JP5874669B2 - Operation method of hydrogen generator - Google Patents

Operation method of hydrogen generator Download PDF

Info

Publication number
JP5874669B2
JP5874669B2 JP2013066675A JP2013066675A JP5874669B2 JP 5874669 B2 JP5874669 B2 JP 5874669B2 JP 2013066675 A JP2013066675 A JP 2013066675A JP 2013066675 A JP2013066675 A JP 2013066675A JP 5874669 B2 JP5874669 B2 JP 5874669B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
reforming
gas
reforming catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013066675A
Other languages
Japanese (ja)
Other versions
JP2014189444A (en
Inventor
信 稲垣
信 稲垣
広志 藤木
広志 藤木
本道 正樹
正樹 本道
好孝 馬場
好孝 馬場
香那子 宮▲崎▼
香那子 宮▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2013066675A priority Critical patent/JP5874669B2/en
Publication of JP2014189444A publication Critical patent/JP2014189444A/en
Application granted granted Critical
Publication of JP5874669B2 publication Critical patent/JP5874669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、炭化水素ガスと水蒸気とを反応させて水素含有ガスを生成させる水素生成装置の運転方法に関する。   The present invention relates to a method of operating a hydrogen generator that generates a hydrogen-containing gas by reacting a hydrocarbon gas with water vapor.

一般に、燃料電池発電システムにおいては、まず、改質部によって炭化水素化合物と水蒸気を原料として水蒸気改質反応により水素、二酸化炭素、一酸化炭素、未反応の炭化水素化合物及び水蒸気等を含む改質ガスを生成させる。つぎに、変成部や選択酸化部などの一酸化炭素低減部によって一酸化炭素を除去して燃料ガスを生成させ、得られた燃料ガスを用いて燃料電池で発電を行う。炭化水素化合物がメタンの場合、改質反応は、典型的には次の(1)及び(2)式として表わされる。
CH+HO → CO+3H ・・・(1)
CO+HO → CO+H ・・・(2)
In general, in a fuel cell power generation system, first, a reforming unit reforms containing hydrogen, carbon dioxide, carbon monoxide, unreacted hydrocarbon compound, steam, and the like by a steam reforming reaction using a hydrocarbon compound and steam as raw materials. Generate gas. Next, carbon monoxide is removed by a carbon monoxide reduction unit such as a shift conversion unit or a selective oxidation unit to generate a fuel gas, and electric power is generated in the fuel cell using the obtained fuel gas. When the hydrocarbon compound is methane, the reforming reaction is typically represented by the following formulas (1) and (2).
CH 4 + H 2 O → CO + 3H 2 (1)
CO + H 2 O → CO 2 + H 2 (2)

水蒸気改質反応に必要な水蒸気は、改質部の上流に設けた蒸発部で、水を蒸発させることにより得られる。蒸発に要する熱としては、通常、燃料電池から排出されるアノードオフガスを燃焼部で燃焼して得られる熱が用いられる(例えば、特許文献1,2)。   The water vapor necessary for the steam reforming reaction is obtained by evaporating water in an evaporation section provided upstream of the reforming section. As the heat required for evaporation, heat obtained by burning the anode off-gas discharged from the fuel cell in the combustion section is usually used (for example, Patent Documents 1 and 2).

以下に、特許文献1に示された水素生成装置について、図2を用いて説明する。図2は、水素生成装置の縦断面図である。   Hereinafter, the hydrogen generator shown in Patent Document 1 will be described with reference to FIG. FIG. 2 is a longitudinal sectional view of the hydrogen generator.

この水素生成装置1’は、バーナ2、改質触媒3、変成触媒4、選択酸化触媒5、蒸発部8およびこれらを囲む断熱材(図示略)を備えている。原料となる炭化水素ガスは供給口15から供給され、水は供給口7から供給される。水蒸気改質反応に必要な反応熱を供給するバーナ2の燃料としては、燃料電池から排出されるアノードオフガスが用いられる。バーナ2の燃焼ガスは排気口6から排気される。   The hydrogen generator 1 ′ includes a burner 2, a reforming catalyst 3, a shift catalyst 4, a selective oxidation catalyst 5, an evaporation unit 8, and a heat insulating material (not shown) surrounding them. Hydrocarbon gas as a raw material is supplied from the supply port 15, and water is supplied from the supply port 7. As the fuel for the burner 2 that supplies reaction heat necessary for the steam reforming reaction, anode off-gas discharged from the fuel cell is used. The combustion gas of the burner 2 is exhausted from the exhaust port 6.

改質触媒3に供給される水蒸気は、バーナ2で燃焼した燃焼ガス、変成触媒や選択酸化触媒の反応熱、改質ガス、水素含有ガスによって蒸発部8内で水を加熱することにより得られる。蒸発部8は、内筒9及び外筒10と、それらに挟まれたらせん棒11とから構成される。供給口7から供給された水は、らせん棒11によって区切られたらせん状の空間(流路)8Bを流下しながらバーナ2で生じた燃焼ガス等により加熱される。   The steam supplied to the reforming catalyst 3 is obtained by heating water in the evaporation section 8 with the combustion gas burned in the burner 2, the reaction heat of the shift catalyst or selective oxidation catalyst, the reformed gas, or the hydrogen-containing gas. . The evaporation unit 8 includes an inner cylinder 9 and an outer cylinder 10 and a spiral rod 11 sandwiched between them. The water supplied from the supply port 7 is heated by the combustion gas generated in the burner 2 while flowing down the spiral space (flow path) 8B partitioned by the spiral rod 11.

このようにして生じた水蒸気に対し炭化水素ガス供給口15から供給された炭化水素ガスが添加され、螺旋流路16,17を流れる間に混合され、改質触媒3に導入される。   The hydrocarbon gas supplied from the hydrocarbon gas supply port 15 is added to the water vapor generated as described above, mixed while flowing through the spiral flow paths 16 and 17, and introduced into the reforming catalyst 3.

改質触媒3の作用により、炭化水素と水蒸気とが反応して、水素、二酸化炭素、一酸化炭素、未反応のメタン及び水蒸気等を含む改質ガスが生成する。改質ガスに含まれる一酸化炭素は、変成触媒4によって改質ガス中の水蒸気と反応して1%以下程度の濃度にまで低減される。さらに、改質ガスは、空気供給口12から供給された空気と混合され、選択酸化触媒5によって一酸化炭素が選択的に酸化され、10ppm以下程度の濃度にまで低減された水素含有ガスが生成する。生成した水素含有ガスは、水素含有ガス出口13から燃料電池へ供給される。   By the action of the reforming catalyst 3, the hydrocarbon and the steam react to generate a reformed gas containing hydrogen, carbon dioxide, carbon monoxide, unreacted methane, steam, and the like. Carbon monoxide contained in the reformed gas reacts with water vapor in the reformed gas by the shift catalyst 4 and is reduced to a concentration of about 1% or less. Further, the reformed gas is mixed with the air supplied from the air supply port 12, and carbon monoxide is selectively oxidized by the selective oxidation catalyst 5 to generate a hydrogen-containing gas reduced to a concentration of about 10 ppm or less. To do. The generated hydrogen-containing gas is supplied from the hydrogen-containing gas outlet 13 to the fuel cell.

改質触媒3としてはRu系、Pt系などが用いられる。変成触媒4としては、Cu−Zn系などの遷移金属系またはPt、Ru系などの貴金属系のものが用いられ、CO選択酸化触媒5としては、例えば、粒状のアルミナ担体にPtやRu等の貴金属を担持したものが用いられている。   As the reforming catalyst 3, Ru-based, Pt-based or the like is used. As the shift catalyst 4, a transition metal type such as Cu—Zn type or a noble metal type such as Pt or Ru type is used. As the CO selective oxidation catalyst 5, for example, a granular alumina carrier such as Pt or Ru is used. Those carrying precious metals are used.

特許文献2の0031段落には、改質部でのスチームカーボン比S/Cを2.6〜3.1とし、改質温度(改質触媒3の出口部分での温度)を620〜680℃として運転することが記載されている。なお、スチームカーボン比とは、改質部に供給される水蒸気と原燃料中のカーボンとのモル流量比である。   In paragraph 0031 of Patent Document 2, the steam carbon ratio S / C in the reforming section is 2.6 to 3.1, and the reforming temperature (temperature at the outlet portion of the reforming catalyst 3) is 620 to 680 ° C. As driving. Note that the steam carbon ratio is a molar flow rate ratio between water vapor supplied to the reforming section and carbon in the raw fuel.

特許第4880086号Patent No. 4880086 特開2003−183005JP2003-183005

上記のように改質触媒出口温度620〜680℃、S/C2.6〜3.1の運転条件の場合、改質触媒出口ガスに含まれる一酸化炭素量は12%程度と多いため、変成反応と選択酸化反応によって水素含有ガス中のCO濃度を10ppm以下にするためには多量の変成触媒及びCO選択酸化触媒が必要である。   In the case of the operating conditions of the reforming catalyst outlet temperature of 620 to 680 ° C. and S / C 2.6 to 3.1 as described above, the amount of carbon monoxide contained in the reforming catalyst outlet gas is as large as about 12%. In order to reduce the CO concentration in the hydrogen-containing gas to 10 ppm or less by the reaction and the selective oxidation reaction, a large amount of a shift catalyst and a CO selective oxidation catalyst are required.

本発明は、改質反応により生成するCO量を少なくし、変成触媒量及びCO選択酸化触媒量を減少させることができる水素生成装置の運転方法を提供することを目的とする。   An object of the present invention is to provide a method of operating a hydrogen generator that can reduce the amount of CO produced by the reforming reaction and reduce the amount of shift catalyst and the amount of CO selective oxidation catalyst.

また、原料炭化水素ガス中にNが含まれていた場合、一般的にはアンモニアが合成される。アンモニア合成反応は、典型的には次の(3)式として表わされる。
+3H → 2NH ・・・(3)
前述の従来の運転条件では、アンモニア生成量が30ppm程度と多い。このアンモニアは燃料電池の発電反応を阻害する。改質触媒としてPt系改質触媒を用いると、アンモニア生成を抑制することができるが、Pt系触媒はRu系触媒に比べて高価である。
When N 2 is contained in the raw material hydrocarbon gas, ammonia is generally synthesized. The ammonia synthesis reaction is typically expressed as the following formula (3).
N 2 + 3H 2 → 2NH 3 (3)
Under the above-described conventional operating conditions, the amount of ammonia produced is as high as about 30 ppm. This ammonia hinders the power generation reaction of the fuel cell. When a Pt-based reforming catalyst is used as the reforming catalyst, ammonia production can be suppressed, but the Pt-based catalyst is more expensive than the Ru-based catalyst.

本発明は、Pt系触媒を用いるまでもなく、改質反応で生成するアンモニア量を少なくすることができる水素生成装置の運転方法を提供することを目的とする。   It is an object of the present invention to provide a method for operating a hydrogen generator that can reduce the amount of ammonia generated in a reforming reaction without using a Pt-based catalyst.

本発明の水素生成装置の運転方法は、炭化水素ガスと水蒸気とを改質触媒によって改質反応させた後、変成触媒及び選択酸化触媒によって一酸化炭素を低減させて水素含有ガスを生成させる水素生成装置の運転方法において、該水素生成装置が定格負荷にあるときには、スチームカーボン比S/Cを3.5〜5とし、改質触媒出口温度を500〜593℃とすることを特徴とするものである。なお、定格負荷は、水素生成装置の設計値として定められている。 The operation method of the hydrogen generator according to the present invention is a method in which a hydrocarbon gas and steam are reformed by a reforming catalyst, and then carbon monoxide is reduced by a shift catalyst and a selective oxidation catalyst to generate a hydrogen-containing gas. In the operation method of the generator, when the hydrogen generator is at a rated load, the steam carbon ratio S / C is set to 3.5 to 5, and the reforming catalyst outlet temperature is set to 500 to 593 ° C. It is. The rated load is determined as a design value for the hydrogen generator.

本発明では、定格負荷の30%以下の低負荷にあるときのスチームカーボン比S/Cを4.5〜5.5とし、改質触媒出口温度を480〜580℃とすることが好ましい。   In the present invention, it is preferable that the steam carbon ratio S / C at a low load of 30% or less of the rated load is 4.5 to 5.5 and the reforming catalyst outlet temperature is 480 to 580 ° C.

本発明では、改質触媒としてRu系改質触媒を用いることが好ましい。   In the present invention, it is preferable to use a Ru-based reforming catalyst as the reforming catalyst.

本発明では、水素生成装置が定格負荷にあるときには、スチームカーボン比S/Cを3.5〜5とし、改質触媒層出口温度を500〜600℃とする。この運転条件とすることにより、CO生成量が少なくなると共に、Ru系触媒を用いた場合でもアンモニア生成量が少なくなる。   In the present invention, when the hydrogen generator is at a rated load, the steam carbon ratio S / C is set to 3.5 to 5, and the reforming catalyst layer outlet temperature is set to 500 to 600 ° C. By setting this operating condition, the amount of CO produced is reduced, and the amount of ammonia produced is reduced even when a Ru-based catalyst is used.

本発明では、水素生成装置が低負荷であるときには、S/Cを4.5〜5.5とし、改質触媒出口温度を480〜580℃とすることが好ましい。この運転条件とすることにより、CO生成量が少なくなると共に、Ru系触媒を用いた場合でもアンモニア生成量が少なくなる。   In the present invention, when the hydrogen generator is under low load, it is preferable that S / C is 4.5 to 5.5 and the reforming catalyst outlet temperature is 480 to 580 ° C. By setting this operating condition, the amount of CO produced is reduced, and the amount of ammonia produced is reduced even when a Ru-based catalyst is used.

本発明では、改質触媒反応で生成するCO量が少ないため、変成触媒やCO選択酸化触媒の量も少なくて足りる。   In the present invention, since the amount of CO produced by the reforming catalyst reaction is small, the amount of the shift catalyst and the CO selective oxidation catalyst is also small.

実施の形態に係る方法に用いられる水素生成装置の縦断面図である。It is a longitudinal cross-sectional view of the hydrogen generator used for the method which concerns on embodiment. 従来方法に用いられる水素生成装置の縦断面図である。It is a longitudinal cross-sectional view of the hydrogen generator used for a conventional method. アンモニア濃度と窒素濃度との相関図である。It is a correlation diagram of ammonia concentration and nitrogen concentration.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明では、炭化水素ガスと水蒸気とを改質触媒によって改質反応させた後、変成触媒及び選択酸化触媒によって一酸化炭素を低減させて水素含有ガスを生成させる水素生成装置の運転方法において、該水素生成装置が定格負荷にあるときには、スチームカーボン比S/Cを3.5〜5好ましくは3.6〜4.1とし、改質触媒出口温度を500〜600℃好ましくは560〜590℃とする。   In the present invention, in the operation method of the hydrogen generator in which the hydrocarbon gas and the steam are reformed by the reforming catalyst and then the carbon monoxide is reduced by the shift catalyst and the selective oxidation catalyst to generate the hydrogen-containing gas. When the hydrogen generator is at the rated load, the steam carbon ratio S / C is 3.5 to 5, preferably 3.6 to 4.1, and the reforming catalyst outlet temperature is 500 to 600 ° C, preferably 560 to 590 ° C. And

本発明では、水素生成装置が定格負荷の30%以下の低負荷にあるときには、スチームカーボン比S/Cを4.5〜5.5特に4.5〜5.0とし、改質触媒出口温度を480〜580℃特に530〜560℃とすることが好ましい。   In the present invention, when the hydrogen generator is at a low load of 30% or less of the rated load, the steam carbon ratio S / C is set to 4.5 to 5.5, particularly 4.5 to 5.0, and the reforming catalyst outlet temperature is set. Is preferably 480 to 580 ° C, particularly preferably 530 to 560 ° C.

このように、従来よりもS/Cを大きくし、かつ改質触媒出口温度を低くすることにより、改質触媒出口ガス中のCO濃度が低くなると共に、改質触媒としてRu系触媒を用いた場合でも、アンモニア濃度が低くなる。なお、改質反応でのCO生成量が減少するため、変成触媒やCO選択酸化触媒の量を少なくすることができる。   Thus, by increasing the S / C and lowering the reforming catalyst outlet temperature as compared with the conventional case, the CO concentration in the reforming catalyst outlet gas is lowered, and a Ru-based catalyst was used as the reforming catalyst. Even in this case, the ammonia concentration is lowered. In addition, since the amount of CO generated in the reforming reaction is reduced, the amount of the shift catalyst and the CO selective oxidation catalyst can be reduced.

本発明方法において、改質反応でのCO生成量が低下する理由としては、
i) 触媒出口温度を低目とすることにより前記(1)式の反応(CH+HO → CO+3H)の平衡状態が左寄りに変わることに加え、反応速度が若干小さくなることで、CO生成量が減少すること、
ii) S/Cを高くすることにより、前記(2)式の反応(CO+HO → CO+H)が促進されること
が考えられる。
温度を低めにするだけでは前記(1)式の反応が進まず必要な水素量が得られないが、S/Cを高めに設定して前記(2)式の反応が促進されることで、雰囲気中のCOが低減され、結果的に前記(1)式の反応も右方向に進み、H製造量が若干増す効果がある。
また、本発明によるとRu系改質触媒を用いても、改質触媒出口ガス中のアンモニア濃度が低下する理由については、反応温度を低目とすることにより前記(3)式の反応(N+3H → 2NH)の平衡状態が左寄りに変わることに加え、反応速度が若干小さくなることで、NH生成量が減少することが考えられる。
In the method of the present invention, the reason why the amount of CO produced in the reforming reaction decreases is as follows:
i) By lowering the catalyst outlet temperature, the equilibrium state of the reaction of formula (1) (CH 4 + H 2 O → CO + 3H 2 ) is shifted to the left, and the reaction rate is slightly reduced, so that CO Reduced production,
ii) It is conceivable that the reaction (CO + H 2 O → CO 2 + H 2 ) of the formula ( 2 ) is promoted by increasing S / C.
The reaction of the above formula (1) does not proceed only by lowering the temperature and the required hydrogen amount cannot be obtained, but the reaction of the above formula (2) is promoted by setting S / C high. As a result, CO in the atmosphere is reduced, and as a result, the reaction of the above formula (1) also proceeds in the right direction, which has the effect of slightly increasing the amount of H 2 produced.
Further, according to the present invention, the reason why the ammonia concentration in the reforming catalyst outlet gas is lowered even when a Ru-based reforming catalyst is used is as follows. In addition to the fact that the equilibrium state of ( 2 + 3H 2 → 2NH 3 ) changes to the left, it is conceivable that the amount of NH 3 produced decreases due to a slight decrease in the reaction rate.

改質触媒3の出口温度が上記範囲よりも高くなると、改質触媒3の出口ガス中のCO濃度及びアンモニア濃度が高くなる。一方、改質触媒3の出口温度が上記範囲よりも低くなると、改質反応が十分に進行しなくなり、改質触媒3の出口ガス中のH濃度が低下し、発電に必要な水素量が得られなくなる。 When the outlet temperature of the reforming catalyst 3 becomes higher than the above range, the CO concentration and the ammonia concentration in the outlet gas of the reforming catalyst 3 increase. On the other hand, when the outlet temperature of the reforming catalyst 3 is lower than the above range, the reforming reaction does not proceed sufficiently, the H 2 concentration in the outlet gas of the reforming catalyst 3 decreases, and the amount of hydrogen necessary for power generation decreases. It can no longer be obtained.

S/Cが上記範囲より大きいと、水蒸気発生のためのバーナ燃料が徒に多くなり効率が大幅に低下すると共に、水素生成装置の各触媒の温度バランスが崩れ、CO濃度が返って上昇してしまう。S/Cが上記範囲よりも小さいと、改質触媒3の出口ガス中のCO濃度が高くなる上に、前記(1)の反応が十分に進行しなくなり、改質触媒3の出口ガス中のH濃度が低下し、発電に必要な水素が得られなくなる。。 If S / C is larger than the above range, the amount of burner fuel for steam generation will increase and the efficiency will drop significantly. The temperature balance of each catalyst in the hydrogen generator will be lost, and the CO concentration will rise. End up. If the S / C is smaller than the above range, the CO concentration in the outlet gas of the reforming catalyst 3 becomes high, and the reaction (1) does not proceed sufficiently. The H 2 concentration decreases, and hydrogen necessary for power generation cannot be obtained. .

なお、低負荷とは、定格負荷の30%以下の負荷である。水素生成装置の負荷が定格負荷と低負荷との間にあるときには、S/C及び改質触媒出口温度を、定格負荷のS/C及び改質触媒出口温度と低負荷条件でのS/C及び改質触媒出口温度との間の値とすることが好ましい。   The low load is a load that is 30% or less of the rated load. When the load of the hydrogen generator is between the rated load and the low load, the S / C and the reforming catalyst outlet temperature are the same as the S / C and the reforming catalyst outlet temperature of the rated load and the S / C at the low load condition. And a value between the reforming catalyst outlet temperature.

本発明では、上記のようにS/Cを従来よりも大きくするため、図1のように水の蒸発部の蒸発面積を大きくした水素生成装置1を用いるのが好ましい。この水素生成装置は、蒸発部8を長くしたこと以外は前記図2の水素生成装置1’と同様の構造のものであり、供給口7から供給された水が蒸発部8で蒸発して水蒸気となり、この水蒸気に、炭化水素ガス供給口15から炭化水素ガスが添加され、らせん流路16,17で混合され、改質触媒3に導入される。改質反応により生じた水素、CO、CO、未反応のメタン、水蒸気等を含むガスが変成触媒4に導入され、改質触媒出口ガス中のCOが変成触媒4によって低減される。変成触媒4を出たガスに対し空気供給口12から供給された空気が混合され、選択酸化触媒5によってCOが選択的に酸化されてCOとなる。選択酸化触媒5を出たガスは、水素含有ガス出口13から燃料電池に供給される。図1の水素生成装置1では、内筒9及び外筒10の軸方向長さが図2の水素生成装置1’よりも長くなっており、らせん流路8Bの流路長が長く、水蒸気を大量に発生させることができる。 In the present invention, in order to increase the S / C as described above, it is preferable to use the hydrogen generator 1 in which the evaporation area of the water evaporation portion is increased as shown in FIG. This hydrogen generator has the same structure as the hydrogen generator 1 ′ shown in FIG. 2 except that the evaporator 8 is lengthened. The water supplied from the supply port 7 evaporates in the evaporator 8 and becomes water vapor. The hydrocarbon gas is added to the steam from the hydrocarbon gas supply port 15, mixed in the spiral flow paths 16 and 17, and introduced into the reforming catalyst 3. A gas containing hydrogen, CO 2 , CO, unreacted methane, water vapor, etc. generated by the reforming reaction is introduced into the shift catalyst 4, and CO in the reforming catalyst outlet gas is reduced by the shift catalyst 4. To exiting the shift catalyst 4 gas supplied from the air supply port 12 air is mixed, the CO 2 CO by selective oxidation catalyst 5 is selectively oxidized. The gas exiting the selective oxidation catalyst 5 is supplied from the hydrogen-containing gas outlet 13 to the fuel cell. In the hydrogen generator 1 of FIG. 1, the axial lengths of the inner cylinder 9 and the outer cylinder 10 are longer than those of the hydrogen generator 1 ′ of FIG. It can be generated in large quantities.

この水素生成装置1の改質触媒3としては、高価なPt系のものを用いる必要はなく、Ru系のもので足りる。Ru系改質触媒としては、アルミナ担体にRu金属を担持したものが一般的であるが、これに限定されない。水素生成装置1の変成触媒4及びCO選択酸化触媒5としては、特に限定されず、前記従来の水素生成装置1’の場合と同様のものを用いることができるが、Pt系以外の安価なものを用いるのが好ましい。前述の通り、本発明では、改質触媒出口ガス中のCO濃度が低いので、変成触媒4及びCO選択酸化触媒の量を少なくしても十分にCO濃度が低い水素含有ガスを製造することができる。   As the reforming catalyst 3 of the hydrogen generator 1, it is not necessary to use an expensive Pt-based catalyst, and a Ru-based catalyst is sufficient. As the Ru-based reforming catalyst, a catalyst in which Ru metal is supported on an alumina carrier is generally used, but the Ru-based reforming catalyst is not limited to this. The shift catalyst 4 and the CO selective oxidation catalyst 5 of the hydrogen generator 1 are not particularly limited and can be the same as those in the case of the conventional hydrogen generator 1 ', but are inexpensive except for the Pt system. Is preferably used. As described above, in the present invention, since the CO concentration in the reforming catalyst outlet gas is low, it is possible to produce a hydrogen-containing gas having a sufficiently low CO concentration even if the amounts of the shift catalyst 4 and the CO selective oxidation catalyst are reduced. it can.

[実施例1〜7]
装置諸元を次の通りとした図1に示す水素生成装置1を用いて水素含有ガスを製造した。
外筒10の内径64.8mm
内筒9の外径60.5mm
蒸発部8の軸心方向長さ266mm
改質触媒量330mL
変成触媒量300mL
CO選択酸化触媒量150mL
[Examples 1-7]
A hydrogen-containing gas was produced using the hydrogen generator 1 shown in FIG.
Inner cylinder 10 inner diameter 64.8 mm
Outer diameter of inner cylinder 9 60.5mm
The axial length of the evaporation part 8 is 266 mm.
Reforming catalyst volume 330mL
Alteration catalyst amount 300mL
CO selective oxidation catalyst amount 150mL

触媒としては次のものを用いた。
改質触媒:Ru系触媒
変成触媒:Cu−Zn系触媒
CO選択酸化触媒:Ru系触媒
The following were used as the catalyst.
Reforming catalyst: Ru-based catalyst Alteration catalyst: Cu-Zn-based catalyst CO selective oxidation catalyst: Ru-based catalyst

炭化水素ガスとしては脱硫後の都市ガス13Aを用い、水としては純水を用いた。バーナ2の燃料としては都市ガス13Aを用いた。改質触媒出口温度については周方向4箇所に熱電対を配置して計測し、それらの平均値を採用した。   The desulfurized city gas 13A was used as the hydrocarbon gas, and pure water was used as the water. As the fuel for the burner 2, city gas 13A was used. The reforming catalyst outlet temperature was measured by arranging thermocouples at four locations in the circumferential direction, and the average value thereof was adopted.

定格負荷は800Wであり、低負荷としては200W相当とした。定格負荷及び低負荷において、S/C及び改質触媒出口平均温度を種々変えて水素生成実験を行った。結果を表1,2に示す。   The rated load was 800W, and the low load was equivalent to 200W. At the rated load and the low load, hydrogen generation experiments were conducted by changing the S / C and the average reforming catalyst outlet temperature. The results are shown in Tables 1 and 2.

Figure 0005874669
Figure 0005874669

定格負荷とした表1の場合、実施例1〜3では水素含有ガス中のCO濃度が低い。しかしながら、実施例1は製造水素流量が特に少なく、さらにS/Cや改質出口温度を下げてしまうと発電に必要な水素量が得られない。したがって、S/C=3.6あるいは改質出口温度560℃付近が最適運転条件の下限であると考えられる。また実施例2は水素含有ガス中のCO濃度が4.3ppmに上昇しており、改質出口温度をこれ以上高くするとCO濃度が高くなりすぎてしまうので改質出口温度590℃付近が最適運転条件の上限と考えられる。また実施例3は水素製造効率が極端に低く、S/C=5.0は最適運転条件範囲を超えている。   In the case of Table 1 with the rated load, in Examples 1 to 3, the CO concentration in the hydrogen-containing gas is low. However, in Example 1, the production hydrogen flow rate is particularly small, and if the S / C and reforming outlet temperature are further lowered, the amount of hydrogen necessary for power generation cannot be obtained. Therefore, it is considered that S / C = 3.6 or the reforming outlet temperature around 560 ° C. is the lower limit of the optimum operating condition. Further, in Example 2, the CO concentration in the hydrogen-containing gas is increased to 4.3 ppm, and if the reforming outlet temperature is further increased, the CO concentration becomes too high. It is considered the upper limit of the conditions. In Example 3, the hydrogen production efficiency is extremely low, and S / C = 5.0 exceeds the optimum operating condition range.

Figure 0005874669
Figure 0005874669

低負荷とした表2の場合、実施例4〜7では改質触媒出口ガス中のCO濃度が十分に低い。改質触媒出口温度は本発明の範囲であるがS/Cを6.07、改質出口温度を578℃と高くした実施例6では水素製造効率が低く最適運転条件からは外れている。実施例5や実施例7では製造水素流量が比較的少なく、これよりもS/Cや改質出口温度を下げてしまうと発電に必要な水素量が得られない可能性がある。したがって、S/C=4.6かつ改質出口温度530℃付近が最適運転条件の下限であると考えられる。なお、改質温度を少し高くした実施例4では、製造水素量が増えていることから、S/C=4.5でも最適運転条件とすることは可能である。   In Table 2 with a low load, in Examples 4 to 7, the CO concentration in the reforming catalyst outlet gas is sufficiently low. The reforming catalyst outlet temperature is within the range of the present invention, but in Example 6 where the S / C was increased to 6.07 and the reforming outlet temperature was increased to 578 ° C., the hydrogen production efficiency was low and deviated from the optimum operating conditions. In Example 5 and Example 7, the production hydrogen flow rate is relatively small, and if the S / C and reforming outlet temperature are lowered more than this, there is a possibility that the amount of hydrogen necessary for power generation cannot be obtained. Therefore, it is considered that S / C = 4.6 and the reforming outlet temperature near 530 ° C. are the lower limit of the optimum operating condition. In Example 4 in which the reforming temperature is slightly increased, the amount of produced hydrogen is increased, so that the optimum operating condition can be set even when S / C = 4.5.

なお、図1の装置において、炭化水素ガスとしての都市ガスに窒素ガスを添加して原料ガス中の窒素濃度を種々変え、表3に示す条件にて水素含有ガスを製造した。そして、原料ガス中の窒素濃度と、水素含有ガス中のアンモニア濃度との相関関係を調べ、結果を表3及び図3に示した。表3及び図3の通り、本発明によると、原料ガス中の窒素濃度が高くても生成するアンモニア量が少ない。   In the apparatus of FIG. 1, nitrogen gas was added to the city gas as the hydrocarbon gas to variously change the nitrogen concentration in the raw material gas, and a hydrogen-containing gas was produced under the conditions shown in Table 3. Then, the correlation between the nitrogen concentration in the raw material gas and the ammonia concentration in the hydrogen-containing gas was examined, and the results are shown in Table 3 and FIG. As shown in Table 3 and FIG. 3, according to the present invention, the amount of ammonia produced is small even if the nitrogen concentration in the raw material gas is high.

Figure 0005874669
Figure 0005874669

[参考例1]
図1の装置で、負荷を中負荷(500W相当)とし、表4に示す条件にて水素含有ガスを製造した。結果を表4に示す。
[Reference Example 1]
With the apparatus shown in FIG. 1, a hydrogen-containing gas was produced under the conditions shown in Table 4 under a medium load (equivalent to 500 W). The results are shown in Table 4.

Figure 0005874669
Figure 0005874669

[参考例2〜4]
装置諸元を次の通りとした図2に示す水素生成装置1’を用い、改質触媒としてPt系を使用し、表4に示す条件にて水素含有ガスを製造した。
外筒10の内径64.8mm
内筒9の外径60.5mm
蒸発部8の長さ185mm
改質触媒量330mL
変成触媒量700mL
CO選択酸化触媒量300mL
[Reference Examples 2 to 4]
A hydrogen-containing gas was produced under the conditions shown in Table 4 using a hydrogen generator 1 ′ shown in FIG.
Inner cylinder 10 inner diameter 64.8 mm
Outer diameter of inner cylinder 9 60.5mm
The length of the evaporation part 8 is 185 mm
Reforming catalyst volume 330mL
Alteration catalyst amount 700mL
CO selective oxidation catalyst amount 300mL

触媒としては次のものを用いた。
改質触媒:Pt系触媒
変成触媒:Cu−Zn系触媒(水素生成装置1と同一品)
CO選択酸化触媒:Ru系触媒(水素生成装置1と同一品)
The following were used as the catalyst.
Reforming catalyst: Pt-based catalyst Alteration catalyst: Cu-Zn-based catalyst (same product as the hydrogen generator 1)
CO selective oxidation catalyst: Ru-based catalyst (same product as hydrogen generator 1)

結果を表4に示す。   The results are shown in Table 4.

表4の通り、中負荷においてもS/Cを高くし、改質触媒出口ガス温度を低くした参考例1では、変成触媒量とCO選択酸化触媒量が半分量以下であるにもかかわらず、水素含有ガス中のCO濃度が適正値となっている。   As shown in Table 4, in Reference Example 1 in which the S / C was increased and the reforming catalyst outlet gas temperature was lowered even at medium load, the amount of the shift catalyst and the amount of the CO selective oxidation catalyst were less than half, The CO concentration in the hydrogen-containing gas is an appropriate value.

1,1’ 水素生成装置
2 バーナ
3 改質触媒
4 変成触媒
5 選択酸化触媒
8 蒸発部
8B,16,17 らせん流路
11 螺旋体
DESCRIPTION OF SYMBOLS 1,1 'Hydrogen generator 2 Burner 3 Reforming catalyst 4 Shifting catalyst 5 Selective oxidation catalyst 8 Evaporating part 8B, 16, 17 Spiral flow path 11 Spiral body

Claims (3)

炭化水素ガスと水蒸気とを改質触媒によって改質反応させた後、変成触媒及び選択酸化触媒によって一酸化炭素を低減させて水素含有ガスを生成させる水素生成装置の運転方法において、
該水素生成装置が定格負荷にあるときには、スチームカーボン比S/Cを3.5〜5とし、改質触媒出口温度を500〜593℃とすることを特徴とする水素生成装置の運転方法。
In a method for operating a hydrogen generating apparatus in which a hydrocarbon gas and steam are reformed by a reforming catalyst and then carbon monoxide is reduced by a shift catalyst and a selective oxidation catalyst to generate a hydrogen-containing gas.
When the hydrogen generator is at a rated load, the steam carbon ratio S / C is set to 3.5 to 5, and the reforming catalyst outlet temperature is set to 500 to 593 ° C.
請求項1において、定格負荷の30%以下の低負荷にあるときには、スチームカーボン比S/Cを4.5〜5.5とし、改質触媒出口温度を480〜580℃とすることを特徴とする水素生成装置の運転方法。   The steam carbon ratio S / C is set to 4.5 to 5.5 and the reforming catalyst outlet temperature is set to 480 to 580 ° C when the load is a low load of 30% or less of the rated load. To operate the hydrogen generator. 請求項1又は2において、改質触媒がRu系改質触媒であることを特徴とする水素生成装置の運転方法。   3. The method of operating a hydrogen generator according to claim 1, wherein the reforming catalyst is a Ru-based reforming catalyst.
JP2013066675A 2013-03-27 2013-03-27 Operation method of hydrogen generator Active JP5874669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013066675A JP5874669B2 (en) 2013-03-27 2013-03-27 Operation method of hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013066675A JP5874669B2 (en) 2013-03-27 2013-03-27 Operation method of hydrogen generator

Publications (2)

Publication Number Publication Date
JP2014189444A JP2014189444A (en) 2014-10-06
JP5874669B2 true JP5874669B2 (en) 2016-03-02

Family

ID=51836083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013066675A Active JP5874669B2 (en) 2013-03-27 2013-03-27 Operation method of hydrogen generator

Country Status (1)

Country Link
JP (1) JP5874669B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848501A (en) * 1994-08-05 1996-02-20 Toshiba Corp Reforming device
JP2009084135A (en) * 2007-10-03 2009-04-23 Corona Corp Fuel processor, driving method therefor, and fuel cell system
JP2012170844A (en) * 2011-02-18 2012-09-10 Nippon Shokubai Co Ltd Method for producing steam-reforming catalyst and method for producing hydrogen by using the catalyst

Also Published As

Publication number Publication date
JP2014189444A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
JP5015690B2 (en) Apparatus and method for heating a catalyst for start-up of a compact fuel processor
JP4335535B2 (en) Single chamber compact fuel processor
JP5154001B2 (en) Method for processing reformed gas from reformer and fuel cell system
ES2681604T3 (en) Hydrocarbon steam reforming with limited steam export
JP2004515444A (en) Single chamber compact fuel processor
JP2010513834A (en) Heat transfer unit for steam generation and gas preheating
JP2010513189A (en) Method for using a catalyst preburner in fuel processing applications
JP2004047472A (en) Method and apparatus for producing hydrogen
US20030103880A1 (en) Fuel processor utilizing heat pipe cooling
WO2019110267A1 (en) Process and system for producing synthesis gas
JP4933818B2 (en) Operation method of solid oxide fuel cell system
KR20140008005A (en) Reactor for selective oxidation of carbon dioxide having heat exchange device therein and fuel reforming system including the reactor
JP2007331985A (en) Hydrogen generator and fuel cell power generation system using the same
US20110064631A1 (en) Hydrogen generator and the application of the same
JP5874669B2 (en) Operation method of hydrogen generator
JP5314381B2 (en) Hydrogen production equipment
JP4486832B2 (en) Steam reforming system
JP4739704B2 (en) Hydrogen production equipment for fuel cells
JP5078426B2 (en) Carbon monoxide remover and hydrogen production equipment
JP2003306306A (en) Autothermal reforming apparatus
JP2004284912A (en) Shift reaction device, and carbon monoxide removal method using the same
JPWO2009107592A1 (en) Method and apparatus for producing hydrogen
JP5140361B2 (en) Fuel cell reformer
JP2002216827A (en) Co transformer in reforming system for fuel cell system
JP2017001922A (en) Hydrogen generator and hydrogen generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160104

R150 Certificate of patent or registration of utility model

Ref document number: 5874669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250