JP5874488B2 - Composite metal oxide catalyst and method for producing conjugated diene - Google Patents

Composite metal oxide catalyst and method for producing conjugated diene Download PDF

Info

Publication number
JP5874488B2
JP5874488B2 JP2012072134A JP2012072134A JP5874488B2 JP 5874488 B2 JP5874488 B2 JP 5874488B2 JP 2012072134 A JP2012072134 A JP 2012072134A JP 2012072134 A JP2012072134 A JP 2012072134A JP 5874488 B2 JP5874488 B2 JP 5874488B2
Authority
JP
Japan
Prior art keywords
catalyst
metal oxide
composite metal
formula
oxide catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012072134A
Other languages
Japanese (ja)
Other versions
JP2013202459A (en
Inventor
広志 亀尾
広志 亀尾
英伸 梶谷
英伸 梶谷
和幸 岩貝
和幸 岩貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012072134A priority Critical patent/JP5874488B2/en
Publication of JP2013202459A publication Critical patent/JP2013202459A/en
Application granted granted Critical
Publication of JP5874488B2 publication Critical patent/JP5874488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明はモノオレフィン類の気相接触酸化脱水素反応に用いる複合金属酸化物触媒に関する。詳しくは炭素原子数4以上のモノオレフィンから共役ジエンを製造する際に用いられる複合金属酸化物触媒及びその触媒を使用して炭素原子数4以上のモノオレフィンから共役ジエンを製造する方法に関する。   The present invention relates to a composite metal oxide catalyst used in a gas phase catalytic oxidative dehydrogenation reaction of monoolefins. More specifically, the present invention relates to a composite metal oxide catalyst used for producing a conjugated diene from a monoolefin having 4 or more carbon atoms and a method for producing a conjugated diene from a monoolefin having 4 or more carbon atoms using the catalyst.

n−ブテン等のモノオレフィンを触媒の存在下に酸化脱水素反応させてブタジエン等の共役ジエンを製造する方法は、従来から知られており、n−ブテンの気相接触酸化脱水素反応によるブタジエンの工業的規模の製造方法として、ナフサ分解で副生するC留分(C炭化水素混合物。以下、「BB」と称す場合がある。)からのブタジエンの抽出分離プロセスにおいて、抽出蒸留塔でブタジエンを分離して得られた、1−ブテンの他、2−ブテン、ブタン等を含む混合物(以下、この混合物を「BBSS]と称す場合がある。)中に含まれるブテンからブタジエンを製造する方法が知られている。 A method for producing a conjugated diene such as butadiene by subjecting a monoolefin such as n-butene to an oxidative dehydrogenation reaction in the presence of a catalyst has been conventionally known, and butadiene obtained by a gas phase catalytic oxidative dehydrogenation reaction of n-butene. In the process of extracting and separating butadiene from a C 4 fraction (C 4 hydrocarbon mixture, hereinafter sometimes referred to as “BB”) produced as a by-product in naphtha decomposition, Butadiene is produced from butene contained in a mixture containing 1-butene, 2-butene, butane, etc. (hereinafter, this mixture may be referred to as “BBSS”) obtained by separating butadiene in 1. How to do is known.

この反応に使用される触媒の一つとして、複合金属酸化物触媒が知られており、例えば、特許文献1には、モリブデンを含有する複合酸化物触媒が記載されている。そして、特許文献1には、当該複合金属酸化物触媒を用いた接触気相酸化反応においては、通常反応の化学量論量より過剰の酸素を存在させると、副反応を促進し、副生成物や更に重質の炭素含有割合の高いカーボンの生成を引き起こし、最終的には触媒層のコーキングを引き起こすため、特定条件の水蒸気を予め触媒に供給しておくことで、水蒸気に含まれる水分子が酸素、反応原料の濃度を下げ、触媒上の吸着物の脱着も促進するので、副反応を抑制し、副生成物やカーボンの生成を抑制する事が出来ることも記載されている。   As one of the catalysts used in this reaction, a composite metal oxide catalyst is known. For example, Patent Document 1 describes a composite oxide catalyst containing molybdenum. And in patent document 1, in the catalytic gas-phase oxidation reaction using the said composite metal oxide catalyst, when oxygen more than the stoichiometric amount of normal reaction is made to exist, a side reaction will be accelerated | stimulated, and a by-product In order to cause the generation of carbon with a heavier carbon content and eventually cause coking of the catalyst layer, water molecules contained in the water vapor are contained in the water vapor in advance by supplying steam under specific conditions to the catalyst. It also describes that the concentration of oxygen and reaction raw materials is lowered and the desorption of adsorbed material on the catalyst is promoted, so that side reactions can be suppressed and the generation of byproducts and carbon can be suppressed.

また、モリブデンを含有する複合金属酸化物触媒は、反応系に水蒸気が存在する場合、触媒を構成するモリブデン成分が昇華しやすいことが知られており、特許文献2では、Fe/(Co+Ni)比を一定にして、CoとNiの量を変化させた複数種類のモリブデン−ビスマス−鉄系複合金属酸化物触媒を使用し、固定床式反応器の原料ガス入り口側から出口側に向かって、複数種類の複合酸化物触媒のCo/(Co+Ni)の量比が小さくなるように充填することにより、反応器内を2層以上の反応帯域に分割して、プロピレンの酸化反応を行う方法が提案されている。   In addition, it is known that the composite metal oxide catalyst containing molybdenum is prone to sublimation of the molybdenum component constituting the catalyst when water vapor is present in the reaction system. In Patent Document 2, the Fe / (Co + Ni) ratio is known. And using a plurality of types of molybdenum-bismuth-iron-based mixed metal oxide catalysts in which the amounts of Co and Ni are changed, a plurality of gas flows from the raw material gas inlet side to the outlet side of the fixed bed reactor. A method has been proposed in which propylene oxidation reaction is performed by dividing the reactor into two or more reaction zones by packing the composite oxide catalysts of various types so as to reduce the Co / (Co + Ni) ratio. ing.

特開2009−263352号公報JP 2009-263352 A 特開2003−146920号公報JP 2003-146920 A

上記特許文献1〜2には、ブテンの酸化脱水素反応によるブタジエンを製造する際に、触媒としてモリブデンを含有する複合金属酸化物触媒を使用して、連続的にブタジエンを製造する場合、触媒から揮発したモリブデン成分が反応器内に付着すると、その付着した箇所からコーキングが始まることは記載されては無いが、ブテンの酸化脱水素反応によるブタジエンの製造の際に用いるモリブデンを含有する複合金属酸化物から揮散するモリブデン成分が、反応器内のコーキングを引き起こす原因となり、原料ガスを供給し続けて反応を継続するとコーキングにより反応器の閉塞が起こる恐れがある、という問題が判明した。   In the above Patent Documents 1 and 2, when producing butadiene by oxidative dehydrogenation of butene, a composite metal oxide catalyst containing molybdenum is used as a catalyst, and butadiene is produced continuously. Although it is not described that when the volatilized molybdenum component is deposited in the reactor, coking starts from the spot where it is deposited, it is a composite metal oxidation containing molybdenum used in the production of butadiene by the oxidative dehydrogenation reaction of butene. It has been found that the molybdenum component volatilized from the material causes coking in the reactor, and if the reaction is continued by continuously supplying the raw material gas, the reactor may be blocked by coking.

本発明は、上記課題に鑑みてなされたものであって、n−ブテン等のモノオレフィンの気相接触酸化脱水素反応によりブタジエン等の共役ジエンを製造する際に使用する複合金属酸化物触媒において、触媒成分の一つであるモリブデン成分の揮散が少なく、コーキングが発生を抑制できる複合金属酸化物触媒、及び共役ジエンを製造するにあたり、安定的にn−ブテン等のモノオレフィンの気相接触酸化脱水素反応を継続できる共役ジエンの製造方法を提供することを目的とする。   This invention is made in view of the said subject, Comprising: In the composite metal oxide catalyst used when manufacturing conjugated dienes, such as butadiene, by the vapor-phase catalytic oxidative dehydrogenation reaction of monoolefins, such as n-butene, In the production of composite metal oxide catalyst that can suppress the occurrence of coking and the volatilization of molybdenum component, which is one of the catalyst components, and conjugated dienes, the gas phase catalytic oxidation of monoolefins such as n-butene is stable. It aims at providing the manufacturing method of the conjugated diene which can continue dehydrogenation reaction.

本発明者らは、複合金属酸化物触媒、中でもモリブデンを必須成分として含み、ビスマス、及び、コバルト又はニッケル、そして必要に応じてシリカを含む複合金属酸化物触媒について鋭意検討した結果、ブテンの気相接触酸化脱水素反応によるブタジエン製造用の触媒として使用する場合、複合金属酸化物触媒中の特定の結晶性酸化物が存在する触媒を用いる時に触媒中のモリブデン成分の揮散が少なく、その結果、反応器内のコーキングが抑制でき、更に安定的に気相酸化脱水素反応を継続できる事を見出した。
即ち、本発明の要旨は、以下の[1]〜[4]に存する。
[1] モノオレフィンの酸化反応を行い対応する共役ジエンを製造する際に用いる複合金属酸化物触媒であって、式(1)で表現される成分組成と式(2)で定義されるX線回折ピークの相対強度を有することを特徴とする複合金属酸化物触媒。
As a result of intensive investigations on a composite metal oxide catalyst, in particular, a composite metal oxide catalyst containing molybdenum as an essential component and containing bismuth, cobalt or nickel, and, if necessary, silica, When used as a catalyst for butadiene production by phase contact oxidative dehydrogenation reaction, when a catalyst in which a specific crystalline oxide is present in a composite metal oxide catalyst is used, there is less volatilization of the molybdenum component in the catalyst. It has been found that coking in the reactor can be suppressed and the gas phase oxidative dehydrogenation reaction can be continued more stably.
That is, the gist of the present invention resides in the following [1] to [4].
[1] A composite metal oxide catalyst used for producing a corresponding conjugated diene by carrying out an oxidation reaction of a monoolefin , the component composition represented by the formula (1) and the X-ray defined by the formula (2) A composite metal oxide catalyst having a relative intensity of a diffraction peak.

Mo a Bi b Co c Ni d Fe e f g h Si i j (1)
0.1<R(=P1/P2)<0.8 (2)
(式(1)において、Xはマグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、
セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)及びタリウム(Tl)からなる群から選ばれる少なくとも1種の元素であり、Zはホウ素(B)、リン(P)、砒素(As)及びタングステン(W)からなる群から選ばれる少なくとも1種の元素である。また、a〜jはそれぞれの元素の原子比を表し、a=12のとき、b=0.5〜7、c=0〜10、d=0〜10(但しc+d=1〜10)、e=0.05〜3、f=0〜3、g=0〜2、h=0〜3、i=0〜48の範囲にあり、またjは他の元素の酸化状態を満足させる数値である。)
(式(2)において、P1とP2は、それぞれX線回折図における回折角2θが26.4°と28.2°のピークの強度であり、Rは相対強度である。)
[2] 前記組成式(1)において、a=12のとき、b=0.5〜2であることを特徴とする[1]に記載の複合金属酸化物触媒。
[3] 前記モノオレフィンがブテンであり、前記共役ジエンがブタジエンであることを特徴とする[1]又は[2]に記載の複合金属酸化物触媒。[4] 触媒の存在下、炭素原子数4以上のモノオレフィンを含む原料ガスと分子状酸素含有ガスとを酸化脱水素反応を行うことにより、対応する共役ジエンを製造するにあたり、該触媒が式(1)で表現される成分組成と式(2)で定義されるX線回折ピークの相対強度を有する複合金属酸化物触媒であることを特徴とする共役ジエンの製造方法。
Mo a Bi b Co c Ni d Fe e X f Y g Z h Si i O j (1)
0.1 <R (= P1 / P2) <0.8 (2)
(In the formula (1), X is magnesium (Mg), calcium (Ca), zinc (Zn),
It is at least one element selected from the group consisting of cerium (Ce) and samarium (Sm), and Y is selected from sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) and thallium (Tl). Z is at least one element selected from the group consisting of boron (B), phosphorus (P), arsenic (As), and tungsten (W). A to j represent atomic ratios of the respective elements. When a = 12, b = 0.5 to 7, c = 0 to 10, d = 0 to 10 (provided c + d = 1 to 10), e = 0.05-3, f = 0-3, g = 0-2, h = 0-3, i = 0-48, and j is a numerical value that satisfies the oxidation state of other elements . )
(In Formula (2), P1 and P2 are the intensity of the peaks at diffraction angles 2θ of 26.4 ° and 28.2 °, respectively, in the X-ray diffraction diagram, and R is the relative intensity.)
[2] The composite metal oxide catalyst according to [1], wherein in the composition formula (1), when a = 12, b = 0.5-2.
[3] The mixed metal oxide catalyst according to [1] or [2], wherein the monoolefin is butene and the conjugated diene is butadiene. [4] In producing the corresponding conjugated diene by carrying out an oxidative dehydrogenation reaction between a raw material gas containing a monoolefin having 4 or more carbon atoms and a molecular oxygen-containing gas in the presence of the catalyst, A method for producing a conjugated diene, which is a composite metal oxide catalyst having a component composition represented by (1) and a relative intensity of an X-ray diffraction peak defined by formula (2).

MoaBibCocNidFeefghSiij (1)
0.1<R(=P/P)<0.8 (2)
(式(1)において、Xはマグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、
セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)及びタリウム(Tl)からなる群から選ばれる少なくとも1種の元素であり、Zはホウ素(B)、リン(P)、砒素(As)及びタングステン(W)からなる群から選ばれる少なくとも1種の元素である。また、a〜jはそれぞれの元素の原子比を表し、a=12
のとき、b=0.5〜7、c=0〜10、d=0〜10(但しc+d=1〜10)、e=0.05〜3、f=0〜3、g=0〜2、h=0〜3、i=0〜48の範囲にあり、またjは他の元素の酸化状態を満足させる数値である。)
(式(2)において、PとPは、それぞれX線回折図における回折角2θが26.4°と28.2°のピークの強度であり、Rは相対強度である。)
Mo a Bi b Co c Ni d F e X f Y g Z h Si i O j (1)
0.1 <R (= P 1 / P 2 ) <0.8 (2)
(In the formula (1), X is magnesium (Mg), calcium (Ca), zinc (Zn),
It is at least one element selected from the group consisting of cerium (Ce) and samarium (Sm), and Y is selected from sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) and thallium (Tl). Z is at least one element selected from the group consisting of boron (B), phosphorus (P), arsenic (As), and tungsten (W). A to j represent atomic ratios of the respective elements, and a = 12
Where b = 0.5-7, c = 0-10, d = 0-10 (provided c + d = 1-10), e = 0.05-3, f = 0-3, g = 0-2. , H = 0 to 3, i = 0 to 48, and j is a numerical value that satisfies the oxidation state of other elements. )
(In Formula (2), P 1 and P 2 are the intensity of the peaks at diffraction angles 2θ of 26.4 ° and 28.2 ° in the X-ray diffraction diagram, respectively, and R is the relative intensity.)

本発明によれば、モリブデン成分の揮散が少なく、コーキングの低減が出来る、n−ブテン等のモノオレフィンの気相接触酸化脱水素反応によりブタジエン等の共役ジエンを製造するのに最適な複合金属酸化物触媒を得ることができ、そして、目的反応物の収率及び選択率等を低下させることなく、n−ブテン等のモノオレフィンの気相接触酸化脱水素反応によるブタジエン等の共役ジエンを製造するための気相酸化脱水素反応を安定的に継続することができる。   According to the present invention, the composite metal oxidation is optimal for producing conjugated dienes such as butadiene by vapor phase catalytic oxidative dehydrogenation of monoolefins such as n-butene, which can reduce the volatilization of the molybdenum component and reduce coking. And a conjugated diene such as butadiene can be produced by gas phase catalytic oxidative dehydrogenation of a monoolefin such as n-butene without reducing the yield and selectivity of the desired reactant. Therefore, the gas phase oxidative dehydrogenation reaction can be continued stably.

本発明の比較例1の複合金属酸化物触媒のX線回折図である。It is an X-ray diffraction pattern of the composite metal oxide catalyst of Comparative Example 1 of the present invention. 本発明の実施例1の複合金属酸化物触媒のX線回折図である。1 is an X-ray diffraction diagram of a mixed metal oxide catalyst of Example 1 of the present invention. 本発明の実施例2の複合金属酸化物触媒のX線回折図である。It is an X-ray diffraction pattern of the composite metal oxide catalyst of Example 2 of the present invention. 本発明の実施例3の複合金属酸化物触媒のX線回折図である。It is an X-ray diffraction pattern of the mixed metal oxide catalyst of Example 3 of the present invention. 本発明の実施例で使用した装置の概略図である。It is the schematic of the apparatus used in the Example of this invention. 本発明の実施例で使用した装置の概略図である。It is the schematic of the apparatus used in the Example of this invention.

以下において、この発明について詳細に説明する。
[複合金属酸化物触媒]
本発明の複合金属酸化物触媒は、下記組成式(1)で示される成分組成であることを特徴とする。
MoaBibCocNidFeefghSiij (1)
(式(1)中、Xはマグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)及びタリウム(Tl)からなる群から選ばれる少なくとも1種の元素であり、Zはホウ素(B)、リン(P)、砒素(As)及びタングステン(W)からなる群から選ばれる少なくとも1種の元素である。また、a〜jはそれぞれの元素の原子比を表し、a=12のとき、b=0.5〜7、c=0〜10、d=0〜10(但しc+d=1〜10)、e=0.05〜3、f=0〜3、g=0〜2、h=0〜3、i=0〜48の範囲にあり、またjは他の元素の酸化状態を満足させる数値である。)
The present invention will be described in detail below.
[Composite metal oxide catalyst]
The composite metal oxide catalyst of the present invention has a component composition represented by the following composition formula (1).
Mo a Bi b Co c Ni d F e X f Y g Z h Si i O j (1)
(In the formula (1), X is at least one element selected from the group consisting of magnesium (Mg), calcium (Ca), zinc (Zn), cerium (Ce) and samarium (Sm), and Y is sodium. (Na), potassium (K), rubidium (Rb), cesium (Cs) and at least one element selected from the group consisting of thallium (Tl), and Z is boron (B), phosphorus (P), arsenic (As) and at least one element selected from the group consisting of tungsten (W), and a to j represent atomic ratios of the respective elements, and when a = 12, b = 0.5 to 7 , C = 0 to 10, d = 0 to 10 (provided c + d = 1 to 10), e = 0.05 to 3, f = 0 to 3, g = 0 to 2, h = 0 to 3, i = 0 In the range of ~ 48, and j satisfies the oxidation state of other elements Numerical value is.)

また、この複合金属酸化物触媒は、この複合金属酸化物触媒を構成する各成分元素の供給源化合物を水系内で一体化して加熱する工程を経て製造する方法であって、モリブデン化合物、鉄化合物、ニッケル化合物及びコバルト化合物よりなる群から選ばれる少なくとも1種と、必要に応じてシリカとを含む原料化合物水溶液又はこれを乾燥して得た乾燥物を加熱処理して触媒前駆体を製造する前工程と、該触媒前駆体、モリブデン化合物及びビスマス化合物を水性溶媒とともに一体化し、乾燥、焼成する後工程とを有する方法で製造されたものであることが好ましく、このような方法で製造された複合金属酸化物触媒であれば、その高い触媒活性で高収率でブタジエン等の共役ジエンを製造することが
次に本発明に好適な複合金属酸化物触媒の製造方法について説明する。
Further, the composite metal oxide catalyst is a method for producing a composite compound of the component elements constituting the composite metal oxide catalyst through a process of integrating and heating in a water system, the molybdenum compound and the iron compound. Before producing a catalyst precursor by heat-treating a raw material compound aqueous solution containing at least one selected from the group consisting of a nickel compound and a cobalt compound and, if necessary, silica, or a dried product obtained by drying the aqueous solution Preferably, the composite prepared by such a method is prepared by a method having a process and a post-process in which the catalyst precursor, the molybdenum compound and the bismuth compound are integrated with an aqueous solvent, dried and fired. If it is a metal oxide catalyst, it is possible to produce a conjugated diene such as butadiene in a high yield with its high catalytic activity. Next, a composite metal oxide catalyst suitable for the present invention The manufacturing method will be described.

この複合金属酸化物触媒の製造方法においては、前記前工程で用いられるモリブデンが、モリブデンの全原子比(a)の内の一部の原子比(a)相当のモリブデンであり、前
記後工程で用いられるモリブデンが、モリブデンの全原子比(a)からaを差し引いた残りの原子比(a)相当のモリブデンであることが好ましい。また、前記aが1<a/(c+d+e)<3を満足する値であることが好ましい。さらに、前記aが0<a/b<8を満足する値であることが好ましい。
In this method for producing a composite metal oxide catalyst, the molybdenum used in the previous step is molybdenum corresponding to a partial atomic ratio (a 1 ) of the total atomic ratio (a) of molybdenum, Is preferably molybdenum corresponding to the remaining atomic ratio (a 2 ) obtained by subtracting a 1 from the total atomic ratio (a) of molybdenum. The a 1 is preferably a value satisfying 1 <a 1 / (c + d + e) <3. Furthermore, it is preferable that a 2 is a value satisfying 0 <a 2 / b <8.

上記成分元素の供給源化合物としては、成分元素の酸化物、硝酸塩、炭酸塩、アンモニウム塩、水酸化物、カルボン酸塩、カルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、水素酸、アセチルアセトナート、アルコキシド等が挙げられ、その具体例としては、下記のようなものが挙げられる。
Moの供給源化合物としては、パラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、リンモリブデン酸アンモニウム、リンモリブデン酸等が挙げられる。
Source compounds of the above component elements include oxides, nitrates, carbonates, ammonium salts, hydroxides, carboxylates, ammonium carboxylates, ammonium halides, hydrogen acids, acetylacetonates, alkoxides of the component elements. The following are mentioned as the specific example.
Examples of Mo supply source compounds include ammonium paramolybdate, molybdenum trioxide, molybdic acid, ammonium phosphomolybdate, and phosphomolybdic acid.

Feの供給源化合物としては、硝酸第二鉄、硫酸第二鉄、塩化第二鉄、酢酸第二鉄等が挙げられる。
Coの供給源化合物としては、硝酸コバルト、硫酸コバルト、塩化コバルト、炭酸コバルト、酢酸コバルト等が挙げられる。
Niの供給源化合物としては、硝酸ニッケル、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、酢酸ニッケル等が挙げられる。
Examples of Fe source compounds include ferric nitrate, ferric sulfate, ferric chloride, and ferric acetate.
Examples of the Co source compound include cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt carbonate, and cobalt acetate.
Examples of the Ni source compound include nickel nitrate, nickel sulfate, nickel chloride, nickel carbonate, nickel acetate and the like.

Siの供給源化合物としては、シリカ、粒状シリカ、コロイダルシリカ、ヒュームドシリカ等が挙げられる。
Biの供給源化合物としては、塩化ビスマス、硝酸ビスマス、酸化ビスマス、次炭酸ビスマス等が挙げられる。また、X成分(Mg,Ca,Zn,Ce,Smの1種又は2種以上)やY成分(Na,K,Rb,Cs,Tlの1種又は2種以上)を固溶させた、BiとX成分やY成分との複合炭酸塩化合物として供給することもできる。
Examples of Si source compounds include silica, granular silica, colloidal silica, and fumed silica.
Examples of Bi source compounds include bismuth chloride, bismuth nitrate, bismuth oxide, and bismuth subcarbonate. In addition, Bi component in which X component (one or more of Mg, Ca, Zn, Ce, and Sm) and Y component (one or more of Na, K, Rb, Cs, and Tl) are dissolved. It can also be supplied as a complex carbonate compound of the X component and the Y component.

例えば、Y成分としてNaを用いた場合、BiとNaとの複合炭酸塩化合物は、炭酸ナトリウム又は重炭酸ナトリウムの水溶液等に、硝酸ビスマス等の水溶性ビスマス化合物の水溶液を滴下混合し、得られた沈殿を水洗、乾燥することによって製造することができる。
また、BiとX成分との複合炭酸塩化合物は、炭酸アンモニウム又は重炭酸アンモニウムの水溶液等に、硝酸ビスマス及びX成分の硝酸塩等の水溶性化合物からなる水溶液を滴下混合し、得られた沈殿を水洗、乾燥することによって製造することができる。
For example, when Na is used as the Y component, a complex carbonate compound of Bi and Na can be obtained by dropping an aqueous solution of a water-soluble bismuth compound such as bismuth nitrate into an aqueous solution of sodium carbonate or sodium bicarbonate. The precipitate can be produced by washing with water and drying.
In addition, the complex carbonate compound of Bi and the X component is prepared by mixing an aqueous solution of a water-soluble compound such as bismuth nitrate and nitrate of the X component with an aqueous solution of ammonium carbonate or ammonium bicarbonate, etc. It can be produced by washing with water and drying.

上記炭酸アンモニウム又は重炭酸アンモニウムの代わりに、炭酸ナトリウム又は重炭酸ナトリウムを用いると、Bi、Na及びX成分との複合炭酸塩化合物を製造することができる。
その他の成分元素の供給源化合物としては、下記のものが挙げられる。
Kの供給源化合物としては、硝酸カリウム、硫酸カリウム、塩化カリウム、炭酸カリウム、酢酸カリウム等を挙げることができる。
When sodium carbonate or sodium bicarbonate is used instead of the above ammonium carbonate or ammonium bicarbonate, a complex carbonate compound with Bi, Na and X components can be produced.
Examples of source compounds of other component elements include the following.
Examples of the source compound for K include potassium nitrate, potassium sulfate, potassium chloride, potassium carbonate, and potassium acetate.

Rbの供給源化合物としては、硝酸ルビジウム、硫酸ルビジウム、塩化ルビジウム、炭酸ルビジウム、酢酸ルビジウム等を挙げることができる。
Csの供給源化合物としては、硝酸セシウム、硫酸セシウム、塩化セシウム、炭酸セシウム、酢酸セシウム等を挙げることができる。
Tlの供給源化合物としては、硝酸第一タリウム、塩化第一タリウム、炭酸タリウム、酢酸第一タリウム等を挙げることができる。
Examples of Rb source compounds include rubidium nitrate, rubidium sulfate, rubidium chloride, rubidium carbonate, and rubidium acetate.
Examples of the Cs supply source compound include cesium nitrate, cesium sulfate, cesium chloride, cesium carbonate, and cesium acetate.
Examples of Tl source compounds include thallium nitrate, thallium chloride, thallium carbonate, and thallium acetate.

Bの供給源化合物としては、ホウ砂、ホウ酸アンモニウム、ホウ酸等を挙げることができる。
Pの供給源化合物としては、リンモリブデン酸アンモニウム、リン酸アンモニウム、リン酸、五酸化リン等を挙げることができる。
Asの供給源化合物としては、ジアルセノ十八モリブデン酸アンモニウム、ジアルセノ十八タングステン酸アンモニウム等を挙げることができる。
Examples of the source compound for B include borax, ammonium borate, and boric acid.
Examples of P source compounds include ammonium phosphomolybdate, ammonium phosphate, phosphoric acid, phosphorus pentoxide, and the like.
Examples of the source compound for As include dialsenooctammonium molybdate, ammonium dialseno18 tungstate, and the like.

Wの供給源化合物としては、パラタングステン酸アンモニウム、三酸化タングステン、タングステン酸、リンタングステン酸等を挙げることができる。
Mgの供給源化合物としては、硝酸マグネシウム、硫酸マグネシウム、塩化マグネシウム、炭酸マグネシウム、酢酸マグネシウム等が挙げられる。
Caの供給源化合物としては、硝酸カルシウム、硫酸カルシウム、塩化カルシウム、炭酸カルシウム、酢酸カルシウム等が挙げられる。
Examples of W source compounds include ammonium paratungstate, tungsten trioxide, tungstic acid, and phosphotungstic acid.
Examples of the Mg source compound include magnesium nitrate, magnesium sulfate, magnesium chloride, magnesium carbonate, and magnesium acetate.
Examples of the source compound for Ca include calcium nitrate, calcium sulfate, calcium chloride, calcium carbonate, and calcium acetate.

Znの供給源化合物としては、硝酸亜鉛、硫酸亜鉛、塩化亜鉛、炭酸亜鉛、酢酸亜鉛等が挙げられる。
Ceの供給源化合物としては、硝酸セリウム、硫酸セリウム、塩化セリウム、炭酸セリウム、酢酸セリウム等が挙げられる。
Smの供給源化合物としては、硝酸サマリウム、硫酸サマリウム、塩化サマリウム、炭酸サマリウム、酢酸サマリウム等が挙げられる。
前工程において用いる原料化合物水溶液は、触媒成分として少なくともモリブデン(全原子比aの内のa相当)、鉄、ニッケル又はコバルトの少なくとも一方、及びシリカを含む水溶液、水スラリー又はケーキである。
Examples of the Zn source compound include zinc nitrate, zinc sulfate, zinc chloride, zinc carbonate, and zinc acetate.
Examples of the Ce source compound include cerium nitrate, cerium sulfate, cerium chloride, cerium carbonate, and cerium acetate.
Examples of Sm source compounds include samarium nitrate, samarium sulfate, samarium chloride, samarium carbonate, and samarium acetate.
The raw material compound aqueous solution used in the previous step is an aqueous solution, water slurry or cake containing at least molybdenum (corresponding to a 1 in the total atomic ratio a), iron, nickel or cobalt, and silica as a catalyst component.

この原料化合物水溶液の調製は、供給源化合物の水性系での一体化により行われる。ここで各成分元素の供給源化合物の水性系での一体化とは、各成分元素の供給源化合物の水溶液あるいは水分散液を一括に、あるいは段階的に混合及び/又は熟成処理を行うことをいう。即ち、(イ)上記の各供給源化合物を一括して混合する方法、(ロ)上記の各供給源化合物を一括して混合し、そして熟成処理する方法、(ハ)上記の各供給源化合物を段階的に混合する方法、(ニ)上記の各供給源化合物を段階的に混合・熟成処理を繰り返す方法、及び(イ)〜(ニ)を組み合わせる方法のいずれもが、各成分元素の供給源化合物の水性系での一体化という概念に含まれる。ここで、熟成とは、工業原料もしくは半製品を、一定時間、一定温度等の特定条件のもとに処理して、必要とする物理性、化学性の取得、上昇あるいは所定反応の進行等を図る操作をいい、一定時間とは、通常10分〜24時間の範囲であり、一定温度とは通常室温〜水溶液又は水分散液の沸点範囲をいう。   The raw material compound aqueous solution is prepared by integrating the source compound in an aqueous system. Here, the integration of each component element source compound in an aqueous system means that the aqueous solution or aqueous dispersion of each component element source compound is mixed or / and aged in stages. Say. (B) a method of mixing the above-mentioned source compounds in a lump, (b) a method of mixing the above-mentioned source compounds in a lump and aging, and (c) a method of mixing each of the above-mentioned source compounds. Supply of each component element is a method of stepwise mixing, (d) a method of repeatedly mixing and aging the above-mentioned source compounds stepwise, and a method of combining (b) to (d). It is included in the concept of integration of the source compound in an aqueous system. Here, aging refers to the processing of industrial raw materials or semi-finished products under specific conditions such as constant temperature for a certain period of time to obtain the required physical and chemical properties, increase or advance the prescribed reaction, etc. The fixed time is usually in the range of 10 minutes to 24 hours, and the fixed temperature is usually in the range of room temperature to the boiling point of the aqueous solution or aqueous dispersion.

上記の一体化の具体的な方法としては、例えば、触媒成分から選ばれた酸性塩を混合して得られた溶液と、触媒成分から選ばれた塩基性塩を混合して得られた溶液とを混合する方法等が挙げられ、具体例としてモリブデン化合物の水溶液に、鉄化合物とニッケル化合物及び/又はコバルト化合物との混合物を加温下添加し、シリカを混合する方法等が挙げられる。
このようにして得られたシリカを含む原料化合物水溶液(スラリー)を60〜90℃に加温し、熟成する。
この熟成とは、上記触媒前駆体用スラリーを所定温度で所定時間、撹拌することをいう。この熟成により、スラリーの粘度が上昇し、スラリー中の固体成分の沈降を緩和し、とりわけ次の乾燥工程での成分の不均一化を抑制するのに有効となり、得られる最終製品である複合酸化物触媒の原料転化率や選択率等の触媒活性がより良好となる。
As a specific method of the above integration, for example, a solution obtained by mixing an acidic salt selected from catalyst components, and a solution obtained by mixing a basic salt selected from catalyst components, Specific examples include a method of adding a mixture of an iron compound and a nickel compound and / or a cobalt compound to an aqueous solution of a molybdenum compound while heating, and mixing silica.
The raw material compound aqueous solution (slurry) containing silica thus obtained is heated to 60 to 90 ° C. and aged.
The aging means that the catalyst precursor slurry is stirred at a predetermined temperature for a predetermined time. This aging increases the viscosity of the slurry, reduces the sedimentation of the solid components in the slurry, and is particularly effective in suppressing the heterogeneity of components in the subsequent drying process. The catalytic activity such as the raw material conversion rate and selectivity of the product catalyst becomes better.

上記熟成における温度は、60〜90℃が好ましく、70〜85℃がより好ましい。熟成温度が60℃未満では、熟成の効果が十分ではなく、良好な活性を得られない場合がある。一方、90℃を超えると、熟成時間中の水の蒸発が多く、工業的な実施には不利である。更に100℃を超えると、溶解槽に耐圧容器が必要となり、また、ハンドリングも複
雑になり、経済性及び操作性の面で著しく不利となる。
60-90 degreeC is preferable and the temperature in the said ripening has more preferable 70-85 degreeC. When the aging temperature is less than 60 ° C., the aging effect is not sufficient, and good activity may not be obtained. On the other hand, when it exceeds 90 ° C., the water is often evaporated during the aging time, which is disadvantageous for industrial implementation. Further, if the temperature exceeds 100 ° C., a pressure vessel is required for the dissolution tank, and handling becomes complicated, which is extremely disadvantageous in terms of economy and operability.

上記熟成にかける時間は、2〜12時間がよく、3〜8時間が好ましい。熟成時間が2時間未満では、触媒の活性及び選択性が十分に発現しない場合がある。一方、12時間を超えても熟成効果が増大することはなく、工業的な実施には不利である。
上記撹拌方法としては、任意の方法を採用することができ、例えば、撹拌翼を有する撹拌機による方法や、ポンプによる外部循環による方法等が挙げられる。
The aging time is preferably 2 to 12 hours, and preferably 3 to 8 hours. If the aging time is less than 2 hours, the activity and selectivity of the catalyst may not be sufficiently developed. On the other hand, the aging effect does not increase even if it exceeds 12 hours, which is disadvantageous for industrial implementation.
Any method can be adopted as the stirring method, and examples thereof include a method using a stirrer having a stirring blade and a method using external circulation using a pump.

熟成されたスラリーは、そのままで、又は乾燥した後、加熱処理を行う。乾燥する場合の乾燥方法及び得られる乾燥物の状態については特に限定はなく、例えば、通常のスプレードライヤー、スラリードライヤー、ドラムドライヤー等を用いて粉体状の乾燥物を得てもよいし、また、通常の箱型乾燥器、トンネル型焼成炉を用いてブロック状又はフレーク状の乾燥物を得てもよい。   The aged slurry is subjected to heat treatment as it is or after drying. There is no particular limitation on the drying method in the case of drying and the state of the dried product to be obtained. For example, a powdery dried product may be obtained using a normal spray dryer, slurry dryer, drum dryer, etc. Alternatively, a block-like or flake-like dried product may be obtained using a normal box-type dryer or a tunnel-type firing furnace.

上記の原料塩水溶液又はこれを乾燥して得た顆粒あるいはケーキ状のものは空気中で200〜400℃、好ましくは250〜350℃の温度域で短時間の熱処理を行う。その際の炉の形式及びその方法については特に限定はなく、例えば、通常の箱型加熱炉、トンネル型加熱炉等を用いて乾燥物を固定した状態で加熱してもよいし、また、ロータリーキルン等を用いて乾燥物を流動させながら加熱してもよい。
加熱処理後に得られた触媒前駆体の灼熱減量は、0.5〜5重量%であることが好ましく、1〜3重量%であるのがより好ましい。灼熱減量をこの範囲とすることで、原料転化率や選択率が高い触媒を得ることができる。なお、灼熱減量は、前記のように、次式により与えられる値である。
The raw material salt aqueous solution or granules or cakes obtained by drying the aqueous salt solution are heat-treated in air at a temperature of 200 to 400 ° C., preferably 250 to 350 ° C. for a short time. There are no particular limitations on the type and method of the furnace at that time, and for example, it may be heated with a dry matter fixed using a normal box-type furnace, tunnel-type furnace, etc., or a rotary kiln. It is possible to heat the dried product while flowing it.
The ignition loss of the catalyst precursor obtained after the heat treatment is preferably 0.5 to 5% by weight, more preferably 1 to 3% by weight. By setting the ignition loss within this range, a catalyst having a high raw material conversion rate and high selectivity can be obtained. Note that the loss on ignition is a value given by the following equation as described above.

灼熱減量(%)=[(W−W)/W]×100
:触媒前駆体を150℃で3時間乾燥して付着水分を除いたものの重量(g)
:付着水分を除いた前記触媒前駆体を更に500℃で2時間熱処理した後の
重量(g)
Burning loss (%) = [(W 0 −W 1 ) / W 0 ] × 100
W 0 : Weight (g) of the catalyst precursor after drying at 150 ° C. for 3 hours to remove adhering moisture
W 1 : Weight (g) after heat-treating the catalyst precursor excluding adhering moisture at 500 ° C. for 2 hours

前記の後工程では、上記の前工程において得られる触媒前駆体とモリブデン化合物(全原子比aからa相当を差し引いた残りのa相当)とビスマス化合物の一体化を、水性溶媒下で行う。この際、アンモニア水を添加するのが好ましい。X、Y、Z成分の添加もこの後工程で行うのが好ましい。また、この発明のビスマス供給源化合物は、水に難溶性ないし不溶性のビスマスである。この化合物は、粉末の形態で使用することが好ましい。触媒製造原料としてのこれら化合物は粉末より大きな粒子のものであってもよいが、その熱拡散を行わせるべき加熱工程を考えれば小さい粒子である方が好ましい。従って、原料としてのこれらの化合物がこのように粒子の小さいものでなかった場合は、加熱工程前に粉砕を行うべきである。 In the step after the, the integration of the above procatalyst precursor and the molybdenum compound obtained in step (remaining a 2 corresponds to minus a 1 equivalent of the total atomic ratio a) and bismuth compounds, carried out in an aqueous solvent . At this time, it is preferable to add ammonia water. The addition of the X, Y, and Z components is also preferably performed in the subsequent step. Further, the bismuth source compound of the present invention is bismuth which is hardly soluble or insoluble in water. This compound is preferably used in the form of a powder. These compounds as the catalyst production raw material may be particles larger than the powder, but are preferably smaller particles in view of the heating step in which thermal diffusion should be performed. Therefore, if these compounds as raw materials are not such particles, they should be pulverized before the heating step.

次に、得られたスラリーを充分に撹拌した後、乾燥する。このようにして得られた乾燥品を、押出し成型、打錠成型、あるいは担持成型等の方法により任意の形状に賦形する。次に、このものを、好ましくは450〜650℃の温度条件にて1〜16時間程度の最終熱処理に付す。
本発明の複合金属酸化物触媒は、式(2)で定義されるX線回折ピークの相対強度を持つ事を特長としている。
Next, the obtained slurry is sufficiently stirred and then dried. The dried product thus obtained is shaped into an arbitrary shape by a method such as extrusion molding, tableting molding or support molding. Next, this is preferably subjected to a final heat treatment for about 1 to 16 hours under a temperature condition of 450 to 650 ° C.
The composite metal oxide catalyst of the present invention is characterized by having the relative intensity of the X-ray diffraction peak defined by the formula (2).

0.1<R(=P/P)<0.8 (2)
(式(2)において、PとPは、それぞれX線回折図における回折角2θが26.4°と28.2°のピークの強度であり、Rは相対強度である。)
ここで、X線回折図(XRDと略記する)の回折角2θは、Cu-Kα線を用いて測定され
る角度であり、PとPは、それぞれ、2θが26.4°±0.3、28.2°±0.3のピーク強度である。これらの2つのピーク強度は、管電圧40kV、管電流40mA、発散スリット1度、散乱スリット1度、受光スリット0.15mm、スキャン速度1.2度/分およびサンプリング幅0.02度の条件下で測定した時に得られるXRD上のピークについて、以下のように定義される。
0.1 <R (= P 1 / P 2 ) <0.8 (2)
(In Formula (2), P 1 and P 2 are the intensity of the peaks at diffraction angles 2θ of 26.4 ° and 28.2 ° in the X-ray diffraction diagram, respectively, and R is the relative intensity.)
Here, the diffraction angle 2θ of the X-ray diffraction diagram (abbreviated as XRD) is an angle measured using Cu-K α- rays, and P 1 and P 2 are each 2θ of 26.4 ° ± The peak intensities are 0.3 and 28.2 ° ± 0.3. These two peak intensities are as follows: tube voltage 40 kV, tube current 40 mA, divergence slit 1 degree, scattering slit 1 degree, light receiving slit 0.15 mm, scan speed 1.2 degrees / minute, and sampling width 0.02 degree. The peak on XRD obtained when measured by the above is defined as follows.

便宜上、後述の比較例1の触媒について、上記条件下に測定して得たX線回折図(図1)を用いて定義を説明する。ピーク強度PとPは図1において、それぞれ線分CとCの長さである。HとHは、それぞれ、2θが26.4°±0.3と28
.2°±0.3のピークの頂点である。B、B、B3およびB4は、それぞれ、2θが
26.1°±0.3の範囲、26.8°±0.3の範囲、27.5°±0.3の範囲および28.7±0.3の範囲におけるXRDの接線の傾きが、2θ軸を基準にして、負から正に変化する点かまたは0に収束する点である。CはHから2θ軸に下ろした垂線と線分B、Bの交点であり、そして、CはHから2θ軸に下ろした垂線と線分B、Bの交点である。式(1)の成分組成で示される触媒で且つ式(2)によって定義される相対強度Rが0.1より大きく0.8より小さい複合金属酸化物触媒は、触媒成分中のモリブデン成分の揮散が少なく、それによるコーキングの発生が抑制された触媒である。
For convenience, the definition of the catalyst of Comparative Example 1 described later will be described using an X-ray diffraction diagram (FIG. 1) obtained by measurement under the above conditions. The peak intensities P 1 and P 2 are the lengths of line segments C 1 H 1 and C 2 H 2 in FIG. 1, respectively. H 1 and H 2 have 2θ of 26.4 ° ± 0.3 and 2 8 , respectively.
. It is the peak apex at 2 ° ± 0.3. B 1 , B 2 , B 3 and B 4 are respectively 2θ in the range of 26.1 ° ± 0.3, 26.8 ° ± 0.3, 27.5 ° ± 0.3, and The XRD tangential slope in the range of 28.7 ± 0.3 is a point that changes from negative to positive or converges to 0 with reference to the 2θ axis. C 1 is the intersection of the perpendicular line drawn from H 1 to the 2θ axis and the line segments B 1 and B 2 , and C 2 is the intersection of the perpendicular line drawn from H 2 to the 2θ axis and the line segments B 2 and B 3 . is there. A composite metal oxide catalyst having a component composition of formula (1) and a relative strength R defined by formula (2) of greater than 0.1 and less than 0.8 is volatilization of the molybdenum component in the catalyst component. This is a catalyst in which the occurrence of coking is suppressed.

相対強度Rを0.1より大きく且つ0.8未満にする手段としては、触媒調製時に適切な元素比を選ぶこと、触媒製造時の最終熱処理の温度の調節すること、又は式(2)の成分組成の触媒を得た後、その触媒を更に水蒸気の存在下で熱処理する事で相対強度Rを0.1より大きく且つ0.8未満とすることができる。また、必要に応じて、これらの手段を組み合わせて相対強度Rを調整してもよい。中でも、操作の簡便さから、又は式(2)の成分組成の触媒を得た後、その触媒を更に水蒸気の存在下で熱処理することでRの範囲を調節することが好ましい。   Means for making the relative strength R greater than 0.1 and less than 0.8 include selecting an appropriate element ratio during catalyst preparation, adjusting the temperature of the final heat treatment during catalyst production, or of formula (2) After obtaining a catalyst having a component composition, the relative strength R can be made greater than 0.1 and less than 0.8 by further heat-treating the catalyst in the presence of water vapor. Moreover, you may adjust relative intensity R combining these means as needed. Among these, it is preferable to adjust the range of R from the simplicity of operation or after obtaining a catalyst having the component composition of the formula (2), by further heat-treating the catalyst in the presence of water vapor.

触媒製造時の最終熱処理の熱処理温度が高くなるとRは小さくなる傾向があるが、温度が高すぎると触媒の性能が低下する傾向があるので、通常450〜650℃、好ましくは400〜600℃の範囲で行うのが良い。また、得られた触媒を更に水蒸気の存在下で熱処理する場合、温度としては、通常450〜650℃であり、好ましくは400〜600℃、更に好ましくは400〜550℃の範囲で行うのが良い。なお、このときに共存させる水蒸気の濃度としては、結露しない範囲ならば任意であるが、水蒸気濃度が高い方がRが高くなる傾向があるので、水蒸気濃度は0〜99%、好ましくは30〜90%、更に好ましくは40〜85%で行うのが好ましい。また、水蒸気の存在下での熱処理を行う時間としては、触媒製造効率の観点から、通常、3〜700時間、好ましくは、5〜500時間、更に好ましくは5〜400時間である。この時間が長くなればなるほど、触媒を製造するコストが高くなる傾向にあり、短くなるほど、必要なRが得られなくなる傾向にある
When the heat treatment temperature of the final heat treatment at the time of catalyst production increases, R tends to decrease, but when the temperature is too high, the performance of the catalyst tends to decrease. Therefore, it is usually 450 to 650 ° C, preferably 400 to 600 ° C. It is good to do in the range. When the obtained catalyst is further heat-treated in the presence of water vapor, the temperature is usually 450 to 650 ° C., preferably 400 to 600 ° C., more preferably 400 to 550 ° C. . The concentration of the water vapor that coexists at this time is arbitrary as long as it does not cause condensation, but the higher the water vapor concentration, the higher the R tends to be, so the water vapor concentration is 0 to 99%, preferably 30 to 30%. It is preferable to carry out at 90%, more preferably 40 to 85%. The time for performing the heat treatment in the presence of water vapor is usually 3 to 700 hours, preferably 5 to 500 hours, and more preferably 5 to 400 hours from the viewpoint of catalyst production efficiency. The longer this time is, the higher the cost for producing the catalyst tends to be, and the shorter the time is, the more necessary R cannot be obtained.

本発明の複合金属酸化物触媒は、モノオレフィンの酸化反応に使用される。酸化反応の例として、例えば、モノオレフィンとしてプロピレンを使用し生成物としてアクロレインを得る反応、モノオレフィンとしてイソブテンを使用し生成物としてメタクロレインを得る反応、モノオレフィンとしてプロピレンを使用して生成物としてアクリロニトリルを得るアンモ酸化反応、又はモノオレフィンとしてブテンを使用して生成物としてブタジエンを得る酸化脱水素反応などがある。中でも、コーキングの抑制効果が顕著であるという観点から、モノオレフィンとしてブテンを使用して生成物としてブタジエンを得る酸化脱水素反応に好適に使用できる。   The composite metal oxide catalyst of the present invention is used for monoolefin oxidation reaction. Examples of oxidation reactions include, for example, a reaction in which propylene is used as a monoolefin and acrolein is obtained as a product, a reaction in which isobutene is used as a monoolefin and methacrolein is obtained as a product, and a product is obtained using propylene as a monoolefin. Examples include an ammoxidation reaction to obtain acrylonitrile, or an oxidative dehydrogenation reaction to obtain butadiene as a product using butene as a monoolefin. Among these, from the viewpoint that the effect of suppressing coking is remarkable, it can be suitably used for an oxidative dehydrogenation reaction in which butene is used as a monoolefin to obtain butadiene as a product.

[共役ジエン製造方法]
本発明の共役ジエンの製造方法は、ブテン(1−ブテン及び/又は2−ブテン等のn−ブテン、イソブテン)、ペンテン、メチルブテン、ジメチルブテン等の炭素原子数4以上、好ましくは炭素原子数4〜6のモノオレフィンの接触酸化脱水素反応による対応する共役ジエンの製造に有効に適用することができる。この中でも、ブテン、更には、n−ブテン(1−ブテン及び/又は2−ブテン)からのブタジエンの製造に最も好適に用いられる。
[Conjugate diene production method]
The method for producing a conjugated diene according to the present invention comprises 4 or more carbon atoms such as butene (n-butene such as 1-butene and / or 2-butene, isobutene), pentene, methylbutene, dimethylbutene, etc., preferably 4 carbon atoms. It can be effectively applied to the production of the corresponding conjugated diene by catalytic oxidative dehydrogenation of monoolefins of ˜6. Among these, it is most suitably used for the production of butadiene from butene and further from n-butene (1-butene and / or 2-butene).

本発明の原料ガスは、炭素原子数4以上のモノオレフィンを含むが、原料ガスとしては、単離した炭素原子数4以上のモノオレフィンそのものを使用する必要はなく、必要に応じて任意の混合物の形で用いることができる。例えばブタジエンを得ようとする場合には高純度のn−ブテン(1−ブテン及び/又は2−ブテン)を原料ガスとすることもできるが、前述のナフサ分解で副生するC留分(BB)からブタジエン及びイソブテンを分離して得られるn−ブテン(1−ブテン及び/又は2−ブテン)を主成分とするブテン留分を使用することもできる。また、エチレンの2量化により得られる高純度の1−ブテン、シス−2−ブテン、トランス−2−ブテン又はこれらの混合物を含有するガスを原料ガスとして使用しても差し支えない。尚、このエチレンはエタン脱水素、エタノール脱水、又はナフサ分解などの方法で得られるエチレンを使用することができる。更に、石油精製プラントなどで原油を蒸留した際に得られる重油留分を、流動層状態で粉末状の固体触媒を使って分解し、低沸点の炭化水素に変換する流動接触分解(Fluid Catalytic Cracking)から得られる炭素原子数4の炭化水素類を多く含むガス(以下、FCC−C4と略記することがある)をそのまま原料ガスとする、又は、FCC−C4からリンや砒素などの不純物を除去したものを原料ガスとして使用しても差し支えない。ここでいう、主成分とは、原料ガスに対して、通常40体積%以上、好ましくは60体積%以上、より好ましくは75体積%以上、特に好ましくは99体積%以上をいう。 The raw material gas of the present invention contains a monoolefin having 4 or more carbon atoms, but it is not necessary to use an isolated monoolefin having 4 or more carbon atoms as the raw material gas, and any mixture can be used as necessary. Can be used. For example, in order to obtain butadiene, high-purity n-butene (1-butene and / or 2-butene) can be used as a raw material gas, but the C 4 fraction by-produced by the above-described naphtha decomposition ( A butene fraction containing n-butene (1-butene and / or 2-butene) obtained by separating butadiene and isobutene from BB) can also be used. Further, a gas containing high-purity 1-butene, cis-2-butene, trans-2-butene or a mixture thereof obtained by dimerization of ethylene may be used as a raw material gas. As the ethylene, ethylene obtained by a method such as ethane dehydrogenation, ethanol dehydration, or naphtha decomposition can be used. Furthermore, fluid catalytic cracking (Fluid Catalytic Cracking), in which a heavy oil fraction obtained by distilling crude oil in an oil refinery plant or the like is decomposed in a fluidized bed state using a powdered solid catalyst and converted into low-boiling hydrocarbons. ) Gas containing a large number of hydrocarbons having 4 carbon atoms obtained from (hereinafter sometimes abbreviated as FCC-C4) as it is, or removing impurities such as phosphorus and arsenic from FCC-C4 It is possible to use the raw material as a raw material gas. The main component here is usually 40% by volume or more, preferably 60% by volume or more, more preferably 75% by volume or more, and particularly preferably 99% by volume or more with respect to the raw material gas.

また、本発明の原料ガス中には、本発明の効果を阻害しない範囲で、任意の不純物を含んでいても良い。n−ブテン(1−ブテン及び/又は2−ブテン)からブタジエンを製造する場合、含んでいても良い不純物として、具体的には、イソブテンなどの分岐型モノオレフィン;プロパン、n−ブタン、イソブタン、ペンタンなどの飽和炭化水素;プロピレン、ペンテンなどのオレフィン;1,2−ブタジエンなどのジエン;メチルアセチレン、ビニルアセチレン、エチルアセチレンなどのアセチレン類等が挙げられる。この不純物の量は、通常40体積%以下、好ましくは20体積%以下、より好ましくは10体積%以下、特に好ましくは1体積%以下である。この量が多すぎると、主原料である1−ブテンや2−ブテンの濃度が下がって反応が遅くなったり、目的生成物の収率が低下する傾向にある。   In addition, the source gas of the present invention may contain an arbitrary impurity as long as the effects of the present invention are not impaired. When producing butadiene from n-butene (1-butene and / or 2-butene), as impurities that may be included, specifically, branched monoolefins such as isobutene; propane, n-butane, isobutane, Saturated hydrocarbons such as pentane; olefins such as propylene and pentene; dienes such as 1,2-butadiene; acetylenes such as methyl acetylene, vinyl acetylene and ethyl acetylene. The amount of this impurity is usually 40% by volume or less, preferably 20% by volume or less, more preferably 10% by volume or less, and particularly preferably 1% by volume or less. If the amount is too large, the concentration of 1-butene or 2-butene, which are the main raw materials, decreases and the reaction becomes slow, or the yield of the target product tends to decrease.

本発明の分子上酸素含有ガスは、通常、分子状酸素が10体積%以上、好ましくは、15体積%以上、更に好ましくは20体積%以上含まれるガスのことであり、具体的に好ましくは空気である。なお、分子状酸素含有ガスを工業的に用意するために必要なコストという観点から、分子状酸素が、通常50体積%以下、好ましくは、30体積%以下、更に好ましくは25体積%以下である。また、本発明の効果を阻害しない範囲で、分子状酸素含有ガスには、任意の不純物を含んでいても良い。含んでいても良い不純物として、具体的には、窒素、アルゴン、ネオン、ヘリウム、CO、CO、水等が挙げられる。この不純物の量は、窒素の場合、通常90体積%以下、好ましくは85%体積以下、より好ましくは80体積%以下である。窒素以外の成分の場合、通常10体積%以下、好ましくは1体積%以下である。この量が多すぎると、反応に必要な酸素を供給するのが難しくなる傾向にある。 The molecular oxygen-containing gas of the present invention is usually a gas containing 10% by volume or more of molecular oxygen, preferably 15% by volume or more, more preferably 20% by volume or more, and specifically preferably air. It is. From the viewpoint of cost required for industrially preparing a molecular oxygen-containing gas, the molecular oxygen is usually 50% by volume or less, preferably 30% by volume or less, more preferably 25% by volume or less. . Moreover, the molecular oxygen-containing gas may contain an arbitrary impurity as long as the effects of the present invention are not impaired. Specific examples of impurities that may be included include nitrogen, argon, neon, helium, CO, CO 2 , and water. In the case of nitrogen, the amount of this impurity is usually 90% by volume or less, preferably 85% by volume or less, more preferably 80% by volume or less. In the case of components other than nitrogen, it is usually 10% by volume or less, preferably 1% by volume or less. When this amount is too large, it tends to be difficult to supply oxygen necessary for the reaction.

本発明では、反応器に原料ガスを供給するにあたり、原料ガスと酸素を含む混合ガスを反応器に供給するが、混合ガスと共に、窒素ガス、及び水(水蒸気)を反応器に供給して
もよい。窒素ガスは、混合ガスが爆鳴気を形成しないように可燃性ガスと酸素の濃度を調整するという理由から、水(水蒸気)は窒素ガスと同様に可燃性ガスと酸素の濃度を調整するという理由と触媒のコーキングを抑制するという理由から、混合ガスに水(水蒸気)と窒素ガスとを更に混合し反応器に供給するのが好ましい。
In the present invention, when supplying the raw material gas to the reactor, a mixed gas containing the raw material gas and oxygen is supplied to the reactor. However, together with the mixed gas, nitrogen gas and water (water vapor) may be supplied to the reactor. Good. Nitrogen gas adjusts the concentration of combustible gas and oxygen in the same way as nitrogen gas, because the concentration of combustible gas and oxygen is adjusted so that the mixed gas does not form squeal. For reasons and to suppress coking of the catalyst, it is preferable that water (water vapor) and nitrogen gas are further mixed with the mixed gas and supplied to the reactor.

また、原料ガス、分子状酸素含有ガス、窒素ガス、及び水(水蒸気)を供給する方法は特に限定されず、別々の配管で供給してもよいが、爆鳴気の形成を確実に回避するために、混合ガスを得る前に、予め原料ガスに窒素ガスを供給しておく、又は、分子状酸素含有ガスに窒素ガスを供給しておき、その状態で、原料ガスと分子状酸素含有ガスとを混合して混合ガスを得ることが好ましい。   Further, the method of supplying the source gas, the molecular oxygen-containing gas, the nitrogen gas, and water (water vapor) is not particularly limited, and may be supplied by separate pipes, but the formation of the blast is surely avoided. Therefore, before obtaining the mixed gas, nitrogen gas is supplied to the source gas in advance, or nitrogen gas is supplied to the molecular oxygen-containing gas, and in this state, the source gas and the molecular oxygen-containing gas are supplied. Is preferably mixed to obtain a mixed gas.

本発明の酸化脱水素反応に用いられる反応器は特に限定されないが、具体的には、管型反応器、槽型反応器、又は流動床反応器が挙げられ、好ましくは、固定床反応器、より好ましくは固定床の多管式反応器やプレート式反応器であり、最も好ましくは固定床の多管式反応器である。
また、反応器が固定床反応器の場合、反応器には、上述の酸化脱水素反応触媒を有する触媒層が存在する。その触媒層は、触媒のみからなる層から構成されていても、触媒と該触媒と反応性の無い固形物とを含む層のみから構成されていても、触媒と該触媒と反応性の無い固形物とを含む層と触媒のみからなる層の複数の層から構成されていてもよいが、触媒層が、触媒と該触媒と反応性の無い固形物とを含む層を含むことで、反応時の発熱による触媒層の急激な温度上昇を抑制できるので、触媒層に反応性の無い固形物を有することが好ましい。
The reactor used for the oxidative dehydrogenation reaction of the present invention is not particularly limited, and specific examples include a tubular reactor, a tank reactor, or a fluidized bed reactor, preferably a fixed bed reactor, More preferred are fixed bed multitubular reactors and plate reactors, and most preferred is a fixed bed multitubular reactor.
When the reactor is a fixed bed reactor, the reactor has a catalyst layer having the above-described oxidative dehydrogenation reaction catalyst. The catalyst layer may be composed of a layer composed only of the catalyst, or may be composed only of a layer containing a catalyst and a solid that is not reactive with the catalyst, or a solid that is not reactive with the catalyst and the catalyst. The catalyst layer may include a layer containing a catalyst and a layer containing only a catalyst, but the catalyst layer includes a layer containing a catalyst and a solid that is not reactive with the catalyst. Therefore, it is preferable to have a solid material having no reactivity in the catalyst layer.

本発明の酸化脱水素反応は発熱反応であり、反応により温度が上昇するが、本発明では、通常、反応温度は250〜450℃、好ましくは、280〜400℃の範囲に調整される。この温度が大きくなるほど、触媒活性が急激に低下しやすい傾向にあり、小さくなるほど、目的生成物である共役ジエンの収率が低下する傾向にある。反応温度は、熱媒体(例えば、ジベンジルトルエンや亜硝酸塩など)を使用して制御することができる。なお、ここでいう反応温度は熱媒体の温度のことである。   The oxidative dehydrogenation reaction of the present invention is an exothermic reaction, and the temperature rises due to the reaction. In the present invention, the reaction temperature is usually adjusted to 250 to 450 ° C, preferably 280 to 400 ° C. As the temperature increases, the catalytic activity tends to decrease rapidly, and as the temperature decreases, the yield of the conjugated diene that is the target product tends to decrease. The reaction temperature can be controlled using a heat medium (for example, dibenzyltoluene or nitrite). In addition, the reaction temperature here is the temperature of a heat medium.

また、本発明における反応器内温度は、特に限定されないが、通常、250〜450℃、好ましくは、280〜400℃、更に好ましくは、320〜395℃である。触媒層の温度が450℃を超えると、反応を継続するに従って、急激に触媒活性が低下する恐れがある傾向にあり、一方、触媒層の温度が250℃を下回ると、目的性生物である共役ジエンの収率が低下する傾向にある。反応器内温度は、反応条件によって決定されるが、触媒層の希釈率や混合ガスの流量等で制御することができる。なお、ここでいう反応器内温度とは、反応器出口での生成ガスの温度、又は触媒層を有する反応器の場合は、その触媒層の温度のことである。   Moreover, the reactor internal temperature in this invention is although it does not specifically limit, Usually, 250-450 degreeC, Preferably, it is 280-400 degreeC, More preferably, it is 320-395 degreeC. When the temperature of the catalyst layer exceeds 450 ° C., the catalytic activity tends to decrease rapidly as the reaction is continued. On the other hand, when the temperature of the catalyst layer is lower than 250 ° C., the conjugate which is the target organism. The yield of diene tends to decrease. The temperature in the reactor is determined by the reaction conditions, but can be controlled by the dilution rate of the catalyst layer, the flow rate of the mixed gas, and the like. In addition, the temperature in a reactor here is the temperature of the product gas in the exit of a reactor, or the temperature of the catalyst layer in the case of the reactor which has a catalyst layer.

本発明の反応器内の圧力は、特に限定されないが、下限は、通常、0MPaG以上、好ましくは、0.001MPaG以上、更に好ましくは、0.01MPaG以上である。この値が大きくなるほど、反応器に反応ガスを多量に供給できるというメリットがある。一方、上限は、0.5MPaG以下であり、好ましくは、0.3MPaG以下、更に好ましくは、0.1MPaG以下である。この値が小さくなるほど、爆発範囲が狭くなる傾向にある。   The pressure in the reactor of the present invention is not particularly limited, but the lower limit is usually 0 MPaG or more, preferably 0.001 MPaG or more, and more preferably 0.01 MPaG or more. As this value increases, there is an advantage that a large amount of reaction gas can be supplied to the reactor. On the other hand, the upper limit is 0.5 MPaG or less, preferably 0.3 MPaG or less, and more preferably 0.1 MPaG or less. As this value decreases, the explosion range tends to narrow.

本発明における反応器の滞留時間は、特に限定されないが、下限は、好ましくは、0.72秒以上、更に好ましくは0.80秒以上である。この値が大きくなるほど、原料ガス中のモノオレフィンの転化率が高くなるというメリットがある。一方、上限は、好ましくは、7.20秒以下、更に好ましくは、2.77秒以下である。この値が小さくなるほど
、反応器が小さくなる傾向にある。
The residence time of the reactor in the present invention is not particularly limited, but the lower limit is preferably 0.72 seconds or more, more preferably 0.80 seconds or more. There is a merit that the higher the value, the higher the conversion rate of monoolefin in the raw material gas. On the other hand, the upper limit is preferably 7.20 seconds or less, and more preferably 2.77 seconds or less. The smaller this value, the smaller the reactor.

かくして、原料ガス中のモノオレフィンの酸化脱水素反応により、該モノオレフィンに対応する共役ジエンが生成することとなり、該共役ジエンを含有する精製ガスを取得する。生成ガス中に含まれる原料ガス中のモノオレフィンに対応する共役ジエンの濃度は、原料ガス中に含まれるモノオレフィンの濃度に依存するが、通常1〜15vol%、好ましくは、5〜13vol%、更に好ましくは、9〜11vol%である。共役ジエンの濃度が大きいほど、回収コストが低いというメリットがあり、小さいほど次工程で圧縮したときに重合などの副反応が起き難いというメリットがある。また、生成ガス中には未反応のモノオレフィンも含まれていてもよく、その濃度は、通常0〜7vol%、好ましくは、0〜4vol%、更に好ましくは、0〜2vol%である。なお、本発明では、生成ガス中に含まれる高沸点副生物は、使用する原料ガス中に含まれる不純物の種類によって異なるが、常圧下での沸点が200〜500℃のものを言う。n−ブテン(1−ブテン及び[2]−ブテン)からブタジエンを製造する場合、具体的に、フタル酸、アントラキノン、フルオレノン等である。これらの量は、特に限定されないが、通常、反応ガス中に0.05〜0.10vol%である。   Thus, the conjugated diene corresponding to the monoolefin is generated by the oxidative dehydrogenation reaction of the monoolefin in the raw material gas, and a purified gas containing the conjugated diene is obtained. The concentration of the conjugated diene corresponding to the monoolefin in the raw material gas contained in the product gas depends on the concentration of the monoolefin contained in the raw material gas, but usually 1 to 15 vol%, preferably 5 to 13 vol%, More preferably, it is 9-11 vol%. The higher the conjugated diene concentration, the lower the recovery cost, and the lower the conjugated diene, the lower the advantage that side reactions such as polymerization hardly occur when compressed in the next step. In addition, unreacted monoolefin may also be contained in the product gas, and its concentration is usually 0 to 7 vol%, preferably 0 to 4 vol%, and more preferably 0 to 2 vol%. In the present invention, the high-boiling by-product contained in the product gas is one having a boiling point of 200 to 500 ° C. under normal pressure, although it varies depending on the type of impurities contained in the raw material gas used. When producing butadiene from n-butene (1-butene and [2] -butene), specific examples include phthalic acid, anthraquinone, fluorenone and the like. These amounts are not particularly limited, but are usually 0.05 to 0.10 vol% in the reaction gas.

以下に実施例を挙げて本発明をさらに具体的に説明する。
[実施例1]
複合金属酸化物触媒の調製
パラモリブデン酸アンモニウム54gを純水250mlに70℃に加温して溶解させた。次に、硝酸第二鉄7.18g、硝酸コバルト31.8g及び硝酸ニッケル31.8gを純水60mlに70℃に加温して溶解させた。これらの溶液を、充分に攪拌しながら徐々に混合した。
The present invention will be described more specifically with reference to the following examples.
[Example 1]
Preparation of Composite Metal Oxide Catalyst 54 g of ammonium paramolybdate was dissolved in 250 ml of pure water by heating to 70 ° C. Next, 7.18 g of ferric nitrate, 31.8 g of cobalt nitrate, and 31.8 g of nickel nitrate were dissolved in 60 ml of pure water by heating to 70 ° C. These solutions were gradually mixed with thorough stirring.

次に、シリカ64gを加えて、充分に攪拌した。このスラリーを75℃に加温し、5時間熟成した。その後、このスラリーを加熱乾燥した後、空気雰囲気で300℃、1時間の熱処理に付した。
得られた触媒前駆体の粒状固体(灼熱減量:1.4重量%)を粉砕し、パラモリブデンアンモニウム40.1gを純水150mlにアンモニア水10mlを加え溶解した溶液に分散した。次に、純水40mlにホウ砂0.85g及び硝酸カリウム0.36gを25℃の加温下に溶解させて、上記スラリーを加えた。
Next, 64 g of silica was added and stirred thoroughly. This slurry was heated to 75 ° C. and aged for 5 hours. Thereafter, the slurry was dried by heating and then subjected to heat treatment at 300 ° C. for 1 hour in an air atmosphere.
The resulting catalyst precursor particulate solid (ignition loss: 1.4 wt%) was ground and dispersed in a solution of ammonia water 10ml was added ammonium paramolybdate 40.1g of pure water 150 ml. Next, 0.85 g of borax and 0.36 g of potassium nitrate were dissolved in 40 ml of pure water under heating at 25 ° C., and the slurry was added.

次に、Naを0.45%固溶した次炭酸ビスマス58.1gを加えて、攪拌混合した。このスラリーを130℃、12時間加熱乾燥した後、得られた粒状固体を、小型成型機にて径5mm、高さ4mmの錠剤に打錠成型し、次に500℃、4時間の焼成を行って、触媒を得た。仕込み原料から計算される触媒は、次の原子比を有する複合金属酸化物であった。 Mo:Bi:Co:Ni:Fe:Na:B:K:Si=12:5:2.5:2.5:0.4:0.35:0.2:0.08:24
なお、触媒調製の際のモリブデンの原子比aとaは、それぞれ6.9と5.1であった。
Next, 58.1 g of bismuth carbonate in which 0.45% of Na was dissolved was added and mixed with stirring. After the slurry was heat-dried at 130 ° C. for 12 hours, the obtained granular solid was formed into tablets with a diameter of 5 mm and a height of 4 mm using a small molding machine, and then baked at 500 ° C. for 4 hours. The catalyst was obtained. The catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio. Mo: Bi: Co: Ni: Fe: Na: B: K: Si = 12: 5: 2.5: 2.5: 0.4: 0.35: 0.2: 0.08: 24
The atomic ratio of a 1 and a 2 of molybdenum during catalyst preparation was 6.9 and 5.1 respectively.

得られた複合金属酸化物触媒を、乳鉢で粉砕し、100ミクロン〜500ミクロンの触媒
を篩い分けた。この触媒を図5に示す装置に10グラム充填し、24.4Nl/hの空気、9
7.6Nl/hの水蒸気を供給し、440℃で43時間の加熱処理を行った。加熱処理終了後の触媒を抜き出してXRD測定を行った。なお、XRDの測定に使用した装置は(株)リガク製
、型式RINT2200を使用した。得られたX線回折図を図2に示す。上述のXRDのP、Pの測定と同様に算出した。P、Pはそれぞれ、240、903であった。P,P,及びRを表−1に示す。
The obtained composite metal oxide catalyst was pulverized in a mortar, and a 100 to 500 micron catalyst was sieved. The catalyst shown in FIG. 5 is filled with 10 grams of this catalyst, 24.4 Nl / h air, 9
7.6 Nl / h of water vapor was supplied and heat treatment was performed at 440 ° C. for 43 hours. The catalyst after completion of the heat treatment was extracted and subjected to XRD measurement. In addition, the apparatus used for the measurement of XRD used Rigaku Co., Ltd. model RINT2200. The obtained X-ray diffraction pattern is shown in FIG. Calculation was performed in the same manner as the measurement of P 1 and P 2 of XRD described above. P 1 and P 2 were 240 and 903, respectively. P 1 , P 2 , and R are shown in Table-1.

コーキングの測定
図6に示す装置を用いて、コーキング実験を行った。内径6mmのガラス製反応管に上述の加熱処理条件と同様の条件で加熱処理を行った触媒を1グラム充填した。原料ガス供給
口から、1,3-ブタジエン、酸素、窒素及び水蒸気を含む混合ガスを2.0NL/hで供給した。この混合ガスの組成を表−2に示す。
電気ヒーターでガラス製反応管を360℃に加熱し、反応管の出口から流出する廃ガスの一部を排出口から排出させながら、上記混合ガスを反応管に48時間流通させた。48時間後に混合ガスの供給を止め、反応管から触媒を取り出し、METTLER(株)社製の熱天
秤(TGA/DSC1型)で空気流通下に昇温し、200〜500℃の間の重量減少を調べた。
結果を表―1に示す。
Measurement of coking Using the apparatus shown in FIG. 6, a coking experiment was conducted. A glass reaction tube having an inner diameter of 6 mm was filled with 1 gram of a catalyst that had been heat-treated under the same conditions as those described above. A mixed gas containing 1,3-butadiene, oxygen, nitrogen and water vapor was supplied at 2.0 NL / h from the raw material gas supply port. The composition of this mixed gas is shown in Table-2.
The glass reaction tube was heated to 360 ° C. with an electric heater, and the mixed gas was allowed to flow through the reaction tube for 48 hours while part of the waste gas flowing out from the outlet of the reaction tube was discharged from the discharge port. After 48 hours, stop supplying the mixed gas, take out the catalyst from the reaction tube, raise the temperature under air circulation with a thermobalance (TGA / DSC1 type) manufactured by METTLER, and reduce the weight between 200 and 500 ° C. I investigated.
The results are shown in Table-1.

モリブデン揮散量の測定
図6の装置を用いて、複合金属酸化物触媒中のモリブデン成分の揮散量の測定を行った。上述の加熱処理条件と同様の条件で加熱処理を行った複合金属酸化物触媒を0.8g充填し、表−3の組成のガスを450℃で10時間流通させた。触媒層出口でガラス管を切断し
、ガラスに付着したモリブデンをアンモニア溶液(水:アンモニア=1:1)で溶かし出し、日本ジャーレル・アッシュ(株)製の誘導結合プラズマ発光分光装置(IRIS−AP型)を用いてモリブデンの量を分析した。
モリブデンの揮散量の表−1に示す。
Measurement of molybdenum volatilization amount The volatilization amount of the molybdenum component in the composite metal oxide catalyst was measured using the apparatus shown in FIG. 0.8 g of a composite metal oxide catalyst that had been heat-treated under the same conditions as those described above was charged, and a gas having the composition shown in Table 3 was allowed to flow at 450 ° C. for 10 hours. The glass tube is cut at the catalyst layer outlet, and the molybdenum adhering to the glass is dissolved with an ammonia solution (water: ammonia = 1: 1), and an inductively coupled plasma emission spectrometer (IRIS-AP) manufactured by Nippon Jarrell Ash Co., Ltd. Type) was used to analyze the amount of molybdenum.
It shows in Table-1 of the volatilization amount of molybdenum.

[実施例2]
実施例1において、複合金属酸化物触媒の水蒸気の加熱処理の時間を158時間に変更し
た以外はすべて同様に実施した。
X線回折図を図3に示す。また、P、P、R、コーク付着量測定結果及びモリブデン揮散量を測定した結果を表−1に示す。
[Example 2]
In Example 1, everything was carried out in the same manner except that the time for the heat treatment of the steam of the composite metal oxide catalyst was changed to 158 hours.
An X-ray diffraction diagram is shown in FIG. Further, Table 1 shows the P 1, P 2, R, results of measurement of the coke adhesion measuring results and molybdenum volatilization amount.

[実施例3]
実施例1において、複合金属酸化物触媒の水蒸気の加熱処理の時間を326時間に変更した以外は全て同様に実施した。
X線回折図を図4に示す。また、P、P、R、コーク付着量測定結果及びモリブデン揮散量を測定した結果を表−1に示す。
[Example 3]
In Example 1, it carried out similarly except having changed the time of the heat processing of the water vapor | steam of a composite metal oxide catalyst to 326 hours.
An X-ray diffraction diagram is shown in FIG. Further, Table 1 shows the P 1, P 2, R, results of measurement of the coke adhesion measuring results and molybdenum volatilization amount.

[比較例1]
実施例1において、水蒸気による加熱処理を実施しない複合金属酸化物触媒を使用した以外は全て同様に実施した。X線回折図を図1に示す。また、P、P、R、コーク付着量測定結果及びモリブデン揮散量を測定した結果を表−1に示す。
[Comparative Example 1]
In Example 1, it carried out similarly except having used the composite metal oxide catalyst which does not implement the heat processing by water vapor | steam. An X-ray diffraction diagram is shown in FIG. Further, Table 1 shows the P 1, P 2, R, results of measurement of the coke adhesion measuring results and molybdenum volatilization amount.

1 ガラス製反応管
2 原料ガス供給口
3 温度指示計
4 温度指示計保護管
5 電気ヒーター
6 触媒
7 排出口
1 Glass reaction tube 2 Source gas supply port 3 Temperature indicator 4 Temperature indicator protective tube 5 Electric heater 6 Catalyst 7 Discharge port

Claims (4)

モノオレフィンの酸化反応を行い対応する共役ジエンを製造する際に用いる複合金属酸化物触媒であって、式(1)で表現される成分組成と式(2)で定義されるX線回折ピークの相対強度を有することを特徴とする複合金属酸化物触媒。
Mo a Bi b Co c Ni d Fe e f g h Si i j (1)
0.1<R(=P1/P2)<0.8 (2)
(式(1)において、Xはマグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、
セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)及びタリウム(Tl)からなる群から選ばれる少なくとも1種の元素であり、Zはホウ素(B)、リン(P)、砒素(As)及びタングステン(W)からなる群から選ばれる少なくとも1種の元素である。また、a〜jはそれぞれの元素の原子比を表し、a=12のとき、b=0.5〜7、c=0〜10、d=0〜10(但しc+d=1〜10)、e=0.05〜3、f=0〜3、g=0〜2、h=0〜3、i=0〜48の範囲にあり、またjは他の元素の酸化状態を満足させる数値である。)
(式(2)において、P1とP2は、それぞれX線回折図における回折角2θが26.4°と28.2°のピークの強度であり、Rは相対強度である。)
A composite metal oxide catalyst used in the production of a corresponding conjugated diene by carrying out an oxidation reaction of a monoolefin, the component composition represented by the formula (1) and the X-ray diffraction peak defined by the formula (2) A composite metal oxide catalyst having a relative strength.
Mo a Bi b Co c Ni d Fe e X f Y g Z h Si i O j (1)
0.1 <R (= P1 / P2) <0.8 (2)
(In the formula (1), X is magnesium (Mg), calcium (Ca), zinc (Zn),
It is at least one element selected from the group consisting of cerium (Ce) and samarium (Sm), and Y is selected from sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) and thallium (Tl). Z is at least one element selected from the group consisting of boron (B), phosphorus (P), arsenic (As), and tungsten (W). A to j represent atomic ratios of the respective elements. When a = 12, b = 0.5 to 7, c = 0 to 10, d = 0 to 10 (provided c + d = 1 to 10), e = 0.05-3, f = 0-3, g = 0-2, h = 0-3, i = 0-48, and j is a numerical value that satisfies the oxidation state of other elements . )
(In Formula (2), P1 and P2 are the intensity of the peaks at diffraction angles 2θ of 26.4 ° and 28.2 °, respectively, in the X-ray diffraction diagram, and R is the relative intensity.)
前記組成式(1)において、a=12のとき、b=0.〜2であることを特徴とする請求項1に記載の複合金属酸化物触媒。 In the composition formula (1), when a = 12, b = 0. The composite metal oxide catalyst according to claim 1, which is 5 to 2. 前記モノオレフィンがブテンであり、前記共役ジエンがブタジエンであることを特徴とする請求項1又は2に記載の複合金属酸化物触媒。 The composite metal oxide catalyst according to claim 1 or 2, wherein the monoolefin is butene and the conjugated diene is butadiene. 触媒の存在下、炭素原子数4以上のモノオレフィンを含む原料ガスと分子状酸素含有ガスとを酸化脱水素反応を行うことにより、対応する共役ジエンを製造するにあたり、該触媒が式(1)で表現される成分組成と式(2)で定義されるX線回折ピークの相対強度を有する複合金属酸化物触媒であることを特徴とする共役ジエンの製造方法。
Mo a Bi b Co c Ni d Fe e f g h Si i j (1)
0.1<R(=P1/P2)<0.8 (2)
(式(1)において、Xはマグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、
セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(C
s)及びタリウム(Tl)からなる群から選ばれる少なくとも1種の元素であり、Zはホウ素(B)、リン(P)、砒素(As)及びタングステン(W)からなる群から選ばれる少なくとも1種の元素である。また、a〜jはそれぞれの元素の原子比を表し、a=12のとき、b=0.5〜7、c=0〜10、d=0〜10(但しc+d=1〜10)、e=0.05〜3、f=0〜3、g=0〜2、h=0〜3、i=0〜48の範囲にあり、またjは他の元素の酸化状態を満足させる数値である。)
(式(2)において、P1とP2は、それぞれX線回折図における回折角2θが26.4°と28.2°のピークの強度であり、Rは相対強度である。)
In producing the corresponding conjugated diene by conducting an oxidative dehydrogenation reaction between a raw material gas containing a monoolefin having 4 or more carbon atoms and a molecular oxygen-containing gas in the presence of the catalyst, the catalyst is represented by the formula (1) A method for producing a conjugated diene, which is a composite metal oxide catalyst having a relative composition of an X-ray diffraction peak defined by the component composition represented by formula (2).
Mo a Bi b Co c Ni d Fe e X f Y g Z h Si i O j (1)
0.1 <R (= P1 / P2) <0.8 (2)
(In the formula (1), X is magnesium (Mg), calcium (Ca), zinc (Zn),
It is at least one element selected from the group consisting of cerium (Ce) and samarium (Sm), and Y is sodium (Na), potassium (K), rubidium (Rb), cesium (C
s) and at least one element selected from the group consisting of thallium (Tl), and Z is at least one element selected from the group consisting of boron (B), phosphorus (P), arsenic (As), and tungsten (W). It is a seed element. A to j represent atomic ratios of the respective elements. When a = 12, b = 0.5 to 7, c = 0 to 10, d = 0 to 10 (provided c + d = 1 to 10), e = 0.05-3, f = 0-3, g = 0-2, h = 0-3, i = 0-48, and j is a numerical value that satisfies the oxidation state of other elements . )
(In Formula (2), P1 and P2 are the intensity of the peaks at diffraction angles 2θ of 26.4 ° and 28.2 °, respectively, in the X-ray diffraction diagram, and R is the relative intensity.)
JP2012072134A 2012-03-27 2012-03-27 Composite metal oxide catalyst and method for producing conjugated diene Active JP5874488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012072134A JP5874488B2 (en) 2012-03-27 2012-03-27 Composite metal oxide catalyst and method for producing conjugated diene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012072134A JP5874488B2 (en) 2012-03-27 2012-03-27 Composite metal oxide catalyst and method for producing conjugated diene

Publications (2)

Publication Number Publication Date
JP2013202459A JP2013202459A (en) 2013-10-07
JP5874488B2 true JP5874488B2 (en) 2016-03-02

Family

ID=49522168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072134A Active JP5874488B2 (en) 2012-03-27 2012-03-27 Composite metal oxide catalyst and method for producing conjugated diene

Country Status (1)

Country Link
JP (1) JP5874488B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949262A (en) * 2014-04-21 2014-07-30 武汉凯迪工程技术研究总院有限公司 Structured iron-based catalyst for preparing alpha-alkene by synthesis gas as well as preparation method and application of structured iron-based catalyst
WO2016140265A1 (en) * 2015-03-03 2016-09-09 日本化薬株式会社 Catalyst for conjugated diolefin production and method for producing same
WO2017047710A1 (en) * 2015-09-16 2017-03-23 日本化薬株式会社 Catalyst for production of conjugated diolefin and method for producing same
JP6559039B2 (en) * 2015-10-19 2019-08-14 日本化薬株式会社 Conjugated diolefin production catalyst and production method thereof
JP7061422B2 (en) * 2017-05-29 2022-04-28 日本化薬株式会社 Catalyst for producing conjugated diolefin and its production method
JP7170375B2 (en) * 2019-03-18 2022-11-14 日本化薬株式会社 Catalyst and method for producing unsaturated aldehyde and unsaturated carboxylic acid using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5621305B2 (en) * 2009-05-29 2014-11-12 三菱化学株式会社 Method for producing conjugated diene
JP2011148764A (en) * 2009-12-22 2011-08-04 Mitsubishi Chemicals Corp Method for producing conjugated diene

Also Published As

Publication number Publication date
JP2013202459A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5874488B2 (en) Composite metal oxide catalyst and method for producing conjugated diene
JP5895546B2 (en) Composite oxide catalyst and method for producing conjugated diene
EP3269697B1 (en) Process for producing conjugated diene
JP6229201B2 (en) Composite metal oxide catalyst and method for producing conjugated diene
JP2013119530A (en) Method for producing conjugated diene
JP2010280653A (en) Process for producing conjugated diene
JP5682130B2 (en) Method for producing conjugated diene
TWI541229B (en) Method of producing conjugated diene
JP2013213028A (en) Method for producing conjugated diene
KR101726113B1 (en) Butadiene production method
US11452978B2 (en) Catalytic oxidation method and method for producing conjugated diene
JP6405857B2 (en) Method for producing conjugated diene
JP7210262B2 (en) Method for producing butadiene
JP2012197272A (en) Process for producing conjugated diene
JP2011148764A (en) Method for producing conjugated diene
JP2012111699A (en) Method for producing conjugated diene
JP5780038B2 (en) Method for producing conjugated diene
JP6443074B2 (en) Composite metal oxide catalyst and method for producing conjugated diene
JP5842689B2 (en) Method for producing conjugated diene
JP6716237B2 (en) Butadiene production method
JP2014189543A (en) Method for manufacturing conjugated diene
JP2014177408A (en) Method of producing conjugated diene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160104

R150 Certificate of patent or registration of utility model

Ref document number: 5874488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350