritis, osteoporosis, periodontitis, gingivitis (non-) Patent Document 1). Since MMPs whose activity is enhanced by external stimuli such as ultraviolet rays decompose components important for maintaining the structure of the skin, MMPs also have an aspect as a skin aging promoting factor activated by ultraviolet rays.

しかしながら、MMP阻害活性を有する化合物を医学的見地から鑑みた場合、その副作用が問題になる。一例として、MMPsが活性を失うメカニズムとして、その活性中心である亜鉛イオンが、キレーションを起こすことが上げられる。概してMMP阻害剤は、亜鉛をキレートする部位(ZBGs)を構造内に有しており、ヒドロキサム酸、カルボン酸、リン酸、チオールなどが用いられてきた。これらはZBGsのキレート作用が非常に強く、MMPsを効率的に阻害するが、阻害してはならない他のメタロプロテアーゼなども強くキレートして失活させてしまうため副作用が問題となり、第3相試験までしか治験が進まず、実用化には至っていない(非特許文献2参照)。
化粧用途を含む皮膚外用剤としての医薬部外品用途において、正しい使用方法で使われた場合でも、体内の代謝経路に取り込まれることを想定する必要があり、このように安全性に懸念があることは、大きな問題である。従って、前記に上げたZBGsのようにメタロプロテアーゼへの強力なキレートの作用を持たず、体内に悪影響を及ぼさないMMP阻害活性を有する化合物を使用する必要がある。そこで、紫外線吸収作用と人体へのリスク面が小さいMMP阻害活性作用を併せ持ち、皮膚のダメージによる老化を2重に保護するハイブリッドな材料やMMP阻害薬の登場が望まれている。
However, when a compound having MMP inhibitory activity is considered from a medical standpoint, its side effects become a problem. As an example, as a mechanism for losing the activity of MMPs, the zinc ion that is the active center can be chelated. In general, MMP inhibitors have zinc chelating sites (ZBGs) in their structure, and hydroxamic acid, carboxylic acid, phosphoric acid, thiol, and the like have been used. These are very strong in chelating action of ZBGs and efficiently inhibit MMPs, but other metalloproteases that should not be inhibited are also chelated and inactivated, causing side effects, phase 3 test The clinical trial has not progressed until recently, and has not yet been put into practical use (see Non-Patent Document 2).
In quasi-drug use as a skin external preparation including cosmetic use, it is necessary to assume that it is taken into the metabolic pathway in the body even when used in the correct way of use, and thus there is a concern about safety. That is a big problem. Therefore, it is necessary to use a compound having an MMP inhibitory activity that does not have a strong chelating action on the metalloprotease and does not adversely affect the body like the ZBGs raised above. Accordingly, the advent of hybrid materials and MMP inhibitors that have both an ultraviolet absorption action and an MMP inhibitory activity action that has a low risk to the human body and that double protects against aging due to skin damage is desired.

ただし、このようなハイブリッドな材料を設計し、研究、開発しても合成方法が非常に困難であり、また、その構造が複雑すぎて、実際の製造において多大な手間とコストを要するようなものでは、意味がない。従来の紫外線吸収剤の製造とほぼ同等の手間とコストで、新規に設備投資することなく既存の設備により容易に生産が可能であり、安定してユーザーに供給することが重要である。  However, even if such a hybrid material is designed, researched and developed, the synthesis method is very difficult, and the structure is too complex, which requires a lot of labor and cost in actual production. Then it doesn't make sense. It is important that the existing equipment can be easily produced by existing equipment without investing in new equipment with the same labor and cost as the production of conventional UV absorbers, and it is important to supply it to users stably.

特開2011−225550公報JP 2011-225550 A

特開2006−282561公報JP 2006-282561 A

特開2005−290240公報JP-A-2005-290240

特開2005−206473公報JP 2005-206473 A

特開平3−139589公報JP-A-3-139589

中田、岡田、「呼吸」、18、4、pp.365−371(1999)Nakata, Okada, "Respiration", 18, 4, pp. 365-371 (1999)

Rao,B.G.,Curr.Pharm.Design,2005,11,295−322.Rao, B.A. G. Curr. Pharm. Design, 2005, 11, 295-322.

上記の状況を鑑みて、本発明が解決しようとする課題は、低融点であって各種化粧基材との相溶性に優れ、UV−A,UV−Bのほぼ全領域において吸収をもち、かつ光安定性に優れ、化合物自体が長期にわたって分解、劣化し難い紫外線吸収剤、或いは紫外線吸収作用とMMP阻害活性作用を併せ持ち、皮膚のダメージによる老化を2重に保護するハイブリッドな材料ならびに、MMP阻害薬として有用な副作用の少ない皮膚外用剤の有効成分として使用することのできる、新規化合物を提供することである。  In view of the above situation, the problem to be solved by the present invention is a low melting point, excellent compatibility with various cosmetic base materials, having absorption in almost all regions of UV-A, UV-B, and Ultraviolet absorber with excellent photostability and the compound itself is not easily decomposed or deteriorated over a long period of time, or a hybrid material that has both UV absorption and MMP inhibitory activity, and double protects against aging due to skin damage, and MMP inhibition It is to provide a novel compound that can be used as an active ingredient of a skin external preparation useful as a medicine with few side effects.

本発明は、下記一般式1で示される2−(2,4−ジヒドロキシフェニル)−2H−ベンゾトリアゾール誘導体であるベンゾトリアゾール化合物であることを最も主要な特徴とする。
一般式1:

Figure 0005875576
The main feature of the present invention is that it is a benzotriazole compound which is a 2- (2,4-dihydroxyphenyl) -2H-benzotriazole derivative represented by the following general formula 1.
General formula 1:
Figure 0005875576

なかでも、下記一般式2或いは下記一般式3で示されるベンゾトリアゾール化合物である。
一般式2:

Figure 0005875576
一般式3:
Figure 0005875576
Especially, it is a benzotriazole compound shown by the following general formula 2 or the following general formula 3.
General formula 2:
Figure 0005875576
General formula 3:
Figure 0005875576

本発明のベンゾトリアゾール化合物によれば複雑な合成過程を経ず、既存の設備を使用しても容易に収率良く、工業的に安価に提供することが可能である。また、このベンゾトリアゾール化合物を化粧用紫外線吸収剤として使用することにより従来の化粧用紫外線吸収剤の短所である以下の問題を解決しうるとともに種々の二次効果を兼ね備えている。  According to the benzotriazole compound of the present invention, it is possible to provide a good yield easily and industrially at low cost without using a complicated synthesis process and using existing equipment. Further, by using this benzotriazole compound as a cosmetic ultraviolet absorber, it is possible to solve the following problems, which are disadvantages of the conventional cosmetic ultraviolet absorber, and to combine various secondary effects.

・従来の化粧用紫外線吸収剤は、化合物自体の安定性に劣り、紫外線吸収効果の持続性に問題があるが、ベンゾトリアゾール誘導体は安定性に優れている。-Conventional cosmetic UV absorbers are inferior in stability of the compound itself and have a problem in durability of UV absorption effect, but benzotriazole derivatives are excellent in stability.

・MMP−1、MMP−2、MMP−9に対する阻害活性作用をも有するので、紫外線によるダメージを防護するだけではなく、紫外線により産生を増幅し、皮膚の老化を促進するこれらのプロテアーゼの作用も阻害することができる。-Since it also has an inhibitory activity against MMP-1, MMP-2, and MMP-9, it not only protects against damage caused by ultraviolet rays, but also promotes skin aging by amplifying production by ultraviolet rays. Can be inhibited.

・化合物としての安定性に優れているにもかかわらず、ClogP値が低く水に対する分配能があるので、生分解性にも優れていると考えられる。-Although it is excellent in stability as a compound, it has a low ClogP value and a partitioning ability with respect to water, so it is considered that biodegradability is also excellent.

実施例であるMMP−1,MMP−2,MMP−9各化合物に対する100μM濃度における阻害率を示すグラフである。It is a graph which shows the inhibition rate in 100 micromol density | concentration with respect to each compound of MMP-1, MMP-2, and MMP-9 which is an Example. 実施例の化合物(a)の太陽光照射前後における紫外吸収スペクトルである。It is an ultraviolet absorption spectrum before and after sunlight irradiation of the compound (a) of an Example. 実施例の化合物(b)の太陽光照射前後における紫外吸収スペクトルである。It is an ultraviolet absorption spectrum before and behind sunlight irradiation of the compound (b) of an Example. 実施例の化合物(c)の太陽光照射前後における紫外吸収スペクトルである。It is an ultraviolet absorption spectrum before and after sunlight irradiation of the compound (c) of an Example. 実施例の化合物(d)の太陽光照射前後における紫外吸収スペクトルである。It is an ultraviolet absorption spectrum before and after sunlight irradiation of the compound (d) of an Example. 実施例の化合物(e)の太陽光照射前後における紫外吸収スペクトルである。It is an ultraviolet absorption spectrum before and behind sunlight irradiation of the compound (e) of an Example. 実施例の化合物(f)の太陽光照射前後における紫外吸収スペクトルである。It is an ultraviolet absorption spectrum before and behind sunlight irradiation of the compound (f) of an Example. 実施例の化合物(g)の太陽光照射前後における紫外吸収スペクトルである。It is an ultraviolet absorption spectrum before and after sunlight irradiation of the compound (g) of an Example. 実施例の化合物(h)の太陽光照射前後における紫外吸収スペクトルである。It is an ultraviolet absorption spectrum before and behind sunlight irradiation of the compound (h) of an Example. 実施例の化合物(i)の太陽光照射前後における紫外吸収スペクトルである。It is an ultraviolet absorption spectrum before and after sunlight irradiation of the compound (i) of an Example. 実施例の化合物(j)の太陽光照射前後における紫外吸収スペクトルである。It is an ultraviolet absorption spectrum before and after sunlight irradiation of the compound (j) of an Example. 実施例の化合物(k)の太陽光照射前後における紫外吸収スペクトルである。It is an ultraviolet absorption spectrum before and behind sunlight irradiation of the compound (k) of an Example. 一般的な紫外線吸収剤である比較例3の紫外吸収スペクトルである。It is an ultraviolet absorption spectrum of the comparative example 3 which is a general ultraviolet absorber. 比較例1の太陽光照射前後における紫外吸収スペクトルである。It is an ultraviolet absorption spectrum before and after the sunlight irradiation of the comparative example 1.

本発明は、ベンゾトリアゾール化合物は、2−(2,4−ジヒドロキシフェニル)−2H−ベンゾトリアゾール誘導体であり、下記一般式1で表わされるものである。
一般式1:

Figure 0005875576
In the present invention, the benzotriazole compound is a 2- (2,4-dihydroxyphenyl) -2H-benzotriazole derivative, which is represented by the following general formula 1.
General formula 1:
Figure 0005875576

さらに具体的には、下記一般式2と一般式3で表わされるものである。
一般式2:

Figure 0005875576
一般式3:
Figure 0005875576
More specifically, they are represented by the following general formulas 2 and 3.
General formula 2:
Figure 0005875576
General formula 3:
Figure 0005875576

ここで一般式1,2および3におけるAは、環構成原子に窒素原子.酸素原子および/または硫黄原子を含んでもよい脂環、あるいは前記脂環を末端に持つアルキルオキシ基もしくはアルキルアミノ基であり、一般式1におけるBは、α位で前記Aと結合する炭素数3〜6のカルボニル基またはエステル基であり、一般式1及び3のR1は、水素原子または塩素原子である。  Here, A in the general formulas 1, 2, and 3 represents a nitrogen atom as a ring constituent atom. An alicyclic ring which may contain an oxygen atom and / or a sulfur atom, or an alkyloxy group or an alkylamino group having the alicyclic group at the end, and B in the general formula 1 has 3 carbon atoms bonded to the A at the α-position. A carbonyl group or an ester group of -6, and R1 in the general formulas 1 and 3 is a hydrogen atom or a chlorine atom.

構造内に脂環、あるいは前記脂環を末端に持つアルキルオキシ基もしくはアルキルアミノ基の部位を設けることにより、鎖状のアルキル基を導入した場合と同等の脂溶性を確保しながら、ベンゼン核を分子内に多く有する化合物と同じように無機の性質を強める効果を得ることができる。また、化合物の構造にわずかながら立体性を持たせることができるので、平面構造におけるデメリットである製剤中における化合物の結晶化を抑制することができると考えられる。これにより、化粧用紫外線吸収剤や皮膚外用剤といった用途で使用する際に皮膚に馴染みやすくなるとともに、水への分配能を有することで、自然界での生分解性向上も期待できる。化合物の生分解性を確保するためにはClogP(C:濃度,P:酸解離定数)の値が概ね5以下であればBCF値(=魚体内の化学物質濃度/水中の化学物質濃度)が、5000倍以下であると考えられる。化審法のガイドラインにおいては、LogP値が、3.5以下であれば、BCF値が5000以下であり高濃縮性ではないとみなし、魚を用いた濃縮性試験は免除される。なお、今回発明者らが合成し、評価した化合物は、いずれもClogP値よりもLogPの値は、1〜2低いので、多くの化合物がこの化審法要件を満たす。また、概して立体構造を有する化合物は、平面構造物に比べて、低濃縮性であることが数多く報告されている。以上のことから、人体や環境に対して十分に配慮された化合物であると考えられる。  By providing an alicyclic ring or an alkyloxy group or alkylamino group having an alicyclic end in the structure, the benzene nucleus can be attached while ensuring the same lipophilicity as when a chain alkyl group is introduced. The effect which strengthens an inorganic property like the compound which has many in a molecule | numerator can be acquired. Further, since the structure of the compound can be given a slight stericity, it is considered that the crystallization of the compound in the preparation, which is a disadvantage in the planar structure, can be suppressed. As a result, it is easy to become familiar with the skin when used in applications such as cosmetic UV absorbers and external preparations for skin, and it can be expected to improve biodegradability in nature by having the ability to distribute water. In order to ensure the biodegradability of the compound, if the value of ClogP (C: concentration, P: acid dissociation constant) is approximately 5 or less, the BCF value (= chemical substance concentration in fish body / chemical substance concentration in water) is It is considered to be 5000 times or less. In the Chemical Substances Control Law guidelines, if the LogP value is 3.5 or less, it is considered that the BCF value is 5000 or less and it is not highly concentrated, and the concentration test using fish is exempted. In addition, since all of the compounds synthesized and evaluated by the inventors this time have LogP values 1 to 2 lower than the ClogP values, many compounds satisfy this Chemical Substances Control Law requirement. Further, it has been reported that a compound having a three-dimensional structure generally has a lower concentration than a planar structure. Based on the above, it is considered that the compound is sufficiently considered for the human body and the environment.

環構成原子に窒素原子,酸素原子および/または硫黄原子を含んでもよい脂環の具体例としては、ピロリジン、ピロリドン、イミダゾリジン、ヒダントイン、ピラゾリジン、ピペリジン、ピペラジン、オキサゾリジン、オキサゾリジノン、モルホリン、2−チオヒダントイン、チアゾリジン、チアゾリジノン、スルホラン等の5〜6員ヘテロ環、アダマンタン、ボルネン等のテルペン化合物が挙げられる。  Specific examples of the alicyclic ring which may contain a nitrogen atom, an oxygen atom and / or a sulfur atom as a ring constituent atom include pyrrolidine, pyrrolidone, imidazolidine, hydantoin, pyrazolidine, piperidine, piperazine, oxazolidine, oxazolidinone, morpholine, 2-thio Examples thereof include 5- to 6-membered heterocycles such as hydantoin, thiazolidine, thiazolidinone and sulfolane, and terpene compounds such as adamantane and bornene.

上記一般式2の具体的な化合物としては下記化合物a,化合物bを挙げることができる。
化合物a:Morpholine−4−carboxylic acid 2−[4−(2H−benzotriazol−2−yl)−3−hydroxy−phenoxy]−ethyl ester

Figure 0005875576
化合物b:Adamantane−1−carboxylic acid 2−[4−(2H−benzotriazol−2−yl)−3−hydroxy−phenoxy]−ethyl ester
Figure 0005875576
Specific compounds of the above general formula 2 include the following compounds a and b.
Compound a: Morpholine-4-carboxylic acid 2- [4- (2H-benzotriazol-2-yl) -3-hydroxy-phenoxy] -ethyl ester
Figure 0005875576
Compound b: Adamantane-1-carboxylic acid 2- [4- (2H-benzotriazol-2-yl) -3-hydroxy-phenoxy] -ethyl ester
Figure 0005875576

一般式2で示されるベンゾトリアゾール化合物の合成方法としては、次式の合成方法にて合成することができる。

Figure 0005875576
まず、特許文献3および4に記載などの合成例を参考に、4−ベンゾトリアゾール−2−イルベンゼン−1,3−ジオール体から常法にて2−ベンゾトリアゾール−2−イル−5−(2−ヒドロキシエトキシ)フェノール(M−1)を合成する。次にトルエン溶媒下、メタンスルホン酸などの酸性触媒を使用して還流脱水により、目的物である(G−1)を得ることができる。As a synthesis method of the benzotriazole compound represented by the general formula 2, it can be synthesized by the synthesis method of the following formula.
Figure 0005875576
First, with reference to synthesis examples described in Patent Documents 3 and 4, 2-benzotriazol-2-ylbenzene-1,3-diol is synthesized from 2-benzotriazol-2-yl-5- ( 2-hydroxyethoxy) phenol (M-1) is synthesized. Next, the desired product (G-1) can be obtained by reflux dehydration using an acidic catalyst such as methanesulfonic acid in a toluene solvent.

上記一般式3の具体的な化合物としては下記合物c,化合物d,化合物e,化合物f,化合物g,化合物h,化合物i,化合物j,化合物kを挙げることができる。
化合物c:4−[4−(2H−Benzotriazol−2−yl)−3−hydroxy−phenoxy]−1−morpholin−4−yl−butan−1−one

Figure 0005875576
化合物d:1−{4−[4−(2H−Benzotriazol−2−yl)−3−hydroxy−phenoxy]−butyryl}−pyrrolidin−2−one
Figure 0005875576
化合物e:4−[4−(2H−Benzotriazol−2−yl)−3−hydroxy−phenoxy]−butyric acid adamantan−1−yl ester
Figure 0005875576
化合物f:4−[4−(2H−Benzotriazol−2−yl)−3−hydroxy−phenoxy]−butyric acid 2−morpholin−4−yl−ethyl ester
Figure 0005875576
化合物g:4−[4−(2H−Benzotriazol−2−yl)−3−hydroxy−phenoxy]−butyric acid 2−piperidin−1−yl−ethyl ester
Figure 0005875576
化合物h:4−[4−(2H−Benzotriazol−2−yl)−3−hydroxy−phenoxy]−N−(2−morpholin−4−yl−ethyl)−butyramide
Figure 0005875576
化合物i:4−{4−[5−Chloro−(2H−benzotriazol−2−yl)]−3−hydroxy−phenoxy}−butyric acid 2−piperidin−1−yl−ethyl ester
Figure 0005875576
化合物j:4−{4−[5−Chloro−(2H−benzotriazol−2−yl)]−3−hydroxy−phenoxy}−butyric acid 2−morpholin−4−yl−ethyl ester
Figure 0005875576
化合物k:4−{4−[5−Chloro−(2H−benzotriazol−2−yl)]−3−hydroxy−phenoxy}−N−(2−morpholin−4−yl−ethyl)−butyramide
Figure 0005875576
Specific compounds of the general formula 3 include the following compound c, compound d, compound e, compound f, compound g, compound h, compound i, compound j, and compound k.
Compound c: 4- [4- (2H-Benzotriazol-2-yl) -3-hydroxy-phenoxy] -1-morpholin-4-yl-butan-1-one
Figure 0005875576
Compound d: 1- {4- [4- (2H-Benzotriazol-2-yl) -3-hydroxy-phenoxy] -butyryl} -pyrrolidin-2-one
Figure 0005875576
Compound e: 4- [4- (2H-Benzotriazol-2-yl) -3-hydroxy-phenoxy] -butyric acid adamantan-1-yl ester
Figure 0005875576
Compound f: 4- [4- (2H-Benzotriazol-2-yl) -3-hydroxy-phenoxy] -butyric acid 2-morpholin-4-yl-ethyl ester
Figure 0005875576
Compound g: 4- [4- (2H-Benzotriazol-2-yl) -3-hydroxy-phenoxy] -butyric acid 2-piperidin-1-yl-ethyl ester
Figure 0005875576
Compound h: 4- [4- (2H-Benzotriazol-2-yl) -3-hydroxy-phenoxy] -N- (2-morpholin-4-yl-ethyl) -butyramide
Figure 0005875576
Compound i: 4- {4- [5-Chloro- (2H-benzotriazol-2-yl)]-3-hydroxy-phenoxy} -butyric acid 2-piperidin-1-yl-ethyl ester
Figure 0005875576
Compound j: 4- {4- [5-Chloro- (2H-benzotriazol-2-yl)]-3-hydroxy-phenoxy} -butyric acid 2-morpholin-4-yl-ethyl ester
Figure 0005875576
Compound k: 4- {4- [5-Chloro- (2H-benzotriazol-2-yl)]-3-hydroxy-phenoxy} -N- (2-morpholin-4-yl-ethyl) -butyramide
Figure 0005875576

一般式3で示されるベンゾトリアゾール化合物の合成方法としては、次式の合成方法にて合成することができる。

Figure 0005875576
まず、特許文献5に記載の合成例などを参考に、〔化15〕の合成でも使用した4−ベンゾトリアゾール−2−イルベンゼン−1,3−ジオール体とγ−ブチロラクトンを強アルカリ触媒下で、180℃以上にて開環、付加反応により、中間体化合物M−2である4−(4−ベンゾトリアゾール−2−イル−3−ヒドロキシフェノキシ)ブチリックアシド誘導体(M−2)を得る。次いで、〔化15〕同様にトルエン溶媒下、メタンスルホン酸などの酸性触媒を使用して還流脱水による縮合反応を利用して、目的物である(G−3)を得ることができる。As a synthesis method of the benzotriazole compound represented by the general formula 3, it can be synthesized by the synthesis method of the following formula.
Figure 0005875576
First, referring to the synthesis example described in Patent Document 5, 4-benzotriazol-2-ylbenzene-1,3-diol and γ-butyrolactone used in the synthesis of [Chemical Formula 15] are used in a strong alkali catalyst. The ring-opening and addition reaction at 180 ° C. or higher gives the intermediate compound M-2, 4- (4-benzotriazol-2-yl-3-hydroxyphenoxy) butyric acid derivative (M-2). Next, similarly to [Chemical Formula 15], the target product (G-3) can be obtained by utilizing a condensation reaction by reflux dehydration using an acidic catalyst such as methanesulfonic acid in a toluene solvent.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例の様態のみに限定されるものではない。合成した各化合物は、HPLCによる純度、融点、H−NMR、FT−IR、C,H,N元素分析等の測定を行い、構造を確認した。
なお、実施例中、分析の条件、定義ならびに測定に使用した機器名等を以下に示す。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited only to the modes of these examples. Each synthesized compound was subjected to measurements such as HPLC purity, melting point, 1 H-NMR, FT-IR, C, H, and N elemental analysis to confirm the structure.
In the examples, analysis conditions, definitions, and names of devices used for measurement are shown below.

<吸光度測定条件>
測定装置:UV−2450((株)島津製作所製)
測定波長:250〜500nm
試料濃度:10ppm/クロロホルム
<Absorbance measurement conditions>
Measuring device: UV-2450 (manufactured by Shimadzu Corporation)
Measurement wavelength: 250-500 nm
Sample concentration: 10 ppm / chloroform

<HPLC面百純度測定条件>
測定装置:LC−6A(株)島津製作所製)
カラム:SUMIPAX ODS−A−212 6μm、6mm×15cm
カラム温度:40℃
移動相:メタノール:水=95:5
測定使用波長:254nm
<HPLC surface 100 purity measurement conditions>
Measuring device: LC-6A (manufactured by Shimadzu Corporation)
Column: SUMPAX ODS-A-212 6 μm, 6 mm × 15 cm
Column temperature: 40 ° C
Mobile phase: methanol: water = 95: 5
Measurement wavelength: 254 nm

<FTIR測定条件>
装置:FTIR−8400S((株)島津製作所製)
検体:1/200(KBr)
<FTIR measurement conditions>
Apparatus: FTIR-8400S (manufactured by Shimadzu Corporation)
Sample: 1/200 (KBr)

H−NMR測定条件>
装置:Varian Mercury−300(300MHz)SC−NMR spectrometer
共振周波数:300MHz(H−NMR)
溶媒:DMSO−d6
H−NMRの内部標準物質として、テトラメチルシランを用い、ケミカルシフト値はδ値(ppm)、カップリング定数はHertzで示した。またsはsinglet、dはdoublet、tはtriplet、qは、quartet、ddはdoublet doublet、brはbroad singlet、mはmultipletの略とする。
<1 H-NMR measurement conditions>
Apparatus: Varian Mercury-300 (300 MHz) SC-NMR spectrometer
Resonance frequency: 300 MHz ( 1 H-NMR)
Solvent: DMSO-d6
Tetramethylsilane was used as an internal standard substance for 1 H-NMR, the chemical shift value was represented by δ value (ppm), and the coupling constant was represented by Hertz. Also, s is a singlet, d is a doublet, t is a triplet, q is a quartet, dd is a doublet doublet, br is a short singlet, and m is an abbreviation of multiplet.

<CHN元素分析>
パーキンエルマー社製2400 IIの装置を用いて測定した。
<CHN elemental analysis>
The measurement was performed using a Perkin Elmer 2400 II apparatus.

〔合成例〕
(化合物a)
Morpholine−4−carboxylic acid 2−[4−(2H−benzotriazol−2−yl)−3−hydroxy−phenoxy]−ethyl esterの合成例

Figure 0005875576
(Synthesis example)
(Compound a)
Example of Synthesis of Morpholine-4-carboxylic acid 2- [4- (2H-benzotriazol-2-yl) -3-hydroxy-phenoxy] -ethyl ester
Figure 0005875576

200mL四つ口フラスコに、温度計、還流冷却器、滴下ロートを備え、2−Benzotriazol−2−yl−5−(2−hydroxyethoxy)phenol 8.14g(0.03mol)、およびジメチルアセトアミド50mLを加えて撹拌しながら0°Cまで冷却した。水素化ナトリウム(inミネラルオイル40%)2.40g(0.06mol)をN−ヘキサンで十分に洗浄し乾燥後、ジメチルアセトアミド50mLに懸濁させ、10〜20°Cで少しずつ加えた。次いでMorpholine−4−carbonyl chloride4.71g(0.032mol)を5〜10°Cの範囲で0.5hrかけて滴下し、20°Cで一夜撹拌した後、冷水にあけ、酢酸で中和、メチルイソブチルケトンで抽出し、濾過後、析出した結晶を濾過し取った。洗浄、乾燥して得た粗結晶9.71gの内、5.0gをジメチルアセトアミドで再結晶し、目的物である白色粉末状結晶4.6gを得た。  A 200 mL four-necked flask is equipped with a thermometer, a reflux condenser, and a dropping funnel, and 8.14 g (0.03 mol) of 2-benzotriazol-2-yl-5- (2-hydroxyethyl) phenol and 50 mL of dimethylacetamide are added. The mixture was cooled to 0 ° C. with stirring. 2.40 g (0.06 mol) of sodium hydride (in mineral oil 40%) was thoroughly washed with N-hexane, dried, suspended in 50 mL of dimethylacetamide and added little by little at 10 to 20 ° C. Next, 4.71 g (0.032 mol) of Morpholine-4-carbonyl chloride was added dropwise over a period of 0.5 hr in the range of 5 to 10 ° C., and stirred overnight at 20 ° C., then poured into cold water, neutralized with acetic acid, methyl After extraction with isobutyl ketone and filtration, the precipitated crystals were filtered off. Of the 9.71 g of crude crystals obtained by washing and drying, 5.0 g was recrystallized with dimethylacetamide to obtain 4.6 g of white powdery crystals as the target product.

得られた結晶の分析結果は次の通りである。
Mp:194−195°C;HPLC 99.2%;white powder;yield:77.5%(based on 2−Benzotriazol−2−yl−5−(2−hydroxyethoxy)phenol).
1H−NMR(300MHz,DMSO−d6)δ:10.7,(br s,1H,OH),8.05−7.98(m,2H,benzotriazol−H),7.73(d,1H,J=9Hz,phenol−H),7.55−7.49(m,2H,benzotriazol−H),6.69(dd,1H,J=9Hz,J=2.7Hz,J=2.4Hz,phenol−H),6.63(d,1H,J=2.7Hz,phenol),4.37(t,2H,J=8.1Hz,CH2−O−C=O−H),4.27(t,2H,J=9Hz,PhO−CH2−H),3.55(b,4H,CH2−O−CH2(Morpholin)−H),3.37(b,4H,CH2−N−CH2(Morpholin)−H).
FT−IR(KBr)cm−1;3080,2960(C−H),1710(C=O),1630,1600(C=C),1520(C=N),1460,1450,1430(C=C),1360(C−N),1280(Ph−O),1190(C−N),.
Anal.Calcd for C19H20N4O5:C,59.37;H,5.24;N,14.58.Found:C,59.51;H,5.18;N,14.63
The analysis result of the obtained crystal is as follows.
Mp: 194-195 ° C; HPLC 99.2%; white powder; yield: 77.5% (based on 2-Benzotriazol-2-yl-5- (2-hydroxyethoxy) phenol).
1H-NMR (300 MHz, DMSO-d6) δ: 10.7, (br s, 1H, OH), 8.05-7.98 (m, 2H, benzotriazole-H), 7.73 (d, 1H, J = 9 Hz, phenol-H), 7.55-7.49 (m, 2H, benzotriazol-H), 6.69 (dd, 1H, J = 9 Hz, J = 2.7 Hz, J = 2.4 Hz, phenol-H), 6.63 (d, 1H, J = 2.7 Hz, phenol), 4.37 (t, 2H, J = 8.1 Hz, CH2-OC = OH), 4.27. (T, 2H, J = 9 Hz, PhO—CH 2 —H), 3.55 (b, 4 H, CH 2 —O—CH 2 (Morpholin) -H), 3.37 (b, 4 H, CH 2 —N—CH 2 ( Morpholin) -H).
FT-IR (KBr) cm-1; 3080, 2960 (C-H), 1710 (C = O), 1630, 1600 (C = C), 1520 (C = N), 1460, 1450, 1430 (C = C), 1360 (CN), 1280 (Ph-O), 1190 (CN),.
Anal. Calcd for C19H20N4O5: C, 59.37; H, 5.24; N, 14.58. Found: C, 59.51; H, 5.18; N, 14.63

(化合物b)
Adamantane−1−carboxylic acid 2−[4−(2H−benzotriazol−2−yl)−3−hydroxy−phenoxy]−ethyl esterの合成例

Figure 0005875576
(Compound b)
Example of synthesis of Adamantane-1-carboxylic acid 2- [4- (2H-benzotriazol-2-yl) -3-hydroxy-phenoxy] -ethyl ester
Figure 0005875576

200mL四つ口フラスコに、温度計、還流冷却器、水分離器を備え、2−Benzotriazol−2−yl−5−(2−hydroxyethoxy)phenol 8.14g(0.03mol)、Adamantane−1−carboxylic acid 8.12g(0.045mol)、トルエン 150mL、アニソール 20mLおよびメタンスルホン酸 1.0gを加えて117〜118°Cで35hr還流脱水した。理論量の反応水が留出したのを確認してから、温水150mLを加えて撹拌し、80°Cで下層水を分離、同様に温水50mLで2回洗浄した。無水硫酸マグネシウムで脱水後、1μmのメンブランフィルターで濾過し、トルエン−アニソールを減圧回収後、メタノール150mLを加えて冷却し、析出した結晶をメンブランフィルターで濾過し取り、洗浄、乾燥して目的物である白色粉末状結晶11.4gを得た。  A 200 mL four-necked flask was equipped with a thermometer, a reflux condenser, and a water separator, and 2-benzotriazol-2-yl-5- (2-hydroxyethyl) phenol 8.14 g (0.03 mol), Adamantane-1-carboxylic Acid 8.12 g (0.045 mol), toluene 150 mL, anisole 20 mL and methanesulfonic acid 1.0 g were added, and dehydration was performed at 117 to 118 ° C. for 35 hours. After confirming that the theoretical amount of reaction water had distilled, 150 mL of warm water was added and stirred, the lower layer water was separated at 80 ° C., and washed twice with 50 mL of warm water in the same manner. After dehydration with anhydrous magnesium sulfate, filtration through a 1 μm membrane filter, toluene-anisole was collected under reduced pressure, 150 mL of methanol was added and cooled, and the precipitated crystals were filtered off through a membrane filter, washed and dried. 11.4 g of a certain white powdery crystal was obtained.

得られた結晶の分析結果は次の通りである。
Mp:125−127°C;HPLC99.3%;white powder;yield:87.4%(based on 2−Benzotriazol−2−yl−5−(2−hydroxyethoxy)phenol).
1H−NMR(300MHz,CDCl3)δ:11.4,(br s,1H,OH),8.31(d,1H,J=9Hz,phenol−H),7.92(dd,2H,J=6.6Hz,J=3Hz,J=3Hz,benzotriazol −H),7.47(dd,2H,J=6.6Hz,J=3Hz,J=3Hz,benzotriazol−H),6.72(d,1H,J=2.7Hz,phenol−H),6.64(dd,1H,J=9Hz,J=2.7Hz,J=2.7Hz,phenol),4.43(t,2H,J=9.6Hz,CH2−O−C=O −H),4.23(t,2H,J=9.6Hz,PhO−C−CH2−H),2.01(br s,3H,adamantan−H),1.95−1.91(m,6H,adamantan−H),1.71−1.67(m,6H,adamantan−H),.
FT−IR(KBr)cm−1;3230(OH),2910(C−H),1720(C=O),1620,1600(C=C),1530(C=N),1450,1420(C=C),1340(C−N),1240(Ph−O),.
Anal.Calcd for C25H27N3O4:C,69.27;H,6.28;N,9.69.Found:C,69.53;H,6.21;N,9.73
The analysis result of the obtained crystal is as follows.
Mp: 125-127 ° C; HPLC 99.3%; white powder; yield: 87.4% (based on 2-Benzotriazole-2-yl-5- (2-hydroxyethoxy) phenol).
1H-NMR (300 MHz, CDCl3) δ: 11.4, (br s, 1H, OH), 8.31 (d, 1H, J = 9 Hz, phenol-H), 7.92 (dd, 2H, J = 6.6 Hz, J = 3 Hz, J = 3 Hz, benzotriazole-H), 7.47 (dd, 2H, J = 6.6 Hz, J = 3 Hz, J = 3 Hz, benzotriazole-H), 6.72 (d, 1H, J = 2.7 Hz, phenol-H), 6.64 (dd, 1H, J = 9 Hz, J = 2.7 Hz, J = 2.7 Hz, phenol), 4.43 (t, 2H, J = 9.6 Hz, CH2-OC = O-H), 4.23 (t, 2H, J = 9.6 Hz, PhO-C-CH2-H), 2.01 (brs, 3H, adamantan-H) ), 1.95-1.91 (m, 6H, ad mantan-H), 1.71-1.67 (m, 6H, adamantan-H) ,.
FT-IR (KBr) cm-1; 3230 (OH), 2910 (C-H), 1720 (C = O), 1620, 1600 (C = C), 1530 (C = N), 1450, 1420 (C = C), 1340 (CN), 1240 (Ph-O),.
Anal. Calcd for C25H27N3O4: C, 69.27; H, 6.28; N, 9.69. Found: C, 69.53; H, 6.21; N, 9.73

(化合物c)
4−[4−(2H−Benzotriazol−2−yl)−3−hydroxy−phenoxy]−1−morpholin−4−yl−butan−1−oneの合成例

Figure 0005875576
(Compound c)
Synthesis example of 4- [4- (2H-Benzotriazol-2-yl) -3-hydroxy-phenoxy] -1-morpholin-4-yl-butan-1-one
Figure 0005875576

300mLの四つ口フラスコに還流冷却器,温度計を備え,4−(4−Benzotriazol−2−yl−3−hydroxyphenoxy)butyric acid 9.40g(0.03mol)、モルホリン5.23g(0.06mol)、トルエン100mL、アニソール20mL、およびメタンスルホン酸1.0gを加えて、117〜118°Cで35hr還流脱水した。理論量の反応水が留出したのを確認してから、温水150mL加えて撹拌し、80°Cで下層水を分離、同様に温水50mLで2回洗浄した。無水硫酸マグネシウムで脱水後、1μmのメンブランフィルターで濾過し、トルエン−アニソールを減圧回収後、イソプロピルアルコール50mLを加えて冷却し、析出した結晶をメンブランフィルターで濾過し取り、5.23gの黄褐色結晶を得た。この結晶体5.1gをトルエンで再結晶して微褐色粉末状結晶である目的物4.32gを得た。  A 300 mL four-necked flask was equipped with a reflux condenser and a thermometer. 9.40 g (0.03 mol) of 4- (4-benzotriazol-2-yl-3-hydroxyphenoxy) butyric acid, and 5.23 g (0.06 mol) of morpholine ), Toluene (100 mL), anisole (20 mL), and methanesulfonic acid (1.0 g) were added, and the mixture was reflux-dehydrated at 117 to 118 ° C. for 35 hours. After confirming that the theoretical amount of reaction water had distilled off, 150 mL of warm water was added and stirred, the lower layer water was separated at 80 ° C., and similarly washed twice with 50 mL of warm water. After dehydration with anhydrous magnesium sulfate, filtration through a 1 μm membrane filter, toluene-anisole was recovered under reduced pressure, 50 mL of isopropyl alcohol was added and cooled, and the precipitated crystals were filtered out through a membrane filter to give 5.23 g of tan crystals Got. Recrystallization of 5.1 g of this crystal with toluene gave 4.32 g of the desired product as a fine brown powdery crystal.

得られた結晶の分析結果は次の通りである。
Mp:146−148°C;HPLC 99.5%;slight brownish powder;yield:38.6%(based on 4−(4−Benzotriazol−2−yl−3−hydroxyphenoxy)butyric acid)).
1H−NMR(300 MHz,CDCl3)δ:11.4,(br s,1H,OH),8.29(d,1H,J=9.2Hz,phenol−H),7.93−7.90(m,2H,benzotriazol−H),7.50−7.45(m,2H,benzotriazol−H),6.69(d,1H,J=2.7Hz,phenol−H),6.61(dd,1H,J=9.2Hz,J=3.0Hz,2.7Hz,phenol),4.10(t,2H,J=11.7Hz,PhO−CH2−H),3.67−3.52(m,8H,morpholine−H),2.58−2.53(m,2H,NCOCH2−H),2.20−2.16(m,2H,C−CH2−C−H),.
FT−IR(KBr)cm−1;3090,2960(C−H),1650(C=O),1630,1600,(C=C),1510(C=N),1420(C=C),1380,1190(C−N),1260(Ph−O),.
Anal.Calcd for C20H22N4O4:C,62.82;H,5.80;N,14.65.Found:C,62.93;H,5.61;N,14.60.
The analysis result of the obtained crystal is as follows.
Mp: 146-148 ° C; HPLC 99.5%; light brownish powder; yield: 38.6% (based on 4- (4-Benzotriazol-2-yl-3-hydroxyphenoxy) butyric acid)).
1H-NMR (300 MHz, CDCl3) δ: 11.4, (brs, 1H, OH), 8.29 (d, 1H, J = 9.2 Hz, phenol-H), 7.93-7.90. (M, 2H, benzotriazol-H), 7.50-7.45 (m, 2H, benzotriazol-H), 6.69 (d, 1H, J = 2.7 Hz, phenol-H), 6.61 ( dd, 1H, J = 9.2 Hz, J = 3.0 Hz, 2.7 Hz, phenol), 4.10 (t, 2H, J = 11.7 Hz, PhO—CH 2 —H), 3.67-3. 52 (m, 8H, morpholine-H), 2.58-2.53 (m, 2H, NCOCH2-H), 2.20-2.16 (m, 2H, C-CH2-CH),.
FT-IR (KBr) cm-1; 3090, 2960 (C-H), 1650 (C = O), 1630, 1600, (C = C), 1510 (C = N), 1420 (C = C), 1380, 1190 (CN), 1260 (Ph-O),.
Anal. Calcd for C20H22N4O4: C, 62.82; H, 5.80; N, 14.65. Found: C, 62.93; H, 5.61; N, 14.60.

(化合物d)
1−{4−[4−(2H−Benzotriazol−2−yl)−3−hydroxy−phenoxy]−butyryl}−pyrrolidin−2−oneの合成例

Figure 0005875576
(Compound d)
Synthesis example of 1- {4- [4- (2H-Benzotriazol-2-yl) -3-hydroxy-phenoxy] -butyryl} -pyrrolidin-2-one
Figure 0005875576

4−(4−Benzotriazol−2−yl−3−hydroxyphenoxy)butyric acid9.40g(0.03mol)、ピロリジン−2−オン5.11g(0.06mol)、トルエン100mL、アニソール20mL、およびメタンスルホン酸2.0gを加えて化合物cの合成と同様に行った。
未反応の原料をメンブランフィルターにて濾過して除去した後、イソプロパノールで再結晶を2回行い、微褐白色粉末状結晶である目的物0.88gを得た。
4- (4-Benzotriazol-2-yl-3-hydroxyphenoxy) butyric acid 9.40 g (0.03 mol), pyrrolidin-2-one 5.11 g (0.06 mol), toluene 100 mL, anisole 20 mL, and methanesulfonic acid 2 0.0 g was added and the same procedure as in the synthesis of Compound c was performed.
The unreacted raw material was removed by filtration through a membrane filter, and then recrystallized twice with isopropanol to obtain 0.88 g of the objective product as a fine brown white powdery crystal.

得られた結晶の分析結果は次の通りである。
Mp:121−123°C;HPLC 98.9%;slight brownish white powder;yield:9.85%(based on 4−(4−Benzotriazol−2−yl−3−hydroxyphenoxy)butyric acid)).
1H−NMR(300MHz,CDCl3)δ:11.4,(br s,1H,OH),8.28(d,1H,J=9.0Hz,phenol−H),7.94−7.89(m,2H,benzotriazol−H),7.50−7.44(m,2H,benzotriazol−H),6.68(d,1H,J=2.4Hz,phenol−H),6.61(dd,1H,J=9.0Hz,J=2.7Hz,2.4Hz,phenol),4.10(t,2H,J=12.3Hz,O−CH2−H),3.84(t,2H,J=14.4Hz,pyrrolidinone−H),3.18−3.11(m,2H,pyrrolidinone−H),2.61(t,2H,J=16.2Hz,NCOCH2−H),2.25−2.10(m,2H,C−CH2−C−H),2.08−1.61(m,2H,pyrrolidinone−H),.
FT−IR(KBr)cm−1;3080,2960(C−H),1740,1690(C=O),1690,1630,1600(C=C),1520(C=N),1470,1440(C=C),1370(C−N),1260(Ph−O),1180(C−N),.
Anal.Calcd for C20H20N4O4:C,63.15;H,5.30;N,14.73.Found:C,63.21;H,5.24;N,14.55.
The analysis result of the obtained crystal is as follows.
Mp: 121-123 ° C; HPLC 98.9%; bright brownish white powder; yield: 9.85% (based on 4- (4-Benzotriazol-2-yl-3-hydroxyphenoxy) butyric acid).
1H-NMR (300 MHz, CDCl3) δ: 11.4, (brs, 1H, OH), 8.28 (d, 1H, J = 9.0 Hz, phenol-H), 7.94-7.89 ( m, 2H, benzotriazol-H), 7.50-7.44 (m, 2H, benzotriazol-H), 6.68 (d, 1H, J = 2.4 Hz, phenol-H), 6.61 (dd , 1H, J = 9.0 Hz, J = 2.7 Hz, 2.4 Hz, phenol), 4.10 (t, 2H, J = 12.3 Hz, O-CH2-H), 3.84 (t, 2H) , J = 14.4 Hz, pyrrolidoneone-H), 3.18-3.11 (m, 2H, pyrrolidoneone-H), 2.61 (t, 2H, J = 16.2 Hz, NCOCH2-H), 2. 25-2.10 ( , 2H, C-CH2-C-H), 2.08-1.61 (m, 2H, pyrrolidinone-H) ,.
FT-IR (KBr) cm-1; 3080, 2960 (C-H), 1740, 1690 (C = O), 1690, 1630, 1600 (C = C), 1520 (C = N), 1470, 1440 ( C = C), 1370 (CN), 1260 (Ph-O), 1180 (CN),.
Anal. Calcd for C20H20N4O4: C, 63.15; H, 5.30; N, 14.73. Found: C, 63.21; H, 5.24; N, 14.55.

(化合物e)
4−[4−(2H−Benzotriazol−2−yl)−3−hydroxy−phenoxy]−butyric acid adamantan−1−yl esterの合成例

Figure 0005875576
(Compound e)
Synthesis example of 4- [4- (2H-Benzotriazol-2-yl) -3-hydroxy-phenoxy] -butyric acid adamantan-1-yl ester
Figure 0005875576

4−(4−Benzotriazol−2−yl−3−hydroxyphenoxy)butyric acid 9.40g(0.03mol)、Adamantan−1−ol 9.13g(0.06mol)、トルエン100mL、およびメタンスルホン酸1.0gを加えて化合物cの合成と同様に行った。
得た粗結晶より、10倍量のトルエンに溶解させ、不溶解分を除去した後、再結晶による精製で、微灰白色粉末状結晶である目的物9.41gを得た。
4- (4-Benzotriazol-2-yl-3-hydroxyphenoxy) butyric acid 9.40 g (0.03 mol), Adamantan-1-ol 9.13 g (0.06 mol), toluene 100 mL, and methanesulfonic acid 1.0 g In the same manner as the synthesis of compound c.
The obtained crude crystals were dissolved in 10 times the amount of toluene to remove insoluble matters, and then purified by recrystallization to obtain 9.41 g of the desired product as fine grayish white powder crystals.

得られた結晶の分析結果は次の通りである。
Mp:125−135°C(Sintering);HPLC 99.5%;slight grayish white powder;yield:70.1%(based on 4−(4−Benzotriazol−2−yl−3−hydroxyphenoxy)butyric acid)).
1H−NMR(300MHz,CDCl3)δ:11.4,(br s,1H,OH),8.29(dd,1H,J=9Hz,J=1Hz,phenol−H),7.95−7.88(m,2H,benzotriazol−H),7.50−7.26(m,2H,benzotriazol−H),6.67(dd,1H,J=9Hz,J=2.7Hz,phenol−H),6.61(dd,1H,J=9Hz,J=2.7Hz,phenol),4.11−4.03(m,2H,Ar−O−CH2−H),2.70−2.35(m,2H,O−C=O−CH2−H),2.17−2.07(m,6H,adamantan−H,1H,adamantan−H,2H,C−CH2−C−H),1.79−1.66(m,6H,adamantan−H,2H,adamantan−H),.
FT−IR(KBr)cm−1;3150,3060,2960(C−H),1730(C=O),1620,1600(C=C),1510(C=N),1420(C=C),1390(C−N),1290(Ph−O).
Anal.Calcd for C26H29N3O4:C,69.78:H,6.53;N,9.39.Found:C,69.72;H,6.34;N,9.53.
The analysis result of the obtained crystal is as follows.
Mp: 125-135 ° C. (Sintering); HPLC 99.5%; light grayish white powder; yield: 70.1% (based on 4- (4-Benzotriazol-2-yl-3-hydroxyphenoxy) butyricac) .
1H-NMR (300 MHz, CDCl3) δ: 11.4, (brs, 1H, OH), 8.29 (dd, 1H, J = 9 Hz, J = 1 Hz, phenol-H), 7.95-7. 88 (m, 2H, benzotriazol-H), 7.50-7.26 (m, 2H, benzotriazol-H), 6.67 (dd, 1H, J = 9 Hz, J = 2.7 Hz, phenol-H) 6.61 (dd, 1H, J = 9 Hz, J = 2.7 Hz, phenol), 4.11-4.03 (m, 2H, Ar—O—CH 2 —H), 2.70-2.35. (M, 2H, O-C = O-CH2-H), 2.17-2.07 (m, 6H, adamantan-H, 1H, adamantan-H, 2H, C-CH2-C-H), 1 79-1.66 (m, 6H, adama tan-H, 2H, adamantan-H) ,.
FT-IR (KBr) cm-1; 3150, 3060, 2960 (C-H), 1730 (C = O), 1620, 1600 (C = C), 1510 (C = N), 1420 (C = C) , 1390 (CN), 1290 (Ph-O).
Anal. Calcd for C26H29N3O4: C, 69.78: H, 6.53; N, 9.39. Found: C, 69.72; H, 6.34; N, 9.53.

(化合物f)
4−[4−(2H−Benzotriazol−2−yl)−3−hydroxy−phenoxy]−butyric acid 2−morpholin−4−yl−ethyl esterの合成例

Figure 0005875576
(Compound f)
Synthesis of 4- [4- (2H-Benzotriazol-2-yl) -3-hydroxy-phenoxy] -butyric acid 2-morpholin-4-yl-ethyl ester
Figure 0005875576

4−(4−Benzotriazol−2−yl−3−hydroxyphenoxy)butyric acid 9.40g(0.03mol)、2−Morpholin−4−yl−ethanol 7.87g(0.06mol)、トルエン100mL、およびメタンスルホン酸1.8gを加えて化合物cの合成と同様に行った。
未反応の原料をメンブランフィルターにて濾過して除去した後、イソプロパノールで再結晶を2回行い、微褐色粉末状結晶である目的物10.15gを得た。
4- (4-Benzotriazol-2-yl-3-hydroxyphenoxy) butyric acid 9.40 g (0.03 mol), 2-Morpholin-4-yl-ethanol 7.87 g (0.06 mol), toluene 100 mL, and methanesulfone It carried out similarly to the synthesis | combination of the compound c by adding the acid 1.8g.
Unreacted raw materials were removed by filtration through a membrane filter, and then recrystallized twice with isopropanol to obtain 10.15 g of the desired product as fine brown powder crystals.

得られた結晶の分析結果は次の通りである。
Mp:71−78°C,HPLC99.7%;slight brownish white powder;yield:69.1%(based on 4−(4−Benzotriazol−2−yl−3−hydroxyphenoxy)butyric acid)).
1H−NMR(300MHz,CDCl3)δ:11.4,(br s,1H,OH),8.29(d,1H,J=9Hz,phenol−H),7.95−7.89(m,2H,benzotriazol−H),7.50−7.44(m,2H,benzotriazol−H),6.68(d,1H,J=2.7Hz,phenol−H),6.60(dd,1H,J=9Hz,J=2.7Hz,2.7Hz,phenol),4.40−4.20(m,2H,CH2−OC=O−H),4.08(t,2H,J=12.3Hz,PhOCH2−H),3.95−3.10(m,4H,CH2−O−CH2(Morpholin)−H),2.66−2.55(m,2H,CH2−C=O−H,m,2H,N−CH2−H,m,4H,CH2−N−CH2(Morpholin)−H),2.20−2.11(m,2H,C−CH2−C−H),.
FT−IR(KBr)cm−1;3310(OH),3070,2960(C−H),1640(C=O),1600,1530(C=C),1510(C=N),1390(C−N),1270(Ph−O),1190(C−N),.
Anal.Calcd for C22H26N4O5:C,61.96;H,6.15;N,13.14,Found:C,62.19;H,6.09;N,13.16.
The analysis result of the obtained crystal is as follows.
Mp: 71-78 ° C, HPLC 99.7%; bright brownish white powder; yield: 69.1% (based on 4- (4-Benzotriazol-2-yl-3-hydroxyphenoxy) butyric acid).
1H-NMR (300 MHz, CDCl 3) δ: 11.4, (br s, 1H, OH), 8.29 (d, 1H, J = 9 Hz, phenol-H), 7.95-7.89 (m, 2H, benzotriazole-H), 7.50-7.44 (m, 2H, benzotriazol-H), 6.68 (d, 1H, J = 2.7 Hz, phenol-H), 6.60 (dd, 1H) , J = 9 Hz, J = 2.7 Hz, 2.7 Hz, phenol), 4.40-4.20 (m, 2H, CH2-OC = O-H), 4.08 (t, 2H, J = 12). .3 Hz, PhOCH2-H), 3.95-3.10 (m, 4H, CH2-O-CH2 (Morpholin) -H), 2.66-2.55 (m, 2H, CH2-C = O- H, m, 2H, N-CH2-H, m, 4H, C 2-N-CH2 (Morpholin) -H), 2.20-2.11 (m, 2H, C-CH2-C-H) ,.
FT-IR (KBr) cm-1; 3310 (OH), 3070, 2960 (C-H), 1640 (C = O), 1600, 1530 (C = C), 1510 (C = N), 1390 (C -N), 1270 (Ph-O), 1190 (CN),.
Anal. Calcd for C22H26N4O5: C, 61.96; H, 6.15; N, 13.14, Found: C, 62.19; H, 6.09; N, 13.16.

(化合物g)
4−[4−(2H−Benzotriazol−2−yl)−3−hydroxy−phenoxy]−butyric acid 2−piperidin−1−yl−ethyl esterの合成例

Figure 0005875576
(Compound g)
Synthesis example of 4- [4- (2H-Benzotriazol-2-yl) -3-hydroxy-phenoxy] -butyric acid 2-piperidin-1-yl-ethyl ester
Figure 0005875576

4−(4−Benzotriazol−2−yl−3−hydroxyphenoxy)butyric acid 9.40g(0.03mol)、2−Piperidin−1−yl−ethanol 7.75g(0.06mol)、トルエン100mL、アニソール20mL、およびメタンスルホン酸1.5gを加えて化合物cの合成と同様に行った。
未反応の原料をメンブランフィルターにて濾過して除去した後、イソプロパノールで再結晶を2回行い、微灰白色粉末状結晶である目的物5.15gを得た。
4- (4-Benzotriazol-2-yl-3-hydroxyphenoxy) butyric acid 9.40 g (0.03 mol), 2-Piperidin-1-yl-ethanol 7.75 g (0.06 mol), toluene 100 mL, anisole 20 mL, Then, 1.5 g of methanesulfonic acid was added and the same procedure as in the synthesis of compound c was performed.
Unreacted raw materials were removed by filtration through a membrane filter, and then recrystallized twice with isopropanol to obtain 5.15 g of the desired product as fine grayish white powder crystals.

得られた結晶の分析結果は次の通りである。
Mp:79−80°C;HPLC 98.6%;slight grayish white powder;yield:33.3%(based on 4−(4−Benzotriazol−2−yl−3−hydroxyphenoxy)butyric acid)).
1H−NMR(300MHz,CDCl3)δ:11.4,(br s,1H,OH),8.29(d,1H,J=9Hz,phenol−H),7.95−7.89(m,2H,benzotriazol−H),7.50−7.45(m,2H,benzotriazol−H),6.68(d,1H,J=2.7Hz,phenol−H),6.65(dd,1H,J=9Hz,J=2.7Hz,2.4Hz,phenol),4.60−4.40(m,2H,CH2−OC=O−H),4.08(t,2H.J=12.0Hz,PhOCH2−H),2.95−2.57(m,2H,CH2−C=O−H,m,2H,N−CH2−H),2.24−2.11(m,2H,C−CH2−C−H),2.05−1.20(m,10H,piperidine−H),.
FT−IR(KBr)cm−1;3060,2940(C−H),1730(C=O),1630,1590(C=C),1520(C=N),1470,1420(C=C),1300(C−N),1260(Ph−O),1190−1180(C−N),.
Anal.Calcd for C23H28N4O4:C,65.08;H,6.65;N,13.20.Found:C,65.18;H,6.60;N,13.21.
The analysis result of the obtained crystal is as follows.
Mp: 79-80 ° C; HPLC 98.6%; light grayish white powder; yield: 33.3% (based on 4- (4-Benzotriazol-2-yl-3-hydroxyphenoxy) butyric acid).
1H-NMR (300 MHz, CDCl 3) δ: 11.4, (br s, 1H, OH), 8.29 (d, 1H, J = 9 Hz, phenol-H), 7.95-7.89 (m, 2H, benzotriazole-H), 7.50-7.45 (m, 2H, benzotriazol-H), 6.68 (d, 1H, J = 2.7 Hz, phenol-H), 6.65 (dd, 1H , J = 9 Hz, J = 2.7 Hz, 2.4 Hz, phenol), 4.60-4.40 (m, 2H, CH2-OC = OH), 4.08 (t, 2H.J = 12. .0Hz, PhOCH2-H), 2.95-2.57 (m, 2H, CH2-C = OH, m, 2H, N-CH2-H), 2.24-2.11 (m, 2H) , C-CH2-CH), 2.05-1.20 (m, 10H, pi eridine-H) ,.
FT-IR (KBr) cm-1; 3060, 2940 (C-H), 1730 (C = O), 1630, 1590 (C = C), 1520 (C = N), 1470, 1420 (C = C) , 1300 (CN), 1260 (Ph-O), 1190-1180 (CN),.
Anal. Calcd for C23H28N4O4: C, 65.08; H, 6.65; N, 13.20. Found: C, 65.18; H, 6.60; N, 13.21.

(化合物h)
4−[4−(2H−Benzotriazol−2−yl)−3−hydroxy−phenoxy]−N−(2−morpholin−4−yl−ethyl)−butyramideの合成例

Figure 0005875576
(Compound h)
Synthesis example of 4- [4- (2H-Benzotriazol-2-yl) -3-hydroxy-phenoxy] -N- (2-morpholin-4-yl-ethyl) -butyramide
Figure 0005875576

4−(4−Benzotriazol−2−yl−3−hydroxyphenoxy)butyric acid 9.40g(0.03mol)、2−Morpholin−4−yl−ethylamine 7.81g(0.06mol)、トルエン100mL、およびメタンスルホン酸2.0gを加えて化合物Cの合成と同様に行った。
得た粗結晶より、20倍量のジクロロメタンに溶解させ、不溶解分を除去した後、再結晶による精製で、微灰白色粉末状結晶である目的物8.4gを得た。
4- (4-Benzotriazol-2-yl-3-hydroxyphenoxy) butyric acid 9.40 g (0.03 mol), 2-Morpholin-4-yl-ethylamine 7.81 g (0.06 mol), toluene 100 mL, and methanesulfone It carried out similarly to the synthesis | combination of the compound C by adding 2.0g of acids.
The obtained crude crystals were dissolved in 20 times the amount of dichloromethane to remove insoluble matters, and then purified by recrystallization to obtain 8.4 g of the desired product as fine grayish white powder crystals.

Mp:177−178°C:HPLC99.6%;slight grayish white powder;yield:66.0%(based on 4−(4−Benzotriazol−2−yl−3−hydroxyphenoxy)butyric acid)).
1H−NMR(300MHz,CDCl3)δ:11.4,(s,1H,OH),8.29(d,1H,J=9.0Hz,phenol−H),7.92(dd,2H,J=6.6Hz,J=3.0Hz,benzotriazol−H),7.47(dd,2H,J=6.6Hz,J=3.0Hz,J=2.7Hz,benzotriazol−H),6.69(d,1H,J=2.7Hz,phenol−H),6.61(dd,1H,J=9.0Hz,J=2.7Hz,phenol),4.07(t,2H,PhOCH2−H),3.74(br,s,4H,CH2−O−CH2(Morpholin)−H)),3.45−3.39(m,2H,O=C−N−CH2−H),2.52−2.42(m,4H,CH2−N−CH2(Morpholin)−H,2H,N−CH2−H,2H,CH2−C=O−H),2.22−2.13(m,2H,C−CH2−C−H),.
FT−IR(KBr)cm−1;3160(NH),2950,2850(C−H),1720(C=O),1620,1600(C=C),1510(C=N),1470,1450,1440(C=C),1320(C−N),1270(Ph−O),1180(C−N).
Anal.Calcd for C22H27N5O4:C,62.1;H,6.40;N,16.46.Found:C,62.24;H,6.31;N,16.56.
Mp: 177-178 ° C: HPLC 99.6%; light gray white powder; yield: 66.0% (based on 4- (4-Benzotriazol-2-yl-3-hydroxyphenoxy) butyric acid).
1H-NMR (300 MHz, CDCl3) δ: 11.4, (s, 1H, OH), 8.29 (d, 1H, J = 9.0 Hz, phenol-H), 7.92 (dd, 2H, J = 6.6 Hz, J = 3.0 Hz, benzotriazole-H), 7.47 (dd, 2H, J = 6.6 Hz, J = 3.0 Hz, J = 2.7 Hz, benzotriazol-H), 6.69. (D, 1H, J = 2.7 Hz, phenol-H), 6.61 (dd, 1H, J = 9.0 Hz, J = 2.7 Hz, phenol), 4.07 (t, 2H, PhOCH2-H) ), 3.74 (br, s, 4H, CH2-O-CH2 (Morpholin) -H)), 3.45-3.39 (m, 2H, O = CN-CH2-H), 2. 52-2.42 (m, 4H, CH2-N-CH2 ( orpholin) -H, 2H, N-CH2-H, 2H, CH2-C = O-H), 2.22-2.13 (m, 2H, C-CH2-C-H) ,.
FT-IR (KBr) cm-1; 3160 (NH), 2950, 2850 (C-H), 1720 (C = O), 1620, 1600 (C = C), 1510 (C = N), 1470, 1450 , 1440 (C = C), 1320 (CN), 1270 (Ph-O), 1180 (CN).
Anal. Calcd for C22H27N5O4: C, 62.1; H, 6.40; N, 16.46. Found: C, 62.24; H, 6.31; N, 16.56.

4−{4−[5−Chloro−(2H−benzotriazol−2−yl)]−3−hydroxy−phenoxy}−butyric acid−2−piperidin−1−yl−ethyl esterの合成例
(化合物i)

Figure 0005875576
Synthesis example of 4- {4- [5-Chloro- (2H-benzotriazol-2-yl)]-3-hydroxy-phenoxy} -butyric acid-2-piperidin-1-yl-ethyl ester (Compound i)
Figure 0005875576

4−[4−(5−Chloro−benzotriazol−2−yl)−3−hydroxy−phenoxy]−butyric acid 10.43g(0.03mol)、2−Piperidin−1−yl−ethanol 7.75g(0.06mol)、トルエン100mL、およびメタンスルホン酸2.0gを加えて化合物cの合成と同様に行った。
得た粗結晶より、10倍量のトルエンに溶解させ、不溶解分を除去した後、再結晶による精製で、微灰白色粉末状結晶である目的物11.04gを得た。
4- [4- (5-Chloro-benzotriazol-2-yl) -3-hydroxy-phenoxy] -butylic acid 10.43 g (0.03 mol), 2-Piperidin-1-yl-ethanol 7.75 g (0.7. 06 mol), toluene (100 mL), and methanesulfonic acid (2.0 g) were added to carry out in the same manner as in the synthesis of Compound c.
The obtained crude crystals were dissolved in 10 times the amount of toluene to remove insoluble matters, and then purified by recrystallization to obtain 11.04 g of the desired product as fine grayish white powder crystals.

Mp:101−103°C;HPLC99.5%;slight grayish white powder;yield:80.2%(based on 4−(4−Benzotriazol−2−yl−3−hydroxyphenoxy)butyric acid)).
1H−NMR(300MHz,CDCl3)δ:11.2,(br s,1H,OH),8.25(d,1H,J=9Hz,Benzotriazol−H),7.91(dd,1H,J=1.8Hz,J=0.9Hz,J=0.6Hz,Benzotriazol−H),7.86(dd,1H,J=9Hz,J=0.6Hz,0.6Hz,Benzotriazol−H),7.42(dd,1H,J=9Hz,J=2Hz,Phenol−H),6.67(d,1H,J=2.7Hz,Phenol−H),6.60(dd,1H,J=9Hz,J=2.7Hz,J=2.7Hz,Phenol−H),4.32−4.05(m,2H,CH2−OC=O−H,2H,CH2C=O−H),2.72−2.55(m,2H,Ar−O−CH2−H,4H,Piperidin−H),2.17−2.13(m,2H,N−CH2−H),1.66−1.46(m,2H,C−CH2−C−H,6H,Piperidin−H),.
FT−IR(KBr)cm−1;3100,2940(C−H),1730(C=O),1630,1600(C=C),1530(C=N),1470(C=C),1390(C−N),1260(Ph−O),1170(C−N),.
Anal.Calcd for C23H27ClN4O4:C,60.19;H,5.93;N,12.21.Found:C,60.22;H,5.98;N,12.22.
Mp: 101-103 ° C; HPLC 99.5%; bright gray white powder; yield: 80.2% (based on 4- (4-Benzotriazol-2-yl-3-hydroxyphenoxy) butyric acid)).
1H-NMR (300 MHz, CDCl3) δ: 11.2, (brs, 1H, OH), 8.25 (d, 1H, J = 9 Hz, Benzotriazole-H), 7.91 (dd, 1H, J = 1.8 Hz, J = 0.9 Hz, J = 0.6 Hz, Benzotriazol-H), 7.86 (dd, 1H, J = 9 Hz, J = 0.6 Hz, 0.6 Hz, Benzotriazole-H), 7. 42 (dd, 1H, J = 9 Hz, J = 2 Hz, Phenol-H), 6.67 (d, 1H, J = 2.7 Hz, Phenol-H), 6.60 (dd, 1H, J = 9 Hz, J = 2.7 Hz, J = 2.7 Hz, Phenol-H), 4.32-4.05 (m, 2H, CH2-OC = OH, 2H, CH2C = OH), 2.72- 2.55 (m, 2H, Ar-O-C 2-H, 4H, Piperidin-H), 2.17-2.13 (m, 2H, N-CH2-H), 1.6-1.46 (m, 2H, C-CH2-CH, 6H, Piperidin-H),.
FT-IR (KBr) cm-1; 3100, 2940 (C-H), 1730 (C = O), 1630, 1600 (C = C), 1530 (C = N), 1470 (C = C), 1390 (CN), 1260 (Ph-O), 1170 (CN),.
Anal. Calcd for C23H27ClN4O4: C, 60.19; H, 5.93; N, 12.21. Found: C, 60.22; H, 5.98; N, 12.22.

(化合物j)
4−{4−[5−Chloro−(2H−benzotriazol−2−yl)]−3−hydroxy−phenoxy}−butyric acid−2−morpholin−4−yl−ethyl esterの合成例

Figure 0005875576
(Compound j)
Synthesis example of 4- {4- [5-Chloro- (2H-benzotriazol-2-yl)]-3-hydroxy-phenoxy} -butyric acid-2-morpholin-4-yl-ethyl ester
Figure 0005875576

4−[4−(5−Chloro−benzotriazol−2−yl)−3−hydroxy−phenoxy]−butyric acid 6.96g(0.02mol)、2−Morpholin−4−yl−ethanol 6.96g(0.02mol)、トルエン70mL、およびメタンスルホン酸0.7gを加えて化合物cの合成と同様に行った。
得た粗結晶より、10倍量のトルエンに溶解させ、不溶解分を除去した後、再結晶による精製で、微灰白色粉末状結晶である目的物6.19gを得た。
4- [4- (5-Chloro-benzotriazol-2-yl) -3-hydroxy-phenoxy] -butyric acid 6.96 g (0.02 mol), 2-Morpholin-4-yl-ethanol 6.96 g (0. 02 mol), 70 mL of toluene, and 0.7 g of methanesulfonic acid were added to carry out in the same manner as the synthesis of compound c.
The obtained crude crystals were dissolved in 10 times the amount of toluene to remove insoluble matters, and then purified by recrystallization to obtain 6.19 g of the desired product as fine grayish white powder crystals.

Mp:122−125°C;HPLC99.2%;slight yellowish white powder;yield:96.9%(based on 4−[4−(5−Chloro−benzotriazol−2−yl)−3−hydroxy−phenoxy]−butyric acid).
1H−NMR(300MHz,CDCl3)δ:11.2,(br s,1H,OH),8.25(d,1H,J=6.9Hz,Benzotriazol−H),7.91(dd,1H,J=1.5Hz,J=0.6Hz,J=0.6Hz,Benzotriazol−H),7.88(d,1H,J=6.9Hz,Benzotriazol−H),7.42(dd,1H,J=6.9Hz,J=1.5Hz,Phenol−H),6.67(d,1H,J=2Hz,Phenol−H),6.60(dd,1H,J=6.9Hz,J=2Hz,J=2Hz,Phenol−H),4.25(t,2H,J=8.7Hz,CH2−OC=O−H,2H),4.07(t,2H,J=9.3Hz,Ph−O−CH2−H),3.71−3.69(m,4H,CH2−O−CH2(Morpholin)−H),2.65−2.50(m,4H,CH2−N−CH2(Morpholin)−H,2H,N−CH2−H,2H,CH2−C=O−H),2.15(quintet,2H,J=9.6Hz,C−CH2−C−H).
FT−IR(KBr)cm−1;3160,2950,(C−H),1720(C=O),1620,1600(C=C),1510(C=N),1470,1450,1440(C=C),1320(C−N),1270(Ph−O),1180(C−N),.
Anal.Calcd for C22H25ClN4O5:C,57.33;H,5.47;N,12.16.Found:C,57.24;H,5.28;N,12.04.
Mp: 122-125 ° C; HPLC 99.2%; light yellowish white powder; yield: 96.9% (based on 4- [4- (5-Chloro-benzotriol-2-yl) -3-hydroxy-phenoxy] -Butyric acid).
1H-NMR (300 MHz, CDCl3) δ: 11.2, (brs, 1H, OH), 8.25 (d, 1H, J = 6.9 Hz, Benzotriazol-H), 7.91 (dd, 1H, J = 1.5 Hz, J = 0.6 Hz, J = 0.6 Hz, Benzotriazol-H), 7.88 (d, 1H, J = 6.9 Hz, Benzotriazol-H), 7.42 (dd, 1H, J = 6.9 Hz, J = 1.5 Hz, Phenol-H), 6.67 (d, 1H, J = 2 Hz, Phenol-H), 6.60 (dd, 1H, J = 6.9 Hz, J = 2 Hz, J = 2 Hz, Phenol-H), 4.25 (t, 2H, J = 8.7 Hz, CH2-OC = O-H, 2H), 4.07 (t, 2H, J = 9.3 Hz, Ph-O-CH2-H), 3.71-3.6 (M, 4H, CH2-O-CH2 (Morpholin) -H), 2.65-2.50 (m, 4H, CH2-N-CH2 (Morpholin) -H, 2H, N-CH2-H, 2H, CH2-C = O-H), 2.15 (quintet, 2H, J = 9.6 Hz, C-CH2-C-H).
FT-IR (KBr) cm-1; 3160, 2950, (C-H), 1720 (C = O), 1620, 1600 (C = C), 1510 (C = N), 1470, 1450, 1440 (C = C), 1320 (CN), 1270 (Ph-O), 1180 (CN),.
Anal. Calcd for C22H25ClN4O5: C, 57.33; H, 5.47; N, 12.16. Found: C, 57.24; H, 5.28; N, 12.04.

(化合物k)
4−{4−[5−Chloro−(2H−benzotriazol−2−yl)]−3−hydroxy−phenoxy}−N−(2−morpholin−4−yl−ethyl)−Butyramideの合成例

Figure 0005875576
(Compound k)
Synthesis example of 4- {4- [5-Chloro- (2H-benzotriazol-2-yl)]-3-hydroxy-phenoxy} -N- (2-morpholin-4-yl-ethyl) -Butylamide
Figure 0005875576

4−[4−(5−Chloro−benzotriazol−2−yl)−3−hydroxy−phenoxy]−butyric acid 10.43g(0.03mol)、2−Morpholin−4−yl−ethylamine 7.81g(0.06mol)、トルエン100mL、およびメタンスルホン酸3.0gを加えて化合物cの合成と同様に行った。
得た粗結晶より、10倍量のトルエンに溶解させ、不溶解分を除去した後、再結晶による精製で、微灰白色粉末状結晶である目的物13.37gを得た。
4- [4- (5-Chloro-benzotriazol-2-yl) -3-hydroxy-phenoxy] -butyric acid 10.43 g (0.03 mol), 2-Morpholin-4-yl-ethylamine 7.81 g (0. 06 mol), 100 mL of toluene, and 3.0 g of methanesulfonic acid were added to carry out in the same manner as the synthesis of compound c.
The obtained crude crystals were dissolved in 10 times the amount of toluene to remove insoluble matters, and then purified by recrystallization to obtain 13.37 g of the desired product as fine grayish white powder crystals.

Mp:181−183°C;HPLC99.1%;slight yellowish white powder;yield:96.9%(based on 4−[4−(5−Chloro−benzotriazol−2−yl)−3−hydroxy−phenoxy]−butyric acid).
1H−NMR(300MHz,CDCl3)δ:11.2,(br s,1H,OH),8.25(d,1H,J=6.9Hz,Benzotriazol−H),7.91(dd,1H,J=1.2Hz,J=0.6Hz,J=0.3Hz,Benzotriazol−H),7.88(dd,1H,J=6.9Hz,J=0.6Hz,0.6Hz,Benzotriazol−H),7.42(dd,1H,J=6.6Hz,J=2Hz,Phenol−H),6.68(d,1H,J=2Hz,Phenol−H),6.62(dd,1H,J=9Hz,J=2.1Hz,J=2.1Hz,Phenol−H),4.07(t,2H,J=9.0Hz,Ph−O−CH2−H,2H),3.69(br s,4H,CH2−O−CH2(Morpholin)−H),3.39(br s,2H,O=C−N−CH2−H),2.45−2.42(m,4H,CH2−N−CH2(Morpholin)−H,2H,N−CH2−H,2H,CH2−C=O−H),2.21−2.14(m,2H,C−CH2−C−H).
FT−IR(KBr)cm−1;3290(NH),3090,2960,2830(C−H),1730(C=O),1640,1600(C=C),1520(C=N),1460,1440,(C=C),1380(C−N),1260(Ph−O),1190(C−N)..
Anal.Calcd for C22H26ClN5O4:C,57.45;H,5.70;N,15.23.Found:C,57.59;H,5.65;N,15.11.
Mp: 181-183 ° C .; HPLC 99.1%; light yellowish white powder; yield: 96.9% (based on 4- [4- (5-Chloro-benzotriol-2-yl) -3-hydroxy-phenoxy] -Butyric acid).
1H-NMR (300 MHz, CDCl3) δ: 11.2, (brs, 1H, OH), 8.25 (d, 1H, J = 6.9 Hz, Benzotriazol-H), 7.91 (dd, 1H, J = 1.2 Hz, J = 0.6 Hz, J = 0.3 Hz, Benzotriazol-H), 7.88 (dd, 1H, J = 6.9 Hz, J = 0.6 Hz, 0.6 Hz, Benzotriazol-H ), 7.42 (dd, 1H, J = 6.6 Hz, J = 2 Hz, Phenol-H), 6.68 (d, 1H, J = 2 Hz, Phenol-H), 6.62 (dd, 1H, J = 9 Hz, J = 2.1 Hz, J = 2.1 Hz, Phenol-H), 4.07 (t, 2H, J = 9.0 Hz, Ph—O—CH 2 —H, 2H), 3.69 ( br s, 4H, CH2-O-CH2 (M orpholin) -H), 3.39 (brs, 2H, O = CN-CH2-H), 2.45-2.42 (m, 4H, CH2-N-CH2 (Morpholin) -H, 2H , N-CH2-H, 2H, CH2-C = O-H), 2.21-2.14 (m, 2H, C-CH2-C-H).
FT-IR (KBr) cm-1; 3290 (NH), 3090, 2960, 2830 (C-H), 1730 (C = O), 1640, 1600 (C = C), 1520 (C = N), 1460 , 1440, (C = C), 1380 (CN), 1260 (Ph-O), 1190 (CN). .
Anal. Calcd for C22H26ClN5O4: C, 57.45; H, 5.70; N, 15.23. Found: C, 57.59; H, 5.65; N, 15.11.

〔評価〕
(化粧基材への溶解特性)
上記で合成したベンゾトリアゾール誘導体の内、化合物a,b、c、d、f、g、hについて以下の化粧基材に溶解させ、その溶解度を測定した。また比較例として、現状では良好な化粧用途のUV−A吸収剤としては実質的に唯一の商業的化合物である4−tert−ブトキシ−4−メトキシジベンゾイルメタン(商品名「parsol1789」)を比較例1として、同様に溶解度を測定した。
[Evaluation]
(Dissolution characteristics in cosmetic base material)
Among the benzotriazole derivatives synthesized above, compounds a, b, c, d, f, g, and h were dissolved in the following cosmetic base materials, and the solubility was measured. In addition, as a comparative example, 4-tert-butoxy-4-methoxydibenzoylmethane (trade name “parsol 1789”), which is substantially the only commercially available UV-A absorber for cosmetic applications at present, is compared. As Example 1, the solubility was measured in the same manner.

・使用基材
シリコーン油 :和光純薬試薬 LS−8620
スクワラン :スクワテック社品 スーパースクワラン
流動パラフィン :カネダ(株)品 ハイコールK−230
CIO :日本精化(株)品 イソオクタン酸セチル
IOTG :日本精化(株)品 イソオクタン酸トリグリセライド
・ Substrate used Silicone oil: Wako Pure Chemical Reagents LS-8620
Squalane: A product of SQUATECH Super Squalane Liquid paraffin: A product of Kaneda High Coal K-230
CIO: Nippon Seikatsu Co., Ltd. product Cetyl isooctanoate IOTG: Nihon Seika Co., Ltd. product Isooctanoic acid triglyceride

・方法
20℃で溶解させ、冷暗所(5℃)にて120日保存し、添加した前記のベンゾトリアゾール誘導体の析出の有無、溶解後の臭気、着色について調査した。その結果を表1に示す。
-Method It melt | dissolved at 20 degreeC, preserve | saved for 120 days in a cool dark place (5 degreeC), and investigated the presence or absence of precipitation of the said added benzotriazole derivative, the odor after dissolution, and coloring. The results are shown in Table 1.

Figure 0005875576
Figure 0005875576

上記の溶解量において溶解したいずれの化合物も結晶として析出または、油状分が分離することはなかった。また溶解色は、いずれも微黄色透明であり、臭気は感じなかった。
なお、化合物aの流動パラフィン、化合物gのCIO、IOTGに対して示した溶解量は上限値ではない。また化合物b,f,g等では、UV−A吸収剤の商業的化合物である比較例1の溶解度に近い溶解性を示し、化粧基材に十分な配合が可能であることがわかった。
None of the compounds dissolved in the above dissolution amount was precipitated as crystals or oily components were separated. Further, the dissolved colors were all slightly yellow and transparent, and no odor was felt.
In addition, the dissolution amount shown with respect to the liquid paraffin of compound a, CIO of compound g, and IOTG is not an upper limit. In addition, the compounds b, f, g, etc. showed solubility close to the solubility of Comparative Example 1 which is a commercial compound of UV-A absorber, and it was found that the compound b, f, g and the like can be sufficiently blended in a cosmetic base material.

(UV吸収特性)
上記合成した化合物a〜kと、上記比較例1の化合物(4−tert−ブトキシ−4−メトキシジベンゾイルメタン)のUV吸収域を測定した。さらには、これらの化合物を太陽光にて約150時間暴露した後のUV吸収域も測定した。これらの紫外線吸収スペクトルを図2〜12に示す。比較のため、比較例3として市販のサンスクリーン剤に使用されているp−メトキシケイ皮酸−2−エチルヘキシルエステル(商品名「Parsol MCX」)の紫外線吸収スペクトルを図13に示す。比較例3では、主にUV−B領域での吸収がみられ、UV−B領域に近い320〜350nmでのUV−A領域におけるわずかな紫外線吸収が認められるものの、特に350〜400nmの、UV−Aとして重要な紫外線領域での吸収が全くないことが分かる。また図14では比較例1の太陽光照射前後における紫外吸収スペクトルを示した。比較例2はベンゾトリアゾール誘導体の比較対象として使用した2−(2H−ベンゾトリアゾール−2−イル−5−オクチルオキシフェノール(商品名「SEESORB707」;シプロ化成(株)製)である。なお、太陽光照射に関しては、7月下旬から8月下旬、午前10:00〜午後16:00の自然光に暴露させて試験を行った。
(UV absorption characteristics)
The UV absorption region of the synthesized compounds a to k and the compound of Comparative Example 1 (4-tert-butoxy-4-methoxydibenzoylmethane) was measured. Furthermore, the UV absorption range after exposure of these compounds to sunlight for about 150 hours was also measured. These ultraviolet absorption spectra are shown in FIGS. For comparison, FIG. 13 shows an ultraviolet absorption spectrum of p-methoxycinnamic acid-2-ethylhexyl ester (trade name “Parsol MCX”) used in a commercially available sunscreen agent as Comparative Example 3. In Comparative Example 3, absorption was mainly observed in the UV-B region, and slight UV absorption in the UV-A region at 320 to 350 nm close to the UV-B region was observed, but in particular, UV of 350 to 400 nm was observed. It can be seen that there is no absorption in the ultraviolet region important as -A. Further, FIG. 14 shows the ultraviolet absorption spectrum before and after the sunlight irradiation of Comparative Example 1. Comparative Example 2 is 2- (2H-benzotriazol-2-yl-5-octyloxyphenol (trade name “SEESORB707”; manufactured by Cypro Kasei Co., Ltd.) used as a comparative object of the benzotriazole derivative. Regarding light irradiation, the test was conducted by exposing to natural light from 10:00 am to 16:00 pm from late July to late August.

Figure 0005875576
Figure 0005875576

それぞれの化合物の極大吸収波長(λmax)と極大モル吸光係数(ε)を表2に示す。
併せてそれぞれの化合物のHPLC純度や融点等についても併せて表2に示す。
Table 2 shows the maximum absorption wavelength (λmax) and the maximum molar extinction coefficient (ε) of each compound.
Table 2 also shows the HPLC purity and melting point of each compound.

Figure 0005875576
Figure 0005875576

上記合成した化合物a〜kは、いずれも比較例1と比べて高い耐光性を示していることがわかる。比較例1では、強い赤色味を帯びた粘調な結晶体に変質しており、UV吸収波長域に大きな変化が見られること、UV照射後で重量が3.7%減少していることなどから、化合物自体の分解、ならびに変質が進んでいる可能性が高い。従って、比較例1の化合物自体の安定性に問題があると考えられる。これに対して上記合成した化合物a〜kのUV照射後の重量減少は概ね0.5%以下であることから、化合物自体の安定性に優れるといえる。  It can be seen that the synthesized compounds a to k all show higher light resistance than Comparative Example 1. In Comparative Example 1, it has been transformed into a strong reddish viscous crystal body, a large change is observed in the UV absorption wavelength region, and the weight is reduced by 3.7% after UV irradiation. Therefore, there is a high possibility that decomposition and alteration of the compound itself are progressing. Therefore, it is considered that there is a problem in the stability of the compound of Comparative Example 1 itself. On the other hand, since the weight loss after UV irradiation of the synthesized compounds a to k is approximately 0.5% or less, it can be said that the stability of the compound itself is excellent.

上記合成した化合物a〜kは、商業的に成功している比較例1と比較しても初期の最大吸収波長(λmax)やモル吸光係数(ε)に関してほとんど・.色がない。加えてCLogP値は、5.0以下のものが多く、安定した2H−ベンゾトリアゾール誘導体の構造を有しながら、水への分配能を有し、生分解性にも優れていると考えられる。  The synthesized compounds a to k are almost the same in terms of the initial maximum absorption wavelength (λmax) and molar extinction coefficient (ε) even when compared with the commercially successful Comparative Example 1. There is no color. In addition, the CLogP value is often 5.0 or less, and it has a stable structure of 2H-benzotriazole derivative, has a partitioning ability to water, and is considered to be excellent in biodegradability.

(MMP阻害活性特性)
上記合成した化合物a〜kについて、MMP−1、MMP−2、MMP−9に対する阻害活性を調べた。活性評価には市販されているMMP Inhibitor Profiling Kit,「Fluorimetric」(BIOMOL社製)を用いた。作業手順は次の通りである。
(MMP inhibitory activity characteristics)
The synthesized compounds a to k were examined for inhibitory activity against MMP-1, MMP-2, and MMP-9. For the activity evaluation, a commercially available MMP Inhibitor Profiling Kit, “Fluorometric” (manufactured by BIOMOL) was used. The work procedure is as follows.

(1)凍っている測定用緩衝液,バイアルに入っているN−イソブチル−N−(4−メトキシフェニルスルホニル)グリコールヒドロキサム酸(以下「NNGH」という。:positive control)を解凍し、NNGH 1μLに対して測定用緩衝液を200μLを加えて希釈液を別の容器に作る。
(2)測定用緩衝液を96well plateにおいて検定用の3wellに99μLを加え、Control用のwellに79μL,NNGH用のwellに59μL,残りのwellは評価したい化合物用で評価する濃度で加える測定用緩衝液の量は変化する。
(3)MMPを解凍した後に下に示す比率で希釈する。
MMP−1: 1/40 MMP−9: 1/60
MMP−2: 1/70 MMP−10: 1/100
MMP−3: 1/70 MMP−12: 1/285
MMP−7: 1/70 MMP−13: 1/50
MMP−8: 1/100 MMP−14: 1/100
(4)上記(3)で希釈した酵素を20μLずつcontrol,NNGH,評価したい化合物のwellに加えていく。
(5)上記(1)で希釈したNNGH溶液をNNGH用wellのみ加える。
(6)control用のwellのみDMSO 5μL加える。
(7)評価したい化合物を評価したい濃度になるように計算した溶液を所定のwellに加える。
(8)酵素と評価化合物とを反応させるため1時間、37℃でインキュベートする。
(9)1時間たったら、まず、検定用の3wellに蛍光ペプチド基質を1μL加え、Fluoroskan Ascent(サーモフィッシャーサイエンティフィック株式会社製)蛍光/マイクロプレートリーダーにて、Ex/Em=328/420で蛍光強度を測定し、値が一定になるまで測定する。このときの値をブランクとして使う。
(10)ブランクの測定が終わったら、残りのwell全てに蛍光ペプチド基質を1μLずつ加えて、蛍光を測定する。2分ごとに測定し10点取る。
(11)点を時間、蛍光度の関係でプロットして、直線を引いたときの傾きをcontrol,NNGH,評価したい化合物のそれぞれで求める。
(12)求めた傾きを使って阻害率を計算する。その計算式は、次の〔式1〕で求められる。
〔1−(評価したい化合物の傾き)/(controlの傾き)〕×100(%) 〔式1〕
(1) Thaw frozen measurement buffer, N-isobutyl-N- (4-methoxyphenylsulfonyl) glycol hydroxamic acid (hereinafter referred to as “NNGH”) in a vial, and add 1 μL of NNGH. In contrast, 200 μL of the measurement buffer is added to make a diluted solution in another container.
(2) Add 99 μL of assay buffer to 3 wells for assay in 96-well plate, add 79 μL to control well, 59 μL to NNGH well, and add remaining well at the concentration evaluated for the compound to be evaluated The amount of buffer varies.
(3) After thawing MMP, dilute at the ratio shown below.
MMP-1: 1/40 MMP-9: 1/60
MMP-2: 1/70 MMP-10: 1/100
MMP-3: 1/70 MMP-12: 1/285
MMP-7: 1/70 MMP-13: 1/50
MMP-8: 1/100 MMP-14: 1/100
(4) Add 20 μL of the enzyme diluted in (3) above to control, NNGH, and the well of the compound to be evaluated.
(5) Add only the NNGH well to the NNGH solution diluted in (1) above.
(6) Add 5 μL of DMSO only to control wells.
(7) A solution calculated so that the compound to be evaluated has a concentration to be evaluated is added to a predetermined well.
(8) Incubate at 37 ° C. for 1 hour to react the enzyme with the evaluation compound.
(9) After 1 hour, first, 1 μL of the fluorescent peptide substrate is added to 3 wells for the assay, and Ex / Em = 328/420 with a Fluoroskan Ascent (manufactured by Thermo Fisher Scientific) fluorescence / microplate reader. Measure the fluorescence intensity and measure until the value is constant. Use this value as a blank.
(10) After the blank measurement is completed, 1 μL of the fluorescent peptide substrate is added to all remaining wells, and the fluorescence is measured. Measure every 2 minutes and take 10 points.
(11) The points are plotted with respect to time and fluorescence, and the slope when a straight line is drawn is determined for each of control, NNGH, and the compound to be evaluated.
(12) The inhibition rate is calculated using the obtained slope. The calculation formula is obtained by the following [Formula 1].
[1- (Slope of compound to be evaluated) / (Slope of control)] × 100 (%) [Formula 1]

Kitの作業手順にしたがって合成した化合物のMMP阻害活性を測定したところ、すべての化合物において阻害活性が認められた。これらの結果について図1にグラフで示す。  When the MMP inhibitory activity of the compound synthesized according to the Kit procedure was measured, the inhibitory activity was observed in all the compounds. These results are shown graphically in FIG.

これらの化合物について、さらに濃度を変えて測定を行い、50%阻害濃度(IC50)を測定、算出し、表3に結果を示す。  These compounds were further measured at different concentrations, and 50% inhibitory concentration (IC50) was measured and calculated. Table 3 shows the results.

Figure 0005875576
Figure 0005875576

化合物gでは、MMP−1、MMP−2、MMP−9すべてにおいて200μM程度の阻害活性が認められた。また、塩素を導入した化合物iにおいてもMMP−2、MMP−9で同程度の阻害活性があった。ピペリジン類の替わりにアダマンタンを導入した誘導体においては、化合物eにおいて同程度の阻害活性が認められた。それら以外の化合物においても、化合物j、kを除いては、弱いながらもMMP−1、MMP−2、MMP−9のいずれかに阻害活性が認められた。  In compound g, an inhibitory activity of about 200 μM was observed in all of MMP-1, MMP-2, and MMP-9. In addition, the compound i into which chlorine was introduced also had comparable inhibitory activity with MMP-2 and MMP-9. In the derivative in which adamantane was introduced instead of piperidine, a similar inhibitory activity was observed in compound e. In other compounds, except for compounds j and k, although they were weak, inhibitory activity was observed in any of MMP-1, MMP-2 and MMP-9.

上記のそれぞれの評価を◎〜×でまとめて表4に示した。評価基準は次の通りである(ただしNDは未測定)。  The above evaluations are shown in Table 4 together with ◎ to ×. The evaluation criteria are as follows (however, ND is not measured).

・UV吸収,初期値
◎:30,000≦ε
○:26,000≦ε<30,000
△:22,000≦ε<26,000
×:ε<22,000
UV absorption, initial value ◎: 30,000 ≦ ε
○: 26,000 ≦ ε <30,000
Δ: 22,000 ≦ ε <26,000
×: ε <22,000

・耐光性
◎:80%≦ε残存性
○:70%≦ε残存性<80%
△:40%≦ε残存性<70%
×:ε残存性<40%
Light resistance ◎: 80% ≦ ε persistence ○: 70% ≦ ε persistence <80%
Δ: 40% ≦ ε persistence <70%
×: ε persistence <40%

・水への分配
◎:ClogP<5
○:5≦ClogP<6
△:6≦ClogP<7.5
×:7.5≦ClogP
・ Distribution to water ◎: ClogP <5
○: 5 ≦ ClogP <6
Δ: 6 ≦ ClogP <7.5
×: 7.5 ≦ ClogP

・化粧基材への溶解性
28℃溶解度が1wt/wt%以上の溶剤が
◎:4種類以上
○:2〜3種類
△:1種類
×:なし
・ Solubility in cosmetic base material Solvents with 28 ° C solubility of 1 wt / wt% or more ◎: 4 types or more ○: 2-3 types △: 1 type ×: None

・NMP活性
NMP50%阻害活性濃度(IC50)が
◎:1,000μM以下のものが3種類
○:1,000μM以下のものが1〜2種類
△:◎○除き、2,000μM以下のもののものが1種類以上
×:上記のいずれにも当てはまらない
・ NMP activity NMP 50% inhibitory activity concentration (IC50): ◎: Three types of 1,000 μM or less ○: One or two types of 1,000 μM or less △: Except ◎ ○, those with 2,000 μM or less 1 or more ×: Not applicable to any of the above

Figure 0005875576
Figure 0005875576

上記の結果から本発明のベンゾトリアゾール化合物は、UVAの領域に大きな紫外線吸収効果を有し、必要十分な化粧基材への溶解性、MMP阻害活性を併せ持つ、ハイブリッドな材料を提供することができる。また、化合物としての安定性に優れていながら、CLogP値が低く、生分解性にも優れていると考えられることなどを総合的に鑑みると、従来の紫外線吸収剤よりも能力が高いサンケアー化粧品として利用できる。_  From the above results, the benzotriazole compound of the present invention can provide a hybrid material having a large ultraviolet absorption effect in the UVA region, and having both necessary and sufficient solubility in a cosmetic base material and MMP inhibitory activity. . In addition, in view of the fact that the ClogP value is low and the biodegradability is considered to be excellent while being excellent in stability as a compound, as a sun care cosmetic product having higher ability than conventional UV absorbers Available. _

Claims (6)

ベンゾトリアゾール化合物のうち、下記一般式2で示される2−(2,4−ジヒドロキシフェニル)−2H−ベンゾトリアゾール誘導体であるベンゾトリアゾール化合物。
一般式2:
Figure 0005875576
(Aは環構成原子に窒素原子,酸素原子および/または硫黄原子を含んでもよい脂環、あるいは前記脂環を末端に持つアルキルオキシ基もしくはアルキルアミノ基)

Among the benzotriazole compounds, a benzotriazole compound which is a 2- (2,4-dihydroxyphenyl) -2H-benzotriazole derivative represented by the following general formula 2 .
General formula 2:
Figure 0005875576
(A is an alicyclic ring which may contain a nitrogen atom, an oxygen atom and / or a sulfur atom as a ring constituent atom, or an alkyloxy group or an alkylamino group having the alicyclic end as a terminal)

請求項1記載の一般式2で示されるベンゾトリアゾール化合物のうち、下記化合物aまたは化合物bで示される請求項1記載のベンゾトリアゾール化合物。
化合物a:モルホリン4-カルボン酸 2−[4−(2H−ベンゾトリアゾール‐2‐イル)-3-ヒドロキシ-フェノキシ]-エチルエステル (Morpholine-4-carboxylic acid 2-[4-(2H-benzotriazol-2-yl)-3-hydroxy-phenoxy]-ethyl ester)





Figure 0005875576

化合物b:アダマンタン-1-カルボン酸 2−[4−(2H−ベンゾトリアゾール-2-イル)-3-ヒドロキシ-フェノキシ]-エチルエステル(Adamantane-1-carboxylic acid 2-[4-(2H-benzotriazol-2-yl)-3-hydroxy-phenoxy]-ethyl ester)
Figure 0005875576

The benzotriazole compound according to claim 1, which is represented by the following compound a or compound b among the benzotriazole compounds represented by the general formula 2 according to claim 1 .
Compound a: Morpholine-4-carboxylic acid 2- [4- (2H-benzotriazol-) 2- [4- (2H-benzotriazol-2-yl) -3-hydroxy-phenoxy] -ethyl ester 2-yl) -3-hydroxy-phenoxy] -ethyl ester)





Figure 0005875576

Compound b: Adamantane-1-carboxylic acid 2- [4- (2H-benzotriazol-2-yl) -3-hydroxy-phenoxy] -ethyl ester (Adamantane-1-carboxylic acid 2- [4- (2H-benzotriazol) -2-yl) -3-hydroxy-phenoxy] -ethyl ester)
Figure 0005875576

下記一般式3で示される2−(2,4−ジヒドロキシフェニル)−2H−ベンゾトリアゾール誘導体のうち、下記の化合物c,化合物d,化合物f,化合物g,化合物h,化合物i,化合物jまたは化合物kのうちいずれかで示されるベンゾトリアゾール化合物。
一般式3:
Figure 0005875576
(Aは環構成原子に窒素原子,酸素原子および/または硫黄原子を含んでもよい脂環あるいは前記脂環を末端に持つアルキルオキシ基もしくはアルキルアミノ基,R1は、水素原子または塩素原子)

化合物c:4−[4−(2H−ベンゾトリアゾール−2−イル)−3−ヒドロキシ−フェノキシ]−1−モルホリン4−イル−ブタン-1-オン
(4-[4-(2H-Benzotriazol-2-yl)-3-hydroxy-phenoxy]-1-morpholin-4-yl-butan-1-one)
Figure 0005875576


化合物d:1−{4−[4−(2H−ベンゾトリアゾール−2−イル)−3−ヒドロキシ−フェノキシ]−ブチリル}−ピロリジン−2−オン
(1-{4-[4-(2H-Benzotriazol-2-yl)-3-hydroxy-phenoxy]-butyryl}-pyrrolidin-2-one)
Figure 0005875576


合物f:4−[4−(2H−ベンゾトリアゾール−2−イル)−3−ヒドロキ−フェノキシ]−ブチリック酸 2−モルホリン4−イル−エチルエステル
(4-[4-(2H-Benzotriazol-2-yl)-3-hydroxy-phenoxy]-butyric acid
2-morpholin-4-yl-ethyl ester)
Figure 0005875576


化合物g:4−[4−(2H−ベンゾトリアゾール−2−イル)−3−ヒドロキシ−フェノキシ]−ブチリック酸 2−ピペリジン−1−イル−エチルエステル
(4-[4-(2H-Benzotriazol-2-yl)-3-hydroxy-phenoxy]-butyric
acid 2-piperidin-1-yl-ethyl ester)
Figure 0005875576


化合物h:4−[4−(2H−ベンゾトリアゾール−2−イル)−3−ヒドロキシ−フェノキシ]−N−(2−モルホリン4−イル−エチル)−ブチルアマイド
(4-[4-(2H-Benzotriazol-2-yl)-3-hydroxy-phenoxy]-N-(2-morpholin-4-yl-ethyl)-butyramide)
Figure 0005875576


化合物i:4−{4−[5−クロロ−(2H−ベンゾトリアゾール−2−イル)]−3−ヒドロキシ−フェノキシ}−ブチリック酸 2−ピペリジン−1−イル−エチルエステル(4-{4-[5-Chloro-(2H-benzotriazol-2-yl)]-3-hydroxy-phenoxy}-butyric-acid 2-piperidin-1-yl-ethyl ester)
Figure 0005875576
化合物j:4−{4−[5−クロロ−(2H−ベンゾトリアゾール−2−イル)]−3−ヒドロキシ−フェノキシ}−ブチリック酸 モルホリン4−イル−エチルエステル(4-{4-[5-Chloro-(2H-benzotriazol-2-yl)]-3-hydroxy-phenoxy}-butyricacid 2-morpholin-4-yl-ethyl ester)
Figure 0005875576


化合物k:4−{4−[5−クロロ−(2H−ベンゾトリアゾール−2−イル)]−3−ヒドロキシ−フェノキシ}−N−(2−モルホリン4−イル−エチル)−ブチルアマイド
(4-{4-[5-Chloro-(2H-benzotriazol-2-yl)]-3-hydroxy-phenoxy}-N-(2-mor-pholin-4-yl-ethyl)-butyramide)
Figure 0005875576


Represented by the following general formula 3 2- (2,4-dihydroxyphenyl) -2H- of benzotriazole derivatives, the following compounds c, compound d, of compound f, compound g, compound h, Compound i, compound j Or a benzotriazole compound represented by any one of compounds k;
General formula 3:
Figure 0005875576
(A is an alicyclic ring which may contain a nitrogen atom, an oxygen atom and / or a sulfur atom as a ring constituent atom, or an alkyloxy group or an alkylamino group having the alicyclic end as a terminal, and R1 is a hydrogen atom or a chlorine atom)

Compound c: 4- [4- (2H-benzotriazol-2-yl) -3-hydroxy-phenoxy] -1-morpholin-4-yl-butan-1-one (4- [4- (2H-Benzotriazol-2) -yl) -3-hydroxy-phenoxy] -1-morpholin-4-yl-butan-1-one)
Figure 0005875576


Compound d: 1- {4- [4- (2H-benzotriazol-2-yl) -3-hydroxy-phenoxy] -butyryl} -pyrrolidin-2-one
(1- {4- [4- (2H-Benzotriazol-2-yl) -3-hydroxy-phenoxy] -butyryl} -pyrrolidin-2-one e)
Figure 0005875576


Of compound f: 4- [4- (2H-benzotriazol-2-yl) -3-hydroxy - phenoxy] - Buchirikku acid 2-morpholin-4-yl - ethyl ester (4- [4- (2H-Benzotriazol- 2-yl) -3-hydroxy-phenoxy] -butyric acid
2-morpholin-4-yl-ethyl ester)
Figure 0005875576


Compound g: 4- [4- (2H-benzotriazol-2-yl) -3-hydroxy-phenoxy] -butyric acid 2-piperidin-1-yl-ethyl ester (4- [4- (2H-Benzotriazol-2 -yl) -3-hydroxy-phenoxy] -butyric
acid 2-piperidin-1-yl-ethyl ester)
Figure 0005875576


Compound h: 4- [4- (2H-benzotriazol-2-yl) -3-hydroxy-phenoxy] -N- (2-morpholin-4-yl-ethyl) -butylamide (4- [4- (2H- Benzotriazol-2-yl) -3-hydroxy-phenoxy] -N- (2-morpholin-4-yl-ethyl) -butyramide)
Figure 0005875576


Compound i: 4- {4- [5-chloro- (2H-benzotriazol-2-yl)]-3-hydroxy-phenoxy} -butyric acid 2-piperidin-1-yl-ethyl ester (4- {4- [5-Chloro- (2H-benzotriazol-2-yl)]-3-hydroxy-phenoxy} -butyric-acid 2-piperidin-1-yl-ethyl ester)
Figure 0005875576
Compound j: 4- {4- [5-chloro- (2H-benzotriazol-2-yl)]-3-hydroxy-phenoxy} -butyric acid morpholin 4-yl-ethyl ester (4- {4- [5- Chloro- (2H-benzotriazol-2-yl)]-3-hydroxy-phenoxy} -butyricacid 2-morpholin-4-yl-ethyl ester)
Figure 0005875576


Compound k: 4- {4- [5-chloro- (2H-benzotriazol-2-yl)]-3-hydroxy-phenoxy} -N- (2-morpholin-4-yl-ethyl) -butylamide (4- {4- [5-Chloro- (2H-benzotriazol-2-yl)]-3-hydroxy-phenoxy} -N- (2-mor-pholin-4-yl-ethyl) -butyramide)
Figure 0005875576


請求項1〜3のいずれかの項記載のベンゾトリアゾール化合物をその成分として含む紫外線吸収剤。 The ultraviolet absorber which contains the benzotriazole compound in any one of Claims 1-3 as the component. 請求項1〜3のいずれかの項記載のベンゾトリアゾール化合物をその成分として含む化粧用紫外線吸収剤。 The cosmetic ultraviolet absorber which contains the benzotriazole compound in any one of Claims 1-3 as the component. 請求項1〜3のいずれかの項記載のベンゾトリアゾール化合物をその成分として含む皮膚外用剤。
The external preparation for skin which contains the benzotriazole compound in any one of Claims 1-3 as the component.
JP2013273858A 2012-12-26 2013-12-20 Benzotriazole compound, cosmetic ultraviolet absorber and skin external preparation using the same Expired - Fee Related JP5875576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013273858A JP5875576B2 (en) 2012-12-26 2013-12-20 Benzotriazole compound, cosmetic ultraviolet absorber and skin external preparation using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012282013 2012-12-26
JP2012282013 2012-12-26
JP2013273858A JP5875576B2 (en) 2012-12-26 2013-12-20 Benzotriazole compound, cosmetic ultraviolet absorber and skin external preparation using the same

Publications (2)

Publication Number Publication Date
JP2014141487A JP2014141487A (en) 2014-08-07
JP5875576B2 true JP5875576B2 (en) 2016-03-02

Family

ID=51423106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013273858A Expired - Fee Related JP5875576B2 (en) 2012-12-26 2013-12-20 Benzotriazole compound, cosmetic ultraviolet absorber and skin external preparation using the same

Country Status (1)

Country Link
JP (1) JP5875576B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5731452B2 (en) * 2012-08-10 2015-06-10 シプロ化成株式会社 Novel benzotriazole derivative compound and water-soluble ultraviolet absorber containing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118369A (en) * 1976-07-28 1978-10-03 Argus Chemical Corporation 2,2,6,6-Tetrasubstituted-4-piperidyl carboxy heterocyclic compounds as stabilizers for synthetic polymers
JPS5943061A (en) * 1982-09-06 1984-03-09 Adeka Argus Chem Co Ltd Stabilized synthetic resin composition
JPH0618926B2 (en) * 1985-05-02 1994-03-16 住友化学工業株式会社 UV absorber
JPH03139589A (en) * 1989-10-24 1991-06-13 Mitsubishi Petrochem Co Ltd Ultraviolet absorber
US7066184B1 (en) * 1999-11-16 2006-06-27 Ciba Specialty Chemicals Corporation Use of benzotriazole UV absorbers
JP2002169020A (en) * 2000-12-04 2002-06-14 Konica Corp Optical film, polarizing plate and display using the same
JP4391293B2 (en) * 2004-04-01 2009-12-24 株式会社資生堂 Ultraviolet absorber and external preparation for skin containing the same
CN101367792B (en) * 2008-10-13 2011-10-19 大连化工研究设计院 Benzotriazole light stabilizer containing hindered amine group
CN102391252A (en) * 2011-09-13 2012-03-28 大连化工研究设计院 Novel hindered amine group-contained benzotriazole light stabilizer
CN102432597A (en) * 2011-09-13 2012-05-02 大连化工研究设计院 Benzotriazole light stabilizer containing hindered amine genes
JP5731452B2 (en) * 2012-08-10 2015-06-10 シプロ化成株式会社 Novel benzotriazole derivative compound and water-soluble ultraviolet absorber containing the same
JP6143338B2 (en) * 2013-04-10 2017-06-07 大日精化工業株式会社 High refractive index polymer and method for producing the same

Also Published As

Publication number Publication date
JP2014141487A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
FI93352B (en) Process for the preparation of pharmacologically active esters and thioesters
JP6584443B2 (en) Aromatic amidothiazole, cosmetic or dermatological formulations containing it, and its use for treating and preventing unwanted skin pigmentation
DE60040397D1 (en) SUBSTITUTED ALPHA HYDROXY ACIDS AS CASPASE INHIBITORS AND THEIR USE
BRPI0517500B1 (en) compounding, use of a composition, pharmaceutical composition, cosmetic composition, non-therapeutic uses of a cosmetic composition and cosmetic process to improve skin appearance
RU2499794C2 (en) Novel 4-(azacycloalkyl)benzene-1,3-diol compounds as tyrosinase inhibitors, method for production thereof and use thereof in human treatment and in cosmetics
JPH04235172A (en) Composition for preventing falling-off of hair and promoting growth of hair
FR2937973A1 (en) MELANOCORTIN RECEPTOR MODULATORS, PROCESS FOR THEIR PREPARATION AND THEIR USE IN HUMAN MEDICINE AND COSMETICS
EP2529735B1 (en) Compositions comprising 4-(heterocycloalkyl)benzene-1,3-diol derivatives with tyrosinase enzyme inhibiting activity
Rabie et al. Design, synthesis, and biological evaluation of new 5-substituted-1, 3, 4-thiadiazole-2-thiols as potent antioxidants
JP5875576B2 (en) Benzotriazole compound, cosmetic ultraviolet absorber and skin external preparation using the same
NL8700505A (en) BENZOFURAN DERIVATIVES, METHODS FOR PREPARING THEM AND MEDICINAL AND COSMETIC PREPARATIONS CONTAINING SUCH DERIVATIVES
US8617524B2 (en) Depigmenting keratin materials utilizing dithiolane compounds
AU661487B2 (en) Benzimidazole-derived compounds, method for preparing same, and therapeutical and cosmetic uses thereof
CN110121491B (en) 3,4,5-trimethoxycinnamate derivative, method for preparing the same, and skin whitening composition containing the same
EP3022180B1 (en) Uv absorbing compounds, compositions comprising same and uses thereof
US5929112A (en) Derivatives of N,N&#39;-di (carboxyalkyl) alkylene di-or triamine
JP5524630B2 (en) Dopa oxidase activity inhibitor and whitening agent
Hayashi et al. Synthesis and evaluation of novel heterocyclic MMP inhibitors
WO2007089069A1 (en) Phenyl imidazol sulfonamide derivatives, the preparation method thereof and the whitening cosmetic composition containing the same
CN102421751B (en) Sulphurated derivatives of resorcinol, preparation of same and cosmetic uses thereof
KR100449228B1 (en) EGCG derivatives, Preparation method thereof and cosmetic composition containing thereof
KR100365072B1 (en) Kojic acid dimer and preparation method thereof
KR100483113B1 (en) Kojyl Benzoate derivatives and Preparation method thereof, and cosmetic composition containing thereof
US10519111B2 (en) UV absorbing compounds, compositions comprising same and uses thereof
WO2007039821A2 (en) Novel inhibitors of tyrosinase, their method of preparation and their use in human medicine and in cosmetics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150622

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160119

R150 Certificate of patent or registration of utility model

Ref document number: 5875576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees