JP4428581B1 - Forging tool design method and forging tool - Google Patents

Forging tool design method and forging tool Download PDF

Info

Publication number
JP4428581B1
JP4428581B1 JP2009029719A JP2009029719A JP4428581B1 JP 4428581 B1 JP4428581 B1 JP 4428581B1 JP 2009029719 A JP2009029719 A JP 2009029719A JP 2009029719 A JP2009029719 A JP 2009029719A JP 4428581 B1 JP4428581 B1 JP 4428581B1
Authority
JP
Japan
Prior art keywords
punch
forging
stress
space
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009029719A
Other languages
Japanese (ja)
Other versions
JP2010064142A (en
Inventor
雄二 牟禮
一雄 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Seimitsu Co Ltd
Kagoshima-Ken Kagoshima-Shi Kagoshima-Ken
Original Assignee
Union Seimitsu Co Ltd
Kagoshima-Ken Kagoshima-Shi Kagoshima-Ken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Seimitsu Co Ltd, Kagoshima-Ken Kagoshima-Shi Kagoshima-Ken filed Critical Union Seimitsu Co Ltd
Priority to JP2009029719A priority Critical patent/JP4428581B1/en
Priority to PCT/JP2009/063486 priority patent/WO2010018750A1/en
Application granted granted Critical
Publication of JP4428581B1 publication Critical patent/JP4428581B1/en
Publication of JP2010064142A publication Critical patent/JP2010064142A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/44Making machine elements bolts, studs, or the like
    • B21K1/46Making machine elements bolts, studs, or the like with heads
    • B21K1/463Making machine elements bolts, studs, or the like with heads with recessed heads

Abstract

【課題】安価で簡易な構成で、パンチの破壊を抑制し、長時間の連続使用を可能とした鍛造工具を提供する。
【解決手段】鍛造工具は、鍛造にて成形される鍛造品の成形穴を有するダイス10と、
ダイス10に対向して配置されるパンチ30と、を備え、ダイス10の成形穴に鍛造品の素材40を配置し、パンチ30のパンチ押圧部30aにより素材40を押圧して鍛造品を
成形するにあたり、パンチ30の内部に、パンチ押圧部30aの弾性変形を積極的に促進
し、たわますことで鍛造時の衝撃による応力を分散・吸収させる空間部50を形成した。
【選択図】図1
Provided is a forging tool which can be used continuously for a long time with a low-price and simple configuration, which suppresses punch breakage.
A forging tool includes a die 10 having a forming hole for a forged product formed by forging;
A punch 30 disposed opposite to the die 10, the forged material 40 is disposed in the forming hole of the die 10, and the forged product is formed by pressing the material 40 by the punch pressing portion 30 a of the punch 30. In this process, the space 50 for dispersing and absorbing the stress caused by the impact during forging was formed inside the punch 30 by actively accelerating the elastic deformation of the punch pressing portion 30a.
[Selection] Figure 1

Description

この発明は、鍛造する際に用いられる鍛造工具に関する。   The present invention relates to a forging tool used for forging.

従来より、ねじ、ボルト等の締結部品は、パンチ(上型)とダイス(下型)と呼ばれる工具を用いて鍛造されている。パンチには、圧縮、引張、せん断などの応力が反復作用し、時にはこれらの応力が衝撃的に加わることがある。加えて、部品の形状・寸法精度に対する要求が年々厳しくなり、また高張力鋼等の特殊素材の採用も増えていることから、リスクの高い成形条件を余儀なくされ、疲労破壊により工具寿命が低下するという問題があった。   Conventionally, fastening parts such as screws and bolts are forged using tools called a punch (upper die) and a die (lower die). Stresses such as compression, tension, and shear are repeatedly applied to the punch, and sometimes these stresses are shocked. In addition, the requirements for the shape and dimensional accuracy of parts are becoming stricter year by year, and the use of special materials such as high-strength steel is increasing, which necessitates high-risk molding conditions and reduces tool life due to fatigue failure. There was a problem.

そこで、このような問題に対処した従来技術を検討した結果、表面コーティングにより工具表面に硬質層を形成する方法(特許文献1,2)、また、特殊な熱処理により工具寿命を向上させる方法(特許文献3,4)を見出すことができた。   Therefore, as a result of studying the prior art that addresses such problems, a method of forming a hard layer on the surface of the tool by surface coating (Patent Documents 1 and 2), and a method of improving the tool life by a special heat treatment (patent) Documents 3 and 4) were found.

ところが、いずれの方法においても、工具表面硬度の向上を目的としており、通常の工具製作に加えて特殊処理を施す必要があり、工具製造コストが高騰するという不都合があった。   However, in any of the methods, the purpose is to improve the tool surface hardness, and it is necessary to perform a special treatment in addition to the normal tool production, resulting in an inconvenience that the tool manufacturing cost increases.

また、上記以外に、応力集中部を予め分割する方法(特許文献5,6)がある。しかし、これらの技術も、工具数が複数となり、工具製造コストが高騰するという不都合があった。   In addition to the above, there is a method (Patent Documents 5 and 6) for dividing the stress concentration portion in advance. However, these techniques also have a disadvantage that the number of tools becomes plural and the tool manufacturing cost increases.

特開2003−112229JP2003-112229A 特開2000−054108JP 2000-054108 A 特開平08−300066JP 08-300066 特開平07−173572JP 07-173572 A 特開2006−26709JP 2006-26709 A 特開2000−627JP 2000-627 A

工具寿命が低下すると、パンチ等の部品を頻繁に交換せざるを得ず、交換部品にかかるコストの上昇を招き、また鍛造機の連続運転ができなくなり、生産効率が低下する原因にもなっていた。   If the tool life is reduced, parts such as punches must be replaced frequently, resulting in an increase in the cost of replacement parts, and the continuous operation of the forging machine becomes impossible, leading to reduced production efficiency. It was.

この発明は、このような実情に鑑みてなされたもので、安価で簡易な構成で、パンチの疲労破壊を抑制し、長時間の連続使用を可能とした鍛造工具の設計方法及び鍛造工具を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a forging tool design method and a forging tool capable of suppressing punch fatigue failure and enabling continuous use for a long time with an inexpensive and simple configuration. The purpose is to do.

前記課題を解決し、かつ目的を達成するために、この発明は、以下のように構成した。   In order to solve the above-described problems and achieve the object, the present invention is configured as follows.

請求項1に記載の発明は、鍛造にて成形される鍛造品の成形穴を有するダイスと、
前記ダイスに対向して配置されるパンチと、
を備え、
前記ダイスの成形穴に鍛造品の素材を配置し、
前記パンチのパンチ押圧部により前記素材を押圧して前記鍛造品を成形する鍛造工具の設計方法であり、
前記パンチの内部に、前記パンチ押圧部の弾性変形を積極的に促進し、たわみにより鍛造時の衝撃による応力を分散・吸収させる空間部を形成し、
前記パンチ押圧部のたわみ量を、相当応力値で評価し、
前記パンチ押圧部の破壊点での前記相当応力値を、前記空間部を設けない鍛造工具のパンチ押圧部の相当応力値より小さく設定することを特徴とする鍛造工具の設計方法である
The invention according to claim 1 is a die having a forming hole of a forged product formed by forging;
A punch disposed opposite the die;
With
Place the material of the forged product in the forming hole of the die,
A forging tool design method for forming the forged product by pressing the material with a punch pressing portion of the punch ,
The interior of the punch, the punch press part of actively promoting the elastic deformation, bending by forming a space portion in which stress is dispersed and absorbed by the impact during forging,
The amount of deflection of the punch pressing part is evaluated with an equivalent stress value,
The forging tool design method is characterized in that the equivalent stress value at the breaking point of the punch pressing portion is set smaller than the equivalent stress value of the punch pressing portion of the forging tool not provided with the space portion .

請求項に記載の発明は、前記相当応力値で評価するたわみ量は、数値解析あるいは塑性加工用のモデル材料を用いたモデル実験により定量化することを特徴とする請求項1に記載の鍛造工具の設計方法である。 The invention according to claim 2 is characterized in that the amount of deflection evaluated by the equivalent stress value is quantified by numerical analysis or model experiment using a model material for plastic working. This is a tool design method.

請求項に記載の発明は、請求項1または請求項2に記載の設計方法により製造されたことを特徴とする鍛造工具である。 The invention according to claim 3 is a forging tool manufactured by the design method according to claim 1 or claim 2 .

前記構成により、この発明は、以下のような効果を有する。   With the above configuration, the present invention has the following effects.

この発明では、鍛造品を成形する際に、パンチの内部に形成した空間部によってパンチ押圧部の弾性変形を積極的に促進し、たわますことで鍛造時の衝撃による応力を分散・吸収させることでパンチの疲労破壊を抑制することができ耐久性が向上するため、長時間の連続使用が可能となる。 In this invention, when forming a forged product, the elastic deformation of the punch pressing part is actively promoted by the space formed inside the punch, and the stress caused by the impact during forging is dispersed and absorbed by bending. As a result, fatigue damage of the punch can be suppressed and durability can be improved, so that continuous use for a long time is possible.

主成形における冷間圧造前の冷間圧造工具の組図を示す図である。It is a figure which shows the assembly drawing of the cold forging tool before the cold forging in main forming. 主成形における冷間圧造後の冷間圧造工具の組図を示す図である。It is a figure which shows the assembly drawing of the cold forging tool after the cold forging in main forming. 圧造品を示し、図3(a)は平面図、図3(b)は正面図である。Fig. 3 (a) is a plan view and Fig. 3 (b) is a front view. 冷間圧造による予備成形時の有限要素法解析モデルを示す図である。It is a figure which shows the finite element method analysis model at the time of the preforming by cold heading. 冷間圧造による主成形時の有限要素法解析モデルを示す図である。It is a figure which shows the finite element method analysis model at the time of the main shaping | molding by cold heading. 主成形のパンチの加工荷重とストロークとの関係を示す図である。It is a figure which shows the relationship between the processing load and stroke of the main shaping | molding punch. 主成形の空間を設けない場合の解析結果を示す図である。It is a figure which shows the analysis result when not providing the space of main shaping | molding. この発明の解析条件を説明する図である。It is a figure explaining the analysis conditions of this invention. 解析結果であり、図8(c)の円柱形の空間部である穴の底厚と内径を変化させたときの加工荷重の変化を示す図である。It is an analysis result and is a figure which shows the change of the process load when changing the bottom thickness and internal diameter of a hole which are the cylindrical space parts of FIG.8 (c). 穴空間部が内径3mmのときに、底厚を変化させた場合の部位ごとの応力分布の変化を示す図である。It is a figure which shows the change of the stress distribution for every site | part at the time of changing bottom thickness when a hole space part is 3 mm in internal diameter. 穴空間部が内径6mmのときに、底厚を変化させた場合の部位ごとの応力分布の変化を示す図である。It is a figure which shows the change of the stress distribution for every site | part at the time of changing bottom thickness when a hole space part is internal diameter 6mm. 穴空間部が内径9mmのときに、底厚を変化させた場合の部位ごとの応力分布の変化を示す図である。It is a figure which shows the change of the stress distribution for every site | part at the time of changing bottom thickness when a hole space part is 9 mm in internal diameter. A点について、空間部の内径と底厚を変化させた場合の応力分布の変化を示す図である。It is a figure which shows the change of stress distribution at the time of changing the internal diameter and bottom thickness of a space part about A point. B点について、空間部の内径と底厚を変化させた場合の応力分布の変化を示す図である。It is a figure which shows the change of stress distribution at the time of changing the internal diameter and bottom thickness of a space part about B point. C点について、空間部の内径と底厚を変化させた場合の応力分布の変化を示す図である。It is a figure which shows the change of the stress distribution at the time of changing the internal diameter and bottom thickness of a space part about C point. パンチは、円柱形の穴を有する一体の部材で空間部を形成し、穴の底の形状を変えた実施の形態の解析条件を示す図である。A punch is a figure which shows the analysis conditions of embodiment which formed the space part with the integral member which has a cylindrical hole, and changed the shape of the bottom of a hole. パンチは、円筒部材と蓋部材との別体の部材で円柱形の穴の空間部を形成し、穴の底の形状を変えた実施の形態の解析条件を示す図である。A punch is a figure which shows the analysis conditions of embodiment which formed the space part of the column-shaped hole with the member of a separate body of a cylindrical member and a cover member, and changed the shape of the bottom of a hole. 穴の底の形状を変えた実施の形態の解析条件について解析結果を示す図である。It is a figure which shows an analysis result about the analysis conditions of embodiment which changed the shape of the bottom of a hole.

以下、この発明の鍛造工具の設計方法及び鍛造工具の実施の形態について説明する。この実施の形態はねじの冷間圧造工具の設計方法及び冷間圧造工具
であり、この発明の好ましい形態を示すものであるが、この発明はこれに限定されない。
Embodiments of a forging tool design method and forging tool according to the present invention will be described below. This embodiment is a method for designing a cold forging tool for a screw and a cold forging tool, and shows a preferred embodiment of the present invention, but the present invention is not limited to this.

この発明の実施の形態を、図1から図3に基づいて説明する。ねじの冷間圧造は、素材から中間形状を成形する予備成形と、十字穴を持つ頭部を成形する主成形の2工程からなる。図1は主成形の冷間圧造前の冷間圧造工具の組図を示す図、図2は冷間圧造後の冷間圧造工具の組図を示す図、図3は圧造品を示し、図3(a)は平面図、図3(b)は正面図である。   An embodiment of the present invention will be described with reference to FIGS. Cold forging of screws consists of two steps: preforming to form an intermediate shape from a material and main forming to form a head with a cross hole. FIG. 1 is a diagram showing a set of cold forging tools before cold forging in main molding, FIG. 2 is a diagram showing a set of cold forging tools after cold forging, FIG. 3 is a diagram showing forged products, 3 (a) is a plan view and FIG. 3 (b) is a front view.

この冷間圧造工具1は、冷間圧造にて成形される圧造品の成形穴10aを有するダイス10と、このダイス10に対向して配置されるホルダ20と、このホルダ20に摺動可能に設けられたパンチ30を備えている。ダイス10の頭部下の成形穴10aに圧造品の素材40を配置する。成形穴10aは、十字穴付ねじを成形する形状である。ホルダ20の摺動孔20aには、パンチ30が摺動可能に設けられている。   The cold forging tool 1 includes a die 10 having a forming hole 10a for a forged product formed by cold forging, a holder 20 disposed to face the die 10, and a slidable movement on the holder 20. A punch 30 is provided. The material 40 of the forged product is disposed in the molding hole 10 a below the head of the die 10. The forming hole 10a has a shape for forming a cross hole screw. A punch 30 is slidably provided in the slide hole 20 a of the holder 20.

パンチ30を摺動してパンチ押圧部30aにより素材40を押圧して圧造品41を成形する。パンチ押圧部30aの先端面30a1を、周縁30a2よりも軸心で突出する形状にしている。すなわち、この実施の形態では、先端面30a1を十字状に突出させ、十字穴付ねじの十字穴を成形する。   The forged product 41 is formed by sliding the punch 30 and pressing the material 40 by the punch pressing portion 30a. The front end surface 30a1 of the punch pressing part 30a is shaped to protrude from the peripheral edge 30a2 at the axial center. That is, in this embodiment, the front end surface 30a1 is projected in a cross shape, and a cross hole of a cross hole screw is formed.

素材40は、棒状部材を所定長さに切断したものである。圧造品41は、図3に示すように、ねじ転造される前のねじ部品であり、ねじ転造される軸部41aと、頭部41bとを有する。パンチ押圧部30aの先端面30a1を、周縁30a2よりも軸心で十字状に突出する形状にすることで、頭部41bに十字穴41b1が形成される。   The material 40 is obtained by cutting a rod-shaped member into a predetermined length. As shown in FIG. 3, the forged product 41 is a screw part before being thread-rolled, and includes a shaft portion 41a and a head portion 41b that are thread-rolled. A cross hole 41b1 is formed in the head 41b by making the tip surface 30a1 of the punch pressing portion 30a project in a cross shape with an axial center from the peripheral edge 30a2.

パンチ30の内部には、冷間圧造の際に、パンチ押圧部30aの弾性変形を積極的に促進し、たわますことで鍛造時の衝撃による応力を分散・吸収させる空間部50が形成されている。空間部50は、円柱の穴であり、押圧方向において、穴の底の位置が鍛造時の衝撃による応力が到達する領域内であり、鍛造時に圧壊しない位置に形成されている。また、空間部50の押圧方向に対して直交方向の断面積S1は、素材40の押圧方向に対して直交方向の断面積S2より大きく形成されている。この空間部50を形成する円柱の穴は、底の形状が、穴の軸心に対して直交する平面で、隅が角である。 In the punch 30, a space 50 is formed that actively promotes elastic deformation of the punch pressing portion 30 a during cold forging and disperses and absorbs stress caused by impact during forging. ing. Space 50 is a hole in the cylindrical, in the pressing direction, a region where the position of the bottom of the hole reaches the stress due to impact during forging are formed at positions that do not collapse during the forging. In addition, the cross-sectional area S <b> 1 in the direction orthogonal to the pressing direction of the space 50 is formed larger than the cross-sectional area S <b> 2 in the direction orthogonal to the pressing direction of the material 40. Hole cylindrical forming the space portion 50, the shape of the bottom, a plane orthogonal to the axis of the hole, the corners are square.

この冷間圧造工具1では、図1に示すように、ダイス10の成形穴10aに圧造品41の素材40を配置する。そして、図2に示すように、パンチ30を摺動してパンチ押圧部30aにより素材40を押圧し塑性加工し、十字穴41b1を有する圧造品41を冷間圧造する。この圧造品41を成形する際に、パンチ押圧部30aの内部に形成した空間部50によってパンチ押圧部30aの弾性変形を積極的に促進し、たわますことで、パンチ押圧部30aにかかる鍛造時の衝撃による応力を分散・吸収させることができる。したがって、パンチ押圧部30aに生じる疲労破壊を抑制することができ耐久性が向上するため、パンチ30、ダイス10、ホルダ20の長時間の連続使用が可能となる。 In the cold forging tool 1, as shown in FIG. 1, the material 40 of the forged product 41 is disposed in the forming hole 10 a of the die 10. Then, as shown in FIG. 2, the punch 30 is slid and the material 40 is pressed and plastically processed by the punch pressing portion 30a, and the forged product 41 having the cross hole 41b1 is cold forged. When the forged product 41 is formed, the space portion 50 formed inside the punch pressing portion 30a actively promotes elastic deformation of the punch pressing portion 30a and is bent to forge the punch pressing portion 30a. It is possible to disperse and absorb the stress caused by the impact of time. Therefore, fatigue breakage occurring in the punch pressing portion 30a can be suppressed and durability is improved, so that the punch 30, the die 10, and the holder 20 can be used continuously for a long time.

次に、パンチ内部に空間を設ける効果について、図4から図15の有限要素法による数値解析例に基づいて説明する。有限要素法による圧造の解析は、図4の予備成形の解析モデルと、図5の主成形の解析モデルとの連続工程とし、予備成形解析で得られた結果を主成形解析の素材データとすることで、精度の高い解析を行った。   Next, the effect of providing a space inside the punch will be described based on numerical analysis examples based on the finite element method shown in FIGS. Forging analysis by the finite element method is a continuous process of the preforming analysis model of FIG. 4 and the main forming analysis model of FIG. 5, and the result obtained by the preforming analysis is used as material data of the main forming analysis. Therefore, the analysis was performed with high accuracy.

図4は予備成形の解析モデルを示し、ダイスに素材を配置し、ホルダ内を摺動するパンチで素材を押圧する解析を実施した。パンチは、弾性体とし、解析のために30,000要素に分割した。このパンチは、超硬合金であり、ヤング率540000MPa、ポアソン比0.22である。素材は、剛塑性体とし、解析のために20,000要素に分割した。   FIG. 4 shows an analysis model of preforming, and the analysis was performed by placing the material on the die and pressing the material with a punch that slides in the holder. The punch was an elastic body and was divided into 30,000 elements for analysis. This punch is a cemented carbide and has a Young's modulus of 540000 MPa and a Poisson's ratio of 0.22. The material was a rigid plastic and was divided into 20,000 elements for analysis.

図5は主成形解析モデルを示し、ラムによってパンチを押し、パンチによって図4の成形品である素材を押圧する。この主成形を対象とした圧造解析では、図4の予備成形の解析における素材の加工硬化の影響を考慮している。パンチは解析のために30,000要素に分割した。なお、パンチは、空間を設けない従来型のものを用いた。   FIG. 5 shows a main molding analysis model, in which a punch is pressed by a ram and a material that is the molded product of FIG. 4 is pressed by the punch. In the forging analysis for the main molding, the influence of work hardening of the material in the preforming analysis of FIG. 4 is considered. The punch was divided into 30,000 elements for analysis. The punch used was a conventional punch that did not provide a space.

図6は主成形のパンチの加工荷重とストロークとの関係を示す図であり、解析と実際の現象とを比較して示すものである。横軸にパンチのストロークを、縦軸にパンチの加工荷重を示しており、主成形の解析によるパンチの加工荷重とストロークとの関係と、実際の測定値によるパンチの加工荷重とストロークとの関係は、ほぼ同様の結果を得た。これによって、解析の信頼性が裏付けられた。   FIG. 6 is a diagram showing the relationship between the processing load and stroke of the main forming punch, and shows a comparison between the analysis and the actual phenomenon. The horizontal axis shows the punch stroke, and the vertical axis shows the punch processing load. The relationship between the punch processing load and stroke based on the main forming analysis, and the relationship between the punch processing load and stroke based on actual measurement values. Gave almost similar results. This confirmed the reliability of the analysis.

図7は主成形の解析結果を示し、図7(a)は解析終了時の形成状態を示し、図7(b)はパンチの応力分布を示す縦断面図である。図7(c)と図7(d)は、パンチ押圧部付近の応力分布の拡大縦断面図である。A点、B点、C点は応力集中箇所を示す。図7(a)よりパンチ押圧部の周縁よりも軸心で十字状に突出する先端面によって圧造品に十字穴が成形されている。解析によるパンチの応力は、図7(b)に示すように、応力レンジ0.000〜1000(MPa)とし、図に示す8段階に分け表示している。すなわち、パンチ押圧部の応力は、十字状に突出する先端面に対応する部分から円弧状に応力が分布し、十字状に突出する先端面に対応する部分が、8段階目の876〜1000(MPa)であり、応力が最も大きくなっている。この応力が最も大きくなっている部分において、パンチ押圧部に非常に大きな面圧が生じ、パンチ押圧部における疲労破壊の要因となる。 FIG. 7 shows the analysis result of the main forming, FIG. 7A shows the formation state at the end of the analysis, and FIG. 7B is a longitudinal sectional view showing the stress distribution of the punch. FIGS. 7C and 7D are enlarged vertical sectional views of the stress distribution near the punch pressing portion. Points A, B, and C indicate stress concentration points. As shown in FIG. 7A, a cross hole is formed in the forged product by a tip surface protruding in a cross shape with an axial center from the periphery of the punch pressing portion. As shown in FIG. 7 (b), the stress of the punch by the analysis is shown in the stress range of 0.000 to 1000 (MPa) and divided into eight stages shown in the figure. That is, the stress of the punch pressing portion is distributed in a circular arc shape from the portion corresponding to the tip surface protruding in a cross shape, and the portion corresponding to the tip surface protruding in a cross shape is 876-1000 ( MPa), and the stress is the largest. In the portion where the stress is the largest, a very large surface pressure is generated in the punch pressing portion, which causes fatigue failure in the punch pressing portion.

次に、図8は、この発明の解析条件を説明する図である。図8(a)はパンチのパンチ押圧部を示す斜視図、図8(b)はパンチ押圧部を示す拡大斜視図、図8(c)は空間を形成する円柱の穴の内径と底位置を示す縦断面図であり、図のDとHの交点が穴の内径と底の位置を示すものとし、全18条件を解析した。この発明の実施例では、パンチ押圧部の先端面を、周縁よりも軸心で突出する形状にし、この実施の形態で、パンチを摺動してパンチ押圧部により素材を押圧して圧造品を成形する際に、図9から図15に示すように、パンチの内部に空間を設けることで衝撃による応力を分散・吸収することができた。パンチ押圧部の十字状に突出する先端面において、応力が集中する部分を、図8(b)にA点、B点、C点で示した。 Next, FIG. 8 is a diagram for explaining the analysis conditions of the present invention. 8 (a) is a perspective view showing a punch press of the punch, and FIG. 8 (b) is an enlarged perspective view showing the punch press part, FIG. 8 (c) inner and bottom positions of the holes of the cylindrical forming space The intersection of D and H in the figure indicates the inner diameter of the hole and the position of the bottom, and all 18 conditions were analyzed. In the embodiment of the present invention, the front end surface of the punch pressing portion is shaped so as to protrude from the periphery of the periphery, and in this embodiment, the punch is slid and the material is pressed by the punch pressing portion to produce the forged product. When molding, as shown in FIGS. 9 to 15, by providing a space inside the punch, stress due to impact could be dispersed and absorbed. In the tip surface protruding in a cross shape of the punch pressing portion, the portion where the stress is concentrated is indicated by points A, B, and C in FIG. 8B.

図9は解析結果であり、図8(c)の円柱形の空間部である穴の底厚と、内径を変化させたときの加工荷重の変化との関係を示す図である。図8(c)においては、パンチは、
長さ10mmで、外径12mmの円柱形のものを用い、空間部は円柱形の穴で形成した。例えば、図8(c)において、P1で示す位置では、内径6mmで、底厚H4mmの空間部となる。図9において、空間部を形成しない場合の加工荷重を点線で示し、四角印は、図8(c)において、内径3mmでパンチの先端部100から底厚Hを変化させた空間部の場合についての加工荷重を示し、丸印は、内径6mmでパンチの先端部100から底厚Hを変化させた空間部の場合についての加工荷重を示し、三角印は、内径9mmでパンチの先端部100から底厚Hを変化させた空間部の場合についての加工荷重を示す。内径3mmの空間部D3では、パンチの先端部100からmm程度の底厚Hにしたときが、加工荷重が最も小さくなり、それ以外の底厚Hでは加工荷重が大きくなる傾向の結果を得た。内径6mmの空間部D6では、パンチの先端部100からmm程度の底厚Hにしたときが、加工荷重が最も小さくなる傾向の結果を得た。内径9mmの空間部D9では、パンチの先端部100から3mm程度の底厚Hにしたときが、加工荷重が最も小さくなり、パンチの先端部100から1mmの底厚Hにするに従い、または8mmの底厚Hにするに従い加工荷重が大きくなる傾向の結果を得た。内径6mmの空間部D6の加工荷重より、内径3mmの空間部D3の加工荷重が小さく、内径3mmの空間部D3の加工荷重より、内径9mmの空間部D9の加工荷重が小さくなる傾向であった。
FIG. 9 shows the analysis results, and is a diagram showing the relationship between the bottom thickness of the hole, which is the cylindrical space portion of FIG. 8C, and the change in the processing load when the inner diameter is changed. In FIG. 8C, the punch is
A cylindrical shape having a length of 10 mm and an outer diameter of 12 mm was used, and the space was formed by a cylindrical hole. For example, in FIG. 8C, the position indicated by P1 is a space having an inner diameter of 6 mm and a bottom thickness of H4 mm. 9, shows the processing load in the case of not forming the space portion by a dotted line, square marks in FIG. 8 (c), the case of the punch tip 100 with an inner diameter 3mm of the space with varying bottom thickness H The circle indicates the processing load for the space portion in which the bottom thickness H is changed from the punch tip 100 with an inner diameter of 6 mm, and the triangle indicates the punch tip 100 with an inner diameter of 9 mm. The processing load about the case of the space part which changed bottom thickness H from is shown. The space D3 of the inner diameter 3 mm, obtained when the punches of the tip 100 in 3 mm around the bottom thickness H is, processing load is smallest, the results of the other bottom thickness H in the processing load tends to increase the It was. The space D6 of inner diameter 6 mm, when the bottom thickness H of approximately 6 mm from the punch tip 100 with the results of the tendency of processing load is smallest bloom. In the space portion D9 having an inner diameter of 9 mm, when the bottom thickness H is about 3 mm from the tip end portion 100 of the punch, the processing load becomes the smallest, and as the bottom thickness H becomes 1 mm from the tip end portion 100 of the punch, As a result, the processing load tends to increase with the bottom thickness H. The processing load of the space portion D3 having an inner diameter of 3 mm is smaller than the processing load of the space portion D3 having an inner diameter of 3 mm, and the processing load of the space portion D9 having an inner diameter of 9 mm tends to be smaller than the processing load of the space portion D3 having an inner diameter of 3 mm . .

図10から図12は、空間部の内径と底厚を変化させて応力分布の変化を得たものである。図10では、内径3mmの空間部D3において、底厚Hを変化させて応力分布を得たところ、底厚Hが1mm、2mm、3mmにおいて、C点の応力が974、1270、1270(MPa)となり、図7の空間を設けない時のC点の応力より小さくなった。図11では、内径6mmの空間部D6において、底厚Hを変化させて応力分布を得たところ、底厚Hが1mm、2mm、3mmにおいて、C点の応力が1330、1050、1240(MPa)となり、図7の空間を設けない時のC点の応力より小さくなった。図12では、内径9mmの空間部D9において、底厚Hを変化させて応力分布を得たところ、底厚Hが2mmにおいて、A点の応力が775(MPa)、B点の応力が894(MPa)、C点の応力が707(MPa)となり、3mmにおいて、A点の応力が638(MPa)、C点の応力が1010(MPa)となり、4mmにおいて、A点の応力が785(MPa)、C点の応力が1170(MPa)となり、6mmにおいて、A点の応力が875(MPa)、C点の応力が1360(MPa)となり、8mmにおいて、C点の応力が1280(MPa)となり、図7の空間を設けない時の対応する点の応力より小さくなった。   10 to 12 show changes in the stress distribution by changing the inner diameter and bottom thickness of the space. In FIG. 10, when the stress distribution is obtained by changing the bottom thickness H in the space D3 having an inner diameter of 3 mm, the stress at the point C is 974, 1270, 1270 (MPa) when the bottom thickness H is 1 mm, 2 mm, and 3 mm. Thus, the stress was smaller than the stress at point C when the space of FIG. 7 was not provided. In FIG. 11, when the stress distribution is obtained by changing the bottom thickness H in the space D6 having an inner diameter of 6 mm, the stress at the point C is 1330, 1050, 1240 (MPa) when the bottom thickness H is 1 mm, 2 mm, and 3 mm. Thus, the stress was smaller than the stress at point C when the space of FIG. 7 was not provided. In FIG. 12, when the stress distribution is obtained by changing the bottom thickness H in the space D9 having an inner diameter of 9 mm, the stress at the point A is 775 (MPa) and the stress at the point B is 894 (when the bottom thickness H is 2 mm. The stress at point C is 707 (MPa), the stress at point A is 638 (MPa) at 3 mm, the stress at point C is 1010 (MPa), and the stress at point A is 785 (MPa) at 4 mm. The stress at point C is 1170 (MPa), the stress at point A is 875 (MPa), the stress at point C is 1360 (MPa) at 6 mm, the stress at point C is 1280 (MPa) at 8 mm, It became smaller than the stress of the corresponding point when not providing the space of FIG.

図13から図15は、A点、B点、C点について、空間部の内径と底厚を変化させて応力分布の変化を得たものである。図13では、A点について、円柱形の空間の内径を3mm、6mm、9mmとして底厚Hを変化させたものである。内径3及び6mmでは、底厚Hが2mm〜4mm程度である場合が、図7の対応するA点の空間を設けない時の応力と同等なった。内径9mmでは、底厚Hが2mm〜6mm程度である場合が、図7の対応するA点の空間を設けない時の応力より小さくなった。 FIGS. 13 to 15 show changes in stress distribution by changing the inner diameter and bottom thickness of the space at points A, B, and C. FIG. In FIG. 13, with respect to point A, the inner thickness of the cylindrical space is 3 mm, 6 mm, and 9 mm, and the bottom thickness H is changed. For the inner diameters of 3 and 6 mm, the case where the bottom thickness H was about 2 mm to 4 mm was equivalent to the stress when the corresponding point A space in FIG. 7 was not provided. When the inner diameter was 9 mm, the case where the bottom thickness H was about 2 mm to 6 mm was smaller than the stress when the corresponding point A space in FIG. 7 was not provided.

図14では、B点について、円柱形の空間の内径を3mm、6mm、9mmとして底厚Hを変化させたものである。内径3mmでは、底厚Hが3mm付近でも、図7の対応するB点の空間を設けない時の応力小さくなった。内径6mmで、底厚Hが3mm〜6mmで、図7の対応するB点の空間を設けない時の応力より小さくなることがなかった。内径9mmでは、底厚Hが2mm〜8mm程度である場合が、図7の対応するB点の空間を設けない時の応力より小さくなった。 In FIG. 14, with respect to point B, the inner thickness of the cylindrical space is 3 mm, 6 mm, and 9 mm, and the bottom thickness H is changed. In an inner diameter 3mm, in bottom thickness H is 3mm around, the stress when not provided a space corresponding point B in FIG. 7 becomes small. The inner diameter of 6 mm, with bottom thickness H is 3 mm to 6 mm, never be less than the stress when not provided a space corresponding point B in FIG. When the inner diameter was 9 mm, the case where the bottom thickness H was about 2 mm to 8 mm was smaller than the stress when the corresponding point B space in FIG. 7 was not provided.

図15では、C点について、円柱形の空間の内径を3mm、6mm、9mmとして底厚Hを変化させたものである。内径3mmでは、底厚Hが1mm〜mm程度である場合が、図7の対応するC点の応力より小さくなった。内径6mmでは、底厚Hが1mm〜mm程度である場合が、図7の対応するC点の空間を設けない時の応力より小さくなった。
内径9mmでは、底厚Hが2mm〜mm程度である場合が、図7の対応するC点の空間を設けない時の応力より小さくなった。
In FIG. 15, with respect to point C, the inner thickness of the cylindrical space is 3 mm, 6 mm, and 9 mm, and the bottom thickness H is changed. When the inner diameter was 3 mm, the case where the bottom thickness H was about 1 mm to 4 mm was smaller than the stress at the corresponding point C in FIG. When the inner diameter was 6 mm, the case where the bottom thickness H was about 1 mm to 4 mm was smaller than the stress when the space at the corresponding point C in FIG. 7 was not provided.
When the inner diameter was 9 mm, the case where the bottom thickness H was about 2 mm to 5 mm was smaller than the stress when the space at the corresponding point C in FIG. 7 was not provided.

このように、解析により圧造品を成形する際に、パンチの内部に形成した空間部によってパンチ押圧部の弾性変形を積極的に促進し、たわますことで鍛造時の衝撃による応力を吸収・分散し、加工荷重あるいは応力が低下すること証明できた。解析では、A点、B点、C点の全てにおいて内径9mm、底圧2mmの時に応力が従来型よりも最も低減されることがわかった。 In this way, when forming a forged product by analysis, the space formed inside the punch actively promotes elastic deformation of the punch pressing part, and by bending it absorbs stress due to impact during forging. It was proved that the processing load or stress was reduced by dispersion. In the analysis, it was found that the stress was reduced most at the points A, B and C when the inner diameter was 9 mm and the bottom pressure was 2 mm as compared with the conventional type.

図1乃至図15の実施の形態では、パンチは、円柱形の穴を有する一体の部材で空間部を形成しており、パンチを一体の部材で形成することで安価に製作することができる。穴の底の形状は、隅が角で中央が平面であるが、穴の底の形状は、図16に示すように形成することができる。図16において、解析番号1は比較例であり、ワイヤーカット等で線状の穴を開けたものであり、穴の形状はスリット状である。解析番号2乃至8が実施の形態を示し、図1乃至図15の実施の形態の解析で最も効果があった外径12mmのパンチに内径9mmの空間部D9を形成し、パンチの先端部から2mm程度の底厚Hにしたものを基準にし、穴の底の形状を変化させた。   In the embodiment shown in FIGS. 1 to 15, the punch has a space formed by an integral member having a cylindrical hole, and can be manufactured at low cost by forming the punch by an integral member. The shape of the bottom of the hole is a corner and a center is a plane, but the shape of the bottom of the hole can be formed as shown in FIG. In FIG. 16, analysis number 1 is a comparative example, in which a linear hole is formed by wire cutting or the like, and the shape of the hole is a slit shape. Analysis numbers 2 to 8 show the embodiment, and a space portion D9 having an inner diameter of 9 mm is formed in a punch having an outer diameter of 12 mm that was most effective in the analysis of the embodiment of FIGS. The shape of the bottom of the hole was changed on the basis of the bottom thickness H of about 2 mm.

解析番号2は穴の底の形状が、中央が平面で隅が角であり、解析番号3は中央が平面で隅が凹み状の曲面であり、解析番号4は中央が平面で隅が凸状の曲面である。また、解析番号5は中央が軸心を頂点とする凸状の曲面で隅が角であり、解析番号6は中央が軸心を頂点とする凸状の曲面で隅が凹み状の曲面である。また、解析番号7は中央が軸心を頂点とする凹み状の曲面で隅が角であり、解析番号6は中央が軸心を頂点とする凹み状の曲面で隅が凹み状の曲面である。また、パンチの穴の底の形状が、中央が軸心を頂点とする凸状の曲面で隅が凸状の曲面でもよく、中央が軸心を頂点とする凹み状の曲面で隅が凸状の曲面でもよい。   Analysis No. 2 is the shape of the bottom of the hole, the center is a plane and the corner is a corner, Analysis No. 3 is a curved surface with the center being a plane and a corner being concave, and Analysis No. 4 is the center being a plane and the corner is convex It is a curved surface. In addition, analysis number 5 is a convex curved surface with a corner at the center and corners are corners, and analysis number 6 is a convex curved surface with the center at a vertex and concave corners. . Analysis number 7 is a concave curved surface with a corner at the center and corners are corners, and analysis number 6 is a concave curved surface with a shaft at the top and concave corners. . The bottom shape of the punch hole may be a convex curved surface with a convex center and a convex corner at the center, or a concave curved surface with the central point at the center and a convex corner. It may be a curved surface.

また、パンチは、図17に示すように、円筒部材の端部に蓋部材を固定し、円筒部材と蓋部材との別体の部材で円柱形の穴の空間部を形成し、蓋部材によりパンチ押圧部を構成し、鍛造品の素材に応じて蓋部材の強度を変えることができる。図17において、解析番号9は円筒部材の端部に、端部に上位置の段部を有する蓋部材を固定したもので、穴の底の形状が中央が平面で、隅が角である。解析番号10は円筒部材の端部に、端部に中位置の段部を有する蓋部材を固定したもので、穴の底の形状が中央が平面で、隅が角である。解析番号11は円筒部材の端部に、端部に下位置の段部を有する蓋部材を固定したもので、穴の底の形状が中央が平面で、隅が角である。この実施の形態で、穴の底の形状は、中央が軸心を頂点とする凸状の曲面でも良く、軸心を頂点とする凹み状の曲面でも良い。また、穴の底の形状は、隅が凹み状の曲面でも良く、凸状の曲面でも良い。   In addition, as shown in FIG. 17, the punch fixes the lid member to the end of the cylindrical member, forms a cylindrical hole space by a separate member of the cylindrical member and the lid member, A punch pressing part is comprised and the intensity | strength of a cover member can be changed according to the raw material of a forge product. In FIG. 17, analysis number 9 is obtained by fixing a lid member having a stepped portion at the end to the end of the cylindrical member, and the shape of the bottom of the hole is a plane at the center and corners are corners. In analysis number 10, a lid member having a middle step at the end is fixed to the end of the cylindrical member. The shape of the bottom of the hole is flat at the center and corners are corners. In analysis number 11, a lid member having a lower stepped portion at the end is fixed to the end of the cylindrical member. The shape of the bottom of the hole is a plane at the center and corners are corners. In this embodiment, the shape of the bottom of the hole may be a convex curved surface with the central axis at the center, or a concave curved surface with the axial center at the top. Further, the shape of the bottom of the hole may be a curved surface with a concave corner or a convex curved surface.

解析番号12は円筒部材の端部に、小径の円柱チップ状の蓋部材を固定したもので、穴の底の形状が中央が平面で、隅が角である。解析番号13は円筒部材の端部に、大径の円柱チップ状の蓋部材を固定したもので、穴の底の形状が中央が平面で、隅が角である。この実施の形態で、穴の底の形状は、中央が軸心を頂点とする凸状の曲面でも良く、軸心を頂点とする凹み状の曲面でも良い。また、穴の底の形状は、隅が凹み状の曲面でも良く、凸状の曲面でも良い。 In analysis number 12, a small-diameter columnar chip-shaped lid member is fixed to the end of the cylindrical member. The shape of the bottom of the hole is flat at the center and corners are corners. In analysis number 13, a large-diameter columnar chip-shaped lid member is fixed to the end of the cylindrical member. The shape of the bottom of the hole is flat at the center and corners are corners. In this embodiment, the shape of the bottom of the hole may be a convex curved surface with the central axis at the center, or a concave curved surface with the axial center at the top. Further, the shape of the bottom of the hole may be a curved surface having a concave corner or a convex curved surface.

図16及び図17において示した解析番号1乃至13と、従来の穴がないパンチについて、最終の加工段階における解析結果を図18に示す。図18において、応力分布と、図1乃至図15の実施の形態で示したA点、B点での応力を示す。解析結果では、比較例の解析番号1は、応力分布が非対称となり、かつA点と、B点の応力が共に大きく、加工荷重も大きかった。この実施の形態では、解析番号2と、解析番号5のA点と、B点の応力、加工荷重の値が、従来パンチのA点と、B点の応力、加工荷重の値より共に小さく、良好な結果となっている。また、解析番号3と、解析番号6は、A点と、B点の応力が値が、従来パンチのA点と、B点の応力の値より共に小さくい。また、解析番号4,11のB点の応力、加工荷重の値が、従来パンチのB点の応力、加工荷重の値より共に小さくなっている。また、解析番号7乃至10,12,13のB点の応力の値が、従来パンチのB点の応力の値より共に小さくなっている。 FIG. 18 shows the analysis results at the final processing stage for the analysis numbers 1 to 13 shown in FIGS. 16 and 17 and the conventional punch without holes. FIG. 18 shows the stress distribution and the stress at points A and B shown in the embodiment of FIGS. As a result of analysis, in analysis number 1 of the comparative example, the stress distribution was asymmetric, the stresses at points A and B were both large, and the processing load was also large . In this embodiment, the values of analysis number 2 and points A and B of analysis number 5 are smaller than the values of stress and processing load at point A and B of the conventional punch, Good results. In addition, in the analysis numbers 3 and 6, the stresses at the points A and B are both smaller than the stress values at the points A and B of the conventional punch. Further, the stress at a point B of the analysis number 4, 11, the value of the processing load, the stress of the conventional punch point B, are I both smaller kuna than the value of the processing load. The value of the stress at the point B of the analysis number 7 to 10, 12, 13 are both Ru smaller kuna Ttei than the value of the stress of the conventional punch point B.

また、特に、十字穴付ねじの十字穴を成形する際に、パンチ押圧部の先端面に集中する衝撃による応力を分散させて低下することができる。この解析では、圧造品を成形する例として、十字穴付ねじの十字穴を成形する場合について説明したが、これに限定されず種々の鍛造品を成形する例についても同様な解析で証明することができる。   In particular, when forming the cross hole of the cross hole screw, the stress due to the impact concentrated on the front end surface of the punch pressing portion can be dispersed and reduced. In this analysis, the case of forming a cross hole of a cross hole screw was explained as an example of forming a forged product. However, the present invention is not limited to this, and examples of forming various forged products should be proved by the same analysis. Can do.

この発明は、鍛造品を鍛造する際に用いられる鍛造工具の設計方法及び鍛造工具に適用可能であり、安価で簡易な構成で、パンチの疲労破壊を抑制し、長時間の連続使用を可能とする。 The present invention can be applied to a forging tool design method and forging tool used when forging a forged product, and can be used continuously for a long time with a low-price and simple configuration, suppressing fatigue fracture of the punch. To do.

1 冷間圧造工具
10 ダイス
10a 圧造品の成形穴
20 ホルダ
20a 摺動孔
30 パンチ
30a パンチ押圧部
30a1 パンチ押圧部30aの先端面
30a2 パンチ押圧部30aの周縁
40 圧造品の素材
41 圧造品
41a 軸部
41b 頭部
50 空間部
S1 空間部50の押圧方向に対して直交方向の断面積
S2 素材40の押圧方向に対して直交方向の断面積



DESCRIPTION OF SYMBOLS 1 Cold forging tool 10 Die 10a Forming hole of forged product 20 Holder 20a Sliding hole 30 Punch 30a Punch press part 30a1 End surface of punch press part 30a 30a2 Periphery of punch press part 30a 40 Forging material 41 Forging 41a shaft Portion 41b Head 50 Space S1 Cross-sectional area orthogonal to the pressing direction of the space 50 S2 Cross-sectional area orthogonal to the pressing direction of the material 40



Claims (3)

鍛造にて成形される鍛造品の成形穴を有するダイスと、
前記ダイスに対向して配置されるパンチと、
を備え、
前記ダイスの成形穴に鍛造品の素材を配置し、
前記パンチのパンチ押圧部により前記素材を押圧して前記鍛造品を成形する鍛造工具の設計方法であり、
前記パンチの内部に、前記パンチ押圧部の弾性変形を積極的に促進し、たわみにより鍛造時の衝撃による応力を分散・吸収させる空間部を形成し、
前記パンチ押圧部のたわみ量を、相当応力値で評価し、
前記パンチ押圧部の破壊点での前記相当応力値を、前記空間部を設けない鍛造工具のパンチ押圧部の相当応力値より小さく設定することを特徴とする鍛造工具の設計方法
A die having a forming hole of a forged product formed by forging;
A punch disposed opposite the die;
With
Place the material of the forged product in the forming hole of the die,
A forging tool design method for forming the forged product by pressing the material with a punch pressing portion of the punch ,
The interior of the punch, the punch press part of actively promoting the elastic deformation, bending by forming a space portion in which stress is dispersed and absorbed by the impact during forging,
The amount of deflection of the punch pressing part is evaluated with an equivalent stress value,
A method for designing a forging tool , wherein the equivalent stress value at the breaking point of the punch pressing portion is set smaller than an equivalent stress value of a punch pressing portion of a forging tool not provided with the space portion .
前記相当応力値で評価するたわみ量は、数値解析あるいは塑性加工用のモデル材料を用いたモデル実験により定量化することを特徴とする請求項1に記載の鍛造工具の設計方法The forging tool design method according to claim 1, wherein the deflection amount evaluated by the equivalent stress value is quantified by a numerical analysis or a model experiment using a model material for plastic working. 請求項1または請求項2に記載の設計方法により製造されたことを特徴とする鍛造工具。A forging tool manufactured by the design method according to claim 1.
JP2009029719A 2008-08-11 2009-02-12 Forging tool design method and forging tool Expired - Fee Related JP4428581B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009029719A JP4428581B1 (en) 2008-08-11 2009-02-12 Forging tool design method and forging tool
PCT/JP2009/063486 WO2010018750A1 (en) 2008-08-11 2009-07-29 Forging tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008206608 2008-08-11
JP2009029719A JP4428581B1 (en) 2008-08-11 2009-02-12 Forging tool design method and forging tool

Publications (2)

Publication Number Publication Date
JP4428581B1 true JP4428581B1 (en) 2010-03-10
JP2010064142A JP2010064142A (en) 2010-03-25

Family

ID=41668895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009029719A Expired - Fee Related JP4428581B1 (en) 2008-08-11 2009-02-12 Forging tool design method and forging tool

Country Status (2)

Country Link
JP (1) JP4428581B1 (en)
WO (1) WO2010018750A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102501021A (en) * 2011-11-10 2012-06-20 深圳航空标准件有限公司 Machining method for screws of dovetail grooves and cold-upsetting die of machining method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5802901B2 (en) * 2011-04-07 2015-11-04 鹿児島県 Forging mold
CN102764842A (en) * 2012-08-07 2012-11-07 苏州宝强精密螺丝有限公司 Screw mould initial punching device
JP5656232B2 (en) * 2012-11-27 2015-01-21 鹿児島県 Design method for forging die for drilling and forging die for drilling
JP6472599B2 (en) * 2014-03-17 2019-02-20 フタバ産業株式会社 Punch mold

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660553U (en) * 1979-10-15 1981-05-23
JPH05309435A (en) * 1992-05-08 1993-11-22 Iizuka Seisakusho:Kk Cold forging device
JP2881385B2 (en) * 1994-11-30 1999-04-12 愛知製鋼株式会社 Molding method of metal molded product with toothed ridges

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660553U (en) * 1979-10-15 1981-05-23
JPH05309435A (en) * 1992-05-08 1993-11-22 Iizuka Seisakusho:Kk Cold forging device
JP2881385B2 (en) * 1994-11-30 1999-04-12 愛知製鋼株式会社 Molding method of metal molded product with toothed ridges

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102501021A (en) * 2011-11-10 2012-06-20 深圳航空标准件有限公司 Machining method for screws of dovetail grooves and cold-upsetting die of machining method

Also Published As

Publication number Publication date
JP2010064142A (en) 2010-03-25
WO2010018750A1 (en) 2010-02-18

Similar Documents

Publication Publication Date Title
EP3437751B1 (en) Method for manufacturing press-formed article
JP4428581B1 (en) Forging tool design method and forging tool
KR101999459B1 (en) Blank, molded article, mold and method for producing blank
JP6142927B2 (en) Steel sheet punching tool and punching method
KR100810102B1 (en) Forging die for enlarging head diameter type parts and forging product thereof
JP6673760B2 (en) Projection forming apparatus, projection forming method
WO2015155974A1 (en) Press-moulded article manufacturing method and vehicle lower arm
JP6493516B2 (en) Manufacturing method of forged crankshaft
JP2016198791A (en) Pressing method, pressing device, press-formed body, and pressed product
WO2017175730A1 (en) Method for producing press-molded article and production line thereof
JP2010036195A (en) Punching method using punch having recessed part
JP4601017B1 (en) Heading tool
CN101918158A (en) Method of manufacturing metal member with plurality of projections
WO2008151399A1 (en) Hot, cold or warm forging process for forming hollow metallic parts and associated punch
JP5802901B2 (en) Forging mold
JP4746904B2 (en) Processing method, die and mold structure
EP2312165A1 (en) Method for producing rotor
JP2006312978A (en) Con&#39;rod manufacturing method
JP7448464B2 (en) Manufacturing method of steel parts
JP2010005651A (en) Die for press forming of metallic member of hat-shaped section, and press forming method thereof
JP5061655B2 (en) A caulking assembly of a metal plate-like body and a columnar body, a manufacturing method thereof, and a manufacturing apparatus.
CN114845822A (en) Method for manufacturing press-formed article, press-forming apparatus, and press-forming line
JP7070287B2 (en) Manufacturing method of press-molded parts and press-molded parts
CN102233381B (en) A kind of detection mould of many boss plane structural part deep drawing process
JP4814829B2 (en) Evaluation test method for stretch flangeability of metal plate in thin plate press forming

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4428581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees