JP5875429B2 - Multistage centrifugal blower - Google Patents

Multistage centrifugal blower Download PDF

Info

Publication number
JP5875429B2
JP5875429B2 JP2012071073A JP2012071073A JP5875429B2 JP 5875429 B2 JP5875429 B2 JP 5875429B2 JP 2012071073 A JP2012071073 A JP 2012071073A JP 2012071073 A JP2012071073 A JP 2012071073A JP 5875429 B2 JP5875429 B2 JP 5875429B2
Authority
JP
Japan
Prior art keywords
stage
impeller
immediately
centrifugal blower
stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012071073A
Other languages
Japanese (ja)
Other versions
JP2013204429A (en
Inventor
澄賢 平舘
澄賢 平舘
泰 新川
泰 新川
聖士 上甲
聖士 上甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012071073A priority Critical patent/JP5875429B2/en
Publication of JP2013204429A publication Critical patent/JP2013204429A/en
Application granted granted Critical
Publication of JP5875429B2 publication Critical patent/JP5875429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、流体機械の一つである遠心送風機に係り、特に旋回流発生装置を有する多段遠心送風機に関する。   The present invention relates to a centrifugal blower that is one of fluid machines, and more particularly to a multistage centrifugal blower having a swirl flow generator.

従来の旋回流発生装置を有する遠心送風機の例を、図8を用いて以下に説明する。
図8は、従来の多段遠心送風機の羽根車回転軸に平行な面における断面図である。
An example of a centrifugal blower having a conventional swirling flow generator will be described below with reference to FIG.
FIG. 8 is a cross-sectional view of a conventional multistage centrifugal blower on a plane parallel to the impeller rotational axis.

図8において、従来の旋回流発生装置を有する多段遠心送風機は、流体の上流側に吸込ケーシング1が設けられている。この吸込みケーシング1の下流側には、初段羽根車4aへの流入流れに任意の旋回速度を付与して容量制御を行うためのインレットガイドベーン2(以下、IGV2というが、請求項では旋回流発生装置と称した)が設けられている。このIGV2は回転軸3を取り囲むように複数取り付けられ、更にそれぞれのベーンは回転角度が任意に変更出来るように可動機構8が備えられている。このIGV2の下流側で回転軸3の軸方向にはケーシング1からの流体を昇圧するための複数の羽根車4a〜4dが装着されている。   In FIG. 8, the multistage centrifugal blower having the conventional swirl flow generator is provided with a suction casing 1 on the upstream side of the fluid. On the downstream side of the suction casing 1, an inlet guide vane 2 (hereinafter referred to as IGV2) for controlling the capacity by applying an arbitrary swirling speed to the inflow flow into the first stage impeller 4a (hereinafter referred to as IGV2). Device). A plurality of the IGVs 2 are attached so as to surround the rotary shaft 3, and each vane is provided with a movable mechanism 8 so that the rotation angle can be arbitrarily changed. A plurality of impellers 4a to 4d for boosting the fluid from the casing 1 are mounted in the axial direction of the rotary shaft 3 on the downstream side of the IGV 2.

この各羽根車4a〜4dの半径方向外側には羽根車出口から流入する流体の動圧を静圧へと変換するディフューザ5a〜5dと、このディフューザ5a〜5dの下流には次段羽根車入口へと流体を導くリターンチャネル6a〜6c、及び吐出ケーシング7が設けられている。9は羽根車上流側流路幅を指している。   Diffusers 5a to 5d for converting the dynamic pressure of the fluid flowing from the impeller outlet to the static pressure are arranged radially outward of the impellers 4a to 4d, and the next stage impeller inlet is disposed downstream of the diffusers 5a to 5d. Return channels 6a to 6c for guiding fluid to the outlet and a discharge casing 7 are provided. 9 indicates the impeller upstream flow path width.

ここで、多段遠心送風機の性能特性に関して図9、図10を使って説明する。
図9はIGV出口から初段ディフューザ出口における各位置での速度三角形を示した図であり、図9(a)は初段羽根車に対して予旋回を与えない場合の速度三角形を示す図である。図9(b)初段羽根車に対して予旋回を与えた場合の速度三角形を示す図である。
Here, performance characteristics of the multistage centrifugal fan will be described with reference to FIGS.
FIG. 9 is a diagram showing speed triangles at each position from the IGV outlet to the first stage diffuser outlet, and FIG. 9A is a diagram showing the speed triangles when no pre-turn is given to the first stage impeller. FIG. 9B is a diagram showing a speed triangle when a pre-turn is given to the first stage impeller.

また図10は、一般的なIGV付き多段遠心送風機の全段圧力特性曲線、並びに全段効率特性曲線を示す図である。
尚、全段圧力特性曲線についてはIGV回転角度の異なる2本の特性曲線を、全段効率特性曲線についてはIGV取付角を変更せずに初段羽根車流入流れに旋回速度を与えない場合の1本の特性曲線のみを、それぞれ示す。
FIG. 10 is a diagram showing a full-stage pressure characteristic curve and a full-stage efficiency characteristic curve of a general multistage centrifugal fan with an IGV.
Note that the two-stage pressure characteristic curve has two characteristic curves with different IGV rotation angles, and the all-stage efficiency characteristic curve has 1 of the case where the swirl speed is not given to the first stage impeller inflow without changing the IGV mounting angle. Only the characteristic curves of the books are shown.

まず、初段羽根車4aに旋回速度を与えない場合(IGV角度αIGV=0°の場合)の性能特性について、図9を用いて説明する。
図9(a)において、吸込ケーシング1とIGV2を通過した流れは、旋回速度成分の無い状態で初段羽根車4aへと流入する。初段羽根車4a内部においては、(式1)で表される羽根車軸動力分に相当する圧力上昇(理論ヘッドHth)が与えられる。ここで、Uは羽根車周速、Cuは羽根車絶対速度の周方向成分を、gは重力加速度を表す。添え字1は羽根車入口、2は羽根車出口を表す。
Hth = (U・Cu - U・Cu)/g … (式1)
予旋回を与えない場合には、右辺第二項U1・Cuが0となる。また(式1)から、理論ヘッドは基本的に流量低下(羽根車出口子午面速度Cmの低下)と共に直線的に増大する事が導かれる。
First, the performance characteristics when the turning speed is not given to the first stage impeller 4a (when IGV angle α IGV = 0 °) will be described with reference to FIG.
In Fig.9 (a), the flow which passed the suction casing 1 and IGV2 flows in into the first stage impeller 4a in the state without a turning speed component. Inside the first stage impeller 4a, a pressure increase (theoretical head H th ) corresponding to the impeller shaft power represented by (Equation 1) is given. Here, U represents the impeller circumferential speed, Cu represents the circumferential component of the impeller absolute speed, and g represents the gravitational acceleration. Subscript 1 represents the impeller inlet and 2 represents the impeller outlet.
H th = (U 2 · Cu 2 -U 1 · Cu 1 ) / g (Formula 1)
When the pre-turn is not given, the second term U 1 · Cu 1 on the right side becomes 0. From (Equation 1), it is derived that the theoretical head basically increases linearly with a decrease in flow rate (decrease in impeller exit meridional surface velocity Cm 2 ).

一方、各流量点において、Hthから羽根車、ディフューザ、リターンチャネル各部の全圧損失を差し引いた値が、実際の初段の圧力上昇となる。ここで、各流量点における全圧損失の大きさは、図9(a)に示す羽根車やディフューザにおける入射角i、iの値や、減速比W/W、C/Cなどの値によって変化する。 On the other hand, at each flow point, a value obtained by subtracting the total pressure loss of each part of the impeller, diffuser, and return channel from H th is the actual first-stage pressure increase. Here, the magnitude of the total pressure loss at each flow point is the values of the incident angles i 1 and i 3 and the reduction ratios W 1 / W 2 and C 3 / C in the impeller and diffuser shown in FIG. It varies depending on a value such as 4 .

入射角は、流量減少に伴い徐々に増大する。入射角が0付近となる流量で、全圧損失は最も小さい。そして、入射角が0からずれるにつれて翼入口角β1bやβ3bと流入角β、αとの差が大きくなって損失が増大し、ついには失速する。 The incident angle gradually increases as the flow rate decreases. At a flow rate where the incident angle is near 0, the total pressure loss is the smallest. As the incident angle deviates from 0, the difference between the blade inlet angle β 1b or β 3b and the inflow angle β 1 , α 3 increases, the loss increases, and finally stalls.

一方減速比も、流量減少に伴い徐々に増大する。減速比が大きければ、基本的には流路壁面摩擦の減少によって損失が減少する。しかし、流量の減少とともに減速比が過大になると、流路壁面境界層の厚みが増して損失が増大し、ついには失速する。   On the other hand, the reduction ratio gradually increases as the flow rate decreases. If the reduction ratio is large, the loss is basically reduced by reducing the flow path wall friction. However, if the reduction ratio becomes excessive as the flow rate decreases, the thickness of the flow path wall boundary layer increases, resulting in an increase in loss and eventually a stall.

以上から初段では、ある流量点において損失が最小となり(最高効率点)、これより大流量側でも小流量側でも効率が低下する。特に小流量側では、前記の通り流量低減に伴い損失が増大して圧力特性曲線の勾配が徐々に平坦になり、ついには右上がり勾配部が現れる。   From the above, at the first stage, the loss is minimum at the certain flow point (maximum efficiency point), and the efficiency is lowered at both the large flow rate side and the small flow rate side. Particularly on the small flow rate side, as described above, the loss increases as the flow rate decreases, and the gradient of the pressure characteristic curve gradually becomes flat, and finally a rising slope portion appears.

多段遠心送風機では、2段目以降においても同様の圧力特性曲線、効率特性曲線を有する。各段特性の和が全段特性となる。従って全段特性においても、ある流量において最高効率を有すると共に、低流量側において圧力特性曲線の勾配が徐々に平坦となり、ついには右上がり勾配部が現れる。圧力特性曲線の右上がり勾配部は、微少な流量変動に対して自励振動を起こし、送風機全体が順流・逆流を繰り返して運転不可能となる、サージング発生条件である事が知られている。従ってこの流量点が、αIGV=0°の場合の多段遠心送風機の作動限界となる(図10のαIGV=0°の特性曲線参照)。 The multistage centrifugal blower has the same pressure characteristic curve and efficiency characteristic curve in the second and subsequent stages. The sum of the characteristics of each stage is the entire stage characteristic. Therefore, even in the entire stage characteristics, the maximum efficiency is obtained at a certain flow rate, the gradient of the pressure characteristic curve gradually becomes flat on the low flow rate side, and finally a rising slope portion appears. It is known that the upward slope portion of the pressure characteristic curve is a surging generation condition that causes self-excited vibration with respect to minute flow rate fluctuations and the entire blower cannot be operated by repeating forward flow and reverse flow. Therefore, this flow point becomes the operation limit of the multistage centrifugal fan when α IGV = 0 ° (see the characteristic curve of α IGV = 0 ° in FIG. 10).

次に、初段羽根車に旋回速度を与えた場合(IGV角度αIGV≠0°の場合)の性能特性について、図9(b)を用いて説明する。
図9(b)において、吸込ケーシングとIGVを通過した流れは、IGV角度に応じた旋回速度成分を与えられた状態で初段羽根車へと流入する。この時、初段羽根車の理論ヘッドが、式(1)右辺第二項 UCu≠0となって減少するため、初段圧力上昇は低下する。初段圧力上昇の低下によって2段目以降の段の入口圧力も低下し、2段目以降の段の入口体積流量が増大して、これらの段の圧力上昇も低下する。従って、全段圧力上昇も低下する事になる。
Next, performance characteristics when a turning speed is given to the first stage impeller (when IGV angle α IGV ≠ 0 °) will be described with reference to FIG. 9B.
In FIG. 9B, the flow that has passed through the suction casing and the IGV flows into the first stage impeller in a state where a turning speed component corresponding to the IGV angle is given. At this time, since the theoretical head of the first stage impeller is decreased as the second term U 1 Cu 1 ≠ 0 on the right side of the equation (1), the first stage pressure rise is decreased. Due to the decrease in the first-stage pressure increase, the inlet pressure of the second and subsequent stages also decreases, the inlet volume flow rate of the second and subsequent stages increases, and the pressure increase in these stages also decreases. Therefore, the whole-stage pressure rise is also reduced.

また図9(b)に示すように、αIGV≠0°の場合には、初段羽根車の入射角iが回復すると共に減速比W/Wも小さくなる。従って、初段羽根車の失速流量点は小流量側へ移動する。またこの時、初段羽根車より下流に位置するどの羽根車、ディフューザ、リターンチャネルにおいても、前記の通り各要素入口の体積流量が増大するため、これら要素においても失速発生点が小流量側へと移動する。以上の効果により、全段圧力特性曲線に右上がり勾配部が現れる流量点は、αIGV=0°の場合と比較して小流量側へと移動する。従ってこの時、サージング発生点も小流量側へと移動する。 As shown in FIG. 9B, when α IGV ≠ 0 °, the incident angle i 1 of the first stage impeller is recovered and the reduction ratio W 1 / W 2 is also reduced. Accordingly, the stall flow point of the first stage impeller moves to the small flow rate side. At this time, the volume flow rate at the inlet of each element increases as described above in any impeller, diffuser, and return channel located downstream from the first stage impeller. Moving. As a result of the above effects, the flow rate point where the upward slope portion appears in the all-stage pressure characteristic curve moves to the small flow rate side as compared with the case of α IGV = 0 °. Therefore, at this time, the surging occurrence point also moves to the small flow rate side.

実製品を運転する場合には、IGV角度を変化させながら、仕様圧力を維持しつつ運転流量を変化させる。従って、仕様圧力を満足する最小運転流量が広ければ広いほど、広範囲な運転流量に対応出来る事となる。この、最小の作動限界流量点から仕様流量点までが、送風機の作動範囲である(図10のαIGV≠0°の特性曲線参照)。 When operating the actual product, the operating flow rate is changed while maintaining the specified pressure while changing the IGV angle. Therefore, the wider the minimum operating flow rate that satisfies the specified pressure, the wider the operating flow rate can be accommodated. The range from the minimum operating limit flow point to the specified flow point is the operating range of the blower (see the characteristic curve of α IGV ≠ 0 ° in FIG. 10).

多段遠心送風機では、一般に仕様点効率向上と作動範囲拡大が技術的課題となる。通常、ターボ機械では、仕様点効率向上と作動範囲拡大はトレードオフとなる。これは、前記の通り、仕様点効率向上のためには各要素の仕様点入射角を0°とする、あるいは仕様点減速比を増大する事が効果的だが、同時に失速を早めてしまうためである。   In a multistage centrifugal blower, improvement of specification point efficiency and expansion of the operating range are generally technical issues. Usually, in turbomachinery, there is a trade-off between improving specification point efficiency and expanding the operating range. This is because, as described above, it is effective to increase the specification point incidence angle of each element to 0 ° or increase the specification point reduction ratio in order to improve the specification point efficiency, but at the same time, it will accelerate the stall. is there.

仕様点効率を維持しつつ作動範囲を拡大するため、様々な作動範囲拡大デバイスが提案されている。上記のIGVも、その1つであり、例えば下記特許文献1に記載例がある。
また他にも、オープン形羽根車では、下記特許文献2の様に、インデューサ部シュラウド側に環状のブリード流路を設け、羽根車失速流量点を小流量側へと移動させた例がある。
さらに、下記特許文献3の様に、ディフューザ翼を可変にする事で、仕様点効率向上と作動範囲拡大を狙った例がある。
In order to expand the operating range while maintaining specification point efficiency, various operating range expansion devices have been proposed. The above IGV is one of them, and there is an example described in Patent Document 1 below, for example.
In addition, in the open type impeller, there is an example in which an annular bleed flow path is provided on the inducer portion shroud side and the impeller stall flow rate point is moved to the small flow rate side as in Patent Document 2 below. .
Furthermore, as in Patent Document 3 below, there is an example in which the diffuser blade is made variable so as to improve the specification point efficiency and the operation range.

特開2002−5092号公報JP 2002-5092 A 特開平11−201094号公報JP-A-11-201094 特開昭63−36098号公報JP 63-36098 A

IGV付き多段遠心送風機では、特に小流量側作動範囲に対する要求仕様が厳しい事が多い(例えば、下水曝気用の多段遠心送風機など)。その場合、多段となった各羽根車ごとにIGVを取り付けることが理想である。しかしこれでは、構造の複雑化やコスト大幅増大を招いてしまう。   In a multistage centrifugal blower with IGV, the required specifications for the operating range on the small flow rate side are often strict (for example, a multistage centrifugal blower for sewage aeration). In that case, it is ideal to install an IGV for each impeller in multiple stages. However, this leads to a complicated structure and a significant increase in cost.

従って、1つ程度のなるべく少ない個数のIGVで、十分な小流量側作動範囲を満足する必要がある。このため従来は、全段の羽根車の仕様点入射角や減速比を小流量側特性が向上するよう設定しており、仕様点効率向上が困難であるという課題があった。   Accordingly, it is necessary to satisfy a sufficiently small flow rate operating range with as few as possible IGVs. For this reason, conventionally, the specification point incidence angles and reduction ratios of the impellers of all stages are set so that the small flow rate side characteristics are improved, and there is a problem that it is difficult to improve the specification point efficiency.

本発明の目的は、多段遠心送風機における各段性能特性曲線の特徴、並びにサージングに突入する時の条件を考慮し、なるべく簡単な構成で、仕様点効率向上と小流量側作動範囲拡大を両立させることが可能な多段遠心送風機を提供することにある。   An object of the present invention is to achieve both improvement in specification point efficiency and expansion of the operating range on the small flow rate side with a simple configuration as much as possible in consideration of the characteristics of each stage performance characteristic curve in a multistage centrifugal fan and the conditions when entering surging. An object of the present invention is to provide a multi-stage centrifugal blower capable of performing the above-described operation.

上記目的を達成するために本発明は、羽根車に旋回流を付与する旋回流発生装置を任意の段の羽根車直前に少なくとも一つ有する多段遠心送風機において、旋回流発生装置の直後の段の羽根車の仕様点入射角や減速比のみ、それ以外の段の羽根車よりも小さく設定したものである。   In order to achieve the above object, the present invention provides a multistage centrifugal blower having at least one swirling flow generating device that imparts a swirling flow to an impeller immediately before an impeller of an arbitrary stage, and the Only the incident angle and the reduction ratio of the specification point of the impeller are set smaller than the impellers of the other stages.

また上記目的を達成するために本発明は好ましくは、前記旋回流発生装置の直後の段の羽根車の羽根入口角のみ、それ以外の段の羽根車の羽根入口角よりも小さく設定すると良い。   In order to achieve the above object, in the present invention, it is preferable that only the blade inlet angle of the stage impeller immediately after the swirl flow generator is set smaller than the blade inlet angle of the other stage impeller.

また上記目的を達成するために本発明は好ましくは、前記旋回流発生装置の直後の段の羽根車の羽根出口角のみ、それ以外の段の羽根車の羽根出口角よりも小さく設定すると良い。   In order to achieve the above object, the present invention is preferably set such that only the blade outlet angle of the impeller at the stage immediately after the swirl flow generator is smaller than the blade outlet angle of the impeller at the other stage.

また上記目的を達成するために本発明は好ましくは、連続する2つの段における羽根車直径Dと羽根出口流路高さbの比b/Dの変化率WRの値が、旋回流発生装置の直後の段を含む場合のみ、それ以外の段のWRの平均値と3%以上異なり、かつ旋回流発生装置の直後の段が上流側にある場合のWRが最大、旋回流発生装置の直後の段が下流側にある場合のWRが最小となるようにすると良い。 In order to achieve the above object, the present invention is preferably configured such that the value of the rate of change WR of the ratio b 2 / D 2 between the impeller diameter D 2 and the blade outlet flow path height b 2 in two successive stages is Only when the stage immediately after the flow generator is included, the average WR of the other stages differs by 3% or more, and when the stage immediately after the swirl generator is upstream, the WR is maximum and swirl flow is generated. It is desirable to minimize the WR when the stage immediately after the apparatus is on the downstream side.

本発明によれば、多段遠心送風機における各段性能特性曲線の特徴、並びにサージングに突入する時の条件を考慮し、なるべく簡単な構成で、仕様点効率向上と小流量側作動範囲拡大を両立させることが可能な多段遠心送風機を提供できる。   According to the present invention, the characteristics of each stage performance characteristic curve in a multistage centrifugal fan and the conditions when entering surging are taken into consideration, and both improvement in specification point efficiency and expansion of the small flow side operating range are achieved with a simple configuration as much as possible. It is possible to provide a multistage centrifugal blower that can perform the above-described operation.

本発明の実施例1に係る予旋回発生装置直後の段、並びにそれ以外の段の、羽根車入射角と出入口相対速度を示す図である。It is a figure which shows the impeller incident angle and the entrance / exit relative speed of the stage immediately after the pre-turn generator which concerns on Example 1 of this invention, and the other stage. 従来の旋回流発生装置直後の段の羽根車流入流れに旋回速度のない場合、並びに旋回速度を付与した場合の各段の静圧上昇の流量変化を示す図である。It is a figure which shows the flow volume change of the static pressure rise of each stage when there is no turning speed in the impeller inflow flow of the stage immediately after the conventional turning flow generator, and when turning speed is provided. 本発明の実施例1に係る多段遠心送風機の全段圧力特性曲線、並びに全段効率特性曲線を示す図である。It is a figure which shows the all-stage pressure characteristic curve of the multistage centrifugal fan which concerns on Example 1 of this invention, and a all-stage efficiency characteristic curve. 本発明の実施例2に係る羽根車羽根の前縁付近を羽根車回転軸延長線上から見た図である。It is the figure which looked at the front edge vicinity of the impeller blade which concerns on Example 2 of this invention from the impeller rotating shaft extension line. 本発明の実施例3に係る羽根車羽根の後縁付近を羽根車回転軸と平行な方向から見た図である。It is the figure which looked at the rear edge vicinity of the impeller blade which concerns on Example 3 of this invention from the direction parallel to an impeller rotating shaft. 本発明の実施例4に係る連続する2つの段の羽根車子午面形状を重ねて描いた図である。It is the figure which drew the shape of the impeller meridian of two continuous steps according to Example 4 of the present invention. 従来の多段遠心送風機において、全段の羽根車内部流れを相似にする事を狙った場合の、WR(羽根車直径Dと羽根出口流路高さbの比b/Dの連続する2つの段間の比)全段平均値に対する、WR各段値の比を示した図である。In a conventional multistage centrifugal blower, WR (continuous ratio b 2 / D 2 of impeller diameter D 2 and blade outlet flow path height b 2 ) when aiming to make the internal flow of all stages imp similar It is a figure showing the ratio of each WR stage value to the overall stage average value. 従来の多段遠心送風機の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the conventional multistage centrifugal blower. 初段羽根車に対して予旋回を与えない場合の速度三角形を示す図である。It is a figure which shows the speed triangle when not giving a pre-turn with respect to a first stage impeller. 初段羽根車に対して予旋回を与えた場合の速度三角形を示す図である。It is a figure which shows the speed triangle at the time of giving pre-turn with respect to the first stage impeller. 一般的な旋回流発生装置付き多段遠心送風機の全段圧力特性曲線、並びに全段効率特性曲線図である。It is a whole-stage pressure characteristic curve of a general multistage centrifugal blower with a swirl flow generator, and a whole-stage efficiency characteristic curve.

以下、本発明の一実施例を図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施例の遠心送風機は、羽根車に旋回流を付与する旋回流発生装置を任意の段の羽根車直前に少なくとも一つ有する多段遠心送風機であり、基本的には従来例である図8と同様の構成要素を有する。但し、図1に示すように、旋回流発生装置であるIGV直後の段の羽根車の入射角や減速比のみ、それ以外の段の羽根車よりも小さく設定している点で、従来とは異なる。   The centrifugal blower of the present embodiment is a multi-stage centrifugal blower having at least one swirling flow generating device that imparts a swirling flow to an impeller immediately before an impeller at an arbitrary stage, and is basically a conventional example shown in FIG. Has similar components. However, as shown in FIG. 1, only the incident angle and reduction ratio of the stage impeller immediately after the IGV, which is the swirling flow generator, are set smaller than the other stage impellers. Different.

本構成とする事による効果を、図2を使用して説明する。
図2は、従来のIGV付き多段遠心送風機において、IGV直後段の羽根車流入流れに旋回速度のないαIGV=0°の場合、並びに旋回速度を付与したαIGV≠0°の場合の、各段の静圧上昇の流量変化を示したものである。尚、本例の段数は8段であり、初段の直前にIGVが設けられた構造となっている。
The effect of this configuration will be described with reference to FIG.
FIG. 2 shows a conventional multi-stage centrifugal blower with IGV when α IGV = 0 ° with no turning speed in the impeller inflow immediately after IGV , and when α IGV ≠ 0 ° with turning speed added. The flow rate change of the static pressure rise of a stage is shown. In this example, the number of stages is eight, and an IGV is provided immediately before the first stage.

図2において、まず旋回速度のないαIGV=0°の場合に着目する。
この場合の各段の静圧上昇の流量変化の勾配は、前記で説明した図10と同様、大流量側で右下がりを維持している。しかしながら、流量低下と共に徐々に緩やかとなり、サージング発生点付近でほぼ0となっている。
In FIG. 2, attention is first focused on α IGV = 0 ° without a turning speed.
In this case, the gradient of the flow rate change due to the increase in static pressure at each stage maintains a lower right side on the large flow rate side, as in FIG. 10 described above. However, it gradually becomes gentle as the flow rate decreases, and is almost zero near the surging occurrence point.

次に、旋回速度を付与したαIGV≠0°の場合の、各段の静圧上昇の流量変化の勾配に着目する。
この場合には、IGV直後の段(初段)のみ急峻な右下がりを現している。そして初段の勾配は、サージング発生点付近で急激に緩やかとなり、サージング発生点ではついにほぼ0となっている。一方初段以外では、このIGV角度において測定された最大流量点において既に勾配が0となっており、流量を低減してもほぼ勾配0のまま推移している事が分かる。
Next, attention is paid to the gradient of the flow rate change of the static pressure increase at each stage when α IGV ≠ 0 ° with the turning speed.
In this case, only the stage immediately after the IGV (first stage) shows a steep downward slope. The gradient at the first stage is suddenly gentle near the surging occurrence point and finally becomes almost zero at the surging occurrence point. On the other hand, except for the first stage, the gradient is already 0 at the maximum flow rate point measured at this IGV angle, and it can be seen that the gradient remains almost 0 even when the flow rate is reduced.

以上のことからαIGV≠0°の場合には、流入流れに旋回速度を直接与えられていない初段羽根車以外の構成要素は常に失速しており、送風機が安定に運転される条件である圧力特性の右下がり勾配を維持する能力は全くない。これら段の圧力特性曲線の勾配は、流量変化に対してほぼフラットとなる。しかし、旋回速度を与えられ急峻な右下がり勾配を維持する初段羽根車により、全段の圧力特性曲線は右下がり勾配を維持するため、送風機全体としてはサージングを生じずに運転出来る。そして更に流量が低下し、ついに初段羽根車も失速すると、全段の圧力特性曲線の勾配が平坦となり、サージングが発生する事が分かる。 From the above, when α IGV ≠ 0 °, the components other than the first stage impeller that is not directly given the swirl speed to the inflow flow are always stalled, and the pressure that is a condition for the stable operation of the blower There is no ability to maintain the downward slope of the characteristic. The slopes of the pressure characteristic curves of these stages are almost flat with respect to the flow rate change. However, since the first stage impeller which is given a turning speed and maintains a steep right-down slope, the pressure characteristic curve of all stages maintains a right-down slope, so that the entire blower can be operated without surging. When the flow rate is further reduced and the first stage impeller finally stalls, the slope of the pressure characteristic curve of all stages becomes flat, and it can be seen that surging occurs.

本結果から多段遠心送風機では、αIGV≠0°の場合、IGV直後の段の羽根車のみ失速発生流量点を小風量側へと移動出来れば、それ以外の段の失速が大流量側で生じたとしても、送風機全体の作動範囲を拡大する事が出来る。 From this result, in the multistage centrifugal blower, if α IGV ≠ 0 °, if only the impeller of the stage immediately after the IGV can move the stall generation flow point to the small air volume side, the stall of the other stages will occur on the large flow side. Even so, the operating range of the entire blower can be expanded.

図1に示す各段羽根車形状を有する多段遠心送風機では、IGV直後の段の羽根車の入射角や減速比を小さく設定しているために、送風機全体のサージング発生流量を小流量側へと移動する事が出来る。但し、これでは初段の仕様点効率は低下する。   In the multistage centrifugal blower having the shape of each stage impeller shown in FIG. 1, since the incident angle and the reduction ratio of the stage impeller immediately after the IGV are set small, the surging flow rate of the entire blower is reduced to the small flow rate side. You can move. However, this reduces the efficiency of the specification point at the first stage.

一方、それ以外の段では、羽根車の入射角や減速比を初段より大きく設定しており、仕様点効率が向上する。多段遠心送風機の全段効率は各段効率の平均値となるため、初段の効率低下分よりも他の段の効率上昇分の和が大きければ、仕様点における全段効率は向上する。つまり、図1に示す各段羽根車形状を有する多段遠心送風機では、仕様点における全段効率向上と、作動範囲拡大を両立する事が可能となる。   On the other hand, at the other stages, the impeller incident angle and reduction ratio are set larger than the first stage, and the efficiency of the specification point is improved. Since the overall efficiency of the multistage centrifugal fan is an average value of the efficiency of each stage, if the sum of the increased efficiency of other stages is larger than the decreased efficiency of the first stage, the overall efficiency of the specification point is improved. That is, in the multistage centrifugal blower having the shape of each stage impeller shown in FIG. 1, it is possible to achieve both the improvement of the entire stage efficiency at the specification point and the expansion of the operating range.

初段羽根車の仕様点入射角や減速比は、目標とする作動範囲の大きさに応じて設定する。一方、それ以外の段の羽根車の仕様点入射角、減速比の値は、少なくとも初段の値よりは大きく、また効率最大となる値(入射角については0。減速比については、摩擦損失と減速損失の関係から求まる最適値となり、1次元の簡易計算により導出可能)よりも小さい範囲となる。   The specification point incidence angle and reduction ratio of the first stage impeller are set according to the target operating range. On the other hand, the specification point incidence angle and reduction ratio values of the impellers of the other stages are at least larger than the initial stage values and the maximum efficiency (0 for the incidence angle. For the reduction ratio, the friction loss and It is an optimum value obtained from the relationship of deceleration loss, and it is a range smaller than (which can be derived by one-dimensional simple calculation).

図3は、従来設計の多段遠心送風機設計例、並びに実施例1に記載の多段遠心送風機設計例の性能予測結果の比較を示した図である。
尚、本実施例では、IGV直後段とそれ以外の段とで羽根車入射角を変化させた例である。
FIG. 3 is a diagram showing a comparison of performance prediction results of the design example of the conventional multistage centrifugal fan and the design example of the multistage centrifugal fan described in the first embodiment.
In this embodiment, the impeller incident angle is changed between the stage immediately after the IGV and the other stages.

図3において、実施例1に記載の設計例では、従来設計例に対して仕様点効率が向上している。一方、実施例1に記載の設計例では、小流量側の圧力上昇は従来設計例より小さくなるが、仕様以上の圧力を満足しており、運転上の問題はない。更にこの時、IGV直後段の羽根車流入流れに旋回速度を与えた時のサージング発生流量点が、狙い通り従来設計例よりも小流量側へと移動する。従って、結果的に作動範囲が、従来同等以上となっている。   In FIG. 3, in the design example described in the first embodiment, the specification point efficiency is improved as compared with the conventional design example. On the other hand, in the design example described in Example 1, the pressure increase on the small flow rate side is smaller than that in the conventional design example, but the pressure exceeding the specification is satisfied and there is no problem in operation. Furthermore, at this time, the surging generation flow point when the turning speed is given to the impeller inflow immediately after the IGV moves to the smaller flow rate side as compared with the conventional design example. Therefore, as a result, the operating range is equal to or greater than that of the conventional one.

尚、本実施例においては、遠心送風機の段数は複数段であれば何段でも良いが、段数が多ければ多いほど仕様点効率向上幅を大きくする事が出来るため有利となる。またIGVは、最大で段数個分、どの段の羽根車の上流側に設置しても良いが、1個のIGVを初段の上流側に取り付けるのが最も構造が簡単になる。   In this embodiment, the number of stages of the centrifugal fan is not limited as long as it is a plurality of stages. However, the larger the number of stages, the more advantageous the specification point efficiency can be increased. In addition, IGVs may be installed upstream of any stage of impellers, up to several stages, but it is simplest to install one IGV upstream of the first stage.

更にαIGV≠0°の場合に、IGV直後以外の段での圧力特性曲線の勾配が流量変化に対してほぼフラットとなる事が、本実施例において非常に重要である。遠心送風機より圧力比の高い遠心圧縮機などでは、失速後の圧力特性曲線の勾配が急な右上がりとなる場合が多い。従って本発明は、特に多段遠心送風機において効果を発揮する。 Furthermore, when α IGV ≠ 0 °, it is very important in this embodiment that the gradient of the pressure characteristic curve at a stage other than immediately after the IGV becomes substantially flat with respect to the flow rate change. In a centrifugal compressor having a pressure ratio higher than that of a centrifugal fan, the slope of the pressure characteristic curve after stalling often increases sharply to the right. Therefore, the present invention is particularly effective in a multistage centrifugal fan.

以下に、本発明における多段遠心送風機の別の実施例を示す。
図4は、羽根車羽根の前縁付近を羽根車回転軸延長線上から見た図である。
Below, another Example of the multistage centrifugal blower in this invention is shown.
FIG. 4 is a view of the vicinity of the leading edge of the impeller blade as viewed from the impeller rotation axis extension line.

図4において、本実施例の遠心送風機は、羽根車に旋回流を付与する旋回流発生装置を任意の段の羽根車直前に少なくとも一つ有する多段遠心送風機であって、仕様点入射角や減速比に関して上記実施例1と同じ特徴を有しており、更に図4のように旋回流発生装置の直後の段の羽根車の羽根入口角のみ、それ以外の段の羽根車の羽根入口角よりも小さく設定した事を特徴とする。尚、この場合、図9に示す羽根車入口における相対流れ角βが各段で同等となるようにする。 In FIG. 4, the centrifugal blower of the present embodiment is a multi-stage centrifugal blower having at least one swirling flow generating device that imparts a swirling flow to the impeller immediately before the impeller at an arbitrary stage, and the specification point incident angle and deceleration It has the same characteristics as the first embodiment with respect to the ratio, and as shown in FIG. 4, only the blade inlet angle of the impeller at the stage immediately after the swirl flow generator is from the blade inlet angle of the impeller at the other stage. Is also characterized by a small setting. In this case, the relative flow angle beta 1 in the impeller inlet shown in Figure 9 is set to be equal in each stage.

本実施例に記載の構成とする事で、IGV直後の段の羽根車の仕様点入射角iが小さくなり、送風機全体のサージング発生流量を小流量側へと移動する事が出来る。一方それ以外の段では、羽根車のiを初段より大きくしてなるべく0に近い値に設定する事で、仕様点における全段効率を向上させる事が出来る。 By the structure described in this embodiment, the smaller the specification points incidence angle i 1 of the impeller of the stage immediately after IGV, surging occurrence rate of the entire blower that moves can to small flow rate side. While that in the other stages, by setting the value close as possible to zero and the i 1 of the impeller larger than the first stage, it is possible to improve all stages efficiency in design point.

送風機全体のサージング発生流量を低流量側へ移動するため、IGV直後の段のiを小さくするためには、図9に示すように、羽根車入口相対流れ角βを大きくするか、若しくは羽根車羽根入口角β1bを小さくする必要がある。 In order to move the surging generation flow rate of the entire blower to the low flow rate side, in order to reduce i 1 at the stage immediately after the IGV, as shown in FIG. 9, the impeller inlet relative flow angle β 1 is increased, or The impeller blade inlet angle β 1b needs to be reduced.

ここで図9に示すように、βは羽根車入口周速Uと羽根車入口絶対速度Cとで定まる。αIGV=0°の場合には、βはUと羽根車入口絶対速度の子午面方向成分Cmとで決定される事となる。UとCmは、羽根車前縁における羽根厚みによるブロッケージ分を無視すれば、以下の(式2)、(式3)で表される。またβは、以下の(式4)で表される。ここで、Rは羽根車羽根前縁半径、ωは羽根車回転角速度、Qは羽根車入口における体積流量、bは羽根車入口の流路高さを示す。
U = R・ω … (式2)
Cm = Q / (2・π・R・b) … (式3)
β = tan-1(Cm / U)… (式4)
(式2)〜(式4)から、iを小さくするためβを大きくするには、Uを小さくするか、Cmを大きくすれば良い。
Here, as shown in FIG. 9, β 1 is determined by the impeller inlet peripheral speed U 1 and the impeller inlet absolute speed C 1 . When α IGV = 0 °, β 1 is determined by U 1 and meridional surface direction component Cm 1 of the impeller inlet absolute velocity. U 1 and Cm 1 are expressed by the following (Expression 2) and (Expression 3) if the blockage due to the blade thickness at the leading edge of the impeller is ignored. Β 1 is expressed by the following (formula 4). Here, R 1 is the impeller blade leading edge radius, ω is the impeller rotational angular velocity, Q 1 is the volume flow rate at the impeller inlet, and b 1 is the flow channel height at the impeller inlet.
U 1 = R 1 · ω (Formula 2)
Cm 1 = Q 1 / (2 · π · R 1 · b 1 ) (Equation 3)
β 1 = tan −1 (Cm 1 / U 1 ) (Formula 4)
From equation (2) to (Equation 4), in order to increase the beta 1 to reduce the i 1, reduce the U 1, may be increased Cm 1.

回転数を変えずにUを小さくするには、羽根車前縁半径Rを小さくする必要がある。しかし回転軸径は変更出来ないため、Rのみを小さくしようとすると、図8に示す羽根車上流側流路幅9が極端に狭まって損失が増大してしまう。一方、Cmを大きくしてしまうと、基本的には羽根車入口部における流速が増大してしまい、摩擦損失が増大する。従ってUを小さくする場合もCmを大きくする場合も、i低減による損失増大に加えて更に損失が増加し、IGV直後の段の効率を必要以上に落としてしまう。 In order to reduce U 1 without changing the rotation speed, it is necessary to reduce the impeller leading edge radius R 1 . However, since the rotational axis diameter can not be changed, in order to reduce the only R 1, loss narrowed extremely impeller upstream passage width 9 shown in FIG. 8 is increased. On the other hand, when the result in increased Cm 1, basically causes increased flow velocity at the impeller inlet, friction loss increases. Therefore, both when U 1 is reduced and Cm 1 is increased, the loss further increases in addition to the loss increase due to i 1 reduction, and the efficiency of the stage immediately after the IGV is unnecessarily reduced.

以上の理由から、IGV直後の段のiを小さくするにはβ1bを小さくするのが良い。従って本実施例では、IGV直後の段とそれ以外の段とでβ1bを変化させる事で、iを調整している。 For the above reasons, β 1b should be reduced in order to reduce i 1 immediately after the IGV. Therefore, in this embodiment, i 1 is adjusted by changing β 1b between the stage immediately after the IGV and the other stages.

以下に、本発明における多段遠心送風機の別の実施例を示す。
図5は、羽根車羽根の後縁付近を羽根車回転軸と平行な方向から見た図である。
Below, another Example of the multistage centrifugal blower in this invention is shown.
FIG. 5 is a view of the vicinity of the trailing edge of the impeller blades as seen from a direction parallel to the impeller rotation axis.

図5において、本実施例の遠心送風機は、羽根車に旋回流を付与する旋回流発生装置を任意の段の羽根車直前に少なくとも一つ有する多段遠心送風機である。この多段遠心送風機にあっては、仕様点入射角や減速比に関して上記実施例1と同じ特徴を有しており、更に図5のように旋回流発生装置の直後の段の羽根車の羽根出口角のみ、それ以外の段の羽根車の羽根出口角よりも小さく設定した事を特徴としている。   In FIG. 5, the centrifugal blower of the present embodiment is a multi-stage centrifugal blower having at least one swirling flow generating device that imparts a swirling flow to the impeller immediately before an impeller at an arbitrary stage. This multi-stage centrifugal blower has the same characteristics as the first embodiment with respect to the specification point incident angle and the reduction ratio, and further, as shown in FIG. 5, the blade outlet of the impeller at the stage immediately after the swirl flow generator. Only the corner is characterized by being set smaller than the blade exit angle of the impeller at the other stage.

本実施例に記載の構成とする事で、図9の羽根車出口速度三角形が変化してIGV直後の段の羽根車の出口相対速度Wが大きくなり、結果としてIGV直後の段の羽根車の減速比W/Wが小さくなるため、送風機全体のサージング発生流量を小流量側へと移動する事が出来る。一方それ以外の段では、W/Wを初段より大きく設定する事で、仕様点における全段効率を向上させる事が出来る。 By the structure described in this example, changing the impeller exit velocity triangles in FIG outlet relative velocity W 2 of the impeller stages immediately after IGV becomes larger, resulting IGV impeller stage immediately after Since the reduction ratio W 1 / W 2 becomes small, the surging flow rate of the entire blower can be moved to the small flow rate side. While that in the other stages, W 1 / W 2 of the By larger than the first stage, it is possible to improve all stages efficiency in design point.

多段遠心送風機では、基本的には各段の羽根車外径Dを全て同一とした設計を行う事で、送風機全体の外径を最小化出来る。これは、全段での仕様圧力を満足させる時に、段毎にDを変化させてしまうと、Dを全段同一とした場合の羽根車外径よりも、羽根車外径が大きな段や小さな段が生じてしまうためである。送風機全体の外径は、この中で最大Dをとる段の大きさに支配されてしまう。従って、全段のDを同一として設計するのが有効であるが、これは各段圧力上昇を全段同一にする事と同義である。 Multistage The centrifugal blower, basically by performing the design was the same all the impeller outer diameter D 2 of each stage can minimize the overall diameter of the blower. This is when to satisfy the specifications pressure at all stages and thus by changing the D 2 for each stage, than the impeller outer diameter in the case of the D 2 and all stages the same, smaller outer diameter and a large stage impeller This is because a step occurs. The outer diameter of the entire blower, would be governed by the size of the step having the maximum D 2 of? Therefore, it is effective to design all stages of D 2 as the same, which is synonymous with the respective stage pressure increase in all stages the same.

全段のDが同一という条件の下、IGV直後の段とそれ以外の段の羽根車とでW/Wを変化させるためには、図9から分かる通り、羽根車羽根出口角β2bを変化させるか、羽根出口流路高さb(羽根車出口絶対速度の子午面方向成分Cm)変化させる必要がある。本実施例はこの内、β2bをIGV直後の段とそれ以外の段の羽根車とで変化させた形状に相当する。 In order to change W 1 / W 2 between the stage immediately after the IGV and the impeller of the other stages under the condition that D 2 of all stages is the same, as shown in FIG. 9, the impeller blade outlet angle β It is necessary to change 2b or to change the blade outlet flow path height b 2 (the meridional surface direction component Cm 2 of the impeller outlet absolute speed). This embodiment corresponds to a shape in which β 2b is changed between the stage immediately after the IGV and the impeller at the other stages.

以下に、本発明における多段遠心送風機の別の実施例を示す。
図6は、本実施例における多段遠心送風機において、連続する2つの段の羽根車子午面形状を重ねて描いた図である。
図6の(a)は、連続する2つの段がIGV直後の段を含まない場合である。
一方、図6の(b)は、連続する2つの段がIGV直後の段を含む場合を示す。
Below, another Example of the multistage centrifugal blower in this invention is shown.
FIG. 6 is a diagram in which the shape of the impeller meridian of two successive stages is overlaid in the multistage centrifugal blower of the present embodiment.
FIG. 6A shows a case where two successive stages do not include the stage immediately after the IGV.
On the other hand, FIG. 6B shows a case where two consecutive stages include a stage immediately after the IGV.

図6において、本実施例の遠心送風機は、羽根車に旋回流を付与する旋回流発生装置を任意の段の羽根車直前に少なくとも一つ有する多段遠心送風機である。この多段遠心送風機にあっては、仕様点入射角や減速比に関して上記実施例1と同じ特徴を有している。更に図6のように、連続する2つの段における羽根車直径Dと羽根出口流路高さbの比b/Dの変化率WRの値が、旋回流発生装置の直後の段を含む場合のみ、それ以外の段のWRの平均値と3%以上異なり、かつ旋回流発生装置の直後の段が上流側にある場合のWRが最大、旋回流発生装置の直後の段が下流側にある場合のWRが最小となる事を特徴としている。 In FIG. 6, the centrifugal blower of the present embodiment is a multistage centrifugal blower having at least one swirling flow generating device that imparts a swirling flow to the impeller immediately before the impeller at an arbitrary stage. This multistage centrifugal blower has the same characteristics as the first embodiment with respect to the specification point incident angle and the reduction ratio. Furthermore, as shown in FIG. 6, the change rate WR of the ratio b 2 / D 2 of the impeller diameter D 2 and the blade outlet flow path height b 2 in two successive stages is the stage immediately after the swirl flow generator. Only when the WR is 3% or more different from the average value of the WR of the other stages and the stage immediately after the swirl flow generator is upstream, the stage immediately after the swirl flow generator is downstream It is characterized by minimum WR when it is on the side.

本実施例に記載の構成とする事で、IGV直後の段の羽根車の減速比W/Wが小さくなり、送風機全体のサージング発生流量を小流量側へ移動する事が出来る。一方それ以外の段では、W/Wを初段より大きく設定する事で、仕様点における全段効率を向上させる事が出来る。 By adopting the configuration described in the present embodiment, the reduction ratio W 1 / W 2 of the impeller immediately after the IGV is reduced, and the surging flow rate of the entire blower can be moved to the small flow rate side. While that in the other stages, W 1 / W 2 of the By larger than the first stage, it is possible to improve all stages efficiency in design point.

多段遠心送風機では、各段で作動流体が徐々に昇圧されるため、各段入口の流体密度も徐々に増大して各段入口の体積流量は徐々に減少する。この時、初段から最終段にかけて、連続する2つの段入口間の体積流量比だけ流路高さを徐々に減少させ、かつ羽根角度分布を一致させれば、全段の羽根車内部流れを相似にする事が出来て、全段で同等の性能を達成出来る。   In the multistage centrifugal blower, the working fluid is gradually increased in pressure at each stage, so that the fluid density at each stage inlet gradually increases and the volume flow rate at each stage inlet gradually decreases. At this time, from the first stage to the last stage, if the flow path height is gradually reduced by the volume flow ratio between two successive stage inlets and the blade angle distributions are matched, the internal flow of all stages of the impeller is similar. Can achieve the same performance in all stages.

実施例3において、多段遠心送風機では基本的に各段の羽根車外径Dを全て同一とし、各段圧力上昇を全段同一にする設計をする事が有効であると述べた。従って、連続する2つの段(初段〜2段目、2段目〜3段目、…(N-1)段目〜N段目、N:全段数)の入口間の密度比つまり体積流量比は、これら全てで等しくなる。従って、全段の羽根車内部流れが相似である場合、以下の(式5)で示される、羽根車直径Dと羽根出口流路高さbの比b/Dの連続する2つの段間における変化率WRも、これら全てで1より小さい、ほぼ等しい値となる。
WR = (k段目におけるb/D)/((k-1)段目におけるb/D) < 1 … (式5)
実際の製品においては、製作精度等の問題があり、全段の羽根車内部流れを完全に相似にする事は出来ない。
In Example 3, the multistage centrifugal blower basically the same all the impeller outer diameter D 2 of each stage, said making the design of each stage pressure increase in all stages the same is valid. Therefore, the density ratio between the inlets of two consecutive stages (the first stage to the second stage, the second stage to the third stage, ... (N-1) stage to the N stage, where N is the total number of stages), that is, the volume flow rate ratio. Are equal in all of these. Accordingly, when the flow inside the impellers of all stages is similar, the ratio b 2 / D 2 of the impeller diameter D 2 and the blade outlet flow path height b 2 shown in the following (formula 5) is 2 The rate of change WR between the two stages is also substantially equal, less than 1 in all of these.
WR = / (b 2 / D 2 at k-th stage) ((b 2 / D 2 at k-1) th stage) <1 (Equation 5)
In actual products, there are problems such as manufacturing accuracy, and the internal flow of impellers in all stages cannot be made completely similar.

図7は、従来多段遠心送風機において、全段の羽根車内部流れを相似にする事を狙った場合の、全段WR平均値に対する各段のWRの比を示す図である。
図7において、本例から分かる通り、各段のWR はWR平均値に対して最大でも3%程度のずれとなる。一方本実施例では、WRの値が、旋回流発生装置の直後の段を含む場合のみ、それ以外の段のWRの平均値と3%以上異なり、かつIGV直後の段が上流側にある時のWRが全段で最大で、IGV直後の段が下流側にある時のWRが全段で最小としている。
FIG. 7 is a diagram showing the ratio of the WR of each stage with respect to the average value of all stages WR when aiming to make the flow inside the impellers of all stages similar in a conventional multistage centrifugal blower.
In FIG. 7, as can be seen from this example, the WR of each stage is shifted by about 3% at maximum with respect to the WR average value. On the other hand, in this embodiment, only when the value of WR includes the stage immediately after the swirl flow generator, the average value of WR of the other stages differs by 3% or more and the stage immediately after the IGV is on the upstream side. The WR is the maximum in all stages, and the WR when the stage immediately after the IGV is downstream is the minimum in all stages.

これはつまり、IGV直後の段では、その他の段と比べ、体積流量に対する羽根出口流路面積が狭まっている事を表している。図9からこの場合、IGV直後の段の羽根車出口子午面方向速度成分Cmが、それ以外の段の羽根車よりも大きくなる。従って、IGV直後の段の羽根車出口相対速度Wが小さくなり、結果としてIGV直後の段の羽根車の減速比W/Wが、それ以外の段よりも小さくなる。 This means that the blade outlet channel area with respect to the volume flow rate is narrower in the stage immediately after the IGV than in the other stages. If this 9, stage impeller Deguchiko meridional direction velocity component Cm 2 immediately after IGV is greater than the impeller of the other stages. Therefore, the impeller outlet relative velocity W 2 is reduced in stages after IGV, resulting IGV speed reduction ratio W 1 / W 2 of the impeller stages immediately after, it becomes smaller than the other stages.

全段のDが同一という条件の下、IGV直後の段とそれ以外の段の羽根車とでW/Wを変化させるためには、図9から分かる通り、羽根車羽根出口角β2bを変化させるか、羽根出口流路幅b(羽根車出口絶対速度の子午面方向成分Cm)変化させる必要がある。本実施例ではこの内、羽根出口幅bをIGV直後の段とそれ以外の段の羽根車とで相対的に変化させた形状に相当する。 In order to change W 1 / W 2 between the stage immediately after the IGV and the impeller of the other stages under the condition that D 2 of all stages is the same, as shown in FIG. 9, the impeller blade outlet angle β It alters the 2b, vane outlet channel width b 2 (impeller outlet absolute velocity of the meridional direction component Cm 2) needs to be changed. In the present embodiment these, corresponding vane outlet width b 2 in a shape is relatively changed by the impeller of the stage and the other stage after IGV.

以上のごとく本発明によれば、羽根車に旋回流を付与する旋回流発生装置を任意の段の羽根車直前に少なくとも一つ有する多段遠心送風機において、なるべく簡単な構成で、多段遠心送風機の仕様点効率向上と小流量側作動範囲拡大を両立する手段を提供することができるものである。   As described above, according to the present invention, in a multistage centrifugal blower having at least one swirling flow generating device that imparts a swirling flow to an impeller immediately before an impeller at an arbitrary stage, the specifications of the multistage centrifugal blower are as simple as possible. It is possible to provide means that achieves both improved point efficiency and expansion of the small flow rate side operating range.

1…吸込ケーシング、2…旋回流発生装置、3…羽根車回転軸、4a、4b、4c、4d…羽根車、5a、5b、5c、5d…ディフューザ、6a、6b、6c、6d…リターンチャネル、7…吐出ケーシング、8…旋回流発生装置の可動機構、9…羽根車上流側流路幅。
<記号に関する説明>
C…絶対速度、Cm…絶対速度の子午面方向成分、Cu…絶対速度の周方向成分、D…直径、DRi…羽根車減速比、DRi…ディフューザ減速比、Hth…理論ヘッド、Hth…理論ヘッド、Q…体積流量、R…半径、U…羽根車周速、W…相対速度、WR…羽根車直径と羽根出口流路高さの比の、連続する2つの段間における変化率、b…羽根車流路高さ、g…重力加速度、i…入射角、α…絶対流れ角、αIGV…旋回流発生装置回転角度、β…相対流れ角、βb…羽根車羽根角度、ω…羽根車回転角速度。
<記号の添え字に関する説明>
1…羽根車入口、2…羽根車出口、3…ディフューザ入口、4…ディフューザ出口。
DESCRIPTION OF SYMBOLS 1 ... Suction casing, 2 ... Swirling flow generator, 3 ... Impeller rotating shaft, 4a, 4b, 4c, 4d ... Impeller, 5a, 5b, 5c, 5d ... Diffuser, 6a, 6b, 6c, 6d ... Return channel , 7 ... Discharge casing, 8 ... Movable mechanism of swirl flow generator, 9 ... Impeller upstream flow path width.
<Explanation about symbols>
C: Absolute velocity, Cm: Absolute velocity meridional component, Cu: Absolute velocity circumferential component, D ... Diameter, DRi ... Impeller reduction ratio, DRi ... Diffuser reduction ratio, Hth ... Theoretical head, Hth ... Theoretical head , Q: Volume flow rate, R: Radius, U: Impeller peripheral speed, W: Relative speed, WR: Ratio of change between impeller diameter and blade outlet flow path height between two consecutive stages, b ... impeller flow path height, g ... gravitational acceleration, i ... incident angle, alpha ... absolute flow angle, alpha IGV ... swirling flow generator rotation angle, beta ... relative flow angle, beta b ... wheel vane angle, omega ... impeller Rotational angular velocity.
<Explanation about subscripts for symbols>
DESCRIPTION OF SYMBOLS 1 ... Impeller entrance, 2 ... Impeller exit, 3 ... Diffuser entrance, 4 ... Diffuser exit.

Claims (4)

羽根車に旋回流を付与する旋回流発生装置を任意の段の羽根車直前に少なくとも一つ有する多段遠心送風機において、
旋回流発生装置の直後の段の羽根車の仕様点入射角及び/又は減速比のみ、それ以外の段の羽根車よりも小さく設定したことを特徴とする多段遠心送風機。
In a multistage centrifugal blower having at least one swirling flow generating device that imparts a swirling flow to an impeller immediately before an impeller at an arbitrary stage,
A multistage centrifugal blower characterized in that only the specification point incident angle and / or the reduction ratio of the stage impeller immediately after the swirl flow generator are set smaller than those of the other stage impellers.
請求項1記載の多段遠心送風機において、
前記旋回流発生装置の直後の段の羽根車の羽根入口角のみ、それ以外の段の羽根車の羽根入口角よりも小さく設定したことを特徴とする多段遠心送風機。
In the multistage centrifugal blower according to claim 1,
Only the blade inlet angle of the stage impeller immediately after the swirl flow generator is set smaller than the blade inlet angle of the other stage impeller.
請求項1記載の多段遠心送風機において、
前記旋回流発生装置の直後の段の羽根車の羽根出口角のみ、それ以外の段の羽根車の羽根出口角よりも小さく設定したことを特徴とする多段遠心送風機。
In the multistage centrifugal blower according to claim 1,
Only the blade outlet angle of the stage impeller immediately after the swirl flow generator is set smaller than the blade outlet angle of the other stage impeller.
請求項1記載の多段遠心送風機において、
連続する2つの段における羽根車直径Dと羽根出口流路高さbの比b/Dの変化率WRの値が、旋回流発生装置の直後の段を含む場合のみ、それ以外の段のWRの平均値と3%以上異なり、かつ旋回流発生装置の直後の段が上流側にある場合のWRが最大、旋回流発生装置の直後の段が下流側にある場合のWRが最小となることを特徴とする多段遠心送風機。
In the multistage centrifugal blower according to claim 1,
Only when the change rate WR of the ratio b 2 / D 2 of the impeller diameter D 2 and the blade outlet flow path height b 2 in two successive stages includes the stage immediately after the swirl flow generator. The WR is 3% or more different from the average value of the WR of the stage, and the WR is the maximum when the stage immediately after the swirling flow generator is on the upstream side, and the WR when the stage immediately after the swirling flow generator is on the downstream side. Multistage centrifugal blower characterized by being minimized.
JP2012071073A 2012-03-27 2012-03-27 Multistage centrifugal blower Expired - Fee Related JP5875429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012071073A JP5875429B2 (en) 2012-03-27 2012-03-27 Multistage centrifugal blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012071073A JP5875429B2 (en) 2012-03-27 2012-03-27 Multistage centrifugal blower

Publications (2)

Publication Number Publication Date
JP2013204429A JP2013204429A (en) 2013-10-07
JP5875429B2 true JP5875429B2 (en) 2016-03-02

Family

ID=49523806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012071073A Expired - Fee Related JP5875429B2 (en) 2012-03-27 2012-03-27 Multistage centrifugal blower

Country Status (1)

Country Link
JP (1) JP5875429B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478011U (en) * 1977-11-14 1979-06-02
JP3557389B2 (en) * 2000-10-03 2004-08-25 株式会社日立製作所 Multistage centrifugal compressor
JP3130089U (en) * 2006-11-11 2007-03-15 株式会社タニヤマ Centrifugal blower
JP5613006B2 (en) * 2010-10-18 2014-10-22 株式会社日立製作所 Multistage centrifugal compressor and its return channel

Also Published As

Publication number Publication date
JP2013204429A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5233436B2 (en) Centrifugal compressor with vaneless diffuser and vaneless diffuser
JP3356510B2 (en) Centrifugal or mixed flow pump vaned diffuser
JP5879103B2 (en) Centrifugal fluid machine
JP5608062B2 (en) Centrifugal turbomachine
JP2011089460A (en) Turbo type fluid machine
WO2014087690A1 (en) Centrifugal compressor
WO2014203379A1 (en) Centrifugal compressor
WO2015064227A1 (en) Centrifugal compressor for gas pipeline, and gas pipeline
JP5905315B2 (en) Centrifugal compressor
JP2014047775A (en) Diffuser, and centrifugal compressor and blower including the diffuser
JP2014109193A (en) Centrifugal fluid machine
JP5705839B2 (en) Centrifugal impeller for compressor
JP4265656B2 (en) Centrifugal compressor
JP2007247622A (en) Centrifugal turbo machine
JP3557389B2 (en) Multistage centrifugal compressor
JP6064003B2 (en) Centrifugal fluid machine
JP2020097940A (en) Improved scroll for turbomachine, turbomachine including scroll, and operation method
JP5875429B2 (en) Multistage centrifugal blower
WO2016047256A1 (en) Turbo machine
JP2010236401A (en) Centrifugal fluid machine
JPH04334798A (en) Diffuser for centrifugal fluid machine
JP2018080653A (en) Fluid machinery
WO2018101021A1 (en) Diffuser, discharge flow path, and centrifugal turbo machine
JPH078597U (en) Centrifugal compressor
JP2007247621A (en) Centrifugal fluid machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160119

R150 Certificate of patent or registration of utility model

Ref document number: 5875429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees