JP5875255B2 - Cylindrical deep drawing molding simulation method, apparatus and program - Google Patents

Cylindrical deep drawing molding simulation method, apparatus and program Download PDF

Info

Publication number
JP5875255B2
JP5875255B2 JP2011123343A JP2011123343A JP5875255B2 JP 5875255 B2 JP5875255 B2 JP 5875255B2 JP 2011123343 A JP2011123343 A JP 2011123343A JP 2011123343 A JP2011123343 A JP 2011123343A JP 5875255 B2 JP5875255 B2 JP 5875255B2
Authority
JP
Japan
Prior art keywords
plate thickness
die
cylindrical
ratio
deep drawing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011123343A
Other languages
Japanese (ja)
Other versions
JP2012250245A (en
Inventor
修治 山本
修治 山本
康裕 和田
康裕 和田
健悟 竹田
健悟 竹田
阿部 雅之
阿部  雅之
保嗣 塚野
保嗣 塚野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011123343A priority Critical patent/JP5875255B2/en
Publication of JP2012250245A publication Critical patent/JP2012250245A/en
Application granted granted Critical
Publication of JP5875255B2 publication Critical patent/JP5875255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、板厚が4mm以上の鋼板の円筒深絞りの成形シミュレーションに関するものである。   The present invention relates to a cylindrical deep drawing forming simulation of a steel plate having a thickness of 4 mm or more.

自動車部品や家電部品等の製造分野では、鋼板のプレス成形が行われており、中でも円筒状の底付き容器を製造する方法として、絞り成形が多く用いられている。円筒深絞りは、図1に示すように、ダイ1とブランクホルダー2により固定された被加工材3にパンチ4を押込んで底付き円筒容器を成形するものである。近年、自動車用部品分野を中心に、棒鋼を用いた熱間鍛造及び冷間鍛造や鋳造により製造されていた比較的板厚の大きい円筒状の底付き容器が、厚手の鋼板を用いて深絞りにて製造されつつあり、コストダウンに寄与している。厚手の鋼板を用いて深絞りを行うと板厚変化の絶対値が大きく、成形後の板厚を精度良く推定することが重要となる。   In the manufacturing field of automobile parts, home appliance parts, etc., press forming of steel plates is performed, and drawing molding is often used as a method for manufacturing cylindrical bottomed containers. As shown in FIG. 1, the cylindrical deep drawing is for forming a cylindrical container with a bottom by pushing a punch 4 into a workpiece 3 fixed by a die 1 and a blank holder 2. In recent years, cylindrical bottomed containers with relatively large thickness, which have been manufactured by hot forging using steel bars, cold forging and casting, mainly in the field of automotive parts, have been deep drawn using thick steel plates. It is being manufactured at, and contributes to cost reduction. When deep drawing is performed using a thick steel plate, the absolute value of the plate thickness change is large, and it is important to accurately estimate the plate thickness after forming.

従来、薄鋼板のプレス成形のFEM解析においては、例えば特許文献1にあるように、面内異方性を考慮したFEM解析が行われている。また、非特許文献1にあるように、円筒深絞りのFEM解析において、面内異方性を考慮し、成形後のカップ高さを予測した例がある。   Conventionally, in FEM analysis of press forming of a thin steel plate, for example, as disclosed in Patent Document 1, FEM analysis considering in-plane anisotropy has been performed. Further, as described in Non-Patent Document 1, there is an example in which in-plane anisotropy is taken into consideration in the FEM analysis of a cylindrical deep drawing, and the cup height after molding is predicted.

また、例えば特許文献2には、有底非円筒形状の絞り成形品についてFEM解析を行うことが開示されている。   For example, Patent Document 2 discloses performing FEM analysis on a bottomed non-cylindrical drawn product.

特開2000−107818号公報JP 2000-107818 A 特開2006−281281号公報Japanese Patent Laid-Open No. 2006-281281

「プレス成形難易ハンドブック第2版」、薄鋼板成形技術研究会、日刊工業新聞社"Press Forming Difficulty Handbook 2nd Edition", Thin Steel Sheet Forming Technology Study Group, Nikkan Kogyo Shimbun 山田嘉昭、「塑性・粘弾性」、培風館、P216−218Yoshiaki Yamada, “Plastic / Viscoelasticity”, Baifukan, P216-218 寺野元規、北村憲彦、「板材の塑性異方性」、平成18年度塑性加工春季講演会、P337−338Gennori Terano, Norihiko Kitamura, “Plastic Anisotropy of Plates”, 2006 Plastic Processing Spring Lecture, P337-338

しかしながら、厚手の鋼板の円筒深絞りのFEM解析においては、従来の薄板のFEM解析に用いられている面内異方性を考慮した解析では形状の予測精度が不十分であった。   However, in the FEM analysis of the cylindrical deep drawing of a thick steel plate, the shape prediction accuracy is insufficient in the analysis considering the in-plane anisotropy used for the FEM analysis of the conventional thin plate.

本発明は上記のような事情に鑑みてなされたもので、円筒深絞りの成形シミュレーションを行う際に、形状の予測精度を高めることを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to increase the accuracy of shape prediction when performing a cylindrical deep drawing forming simulation.

本発明の円筒深絞りの成形シミュレーション方法は、板厚が4mm以上の鋼板を、中空円筒を有するダイ上に配置し、前記ダイの中心円筒と中心軸が同一であり、前記中空円筒の内径より外径が小さい円筒状のパンチを押し込むことによる円筒深絞りの成形シミュレーションを行う際に、絞り比2.0以上、板厚と前記パンチの肩半径の比0.4以上、および板厚と前記ダイの肩半径の比0.4以上となる場合、面内異方性に加えて、板厚断面内の異方性も考慮して成形シミュレーションを行うことを特徴とする。
また、本発明の円筒深絞りの成形シミュレーション方法の他の特徴とするところは、前記円筒深絞りにおいて、前記鋼板が前記ダイの中空円筒と中心軸が同一の中空円板状のブランクホルダーにより、前記ダイとの間に押しつけられている点にある。
また、本発明の円筒深絞りの成形シミュレーション方法の他の特徴とするところは、Hillの異方性降伏条件式における異方性パラメータを求める点にある。その場合、板厚が4mm以上の鋼板の複数の面それぞれから複数の傾きで立方体を切出し、圧縮して、その歪みに基づいて、前記Hillの異方性降伏条件式における異方性パラメータを求める。
本発明の円筒深絞りの成形シミュレーション装置は、板厚が4mm以上の鋼板を、中空円筒を有するダイ上に配置し、前記ダイの中心円筒と中心軸が同一であり、前記中空円筒の内径より外径が小さい円筒状のパンチを押し込むことによる円筒深絞りの成形シミュレーションを行う際に、絞り比2.0以上、板厚と前記パンチの肩半径の比0.4以上、および板厚と前記ダイの肩半径の比0.4以上となる場合、面内異方性に加えて、板厚断面内の異方性も考慮して成形シミュレーションを行う手段を備えたことを特徴とする。
本発明のプログラムは、板厚が4mm以上の鋼板を、中空円筒を有するダイ上に配置し、前記ダイの中心円筒と中心軸が同一であり、前記中空円筒の内径より外径が小さい円筒状のパンチを押し込むことによ円筒深絞りの成形シミュレーションを行う際に、絞り比2.0以上、板厚と前記パンチの肩半径の比0.4以上、および板厚と前記ダイの肩半径の比0.4以上となる場合、面内異方性に加えて、板厚断面内の異方性も考慮して成形シミュレーションを行う処理をコンピュータに実行させる。
In the method for forming a cylindrical deep draw according to the present invention, a steel plate having a thickness of 4 mm or more is disposed on a die having a hollow cylinder, the central cylinder of the die is the same as the central axis, and the inner diameter of the hollow cylinder is determined. When performing a cylindrical deep drawing molding simulation by pushing a cylindrical punch having a small outer diameter, the drawing ratio is 2.0 or more, the ratio of the plate thickness to the shoulder radius of the punch is 0.4 or more, and the thickness and the above When the ratio of the shoulder radius of the die is 0.4 or more, in addition to the in-plane anisotropy, the forming simulation is performed in consideration of the anisotropy in the plate thickness section.
In addition, another feature of the cylindrical deep drawing molding simulation method of the present invention is that in the cylindrical deep drawing, the steel plate is formed by a hollow disc-shaped blank holder having the same central axis as the hollow cylinder of the die. It is in the point pressed against the die.
Another feature of the cylindrical deep drawing molding simulation method according to the present invention is that an anisotropic parameter in Hill's anisotropic yield condition is obtained. In that case, a cube is cut out from each of a plurality of surfaces of a steel plate having a thickness of 4 mm or more with a plurality of inclinations, compressed, and an anisotropic parameter in the Hill anisotropic yield condition formula is obtained based on the strain. .
The cylindrical deep drawing molding simulation apparatus of the present invention has a steel plate having a plate thickness of 4 mm or more disposed on a die having a hollow cylinder, the central cylinder of the die is the same as the central axis, and the inner diameter of the hollow cylinder is When performing a cylindrical deep drawing molding simulation by pushing a cylindrical punch having a small outer diameter, the drawing ratio is 2.0 or more, the ratio of the plate thickness to the shoulder radius of the punch is 0.4 or more, and the thickness and the above In the case where the ratio of the shoulder radius of the die is 0.4 or more, there is provided a means for performing a forming simulation in consideration of the anisotropy in the plate thickness section in addition to the in-plane anisotropy.
According to the program of the present invention, a steel plate having a thickness of 4 mm or more is arranged on a die having a hollow cylinder, the central cylinder of the die is the same as the central axis, and the outer diameter is smaller than the inner diameter of the hollow cylinder. when performing the forming simulation of the diaphragm by that cylinder depth in pushing the punch, drawing ratio of 2.0 or more, the thickness and the punch shoulder radius ratio 0.4 or more, and the thickness and the die shoulder radius When the ratio is 0.4 or more, in addition to the in-plane anisotropy, the computer executes a process of performing a forming simulation in consideration of the anisotropy in the plate thickness section.

本発明によれば、円筒深絞りの成形シミュレーションを行う際に、形状の予測精度を高めることが可能になる。   According to the present invention, it is possible to increase the accuracy of shape prediction when performing a cylindrical deep drawing forming simulation.

円筒深絞りのためのダイ、ブランクホルダー及びパンチ並びに被加工材の断面図である。It is sectional drawing of the die | dye for cylindrical deep drawing, a blank holder, a punch, and a workpiece. 引張試験片の切り出し方向を示す図である。It is a figure which shows the cutout direction of a tensile test piece. 実験及び計算によるカップ高さを示す特性図である。It is a characteristic view which shows the cup height by experiment and calculation. 板厚の測定箇所及びカップカップ高さを示す絞り成形品の断面図である。It is sectional drawing of the draw molded article which shows the measurement location and cup cup height of plate | board thickness. 実験及び計算による板厚を示す特性図である。It is a characteristic view which shows the plate | board thickness by experiment and calculation. Z値を求めるために用いる立方体試験片の切出し方向、圧縮方向及び歪の測定方向を示す図である。It is a figure which shows the cutting direction of a cube test piece used in order to obtain | require Z value, a compression direction, and the measurement direction of distortion. Y値を求めるために用いる立方体試験片の切出し方向、圧縮方向及び歪の測定方向を示す図である。It is a figure which shows the cutting direction of a cube test piece used in order to obtain | require Y value, a compression direction, and the measurement direction of distortion. X値を求めるために用いる立方体試験片の切出し方向、圧縮方向及び歪の測定方向を示す図である。It is a figure which shows the cutting direction of a cube test piece used in order to obtain | require X value, a compression direction, and the measurement direction of distortion. 被加工材の初期板厚が10mmの場合の実験及び計算によるカップ高さを示す特性図である。It is a characteristic view which shows the cup height by experiment and calculation in case the initial board thickness of a workpiece is 10 mm. 被加工材の初期板厚が10mmの場合の実験及び計算による板厚を示す特性図である。It is a characteristic view which shows the board thickness by experiment and calculation in case the initial board thickness of a workpiece is 10 mm. 被加工材の初期板厚が3.5mmの場合の実験及び計算によるカップ高さを示す特性図である。It is a characteristic view which shows the cup height by experiment and calculation in case the initial board thickness of a workpiece is 3.5 mm. 被加工材の初期板厚が3.5mmの場合の実験及び計算による板厚を示す特性図である。It is a characteristic view which shows the board thickness by experiment and calculation in case the initial stage board thickness of a workpiece is 3.5 mm. 実施例の円筒深絞りのためのダイ及びパンチ並びに被加工材の断面図である。It is sectional drawing of the die | dye and punch for cylindrical deep drawing of an Example, and a to-be-processed material. 被加工材の初期板厚を10mmとしたNo.1、No.2及び実験によるカップ高さを示す特性図である。The initial plate thickness of the workpiece was 10 mm. 1, no. FIG. 2 is a characteristic diagram showing cup heights according to 2 and experiments. 被加工材の初期板厚を10mmとしたNo.1、No.2及び実験による板厚を示す特性図である。The initial plate thickness of the workpiece was 10 mm. 1, no. It is a characteristic view which shows the board thickness by 2 and experiment. 被加工材の初期板厚を8mmとしたNo.3、No.4及び実験によるカップ高さを示す特性図である。No. in which the initial plate thickness of the workpiece was 8 mm. 3, no. FIG. 4 is a characteristic diagram showing cup heights according to 4 and experiments. 被加工材の初期板厚を8mmとしたNo.3、No.4及び実験による板厚を示す特性図である。No. in which the initial plate thickness of the workpiece was 8 mm. 3, no. FIG. 4 is a characteristic diagram showing a plate thickness by 4 and experiment. 被加工材の初期板厚を4mmとしたNo.5、No.6及び実験によるカップ高さを示す特性図である。The initial plate thickness of the workpiece was 4 mm. 5, no. 6 is a characteristic diagram showing a cup height by experiment and experiment. 被加工材の初期板厚を4mmとしたNo.5、No.6及び実験による板厚を示す特性図である。The initial plate thickness of the workpiece was 4 mm. 5, no. 6 is a characteristic diagram showing the plate thickness by experiment and experiment.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
板厚が10mmのSPH590の円板の円筒深絞り行い、それを成形シミュレーションであるFEM(有限要素法:Finite Element Method)にて解析した。まず、面内異方性のみを考慮したFEM解析を行った。降伏条件式は式(1)に示すHillの異方性降伏条件式を用いた。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
A cylinder of SPH590 having a plate thickness of 10 mm was deep drawn by cylinder and analyzed by FEM (Finite Element Method) which is a forming simulation. First, FEM analysis considering only in-plane anisotropy was performed. As the yield conditional expression, Hill's anisotropic yield conditional expression shown in Expression (1) was used.

Figure 0005875255
Figure 0005875255

面内異方性を考慮するため、式(1)における異方性パラメータF、G、H及びNは、例えば非特許文献2にあるように以下のように求めることができる。図2に示すように、鋼板11から、圧延方向に対する傾角α=0°、45°、90°を有する試験片12を作り、引張試験を行い、式(2)で示すLankfordのr値を求める。   In order to consider the in-plane anisotropy, the anisotropy parameters F, G, H, and N in the equation (1) can be obtained as follows, as described in Non-Patent Document 2, for example. As shown in FIG. 2, a test piece 12 having inclination angles α = 0 °, 45 °, and 90 ° with respect to the rolling direction is made from the steel plate 11, a tensile test is performed, and an r value of Rankford represented by Equation (2) is obtained. .

Figure 0005875255
Figure 0005875255

上述のようにして求めたr値を式(3)、式(4)、式(5)に代入することにより、それぞれ異方性パラメータG、F、Nを得ることができる。その値を表1に示す。   Anisotropy parameters G, F, and N can be obtained by substituting the r value obtained as described above into Equation (3), Equation (4), and Equation (5), respectively. The values are shown in Table 1.

Figure 0005875255
Figure 0005875255

Figure 0005875255
Figure 0005875255

面内異方性を考慮したFEM解析では、図3に示すように、圧延方向から45°方向のカップ高さ(図4に示すH)が大きくなる傾向は再現できたが、カップ高さが実験結果より大きくなった。また、図4に示すように、成形後の絞り品21の4ヶ所a〜dで板厚を調査した結果、図5に示すように、パンチ肩部での板厚が実験結果よりかなり小さくなる結果となった。   In the FEM analysis considering in-plane anisotropy, as shown in FIG. 3, the tendency that the cup height in the 45 ° direction (H shown in FIG. 4) increases from the rolling direction could be reproduced. It became larger than the experimental result. Moreover, as shown in FIG. 4, as a result of investigating the plate thickness at four locations a to d of the drawn product 21 after molding, as shown in FIG. 5, the plate thickness at the punch shoulder is considerably smaller than the experimental result. As a result.

本願発明者は鋭意検討を重ねた結果、面内異方性のみならず、板厚断面内の異方性が形状変化に影響することを突き止めた。面内異方性に加えて、板厚断面内の異方性も考慮するため、式(1)における異方性パラメータF、G、H、L、M及びNを、例えば非特許文献3にあるように以下のように求める。   As a result of intensive studies, the present inventor has found that not only in-plane anisotropy but also anisotropy in the cross section of the plate thickness affects the shape change. In order to consider the anisotropy in the plate thickness cross section in addition to the in-plane anisotropy, the anisotropy parameters F, G, H, L, M and N in the equation (1) are described in Non-Patent Document 3, for example. It asks as follows.

図6に示すように、辺長が6mmの立方体を加工し、圧延方向に対する傾角β=0°、45°、90°の方向に圧縮し、式(6)で示すZ値を求める。図6は、Z値を求めるために用いる立方体試験片の切出し方向、圧縮方向及び歪の測定方向を示す図である。31は鋼板である。32は圧縮方向が圧延方向に対する傾き角β=0°になるように加工した辺長が6mmの立方体試験片である。33は圧縮方向が圧延方向に対する傾き角β=45°になるように加工した辺長が6mmの立方体試験片である。34は圧縮方向が圧延方向に対する傾き角β=90°になるように加工した辺長が6mmの立方体試験片である。   As shown in FIG. 6, a cube having a side length of 6 mm is processed and compressed in the directions of inclination angles β = 0 °, 45 °, and 90 ° with respect to the rolling direction to obtain the Z value represented by Equation (6). FIG. 6 is a diagram showing the cutting direction, compression direction, and strain measurement direction of a cubic test piece used for obtaining the Z value. 31 is a steel plate. Reference numeral 32 denotes a cubic test piece having a side length of 6 mm and processed so that the compression direction has an inclination angle β = 0 ° with respect to the rolling direction. Reference numeral 33 denotes a cubic test piece having a side length of 6 mm and processed so that the compression direction has an inclination angle β = 45 ° with respect to the rolling direction. Reference numeral 34 denotes a cubic test piece having a side length of 6 mm and processed so that the compression direction has an inclination angle β = 90 ° with respect to the rolling direction.

Figure 0005875255
Figure 0005875255

また、図7に示すように、辺長が6mmの立方体を加工し、圧延方向に対する傾角γ=0°、45°、90°の方向に圧縮し、式(7)で示すY値を求める。図7は、Y値を求めるために用いる立方体試験片の切出し方向、圧縮方向及び歪の測定方向を示す図である。41は鋼板である。42は圧縮方向が圧延方向に対する傾き角γ=0°になるように加工した辺長が6mmの立方体試験片である。43は圧縮方向が圧延方向に対する傾き角γ=45°になるように加工した辺長が6mmの立方体試験片である。44は圧縮方向が圧延方向に対する傾き角γ=90°になるように加工した辺長が6mmの立方体試験片である。   Further, as shown in FIG. 7, a cube having a side length of 6 mm is processed and compressed in the directions of the inclination angles γ = 0 °, 45 °, and 90 ° with respect to the rolling direction, and the Y value represented by Expression (7) is obtained. FIG. 7 is a diagram showing the cutting direction, compression direction, and strain measurement direction of a cubic test piece used for obtaining the Y value. 41 is a steel plate. Reference numeral 42 denotes a cubic test piece having a side length of 6 mm and processed so that the compression direction has an inclination angle γ = 0 ° with respect to the rolling direction. Reference numeral 43 denotes a cubic test piece having a side length of 6 mm and processed so that the compression direction has an inclination angle γ = 45 ° with respect to the rolling direction. Reference numeral 44 denotes a cubic test piece having a side length of 6 mm and processed so that the compression direction has an inclination angle γ = 90 ° with respect to the rolling direction.

Figure 0005875255
Figure 0005875255

また、図8に示すように、辺長が6mmの立方体を加工し、圧延方向に対する傾角θ=0°、45°、90°の方向に圧縮し、式(8)で示すX値を求める。図8は、X値を求めるために用いる立方体試験片の切出し方向、圧縮方向及び歪の測定方向を示す図である。51は鋼板である。52は圧縮方向が幅方向に対する傾き角θ=0°になるように加工した辺長が6mmの立方体試験片である。53は圧縮方向が幅方向に対する傾き角θ=45°になるように加工した辺長が6mmの立方体試験片である。54は圧縮方向が幅方向に対する傾き角θ=90°になるように加工した辺長が6mmの立方体試験片である。   Further, as shown in FIG. 8, a cube having a side length of 6 mm is processed and compressed in the directions of inclination angles θ = 0 °, 45 °, and 90 ° with respect to the rolling direction to obtain the X value represented by the equation (8). FIG. 8 is a diagram showing the cutting direction, compression direction, and strain measuring direction of a cubic test piece used for obtaining the X value. 51 is a steel plate. Reference numeral 52 denotes a cubic test piece having a side length of 6 mm processed so that the compression direction has an inclination angle θ = 0 ° with respect to the width direction. Reference numeral 53 denotes a cubic test piece having a side length of 6 mm which is processed so that the compression direction has an inclination angle θ = 45 ° with respect to the width direction. Reference numeral 54 denotes a cubic test piece having a side length of 6 mm which is processed so that the compression direction has an inclination angle θ = 90 ° with respect to the width direction.

Figure 0005875255
Figure 0005875255

上述のようにして求めたZ値、Y値、X値を式(9)、式(10)、式(11)、式(12)、式(13)に代入して、それぞれ係数G、F、N、M、Lを得ることができる。その値を表2に示す。   The Z value, the Y value, and the X value obtained as described above are substituted into Equation (9), Equation (10), Equation (11), Equation (12), and Equation (13) to obtain coefficients G and F, respectively. , N, M, and L can be obtained. The values are shown in Table 2.

Figure 0005875255
Figure 0005875255

Figure 0005875255
Figure 0005875255

図9及び図10に、面内異方性に加えて、板厚断面内の異方性も考慮したFEM解析結果を示す。図9は、被加工材の初期板厚が10mmの場合の実験及び計算によるカップ高さを示す特性図である。また、図10は、被加工材の初期板厚が10mmの場合の実験及び計算による板厚を示す特性図である。被加工材の初期板厚が10mmの場合、面内異方性に加えて、板厚断面内の異方性を考慮した解析結果は、面内異方性のみを考慮した解析結果と比較して実験結果に近く、解析精度が向上している。   9 and 10 show the FEM analysis results in consideration of the anisotropy in the plate thickness section in addition to the in-plane anisotropy. FIG. 9 is a characteristic diagram showing the cup height by experiment and calculation when the initial plate thickness of the workpiece is 10 mm. FIG. 10 is a characteristic diagram showing the plate thickness obtained by experiments and calculations when the initial plate thickness of the workpiece is 10 mm. When the initial plate thickness of the workpiece is 10 mm, the analysis result considering the in-plane anisotropy in addition to the in-plane anisotropy is compared with the analysis result considering only the in-plane anisotropy. The analysis accuracy is close to the experimental results.

一方、図11は、被加工材の初期板厚が3.5mmの場合の実験及び計算によるカップ高さを示す特性図である。また、図12は、被加工材の初期板厚が3.5mmの場合の実験及び計算による板厚を示す特性図である。図11及び図12に示すように、板厚が4mm未満になると、面内異方性に加えて、板厚断面内の異方性を考慮した解析結果と、従来の面内異方性のみを考慮した解析結果とは略同等となる。従って、板厚が4mm以上の鋼板の円筒深絞りのFEM解析を行う場合に、面内異方性に加えて、板厚断面内の異方性を考慮した解析を行うのが好適である。   On the other hand, FIG. 11 is a characteristic diagram showing the cup height by experiment and calculation when the initial plate thickness of the workpiece is 3.5 mm. FIG. 12 is a characteristic diagram showing the plate thickness obtained by experiments and calculations when the initial plate thickness of the workpiece is 3.5 mm. As shown in FIGS. 11 and 12, when the plate thickness is less than 4 mm, in addition to the in-plane anisotropy, the analysis result considering the anisotropy in the plate thickness section and the conventional in-plane anisotropy only This is almost the same as the analysis result considering. Therefore, when performing FEM analysis of a cylindrical deep drawing of a steel sheet having a thickness of 4 mm or more, it is preferable to perform an analysis taking into account the anisotropy in the thickness section in addition to the in-plane anisotropy.

板厚が10mm、8mm、4mmのSPH590の鋼板から円板に切削加工したものを被加工材とした。図13に示す金型(パンチ61、ダイ62)を用い、表3に示す条件にて被加工材63の絞り成形を行った。板厚が厚いため、しわ押さえが無くても皺が発生しないため、しわ押さえを使用しなかった。   A material obtained by cutting a steel plate of SPH590 having a plate thickness of 10 mm, 8 mm, or 4 mm into a disc was used. Using the mold (punch 61, die 62) shown in FIG. 13, the workpiece 63 was drawn under the conditions shown in Table 3. The wrinkle presser was not used because wrinkles did not occur even if there was no wrinkle presser because the plate thickness was thick.

FEM解析条件を表3に示す。符号No.1及びNo.2は、板厚10mmのFEM解析であり、その結果を図14及び図15に示す。図14は、被加工材の初期板厚を10mmとしたNo.1、No.2及び実験によるカップ高さを示す特性図である。また、図15は、被加工材の初期板厚を10mmとしたNo.1、No.2及び実験による板厚を示す特性図である。本発明を適用したNo.1では、面内異方性のみを考慮した比較例No.2と比較して解析精度が良い。   Table 3 shows FEM analysis conditions. Reference No. 1 and no. 2 is an FEM analysis with a plate thickness of 10 mm, and the results are shown in FIGS. 14 and 15. 14 shows No. 1 in which the initial plate thickness of the workpiece is 10 mm. 1, no. FIG. 2 is a characteristic diagram showing cup heights according to 2 and experiments. 15 shows No. 1 in which the initial plate thickness of the workpiece is 10 mm. 1, no. It is a characteristic view which shows the board thickness by 2 and experiment. No. to which the present invention is applied. In Comparative Example No. 1 considering only in-plane anisotropy. Compared with 2, analysis accuracy is good.

No.3及びNo.4は、板厚8mmのFEM解析であり、その結果を図16及び図17に示す。図16は、被加工材の初期板厚を8mmとしたNo.3、No.4及び実験によるカップ高さを示す特性図である。また、図17は、被加工材の初期板厚を8mmとしたNo.3、No.4及び実験による板厚を示す特性図である。本発明を適用したNo.3では、面内異方性のみを考慮した比較例No.4と比較して解析精度が良い。   No. 3 and no. 4 is an FEM analysis with a plate thickness of 8 mm, and the results are shown in FIGS. 16 and 17. FIG. 16 shows the case where the initial plate thickness of the workpiece is 8 mm. 3, no. FIG. 4 is a characteristic diagram showing cup heights according to 4 and experiments. 17 shows No. 1 in which the initial plate thickness of the workpiece is 8 mm. 3, no. FIG. 4 is a characteristic diagram showing a plate thickness by 4 and experiment. No. to which the present invention is applied. In Comparative Example No. 3 in which only in-plane anisotropy is considered. Compared with 4, analysis accuracy is good.

No.5及びNo.6は、板厚4mmのFEM解析であり、その結果を図18及び図19に示す。図18は、被加工材の初期板厚を4mmとしたNo.5、No.6及び実験によるカップ高さを示す特性図である。また、図19は、被加工材の初期板厚を4mmとしたNo.5、No.6及び実験による板厚を示す特性図である。本発明を適用したNo.5では、面内異方性のみを考慮した比較例No.6と比較して解析精度が良い。   No. 5 and no. 6 is an FEM analysis with a plate thickness of 4 mm, and the results are shown in FIGS. 18 shows No. 1 in which the initial plate thickness of the workpiece is 4 mm. 5, no. 6 is a characteristic diagram showing a cup height by experiment and experiment. 19 shows No. 1 in which the initial plate thickness of the workpiece is 4 mm. 5, no. 6 is a characteristic diagram showing the plate thickness by experiment and experiment. No. to which the present invention is applied. In Comparative Example No. 5 considering only in-plane anisotropy. Compared with 6, analysis accuracy is better.

Figure 0005875255
Figure 0005875255

上述したような円筒深絞りのFEM解析は、CPU、ROM、RAM等を備えたコンピュータ装置からなる成形シミュレーション装置により実行可能である。また、上述した円筒深絞りのFEM解析を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(又はCPUやMPU等)がプログラムを読み出して実行することも可能である。   The FEM analysis of the cylindrical deep drawing as described above can be executed by a molding simulation apparatus including a computer apparatus including a CPU, a ROM, a RAM, and the like. In addition, the above-described software (program) that realizes the FEM analysis of the cylindrical deep drawing is supplied to a system or apparatus via a network or various storage media, and the computer (or CPU, MPU, etc.) of the system or apparatus executes the program. It is also possible to read and execute.

1…ダイス、2…ブランクホルダー、3:…被加工材、4…パンチ、11…鋼板、12…引張試験片、21…成形後の絞り品、31…鋼板、32…圧縮方向が圧延方向に対する傾き角β=0°になるように加工した辺長が6mmの立方体試験片、33…圧縮方向が圧延方向に対する傾き角β=45°になるように加工した辺長が6mmの立方体試験片、34…圧縮方向が圧延方向に対する傾き角β=90°になるように加工した辺長が6mmの立方体試験片、41…鋼板、42…圧縮方向が圧延方向に対する傾き角γ=0°になるように加工した辺長が6mmの立方体試験片、43…圧縮方向が圧延方向に対する傾き角γ=45°になるように加工した辺長が6mmの立方体試験片、44…圧縮方向が圧延方向に対する傾き角γ=90°になるように加工した辺長が6mmの立方体試験片、51…鋼板、52…圧縮方向が幅方向に対する傾き角θ=0°になるように加工した辺長が6mmの立方体試験片、53…圧縮方向が幅方向に対する傾き角θ=45°になるように加工した辺長が6mmの立方体試験片、54…圧縮方向が幅方向に対する傾き角θ=90°になるように加工した辺長が6mmの立方体試験片、61…パンチ、62…ダイ、63…被加工材 DESCRIPTION OF SYMBOLS 1 ... Die, 2 ... Blank holder, 3: ... Work material, 4 ... Punch, 11 ... Steel plate, 12 ... Tensile test piece, 21 ... Drawing after drawing, 31 ... Steel plate, 32 ... Compression direction with respect to rolling direction A cube test piece with a side length of 6 mm processed to have an inclination angle β = 0 °, 33... A cube test piece with a side length of 6 mm processed so that the compression direction has an inclination angle β = 45 ° with respect to the rolling direction, 34: Cubic specimen having a side length of 6 mm processed so that the compression direction has an inclination angle β = 90 ° with respect to the rolling direction, 41 ... Steel plate, 42 ... The compression direction has an inclination angle γ = 0 ° with respect to the rolling direction A cube test piece with a side length of 6 mm processed to 43 mm, a cube test piece with a side length of 6 mm processed so that the compression direction has an inclination angle γ = 45 ° with respect to the rolling direction, and 44... An inclination with respect to the rolling direction. Angle γ = 90 ° Cubic test piece having a side length of 6 mm, 51 ... steel plate, 52 ... Cubic test piece having a side length of 6mm processed so that the compression direction has an inclination angle θ = 0 ° with respect to the width direction, 53 ... width in the compression direction Cube test piece with a side length of 6 mm processed so as to have an inclination angle θ = 45 ° relative to the direction, 54... Cube test with a side length of 6 mm processed so that the compression direction has an inclination angle θ = 90 ° with respect to the width direction. Piece 61 ... Punch 62 ... Die 63 ... Workpiece

Claims (6)

板厚が4mm以上の鋼板を、中空円筒を有するダイ上に配置し、前記ダイの中心円筒と中心軸が同一であり、前記中空円筒の内径より外径が小さい円筒状のパンチを押し込むことによる円筒深絞りの成形シミュレーションを行う際に、絞り比2.0以上、板厚と前記パンチの肩半径の比0.4以上、および板厚と前記ダイの肩半径の比0.4以上となる場合、面内異方性に加えて、板厚断面内の異方性も考慮して成形シミュレーションを行うことを特徴とする円筒深絞りの成形シミュレーション方法。 By placing a steel plate having a plate thickness of 4 mm or more on a die having a hollow cylinder, and pressing a cylindrical punch having the same central axis as the central cylinder of the die and an outer diameter smaller than the inner diameter of the hollow cylinder When forming a deep cylindrical drawing simulation, the drawing ratio is 2.0 or more, the ratio of the plate thickness to the shoulder radius of the punch is 0.4 or more, and the ratio of the plate thickness to the shoulder radius of the die is 0.4 or more. In this case, a forming simulation method for cylindrical deep drawing is characterized in that forming simulation is performed in consideration of anisotropy in a plate thickness section in addition to in-plane anisotropy. 前記円筒深絞りにおいて、前記鋼板が前記ダイの中空円筒と中心軸が同一の中空円板状のブランクホルダーにより、前記ダイとの間に押しつけられていることを特徴とする請求項1に記載の円筒深絞りの成形シミュレーション方法。   The said cylindrical deep drawing WHEREIN: The said steel plate is pressed between the said dies with the hollow disk-shaped blank holder whose central axis is the same as the hollow cylinder of the said die | dye. Cylindrical deep drawing molding simulation method. Hillの異方性降伏条件式における異方性パラメータを求めることを特徴とする請求項1又は2に記載の円筒深絞りの成形シミュレーション方法。   3. The forming simulation method for a cylindrical deep drawing according to claim 1, wherein an anisotropic parameter in Hill's anisotropic yield condition equation is obtained. 板厚が4mm以上の鋼板の複数の面それぞれから複数の傾きで立方体を切出し、圧縮して、その歪みに基づいて、前記Hillの異方性降伏条件式における異方性パラメータを求めることを特徴とする請求項3に記載の円筒深絞りの成形シミュレーション方法。   A cube is cut out from each of a plurality of faces of a steel plate having a thickness of 4 mm or more with a plurality of inclinations, compressed, and an anisotropic parameter in the Hill anisotropic yield condition formula is obtained based on the strain. The forming simulation method for cylindrical deep drawing according to claim 3. 板厚が4mm以上の鋼板を、中空円筒を有するダイ上に配置し、前記ダイの中心円筒と中心軸が同一であり、前記中空円筒の内径より外径が小さい円筒状のパンチを押し込むことによる円筒深絞りの成形シミュレーションを行う際に、絞り比2.0以上、板厚と前記パンチの肩半径の比0.4以上、および板厚と前記ダイの肩半径の比0.4以上となる場合、面内異方性に加えて、板厚断面内の異方性も考慮して成形シミュレーションを行う手段を備えたことを特徴とする円筒深絞りの成形シミュレーション装置。 By placing a steel plate having a plate thickness of 4 mm or more on a die having a hollow cylinder, and pressing a cylindrical punch having the same central axis as the central cylinder of the die and an outer diameter smaller than the inner diameter of the hollow cylinder When forming a deep cylindrical drawing simulation, the drawing ratio is 2.0 or more, the ratio of the plate thickness to the shoulder radius of the punch is 0.4 or more, and the ratio of the plate thickness to the shoulder radius of the die is 0.4 or more. In this case, a cylindrical deep drawing molding simulation apparatus comprising means for performing a molding simulation in consideration of anisotropy in a plate thickness section in addition to in-plane anisotropy. 板厚が4mm以上の鋼板を、中空円筒を有するダイ上に配置し、前記ダイの中心円筒と中心軸が同一であり、前記中空円筒の内径より外径が小さい円筒状のパンチを押し込むことによ円筒深絞りの成形シミュレーションを行う際に、絞り比2.0以上、板厚と前記パンチの肩半径の比0.4以上、および板厚と前記ダイの肩半径の比0.4以上となる場合、面内異方性に加えて、板厚断面内の異方性も考慮して成形シミュレーションを行う処理をコンピュータに実行させるためのプログラム。 Placing a steel plate having a plate thickness of 4 mm or more on a die having a hollow cylinder, and pushing in a cylindrical punch having the same central axis as the central cylinder of the die and an outer diameter smaller than the inner diameter of the hollow cylinder. when performing the forming simulation of Ru cylindrical deep drawing good, drawing ratio of 2.0 or more, the thickness and the punch shoulder radius ratio 0.4 or more, and a thickness between the die shoulder radius ratio 0.4 or more In this case, a program for causing a computer to execute a forming simulation in consideration of anisotropy in a plate thickness section in addition to in-plane anisotropy.
JP2011123343A 2011-06-01 2011-06-01 Cylindrical deep drawing molding simulation method, apparatus and program Active JP5875255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011123343A JP5875255B2 (en) 2011-06-01 2011-06-01 Cylindrical deep drawing molding simulation method, apparatus and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123343A JP5875255B2 (en) 2011-06-01 2011-06-01 Cylindrical deep drawing molding simulation method, apparatus and program

Publications (2)

Publication Number Publication Date
JP2012250245A JP2012250245A (en) 2012-12-20
JP5875255B2 true JP5875255B2 (en) 2016-03-02

Family

ID=47523566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123343A Active JP5875255B2 (en) 2011-06-01 2011-06-01 Cylindrical deep drawing molding simulation method, apparatus and program

Country Status (1)

Country Link
JP (1) JP5875255B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994464B2 (en) * 2012-08-06 2016-09-21 Jfeスチール株式会社 Metal pipe analysis method
JP7392747B2 (en) * 2022-01-17 2023-12-06 Jfeスチール株式会社 Press forming analysis method, press forming analysis device and press forming analysis program
WO2023135914A1 (en) * 2022-01-17 2023-07-20 Jfeスチール株式会社 Press-forming analysis method, press-forming analysis device, and press-forming analysis program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000107818A (en) * 1998-10-08 2000-04-18 Toyota Motor Corp Method for judging rupture in simulation of plastic working
JP4371985B2 (en) * 2004-11-30 2009-11-25 株式会社豊田中央研究所 Stress analysis method, program, and recording medium

Also Published As

Publication number Publication date
JP2012250245A (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP4935713B2 (en) Method for determining whether molding is possible at the shear edge of a pressed product
JP2007229724A (en) Method of analyzing press forming
Zhang et al. Effect of anisotropy and prebulging on hydromechanical deep drawing of mild steel cups
JP5875255B2 (en) Cylindrical deep drawing molding simulation method, apparatus and program
Darmawan et al. Die design optimization on sheet metal forming with considering the phenomenon of springback to improve product quality
KR20150043476A (en) Springback amount evaluation method
RU2590517C2 (en) Method for stepwise moulding
RU2701435C1 (en) Method of making a metal element
JP4428581B1 (en) Forging tool design method and forging tool
JP5626501B1 (en) Method for forming cylindrical container with boss
Anggono et al. Simulation of ironing process for earring reduction in sheet metal forming
Grigoraș et al. Additive manufacturing of a stretch forming die using 3D printing technology
Ozek et al. Investigation of Deep Drawability of Rectangular Shaped Cups in Deep Drawing Dies
JP6303815B2 (en) Forging crack prediction method, forging crack prediction program, and recording medium
Krishna et al. Prediction of draw ratio in deep drawing through software simulations
Yusop et al. Evaluation of square deep drawn AA6061-T6 blank based on thinning pattern
JP2011245506A (en) Step bending processing device and method
Younis et al. Rubber Pad Sheet Metal Forming of Round Metal Blanks into Multi Shape Axisymmetric Cups by FEA and Experimental Methods
WO2018066181A1 (en) Method of manufacturing molded material, and said molded material
Iryana et al. Finite element simulation to predict wrinkling in low carbon steel deep drawing process using isotropic model
Srirat et al. Optimization of Segmented Blank Holder Shape and Its Variable Blank Holder Gap in Deep-Drawing Process
Wisselink et al. Application of wrinkling criterion for prediction of side-wall wrinkles in deepdrawing of conical cups
Younis et al. Numerical Analysis of The Multi-Stage Reverse Deep Drawing Process
Shukur et al. Analysis of Thickness Distribution in Cup Produced by Rubber Pad Forming
Özek The Effect of Die Geometry on Wall Thicknesses of Cup in Deep Drawing of Rectangular Cups.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150327

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160119

R151 Written notification of patent or utility model registration

Ref document number: 5875255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350