JP5873661B2 - Solid-state imaging device and electronic information device - Google Patents

Solid-state imaging device and electronic information device Download PDF

Info

Publication number
JP5873661B2
JP5873661B2 JP2011174387A JP2011174387A JP5873661B2 JP 5873661 B2 JP5873661 B2 JP 5873661B2 JP 2011174387 A JP2011174387 A JP 2011174387A JP 2011174387 A JP2011174387 A JP 2011174387A JP 5873661 B2 JP5873661 B2 JP 5873661B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
light
charge transfer
region
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011174387A
Other languages
Japanese (ja)
Other versions
JP2013038286A (en
Inventor
達基 岩尾
達基 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2011174387A priority Critical patent/JP5873661B2/en
Publication of JP2013038286A publication Critical patent/JP2013038286A/en
Application granted granted Critical
Publication of JP5873661B2 publication Critical patent/JP5873661B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液晶セルと組み合わせて、被写体からの画像光を光電変換して撮像する半導体素子で構成された特に高画素、高感度、高スミア特性向けの固体撮像素子、この固体撮像素子を、画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、画像入力カメラ、スキャナ装置、ファクシミリ装置、DSC、監視カメラ、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器に関する。   The present invention, in combination with a liquid crystal cell, is a solid-state image sensor for a particularly high pixel, high sensitivity, high smear characteristic composed of a semiconductor element that photoelectrically converts image light from a subject and images the solid-state image sensor. Digital cameras such as digital video cameras and digital still cameras used as image input devices as image input devices, image input cameras, scanner devices, facsimile devices, DSCs, surveillance cameras, television telephone devices, mobile phone devices with cameras, etc. It relates to electronic information equipment.

従来の固体撮像素子として、画素部毎に光電変換して生成した各信号電荷を電荷転送部により所定方向に電荷転送した後に増幅して撮像信号を得るCCD固体撮像素子と、画素部毎に光電変換して生成した各信号電荷を増幅して撮像信号として信号読み出しを行うCMOS固体撮像素子とがある。   As a conventional solid-state image pickup device, a CCD solid-state image pickup device that obtains an image pickup signal by amplifying each signal charge generated by photoelectric conversion for each pixel portion after charge transfer in a predetermined direction by a charge transfer portion, and photoelectric conversion for each pixel portion. There is a CMOS solid-state imaging device that amplifies each signal charge generated by conversion and reads out a signal as an imaging signal.

このCCD固体撮像素子について特許文献1にその構成が開示されており、通常、固体撮像素子の垂直転送時は、垂直転送部上が遮光膜により遮光されている必要がある。   The configuration of this CCD solid-state imaging device is disclosed in Patent Document 1, and normally, when the solid-state imaging device is vertically transferred, the vertical transfer portion needs to be shielded from light by a light-shielding film.

図11は、特許文献1に開示されている従来のCCD固体撮像素子の単位画素部の要部構成例を示す平面図である。   FIG. 11 is a plan view showing a configuration example of a main part of a unit pixel portion of a conventional CCD solid-state imaging device disclosed in Patent Document 1. In FIG.

図11において、従来のCCD固体撮像素子100の単位画素部は、被写体からの画像光を光電変換して信号電荷を生成する受光部101上の遮光膜の開口部102と、この開口部102下の受光部101から読み出された信号電荷を所定方向に電荷転送するための垂直転送部103と、この受光部101と垂直転送部103間のチャネル部104と、隣接画素との間を素子分離するための素子分離領域105とに分けることができる。   In FIG. 11, a unit pixel portion of a conventional CCD solid-state imaging device 100 includes an opening portion 102 of a light shielding film on a light receiving portion 101 that photoelectrically converts image light from a subject to generate a signal charge, and below the opening portion 102. Element transfer between the vertical transfer unit 103 for transferring signal charges read from the light receiving unit 101 in a predetermined direction, the channel unit 104 between the light receiving unit 101 and the vertical transfer unit 103, and adjacent pixels. It can be divided into an element isolation region 105 for the purpose.

図12は、図11の従来のCCD固体撮像素子のA−B線断面図である。   FIG. 12 is a cross-sectional view of the conventional CCD solid-state imaging device of FIG. 11 taken along line AB.

図12に示すように、この従来のCCD固体撮像素子100の単位画素部は、N型シリコン基板111上の第1のP型ウェル領域112内にN型の受光部101と、垂直転送部103を構成する垂直レジスタ113と、その外周側の素子分離領域105を構成するP型のチャネル・ストッパ領域114とが形成されている。また、受光部101の表面側にP型の正電荷蓄積領域115が形成され、垂直レジスタ113の直下には第2のP型ウェル領域116が形成されている。   As shown in FIG. 12, the unit pixel portion of this conventional CCD solid-state imaging device 100 includes an N-type light receiving portion 101 and a vertical transfer portion 103 in a first P-type well region 112 on an N-type silicon substrate 111. Are formed, and a P-type channel stopper region 114 constituting the element isolation region 105 on the outer peripheral side is formed. In addition, a P-type positive charge accumulation region 115 is formed on the surface side of the light receiving unit 101, and a second P-type well region 116 is formed immediately below the vertical register 113.

垂直レジスタ113上にゲート絶縁膜117を介して多結晶シリコン層による転送電極118が選択的に形成され、この転送電極118上に層間絶縁膜119を介してAl遮光膜120が形成され、このAl遮光膜120を含む全面に例えばプラズマSiN膜による表面保護層121が形成されてCCD固体撮像素子100が構成されている。なお、受光部101と垂直レジスタ113間のP型領域は読出しゲートであるチャネル部104を構成している。   A transfer electrode 118 made of a polycrystalline silicon layer is selectively formed on the vertical register 113 via a gate insulating film 117, and an Al light shielding film 120 is formed on the transfer electrode 118 via an interlayer insulating film 119. A surface protective layer 121 made of, for example, a plasma SiN film is formed on the entire surface including the light shielding film 120 to constitute the CCD solid-state imaging device 100. The P-type region between the light receiving unit 101 and the vertical register 113 constitutes a channel unit 104 that is a read gate.

Al遮光膜120は、受光部101上で選択的にエッチング除去されており、光Lは、このエッチング除去によって形成された受光部101上の開口部102を通して受光部101内に入射されるようになっている。このとき、受光部101の周縁上に、Al遮光膜120が一部が残った形となっている。   The Al light shielding film 120 is selectively etched away on the light receiving portion 101, and the light L enters the light receiving portion 101 through the opening 102 on the light receiving portion 101 formed by this etching removal. It has become. At this time, a part of the Al light shielding film 120 remains on the periphery of the light receiving unit 101.

Al遮光膜120中、受光部101の周縁上におけるAl遮光膜120の上部を傾斜状120aに形成して構成している。   In the Al light shielding film 120, the upper part of the Al light shielding film 120 on the periphery of the light receiving portion 101 is formed in an inclined shape 120a.

上記特許文献1では、単位画素部100の微細化に伴って、開口部102の開口率が低下して受光感度特性が劣化するため、開口部102の開口率を上げるべく、開口部102の開口サイズを広げると、斜め光が開口部102から、遮光膜120で遮光されている電荷転送部103側に入って表示画面上で縦スジとなって現れてしまい、スミア特性が劣化していた。   In the above-mentioned patent document 1, as the unit pixel unit 100 is miniaturized, the aperture ratio of the aperture 102 decreases and the light receiving sensitivity characteristic deteriorates. Therefore, in order to increase the aperture ratio of the aperture 102, the aperture of the aperture 102 When the size is increased, oblique light enters the charge transfer portion 103 side shielded by the light shielding film 120 from the opening portion 102 and appears as vertical stripes on the display screen, and the smear characteristic is deteriorated.

これに対して、画素部の微細化に伴う受光感度特性の劣化およびスミア特性の劣化を抑制すると共に、遮光膜の形成プロセスがなく製造を簡略化することができ、かつ信号読み出し制御をも無くすことができる固体撮像素子が、特許文献2に提案されている。   On the other hand, it is possible to suppress the deterioration of the light receiving sensitivity characteristic and the smear characteristic due to the miniaturization of the pixel portion, simplify the manufacturing without the formation process of the light shielding film, and eliminate the signal readout control. A solid-state imaging device that can be used is proposed in Patent Document 2.

図13は、特許文献2に開示されている従来の固体撮像素子の要部構成例を示す平面図であり、図14は、図13の固体撮像素子のA−B線縦断面図である。   FIG. 13 is a plan view showing a configuration example of a main part of a conventional solid-state imaging device disclosed in Patent Document 2, and FIG. 14 is a vertical cross-sectional view of the solid-state imaging device in FIG.

図13および図14において、従来の固体撮像素子200は、半導体基板201(または半導体層)上に、各受光部を構成する縦方向のP型注入領域202とN型注入領域203とが交互に横方向に配置されている。これらのP型注入領域202およびN型注入領域203上に、電荷転送駆動用の横方向の単層の透明電極204〜209をこの順に縦方向に繰り返し並べて配置する。さらに、その上に、横方向の偏光を通す偏光板210、液晶制御用の下側の透明電極211、ツイストネマテック(TN)またはスーパーツイストネマテック(STN)の液晶材料からなる液晶層212、液晶制御用の上側の透明電極213、縦方向の偏光を通す偏光板214をこの順に積層する。   13 and 14, in the conventional solid-state imaging device 200, a vertical P-type injection region 202 and an N-type injection region 203 constituting each light receiving unit are alternately formed on a semiconductor substrate 201 (or a semiconductor layer). It is arranged in the horizontal direction. On these P-type injection region 202 and N-type injection region 203, horizontal single-layer transparent electrodes 204 to 209 for driving charge transfer are repeatedly arranged in this order in the vertical direction. Furthermore, a polarizing plate 210 that transmits laterally polarized light, a lower transparent electrode 211 for liquid crystal control, a liquid crystal layer 212 made of a twisted nematic (TN) or super twisted nematic (STN) liquid crystal material, The upper transparent electrode 213 for liquid crystal control and the polarizing plate 214 that passes the polarized light in the vertical direction are laminated in this order.

これらの偏光板210、透明電極211、液晶層212、透明電極213および偏光板214から入射光透過/遮光制御手段としての液晶手段である液晶セルが構成されており、この液晶セルと組み合わせて、被写体からの画像光を光電変換して撮像する固体撮像素子200が構成されている。この液晶セルは露光時に入射光を透過し、電荷転送時に入射光を遮蔽するように機能する。   The polarizing plate 210, the transparent electrode 211, the liquid crystal layer 212, the transparent electrode 213, and the polarizing plate 214 constitute a liquid crystal cell that is a liquid crystal means as an incident light transmission / light shielding control means. In combination with this liquid crystal cell, A solid-state imaging device 200 that captures an image by photoelectrically converting image light from a subject is configured. This liquid crystal cell functions to transmit incident light during exposure and to block incident light during charge transfer.

さらに、透明電極204〜209に電荷転送駆動用電圧を順次印加可能とする図示しないコントローラ(電荷転送制御手段)が設けられ、露光時に、液晶セルが入射光を透過制御した状態で、横方向の複数の電荷転送駆動用の透明電極204〜209に、このコントローラから出力される電荷転送駆動用電圧(例えば「0V」と「5V」)のうちの高電圧と低電圧を透明電極204〜209の一または複数に交互に印加する所定の電圧印加パターンにより、電荷転送駆動用の透明電極204〜209下の縦方向のP型注入領域202およびN型注入領域203の深いポテンシャル電位領域に画素毎(各受光部毎)の信号電荷を蓄積する。次の電荷転送時に、液晶セルが入射光を遮光制御した状態で、電荷転送駆動用電圧(例えば「0V」と「5V」)のうちの高電圧と低電圧を透明電極204〜209の一または複数の交互の印加位置を順次所定方向にずらすことにより、電荷転送駆動用の透明電極204〜209下の縦方向のP型注入領域202およびN型注入領域203の深いポテンシャル電位領域に画素部毎の信号電荷を保持して所定方向に電荷転送する。   Further, a controller (charge transfer control means) (not shown) that can sequentially apply a charge transfer driving voltage to the transparent electrodes 204 to 209 is provided, and in the state where the liquid crystal cell controls the transmission of incident light during exposure, The high and low voltages of the charge transfer drive voltages (for example, “0 V” and “5 V”) output from the controller are applied to the plurality of charge transfer drive transparent electrodes 204 to 209 of the transparent electrodes 204 to 209. By a predetermined voltage application pattern alternately applied to one or a plurality of pixels, the vertical potential type regions 202 in the vertical P-type implantation region 202 and N-type implantation region 203 under the charge transfer driving transparent electrodes 204 to 209 are changed pixel by pixel ( The signal charge for each light receiving part) is accumulated. At the time of the next charge transfer, the high voltage and the low voltage of the charge transfer driving voltages (for example, “0 V” and “5 V”) are set to one of the transparent electrodes 204 to 209 while the liquid crystal cell is controlled to block the incident light. By shifting a plurality of alternating application positions sequentially in a predetermined direction, each pixel unit has a deep potential potential region in the vertical P-type implantation region 202 and N-type implantation region 203 under the charge transfer driving transparent electrodes 204 to 209. The signal charge is held and transferred in a predetermined direction.

上記構成により、上から入射された入射光は、上側の偏光板214を通り、縦方向の偏光を通して偏光される。その縦方向の偏光は、液晶層212のスイッチイング特性により、偏光方向が透明電極211および213に印加される制御信号によりコントロールされ、下側の偏光板210に至る。偏光板214、210の偏光方向が互いに角度が90度だけ異なるため、液晶層212のスイッチイング駆動yによって、固体撮像素子200の受光部(P型注入領域202およびN型注入領域203)への入射光を透過したり遮光したりコントロールすることができる。これによって、遮光層により遮光された垂直転送領域を設ける必要がなくなる。即ち、遮光層および垂直転送領域を別途設ける必要がない。
次に、図14に示すように、偏光板214を通った入射光は、透明電極213から液晶層212を経て透明電極211、偏光板210さらに透明電極209を通過し、そのまま、固体撮像素子200の各受光部(P型注入領域202およびN型注入領域203)まで到達する。固体撮像素子200の各受光部では、縦方向にP型注入領域202およびN型注入領域203を設けており、ここで、光電変換した電子は、P型注入領域202からポテンシャルが低い方のN型注入領域203側に集まって蓄積される。なお、N型注入領域203はP型注入領域202によって分離されているが、これに限らず、同じN型注入領域203同士であっても、不純物の注入を1回で済ませて、ポテンシャル電位の山と谷を作れば同じN型注入領域203同士であっても、信号電荷が互いに混ざり合わないように、隣接する列部と分離可能である。
With the above configuration, incident light incident from above passes through the upper polarizing plate 214 and is polarized through the vertically polarized light. The polarization in the vertical direction is controlled by a control signal applied to the transparent electrodes 211 and 213 by the switching characteristics of the liquid crystal layer 212 and reaches the lower polarizing plate 210. Since the polarization directions of the polarizing plates 214 and 210 are different from each other by 90 degrees, the switching drive y of the liquid crystal layer 212 causes the light receiving portions (P-type injection region 202 and N-type injection region 203) of the solid-state imaging device 200 to be switched. The incident light can be transmitted and blocked. This eliminates the need to provide a vertical transfer region that is shielded by the light shielding layer. That is, it is not necessary to separately provide a light shielding layer and a vertical transfer region.
Next, as shown in FIG. 14, incident light that has passed through the polarizing plate 214 passes from the transparent electrode 213 through the liquid crystal layer 212, passes through the transparent electrode 211, the polarizing plate 210, and the transparent electrode 209, and remains as it is. To the respective light receiving portions (P-type implantation region 202 and N-type implantation region 203). Each light receiving portion of the solid-state imaging device 200 is provided with a P-type injection region 202 and an N-type injection region 203 in the vertical direction. Here, the photoelectrically converted electrons are N having a lower potential from the P-type injection region 202. Collected and accumulated on the mold injection region 203 side. Note that the N-type implantation region 203 is separated by the P-type implantation region 202. However, the present invention is not limited to this. Even in the same N-type implantation region 203, impurities can be implanted once and the potential potential can be reduced. If peaks and valleys are formed, even in the same N-type injection region 203, the adjacent charge portions can be separated from each other so that signal charges do not mix with each other.

最後に、電荷転送方法ついては、それぞれ配置された横方向の透明電極204〜209の垂直電荷転送用の転送駆動電圧を、順送りすることにより電子(各信号電荷)を電荷転送することができる。このように、横方向の透明電極204〜209を用いたため、1層配線での電荷転送が可能となる。   Finally, with respect to the charge transfer method, electrons (each signal charge) can be transferred by sequentially transferring transfer drive voltages for vertical charge transfer of the transparent electrodes 204 to 209 arranged in the horizontal direction. As described above, since the transparent electrodes 204 to 209 in the horizontal direction are used, charge transfer through a single layer wiring is possible.

なお、液晶層212には、上記ツイストネマテック(TN)またはスーパーツイストネマテック(STN)の液晶材料の他に、コレステリック液晶材料を用いることができる。このコレステリック液晶材料は、液晶分子のらせんの軸が縦向きかまたは横向きで安定するので、駆動電圧を切っても半永久的に液晶分子の向きを維持できるメモリ性があることから、書き換え時のみ電力を用いる超低消費電力を実現することができる。また、一度表示した表示画面は、駆動電圧をかけて表示画面を変更する以外は駆動電圧をかけないので、画面がちらついたりしない。しかも、コレステリック液晶材料を用いることにより、偏光板210,214およびカラーフィルタ(図示せず)などを不要とすることから、紙のように薄くて軽く、しかも明るい液晶装置(液晶セル;デンシペーパ)を実現することができる。このように、コレステリック液晶材料を用いることにより、透過する光量を大幅に有効利用することができて、受光感度の大幅な向上を達成することができる。   Note that a cholesteric liquid crystal material can be used for the liquid crystal layer 212 in addition to the twisted nematic (TN) or super twisted nematic (STN) liquid crystal material. This cholesteric liquid crystal material has a memory property that can maintain the orientation of liquid crystal molecules semi-permanently even when the drive voltage is cut off, because the helical axis of the liquid crystal molecules is stable in the vertical or horizontal direction. Ultra-low power consumption using the can be realized. Further, the display screen once displayed does not flicker because no drive voltage is applied except for changing the display screen by applying a drive voltage. In addition, since the cholesteric liquid crystal material is used, the polarizing plates 210 and 214 and the color filter (not shown) are not required, so that a thin, light, and bright liquid crystal device (liquid crystal cell; densi paper) like paper is provided. Can be realized. As described above, by using the cholesteric liquid crystal material, the amount of transmitted light can be effectively used, and the light receiving sensitivity can be greatly improved.

特開平6−45568号公報JP-A-6-45568 特開2008−280459号公報JP 2008-280459 A

特許文献2に開示されている上記従来の固体撮像素子200では、その電荷転送時に液晶層212によって遮光が可能なため、垂直転送領域を遮光層と共に設ける必要がなく、透明電極を用いて1画素当たりの面積を大きく取ることができて、画素部の微細化に伴う受光感度特性の劣化およびスミア特性の劣化を抑制すると共に、遮光膜の形成プロセスがなく製造を簡略化することができ、かつ信号読み出し制御をも無くすことができるものの、カラーフィルタに代えてコレステリック液晶材料を用いて一つの色を1画素(各液晶セル毎にRGBのいずれかで所定の色配列)で検出可能であるが、現実的に静止画および動画のうち、特に動画をフルカラー撮像することは、コレステリック液晶の応答が遅いために現時点では困難であるという問題を有していた。   In the conventional solid-state imaging device 200 disclosed in Patent Document 2, since light can be shielded by the liquid crystal layer 212 during charge transfer, it is not necessary to provide a vertical transfer region together with the light shielding layer, and one pixel is formed using a transparent electrode. The area per contact can be increased, the deterioration of the light receiving sensitivity characteristic and the smear characteristic due to the miniaturization of the pixel portion can be suppressed, the manufacturing process can be simplified without the formation process of the light shielding film, and Although signal readout control can be eliminated, one color can be detected by one pixel (predetermined color arrangement of either RGB for each liquid crystal cell) using a cholesteric liquid crystal material instead of a color filter. In reality, it is difficult to capture full-color images of still images and moving images in particular because of the slow response of cholesteric liquid crystals. I had a problem.

本発明は、上記従来の問題を解決するもので、画素部の微細化に伴う受光感度特性の劣化およびスミア特性の劣化を抑制すると共に、遮光膜の形成プロセスがなく製造を簡略化することができ、かつ信号読み出し制御をも無くすことができることを前提として、コレステリック液晶に代えて多層化した複数層の受光部により複数の色信号を、1画素部で一括して同時に検出した1画素部毎の各層の信号電荷から得ると共に、静止画および動画のいずれであっても鮮明なフルカラー撮像を実現することができる固体撮像素子および、この固体撮像素子を画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器を提供することを目的とする。   The present invention solves the above-described conventional problems, and suppresses deterioration of light receiving sensitivity characteristics and smear characteristics due to miniaturization of the pixel portion, and simplifies the manufacturing process by eliminating a light shielding film forming process. On the premise that it is possible to eliminate the signal readout control, a plurality of color signals are simultaneously detected by a single pixel unit by a plurality of layers of light-receiving units in place of the cholesteric liquid crystal. A solid-state image sensor that can obtain a clear full-color image of either a still image or a moving image, and a camera using the solid-state image sensor as an image input device in an imaging unit, for example, It is an object of the present invention to provide an electronic information device such as a mobile phone device with a telephone.

本発明の固体撮像素子は、半導体層または半導体基板に交互に一方向に隣接配置された一導電型注入領域および他導電型注入領域であって、被写体からの画像光を光電変換する複数層の光電変換部が、該光電変換部とはバンドギャップの異なる透明層をその各間に介在して積層され、該一方向に直交する他方向にそれぞれ配置された一導電型注入領域および他導電型注入領域と、該一導電型注入領域および該他導電型注入領域上に設けられた一方向の複数の電荷転送駆動用の透明電極と、該複数の電荷転送駆動用の透明電極上または、該一導電型注入領域および該他導電型注入領域上に設けられ、入射光を透過または遮光制御する入射光透過/遮光制御手段とを有しているものであり、そのことにより上記目的が達成される。   The solid-state imaging device of the present invention is a one-conductivity-type injection region and another-conductivity-type injection region that are alternately arranged adjacent to a semiconductor layer or a semiconductor substrate in one direction, and includes a plurality of layers that photoelectrically convert image light from a subject. One-conductivity-type injection region and other-conductivity type, wherein the photoelectric conversion part is laminated with a transparent layer having a different band gap from that of the photoelectric conversion part, and is disposed in the other direction orthogonal to the one direction. An injection region, a plurality of one-direction transparent electrodes for driving the charge transfer provided on the one-conductivity type injection region and the other-conductivity-type injection region, and the plurality of transparent electrodes for driving the charge transfer, or the Provided on one conductivity type injection region and the other conductivity type injection region and having incident light transmission / light shielding control means for transmitting or shielding incident light, thereby achieving the above object. The

また、好ましくは、本発明の固体撮像素子における透明層のバンドギャップが前記複数層の光電変換部の半導体層のバンドギャップよりも大きく、該光電変換部がその下層および上層の該透明層に挟み込まれて、該複数層の光電変換部でそれぞれ光電変換された各信号電荷が該光電変換部毎にそれぞれ閉じ込められるように構成されている。   Preferably, the band gap of the transparent layer in the solid-state imaging device of the present invention is larger than the band gap of the semiconductor layer of the plurality of photoelectric conversion units, and the photoelectric conversion unit is sandwiched between the lower and upper transparent layers. Thus, each signal charge photoelectrically converted by the plurality of photoelectric conversion units is confined for each photoelectric conversion unit.

さらに、好ましくは、本発明の固体撮像素子における複数層の光電変換部の深さに応じた光の波長による吸収係数の違いから、1画素部毎の複数の色信号が該複数層の光電変換部からの各信号電荷に基づいて算出可能である。   Further preferably, from the difference in absorption coefficient depending on the wavelength of light according to the depth of the photoelectric conversion units of the plurality of layers in the solid-state imaging device of the present invention, the plurality of color signals for each pixel unit are converted into the photoelectric conversion of the plurality of layers. It can be calculated based on each signal charge from the unit.

さらに、好ましくは、本発明の固体撮像素子における複数層の光電変換部が、第1受光部〜第3受光部の3層構造を有する場合に、該第1受光部を構成する一方向の一導電型注入領域と他導電型注入領域における光電変換部は、光の波長が最も短い青色光を主に吸収して光電変換し、該第2受光部を構成する一方向の一導電型注入領域と他導電型注入領域における光電変換部は、光の波長が中間の緑色光を主に吸収して光電変換し、該第3受光部を構成する一方向の一導電型注入領域と他導電型注入領域における光電変換部は、光の波長が最も長い赤色光を主に吸収して光電変換する。   Furthermore, preferably, when the plurality of layers of photoelectric conversion units in the solid-state imaging device of the present invention has a three-layer structure of the first light receiving unit to the third light receiving unit, the one direction of the first light receiving unit is configured. The photoelectric conversion unit in the conductive type injection region and the other conductive type injection region mainly absorbs blue light having the shortest wavelength of light to perform photoelectric conversion, and constitutes the second light receiving unit in one direction. The photoelectric conversion unit in the other conductivity type injection region mainly absorbs green light having an intermediate wavelength of light and performs photoelectric conversion, and the unidirectional one conductivity type injection region and the other conductivity type constituting the third light receiving unit The photoelectric conversion unit in the injection region mainly absorbs red light having the longest light wavelength and performs photoelectric conversion.

さらに、好ましくは、本発明の固体撮像素子における複数層の光電変換部が、第1受光部〜第4受光部の4層構造を有する場合に、該第1受光部を構成する一方向の一導電型注入領域と他導電型注入領域における光電変換部は、光の波長が最も短い青色光を主に吸収して光電変換し、該第2受光部を構成する一方向の一導電型注入領域と他導電型注入領域における光電変換部は、光の波長が中間の緑色光を主に吸収して光電変換し、該第3受光部を構成する一方向の一導電型注入領域と他導電型注入領域における光電変換部は、光の波長が長い赤色光を主に吸収して光電変換し、該第4受光部を構成する一方向の一導電型注入領域と他導電型注入領域における光電変換部は、光の波長が最も長い近赤外光を吸収して光電変換する。   Further, preferably, when the plurality of layers of photoelectric conversion units in the solid-state imaging device of the present invention have a four-layer structure of the first light receiving unit to the fourth light receiving unit, the one direction of the first light receiving unit is configured. The photoelectric conversion unit in the conductive type injection region and the other conductive type injection region mainly absorbs blue light having the shortest wavelength of light to perform photoelectric conversion, and constitutes the second light receiving unit in one direction. The photoelectric conversion unit in the other conductivity type injection region mainly absorbs green light having an intermediate wavelength of light and performs photoelectric conversion, and the unidirectional one conductivity type injection region and the other conductivity type constituting the third light receiving unit The photoelectric conversion unit in the injection region mainly absorbs red light having a long wavelength of light and performs photoelectric conversion, and photoelectric conversion in the one-direction one-conduction type injection region and the other-conduction type injection region constituting the fourth light receiving unit. The unit absorbs near-infrared light having the longest wavelength of light and performs photoelectric conversion.

さらに、好ましくは、本発明の固体撮像素子において、前記半導体層または前記半導体基板は可視光または近赤外光まで受光できるバンドギャップをもつ半導体であり、前記透明層は可視光を透過するバンドギャップを持っている。   Further preferably, in the solid-state imaging device of the present invention, the semiconductor layer or the semiconductor substrate is a semiconductor having a band gap capable of receiving visible light or near-infrared light, and the transparent layer is a band gap that transmits visible light. have.

さらに、好ましくは、本発明の固体撮像素子における複数の電荷転送駆動用の透明電極に印加する高電圧と低電圧のうちの高電圧の印加隣接電極数を調整することにより、前記複数の光電変換部の平面視画素露光サイズを可変してフォトダイオード容量を可変可能とする。   Furthermore, preferably, the plurality of photoelectric conversions are performed by adjusting the number of adjacent high-voltage applied electrodes among the high voltage and the low voltage applied to the plurality of charge transfer driving transparent electrodes in the solid-state imaging device of the present invention. The pixel capacitance can be varied by changing the pixel exposure size in plan view.

さらに、好ましくは、本発明の固体撮像素子における複数の光電変換部の膜厚を調整することにより、フォトダイオード容量を可変可能とする。   Further, preferably, the photodiode capacitance can be varied by adjusting the film thicknesses of the plurality of photoelectric conversion units in the solid-state imaging device of the present invention.

さらに、好ましくは、本発明の固体撮像素子における入射光透過/遮光制御手段は、露光時に入射光を透過し、電荷転送時に入射光を遮光する液晶手段で構成されている。   Further preferably, the incident light transmission / shielding control means in the solid-state imaging device of the present invention is configured by a liquid crystal means that transmits the incident light during exposure and shields the incident light during charge transfer.

さらに、好ましくは、本発明の固体撮像素子における液晶手段は、一方向およびこれに直交する他方向の一方の偏光を通す偏光板、液晶制御用の下側の透明電極、液晶層、液晶制御用の上側の透明電極、該一方向およびこれに直交する他方向の他方の偏光を通す偏光板がこの順に積層されている。   Further preferably, the liquid crystal means in the solid-state imaging device of the present invention is a polarizing plate that transmits one polarized light in one direction and the other direction orthogonal thereto, a lower transparent electrode for liquid crystal control, a liquid crystal layer, and for liquid crystal control A transparent electrode on the upper side of the first polarizing plate and a polarizing plate through which the other polarized light in one direction and the other direction orthogonal thereto are passed in this order.

さらに、好ましくは、本発明の固体撮像素子において、前記一方向の複数の電荷転送駆動用の透明電極に電荷転送駆動用電圧を順次印加可能とする電荷転送制御手段がさらに設けられ、露光時に、前記液晶手段が入射光を透過制御した状態で、該電荷転送駆動用電圧のうちの高電圧と低電圧を該電荷転送駆動用の透明電極の一または複数毎に交互に印加することにより、該電荷転送駆動用の透明電極下の他方向の一導電型注入領域および他導電型注入領域のうちの深いポテンシャル電位領域に画素部毎の信号電荷が保持される。   Further preferably, in the solid-state imaging device of the present invention, further provided is a charge transfer control means that can sequentially apply a charge transfer driving voltage to the plurality of charge transfer driving transparent electrodes in one direction. By alternately applying the high voltage and the low voltage of the charge transfer driving voltage to each of the transparent electrodes for driving the charge transfer while the liquid crystal means controls the transmission of incident light, The signal charge for each pixel portion is held in the deep potential potential region in the one-conductivity type injection region in the other direction and the other-conductivity type injection region under the transparent electrode for driving the charge transfer.

さらに、好ましくは、本発明の固体撮像素子において、前記一方向の複数の電荷転送駆動用の透明電極に電荷転送駆動用電圧を順次印加可能とする電荷転送制御手段がさらに設けられ、電荷転送時に、前記液晶手段が入射光を遮光制御した状態で、該電荷転送駆動用電圧のうちの高電圧と低電圧を該電荷転送駆動用の透明電極の一または複数の交互の印加位置を順次所定方向にずらすことにより、該電荷転送駆動用の透明電極下の他方向の一導電型注入領域および他導電型注入領域のうちの深いポテンシャル電位領域に画素部毎の信号電荷を保持して所定方向に電荷転送する。   Further preferably, in the solid-state imaging device according to the present invention, a charge transfer control unit is further provided which can sequentially apply a charge transfer driving voltage to the plurality of charge transfer driving transparent electrodes in one direction, In the state where the liquid crystal means is controlled to block incident light, the high voltage and the low voltage of the charge transfer driving voltage are sequentially applied to one or more alternating application positions of the charge transfer driving transparent electrode in a predetermined direction. By shifting to a predetermined potential, the signal charge for each pixel portion is held in the one-potential type injection region in the other direction below the transparent electrode for driving the charge transfer and the deep potential potential region in the other-conductivity type injection region. Charge transfer.

さらに、好ましくは、本発明の固体撮像素子において、前記高電圧の前記電荷転送駆動用の透明電極の印加位置を一または複数に印加することにより、前記画素部毎の信号電荷を保持する画素サイズが制御可能とされており、該画素サイズは、前記他方向の一導電型注入領域または他導電型注入領域のn(nは自然数)列と、前記一方向の電荷転送駆動用の透明電極のm(mは自然数)行の隣接半導体領域を1画素部として組み合わせている。   Further preferably, in the solid-state imaging device of the present invention, the pixel size for holding the signal charge for each of the pixel portions by applying one or a plurality of application positions of the high-voltage transparent electrode for driving the charge transfer. The pixel size of the one-direction implantation region in the other direction or n columns (n is a natural number) of the other-conduction type implantation region and the transparent electrode for driving the charge transfer in the one direction The adjacent semiconductor regions of m (m is a natural number) rows are combined as one pixel portion.

さらに、好ましくは、本発明の固体撮像素子における高電圧は複数の高電圧を有して、前記半導体層または半導体基板のポテンシャ電位が電荷転送方向に深くなるように該半導体層または半導体基板に高電圧を付与する。   Further preferably, the high voltage in the solid-state imaging device of the present invention has a plurality of high voltages, and the semiconductor layer or the semiconductor substrate has a high potential so that a potential potential of the semiconductor layer or the semiconductor substrate becomes deep in a charge transfer direction. Apply voltage.

さらに、好ましくは、本発明の固体撮像素子における半導体層または半導体基板は、導電型がN型半導体、P型半導体および真性半導体の少なくともいずれかである。   Further, preferably, the semiconductor layer or the semiconductor substrate in the solid-state imaging device of the present invention has at least one of an N-type semiconductor, a P-type semiconductor, and an intrinsic semiconductor as a conductivity type.

本発明の電子情報機器は、本発明の上記固体撮像素子を画像入力デバイスとして撮像部に用いたものであり、そのことにより上記目的が達成される。   The electronic information device of the present invention uses the solid-state imaging device of the present invention as an image input device in an imaging unit, and thereby achieves the above object.

上記構成により、以下、本発明の作用を説明する。   With the above configuration, the operation of the present invention will be described below.

本発明においては、半導体層または半導体基板に交互に一方向に隣接配置された一導電型注入領域および他導電型注入領域であって、被写体からの画像光を光電変換する複数層の光電変換部が、この光電変換部とはバンドギャップの異なる透明層をその各間に介在して積層され、一方向に直交する他方向にそれぞれ配置された一導電型注入領域および他導電型注入領域と、一導電型注入領域および該他導電型注入領域上に設けられた一方向の複数の電荷転送駆動用の透明電極と、複数の電荷転送駆動用の透明電極上に設けられ、入射光を透過または遮光制御する入射光透過/遮光制御手段とを有している。   In the present invention, a multi-layer photoelectric conversion unit that photoelectrically converts image light from a subject, which is a one-conductivity-type injection region and another-conductivity-type injection region that are alternately arranged in one direction on a semiconductor layer or a semiconductor substrate. However, this photoelectric conversion part is laminated with a transparent layer having a different band gap interposed between them, and one conductivity type injection region and another conductivity type injection region respectively disposed in other directions orthogonal to one direction, A plurality of unidirectional charge transfer drive transparent electrodes provided on the one conductivity type injection region and the other conductivity type injection region, and a plurality of charge transfer drive transparent electrodes, which transmit incident light or Incident light transmission / light shielding control means for controlling the light shielding.

これによって、入射光を透過または遮光制御する入射光透過/遮光制御手段を設けたことにより、画素部の微細化に伴う受光感度特性の劣化およびスミア特性の劣化を抑制すると共に、遮光膜の形成プロセスがなく製造を簡略化することができ、かつ信号読み出し制御をも無くすことができることを前提として、被写体からの画像光を光電変換する複数層の光電変換部が、この光電変換部とはバンドギャップの異なる透明層をその各間に介在して積層されるため、コレステリック液晶に代えて多層化した複数層の受光部により複数の色信号を、1画素部で一括して同時に検出した1画素部毎の各層の信号電荷から得ると共に、静止画および動画のいずれであっても鮮明なフルカラー撮像を実現することが可能となる。   As a result, by providing incident light transmission / light shielding control means for transmitting or shielding incident light, it is possible to suppress deterioration of light receiving sensitivity characteristics and smear characteristics due to miniaturization of the pixel portion and to form a light shielding film. A multi-layer photoelectric conversion unit that photoelectrically converts image light from a subject is a band, assuming that there is no process and manufacturing can be simplified and signal readout control can be eliminated. Since transparent layers having different gaps are stacked between each other, one pixel in which a plurality of color signals are simultaneously detected by a single pixel unit by a plurality of layers of light receiving units instead of cholesteric liquid crystals In addition to obtaining from the signal charges of each layer for each part, it is possible to realize clear full-color imaging for both still images and moving images.

以上により、本発明によれば、入射光を透過または遮光制御する入射光透過/遮光制御手段を設けたため、画素部の微細化に伴う受光感度特性の劣化およびスミア特性の劣化を抑制すると共に、遮光膜の形成プロセスがなく製造を簡略化することができ、かつ信号読み出し制御をも無くすことができることを前提として、被写体からの画像光を光電変換する複数層の光電変換部が、この光電変換部とはバンドギャップの異なる透明層をその各間に介在して積層されるため、コレステリック液晶に代えて多層化した複数層の受光部により複数の色信号を、1画素部で一括して同時に検出した1画素部毎の各層の信号電荷から得ると共に、静止画および動画のいずれであっても鮮明なフルカラー撮像を実現することができる。   As described above, according to the present invention, since the incident light transmission / shielding control means for controlling the transmission or shielding of the incident light is provided, the deterioration of the light receiving sensitivity characteristic and the smear characteristic due to the miniaturization of the pixel portion are suppressed, and On the premise that there is no process for forming a light-shielding film, manufacturing can be simplified, and signal readout control can also be eliminated, a multi-layer photoelectric conversion unit that photoelectrically converts image light from a subject is photoelectrically converted. Since a transparent layer having a different band gap is interposed between each layer, a plurality of color signals are simultaneously received by a single pixel unit by a plurality of layers of light receiving units instead of cholesteric liquid crystals. It can be obtained from the detected signal charges of each layer for each pixel portion, and clear full-color imaging can be realized for both still images and moving images.

本発明の実施形態1における固体撮像素子の要部構成例を示す平面図である。It is a top view which shows the principal part structural example of the solid-state image sensor in Embodiment 1 of this invention. 図1の固体撮像素子のA−B線縦断面図である。It is the AB sectional view taken on the line of the solid-state image sensor of FIG. (a)〜(c)は、図1の固体撮像素子に入る光が多い場合の電荷転送パターンを模式的に示す平面図である。(A)-(c) is a top view which shows typically a charge transfer pattern in case there is much light which enters into the solid-state image sensor of FIG. (a)〜(c)は、貼り合せSOIウエハの各事例について模式的に示す断面図である。(A)-(c) is sectional drawing shown typically about each case of a bonding SOI wafer. (a)および(b)は、貼り合せSOIウエハの製造方法の事例1を模式的に示す断面図である。(A) And (b) is sectional drawing which shows typically the example 1 of the manufacturing method of a bonding SOI wafer. (a)および(b)は、貼り合せSOIウエハの製造方法の事例2を模式的に示す断面図である。(A) And (b) is sectional drawing which shows typically the example 2 of the manufacturing method of a bonding SOI wafer. 図7は、本発明の実施形態2における固体撮像素子の要部構成例を示す平面図である。FIG. 7 is a plan view showing a configuration example of a main part of a solid-state imaging device according to Embodiment 2 of the present invention. 図7の固体撮像素子のA−B線縦断面図である。FIG. 8 is a vertical cross-sectional view of the solid-state imaging device in FIG. 7 taken along line AB. (a)〜(c)は、図7の固体撮像素子において2列3行に受光領域を拡張した場合のCCD転送事例を示す平面図である。(A)-(c) is a top view which shows the CCD transfer example at the time of extending a light reception area | region to 2 columns 3 rows in the solid-state image sensor of FIG. 本発明の実施形態4として、本発明の実施形態1〜3の固体撮像素子1または1Aからの撮像信号を信号処理する固体撮像装置を撮像部に用いた電子情報機器の概略構成例を示すブロック図である。As a fourth embodiment of the present invention, a block diagram illustrating a schematic configuration example of an electronic information device using a solid-state imaging device that performs signal processing of an imaging signal from the solid-state imaging device 1 or 1A according to the first to third embodiments of the present invention as an imaging unit. FIG. 特許文献1に開示されている従来のCCD固体撮像素子の単位画素部の要部構成例を示す平面図である。It is a top view which shows the principal part structural example of the unit pixel part of the conventional CCD solid-state image sensor currently disclosed by patent document 1. FIG. 図11の従来のCCD固体撮像素子のA−B線断面図である。FIG. 12 is a cross-sectional view of the conventional CCD solid-state imaging device in FIG. 11 taken along line AB. 特許文献2に開示されている従来の固体撮像素子の要部構成例を示す平面図である。It is a top view which shows the example of a principal part structure of the conventional solid-state image sensor currently disclosed by patent document 2. FIG. 図13の固体撮像素子のA−B線縦断面図である。FIG. 14 is a longitudinal sectional view taken along line AB of the solid-state imaging device in FIG. 13. 本発明の実施形態3における固体撮像素子の要部構成例を示す断面図である。It is sectional drawing which shows the principal part structural example of the solid-state image sensor in Embodiment 3 of this invention.

以下に、本発明の固体撮像素子の実施形態1、2および、この固体撮像素子の実施形態1、2を画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器の実施形態3について図面を参照しながら詳細に説明する。
(実施形態1)
図1は、本発明の実施形態1における固体撮像素子の要部構成例を示す平面図であり、図2は、図1の固体撮像素子のA−B線縦断面図である。
Embodiments 1 and 2 of the solid-state imaging device of the present invention, and implementation of electronic information equipment such as a mobile phone device with a camera using the embodiments 1 and 2 of the solid-state imaging device as image input devices in an imaging unit are described below The third embodiment will be described in detail with reference to the drawings.
(Embodiment 1)
FIG. 1 is a plan view illustrating a configuration example of a main part of a solid-state imaging device according to Embodiment 1 of the present invention, and FIG. 2 is a longitudinal sectional view taken along line AB of the solid-state imaging device in FIG.

図1および図2において、本実施形態1の固体撮像素子1は、半導体基板2(または半導体層)上に透明絶縁層であるSiO膜3dを介して、第3受光部を構成する縦方向のP型注入領域4cとN型注入領域5cとが交互に横方向に隣接配置されている。これらのP型注入領域4cおよびN型注入領域5c上に透明絶縁層であるSiO膜3cを介して、第2受光部を構成する縦方向のP型注入領域4bとN型注入領域5bとが交互に横方向に隣接配置されている。これらのP型注入領域4c,4bおよびN型注入領域5c,5bはそれぞれ間にSiO膜3cを介して上下に配置されている。これらのP型注入領域4bおよびN型注入領域5b上に透明絶縁層であるSiO膜3bを介して、第1受光部を構成する縦方向のP型注入領域4aとN型注入領域5aとが交互に横方向に隣接配置されている。これらのP型注入領域4b、4aおよびN型注入領域5b、5aはそれぞれ間にSiO膜3bを介して上下に配置されている。これらのP型注入領域4a〜4cとN型注入領域5a〜5cはそれぞれ、平面視で縦方向に一致するように配置されている。 1 and 2, the solid-state imaging device 1 according to the first embodiment includes a vertical direction that constitutes a third light receiving unit on a semiconductor substrate 2 (or a semiconductor layer) via a SiO 2 film 3d that is a transparent insulating layer. P-type implantation regions 4c and N-type implantation regions 5c are alternately arranged adjacent to each other in the lateral direction. The P-type implantation region 4b and the N-type implantation region 5b in the vertical direction constituting the second light receiving part are interposed on the P-type implantation region 4c and the N-type implantation region 5c via the SiO 2 film 3c, which is a transparent insulating layer. Are alternately arranged in the horizontal direction. The P-type implantation regions 4c and 4b and the N-type implantation regions 5c and 5b are arranged above and below with the SiO 2 film 3c interposed therebetween. The P-type implantation region 4a and the N-type implantation region 5a in the vertical direction constituting the first light receiving part are interposed on the P-type implantation region 4b and the N-type implantation region 5b via the SiO 2 film 3b which is a transparent insulating layer. Are alternately arranged in the horizontal direction. These P-type implantation regions 4b and 4a and N-type implantation regions 5b and 5a are arranged vertically with an SiO 2 film 3b interposed therebetween. These P-type implantation regions 4a to 4c and N-type implantation regions 5a to 5c are arranged so as to coincide with the vertical direction in plan view.

これらのP型注入領域4aおよびN型注入領域5a上に透明絶縁層であるSiO膜3aを介して、電荷転送駆動用の横方向の単層の透明電極6〜11をこの順に縦方向に繰り返し並べて配置する。平面視で縦方向に配置されたP型注入領域4aとN型注入領域5a上にSiO膜3aを介して、単層の透明電極6〜11が横方向に配置されている。さらに、その上に、横方向の偏光を通す偏光板12、液晶制御用の下側の透明電極13、ツイストネマテック(TN)またはスーパーツイストネマテック(STN)の液晶材料などからなる液晶層14、液晶制御用の上側の透明電極15、縦方向の偏光を通す偏光板16をこの順に積層する。なお、液晶材料としては、偏光板12、16を用いずに、ツイストネマテック(TN)やスーパーツイストネマテック(STN)以外のシャッタ機能に用いる液晶材料であって、動作速度の速い液晶材料を選定して用いることもできる。このように、入射光を受光する第1受光部〜第3受光部からなるSi層の3層積層構造の上部に液晶セルによるシャッタ機構を導入しかつ、電荷転送を透明電極6〜11で行うことにより、第1受光部〜第3受光部の開口サイズを、従来の遮光膜の開口サイズに比べて向上させ、受光感度特性の改善とスミア特性の改善を図ることが可能となる。 Through the SiO 2 film 3a is a transparent insulating layer on these P-type implanted region 4a and the N-type implanted regions on 5a, the transparent electrode 6 to 11 lateral monolayer for driving the charge transfer in the vertical direction in this order Arrange them repeatedly. Single-layer transparent electrodes 6 to 11 are arranged in the horizontal direction via the SiO 2 film 3a on the P-type injection region 4a and the N-type injection region 5a arranged in the vertical direction in plan view. Furthermore, a polarizing plate 12 that transmits polarized light in the horizontal direction, a lower transparent electrode 13 for liquid crystal control, a liquid crystal layer 14 made of a twisted nematic (TN) or super twisted nematic (STN) liquid crystal material, and the like. The upper transparent electrode 15 for controlling the liquid crystal and the polarizing plate 16 that passes the polarized light in the vertical direction are laminated in this order. As the liquid crystal material, a liquid crystal material that is used for a shutter function other than Twist Nematic (TN) or Super Twist Nematic (STN) without using the polarizing plates 12 and 16 and has a high operating speed is used. It can also be selected and used. In this way, a shutter mechanism using a liquid crystal cell is introduced on the upper part of the three-layered structure of Si layers composed of the first light receiving part to the third light receiving part for receiving incident light, and charge transfer is performed by the transparent electrodes 6 to 11. As a result, the opening sizes of the first light receiving portion to the third light receiving portion can be increased as compared with the opening size of the conventional light shielding film, and the light receiving sensitivity characteristic and the smear characteristic can be improved.

電荷転送用の単層の透明電極6〜11およびその下の3層のP型注入領域4a〜4cとN型注入領域5a〜5cが繰り返し配設されて、各画素毎の信号電荷が複数列を垂直方向に電荷転送され、その後、水平方向に、電荷転送用の単層の透明電極6〜11およびその下の3層のP型注入領域4a〜4cとN型注入領域5a〜5cが繰り返し配設されて水平方向に電荷転送される。その後、3層の電荷検出部により電荷検出されて3層分の信号電荷が増幅されて撮像信号として出力される。詳細に後述するが、3層分の各撮像信号は信号処理部により信号処理されて各画素毎のRGB信号を得ることができる。   Single-layer transparent electrodes 6 to 11 for charge transfer and three layers of P-type injection regions 4a to 4c and N-type injection regions 5a to 5c thereunder are repeatedly arranged, and a plurality of signal charges for each pixel are arranged. Are transferred in the vertical direction, and then, in the horizontal direction, single-layer transparent electrodes 6 to 11 for charge transfer and three layers of P-type injection regions 4a to 4c and N-type injection regions 5a to 5c thereunder are repeated. The charge is transferred in the horizontal direction. Thereafter, the charge is detected by the charge detector of the three layers, and the signal charge for the three layers is amplified and output as an imaging signal. As will be described in detail later, each of the imaging signals for the three layers is subjected to signal processing by a signal processing unit, and an RGB signal for each pixel can be obtained.

ここでは、P型注入領域4およびN型注入領域5で構成される第1受光部〜第3受光部がそれぞれ透明絶縁層であるSiO膜をそれぞれ介して3層の多層積層構造になっている。この3層の多層積層構造は、撮像素子のカラーフィルタレスを実現するため、各受光部(フォトダイオード部)を構成する3層のSi層(P型注入領域およびN型注入領域)をそれぞれSiO膜3a〜3dの各透明膜で上下に挟み込んだ構造である。SiO膜3a〜3dのバンドギャップがSi層よりも大きいため3層の各Si層に光電変換された信号電荷を閉じ込めることができる。このように、バンドギャップの異なる透明層(ここではSiO膜とSi層)を組み合わせ3層の第1受光部〜第3受光部(光電変換部)からなっている。つまり、一導電型注入領域および他導電型注入領域は、P型注入領域およびN型注入領域で構成される複数層の光電変換部がそれぞれ、間に光電変換部とはバンドギャップの異なる透明層(SiO膜)を組み合わせた多層積層構造(ここでは3層)になっている。 Here, the first light receiving part to the third light receiving part constituted by the P-type injection region 4 and the N-type injection region 5 have a three-layer multilayer structure through respective SiO 2 films that are transparent insulating layers. Yes. In order to realize a color filter-less image pickup device, this three-layer multilayer structure has three layers of Si layers (P-type injection region and N-type injection region) constituting each light receiving portion (photodiode portion). In this structure, the two films 3a to 3d are sandwiched between upper and lower transparent films. Since the band gaps of the SiO 2 films 3a to 3d are larger than those of the Si layer, the signal charges photoelectrically converted into the three Si layers can be confined. As described above, the transparent layer (here, SiO 2 film and Si layer) having different band gaps is combined to form three layers of the first light receiving unit to the third light receiving unit (photoelectric conversion unit). In other words, the one-conductivity-type injection region and the other-conductivity-type injection region are each a transparent layer having a band gap different from that of the photoelectric conversion unit between a plurality of photoelectric conversion units each composed of a P-type injection region and an N-type injection region. It has a multilayer laminated structure (three layers here) in which (SiO 2 films) are combined.

なお、Si層間にSiO膜がない場合のCMOSの多層PDからの優位性について説明すると、イオン注入によるポテンシャル差(PN間)は、およそ2−3eVである。受光部の上下膜としてSiO膜を使用すれば、そのバンドギャップ(Band Gap)は8−9eVあるためVpd容量確保に有利である。ポテンシャル段差を上下空間的に明確にできるるので、上下方向での容量確保に有利に働く。 The advantage from the CMOS multi-layer PD when there is no SiO 2 film between Si layers will be described. The potential difference (between PNs) by ion implantation is about 2-3 eV. If SiO 2 films are used as the upper and lower films of the light receiving part, the band gap (Band Gap) is 8-9 eV, which is advantageous for securing the Vpd capacity. Since the potential step can be clarified in the vertical space, it works advantageously for securing the capacity in the vertical direction.

一方、SiO膜3a〜3dおよび3層のSi層は可視光が透過しかつ、3層のSi層はその深さに応じた光の波長による吸収係数の違いから、3層のSi層は各色の受光部(ダイオード部)とすることができる。例えば第1受光部を構成する縦方向のP型注入領域4aとN型注入領域5aは、最上層であり光の波長が最も短い青色光(B)を主に吸収して光電変換し、第2受光部を構成する縦方向のP型注入領域4bとN型注入領域5bは、中間層であり光の波長が中間の緑色光(G)を主に吸収して光電変換し、第3受光部を構成する縦方向のP型注入領域4cとN型注入領域5cは、最下層であり光の波長が最も長い赤色光(R)を主に吸収して光電変換する。このように、光電変換部である第1受光部〜第3受光部の多層化による多原色(ここでは三原色のRGB)のフルカラー撮像を各画素毎に一括して同時に行うことができる。 On the other hand, the SiO 2 films 3a to 3d and the three Si layers transmit visible light, and the three Si layers are different in absorption coefficient depending on the wavelength of light according to the depth thereof. It can be set as the light-receiving part (diode part) of each color. For example, the P-type injection region 4a and the N-type injection region 5a in the vertical direction constituting the first light receiving unit mainly absorb blue light (B) having the shortest light wavelength and photoelectrically convert the first light receiving unit. The P-type injection region 4b and the N-type injection region 5b in the vertical direction constituting the two light receiving portions are intermediate layers and mainly absorb green light (G) having an intermediate wavelength of light, and perform photoelectric conversion to obtain a third light reception. The vertical P-type injection region 4c and N-type injection region 5c constituting the part mainly absorb red light (R) having the longest light wavelength and photoelectrically convert it. In this way, full-color imaging of multi-primary colors (in this case, three primary colors RGB) by multilayering the first to third light-receiving portions, which are photoelectric conversion portions, can be performed simultaneously for each pixel.

以上の偏光板12、透明電極13、液晶層14、透明電極15および偏光板16から入射光透過/遮光制御手段としての液晶手段である液晶セルが構成されており、この液晶セルと組み合わせて、被写体からの画像光を光電変換して撮像する第1受光部〜第3受光部の3層積層構造を持つ固体撮像素子1が構成されている。この液晶セルは、そのスイッチイング特性により、露光時に入射光を透過し、電荷転送時に入射光を遮蔽するように機能する。これによって、従来の素子分離領域および垂直転送部が必要なくなって、その分、受光面積を広げることができることから、画素部の微細化に伴う受光感度特性の劣化およびスミア特性の劣化を抑制すると共に、遮光膜の形成プロセスもなく製造を簡略化することができ、かつ信号読み出し制御をも無くすことができる。   The polarizing plate 12, the transparent electrode 13, the liquid crystal layer 14, the transparent electrode 15 and the polarizing plate 16 constitute a liquid crystal cell as liquid crystal means as incident light transmission / light shielding control means. In combination with this liquid crystal cell, A solid-state imaging device 1 having a three-layer stacked structure of a first light receiving portion to a third light receiving portion that captures an image by photoelectrically converting image light from a subject is configured. Due to its switching characteristics, this liquid crystal cell functions to transmit incident light during exposure and to block incident light during charge transfer. This eliminates the need for the conventional element isolation region and the vertical transfer unit, and the light receiving area can be increased correspondingly. Therefore, the deterioration of the light receiving sensitivity characteristic and the smear characteristic due to the miniaturization of the pixel part are suppressed. Further, the manufacturing process can be simplified without the formation process of the light shielding film, and the signal readout control can be eliminated.

さらに、透明電極6〜11に電荷転送駆動用電圧を順次印加可能とする図示しないコントローラ(電荷転送制御手段)が設けられ、露光時に、液晶セルが入射光を透過制御した状態で、横方向の複数の電荷転送駆動用の透明電極6〜11に、このコントローラから出力される電荷転送駆動用電圧(例えば「0V」と「5V」)のうちの高電圧と低電圧を透明電極6〜11の一または複数に交互に印加する所定のパターンにより、電荷転送駆動用の透明電極6〜11下の縦方向のP型注入領域4a〜4cおよびN型注入領域5a〜5cの深いポテンシャル電位領域に画素毎(各受光部毎)の信号電荷を蓄積する。次の電荷転送時に、液晶層14の液晶セルが入射光を遮光制御した状態で、電荷転送駆動用電圧(例えば「0V」と「5V」)のうちの高電圧と低電圧を透明電極6〜11の一または複数の交互の印加位置を順次所定方向にずらすことにより、電荷転送駆動用の透明電極6〜11下の縦方向の3層のP型注入領域4a〜4cおよび3層のN型注入領域5a〜5cの深いポテンシャル電位領域に画素部毎の信号電荷を保持して所定方向に電荷転送する。このように、入射光を受光する第1受光部〜第3受光部の3層積層構造によって、液晶セルを遮光させた状態で、各信号電荷を順次電荷転送することができて、スミア特性の劣化を抑制することができる。   Further, a controller (charge transfer control means) (not shown) that can sequentially apply a charge transfer driving voltage to the transparent electrodes 6 to 11 is provided, and in the state where the liquid crystal cell controls the transmission of incident light during exposure, The high and low voltages of the charge transfer driving voltages (for example, “0V” and “5V”) output from the controller are applied to the plurality of transparent electrodes 6 to 11 for driving the charge transfer. Pixels are formed in the deep potential potential regions of the vertical P-type injection regions 4a to 4c and the N-type injection regions 5a to 5c below the transparent electrodes 6 to 11 for driving charge transfer by a predetermined pattern applied alternately to one or a plurality. The signal charge is accumulated every time (each light receiving portion). At the time of the next charge transfer, with the liquid crystal cell of the liquid crystal layer 14 controlled to block incident light, the high voltage and the low voltage of the charge transfer drive voltage (for example, “0V” and “5V”) are applied to the transparent electrodes 6 to 6. 11. By sequentially shifting one or a plurality of alternating application positions in a predetermined direction, three layers of P-type implantation regions 4a to 4c in the vertical direction below the transparent electrodes 6 to 11 for driving charge transfer and three layers of N-type The signal charge for each pixel portion is held in the deep potential potential region of the injection regions 5a to 5c, and the charge is transferred in a predetermined direction. Thus, the three-layer laminated structure of the first light receiving portion to the third light receiving portion that receives the incident light can sequentially transfer each signal charge in a state where the liquid crystal cell is shielded, and has smear characteristics. Deterioration can be suppressed.

この場合、高電圧の透明電極6〜11の印加位置を一または複数に印加することにより、入射光を受光する第1受光部〜第3受光部の3層積層構造の平面視の画素サイズ(フォトダイオード容量)も制御可能である。また、第1受光部〜第3受光部の3層積層構造の光電変換部の多層膜厚によってフォトダイオード容量を制御することもできる。   In this case, by applying one or a plurality of application positions of the high-voltage transparent electrodes 6 to 11, the pixel size in plan view of the three-layer stacked structure of the first light receiving part to the third light receiving part that receives incident light ( Photodiode capacity) can also be controlled. In addition, the photodiode capacitance can be controlled by the multilayer film thickness of the photoelectric conversion unit having a three-layer structure of the first light receiving unit to the third light receiving unit.

上記構成により、上から入射された入射光は、上側の偏光板16を通り、縦方向の偏光板16を通して偏光される。その縦方向の偏光は、液晶層14のスイッチイング特性により、偏光方向が透明電極13および15に印加される制御信号によりコントロールされ、下側の偏光板12に至る。偏光板16、12の偏光方向が互いに角度が90度だけ異なるため、液晶層14のスイッチイングによって、固体撮像素子1の第1受光部〜第3受光部の3層積層構造への入射光を透過したり遮光したりコントロールすることができる。
次に、偏光板16を通った入射光は、透明電極15から液晶層14を経て透明電極13、偏光板12さらに透明電極11からSiO膜3aを通過し、そのまま、固体撮像素子1の第1受光部〜第3受光部(P型注入領域およびN型注入領域)まで順次到達する。固体撮像素子1の各受光部では、縦方向にP型注入領域4a〜4cおよびN型注入領域5a〜5cの3層の積層構造が設けられており、ここで、光電変換した電子は、ポテンシャルが低い方のN型注入領域4側に集まって蓄積されると共に、SiO膜3a〜3dのバンドギャップがSi層よりも大きいため、SiO膜3a〜3dにより3層の第1受光部〜第3受光部(各Si層)に光電変換された信号電荷を閉じ込めることができる。
With the above configuration, incident light incident from above passes through the upper polarizing plate 16 and is polarized through the vertical polarizing plate 16. The polarization in the longitudinal direction is controlled by a control signal applied to the transparent electrodes 13 and 15 by the switching characteristics of the liquid crystal layer 14, and reaches the lower polarizing plate 12. Since the polarization directions of the polarizing plates 16 and 12 are different from each other by 90 degrees, the incident light to the three-layer laminated structure of the first light receiving part to the third light receiving part of the solid-state imaging device 1 is switched by switching the liquid crystal layer 14. It can be transmitted and blocked.
Next, the incident light that has passed through the polarizing plate 16 passes through the transparent electrode 15, the liquid crystal layer 14, the transparent electrode 13, the polarizing plate 12, and the transparent electrode 11 through the SiO 2 film 3 a. The first light receiving portion to the third light receiving portion (P-type injection region and N-type injection region) are sequentially reached. Each light-receiving unit of the solid-state imaging device 1 is provided with a three-layer stacked structure of P-type injection regions 4a to 4c and N-type injection regions 5a to 5c in the vertical direction. together are accumulated gathered lower N-type implanted region 4 side, for the band gap of the SiO 2 film 3 a to 3 d is larger than the Si layer, the first light receiving portion of the third layer by the SiO 2 film 3 a to 3 d ~ Signal charges photoelectrically converted can be confined in the third light receiving section (each Si layer).

なお、P型注入領域4a〜4cによってN型注入領域5a〜5cが横方向に複数分離されている。縦方向の各同じ層のN型注入領域5a〜5cであっても、不純物の注入を1回または数回の均等な不純物注入(不純物濃度(N型またはP型)が、例えば1×1018cm−3)で済ませて、透明電極6〜11に対する電圧印加によりポテンシャル電位の山と谷を作れば同じ層のN型注入領域5同士であっても、信号電荷が平面視縦方向(列方向)に互いに混ざり合わないように、縦方向の3層の第1受光部〜第3受光部(P型注入領域およびN型注入領域)の各層において、縦方向の各同じ層の隣接するN型注入領域5同士で分離可能である。 A plurality of N type implantation regions 5a to 5c are separated in the lateral direction by P type implantation regions 4a to 4c. Even in the N-type implantation regions 5a to 5c of the same layer in the vertical direction, the impurity is implanted once or several times (impurity concentration (N-type or P-type) is, for example, 1 × 10 18. cm −3 ), and by applying a voltage to the transparent electrodes 6 to 11 to create peaks and troughs of the potential potential, the signal charge is vertical in the vertical direction (column direction) even in the N-type injection regions 5 of the same layer. ) In each of the three layers of the first light receiving part to the third light receiving part (P-type injection region and N-type injection region) in the vertical direction that are adjacent to each other in the vertical direction. The injection regions 5 can be separated from each other.

最後に、電荷転送方法ついては、それぞれ配置された横方向の透明電極6〜11の垂直電荷転送用の転送駆動電圧を、順送りすることにより電子(各信号電荷)を電荷転送することができる。このように、横方向の透明電極6〜11を用いたため、1層配線での電荷転送が可能となる。   Finally, with respect to the charge transfer method, electrons (each signal charge) can be transferred by sequentially transferring transfer drive voltages for vertical charge transfer of the transparent electrodes 6 to 11 arranged in the horizontal direction. As described above, since the transparent electrodes 6 to 11 in the horizontal direction are used, it is possible to transfer charges through a single layer wiring.

要するに、上から入射された光は、偏光板16を通り縦偏光とされる。その縦偏光は、液晶層14のスイッチイング特性により偏光方向がコントロールされ、偏光板12に届く。偏光板16,12の偏光方向が異なるため、液晶層14のスイッチイングによって、固体撮像素子1の第1受光部〜第3受光部への入射光を露光または遮光にコントロールできる。これによって、従来のように遮光膜で遮光された垂直転送領域を設ける必要がなくなる。
下側の偏光板12を通った光は、電極に透明電極6〜11を採用したため、そのまま固体撮像素子1の第1受光部〜第3受光部まで到達する。固体撮像素子1の第1受光部〜第3受光部は、平面視で縦方向にP型注入領域4およびN型注入領域5を設けており、ここで、光電変換した電子(信号電荷)は、P型注入領域4からポテンシャルが低いN型注入領域5側に集まって、各画素毎に撮像が為される。
このとき、3層積層構造の第1受光部〜第3受光部(各フォトダイオード部)は、その深さ方向に応じて光の波長による吸収係数が異なるため、最適に多層化した各フォトダイオード部では、その各層で各色(ここではRGB)の撮像が可能となり、その結果、一画素で多色撮像(三原色撮像)が可能となる。この場合、3層積層構造の第1受光部〜第3受光部において、混色はするが、信号処理によりR尊号、G信号およびB信号を得ることが可能である。信号処理については詳細に後述する。
In short, light incident from above passes through the polarizing plate 16 and is converted into longitudinally polarized light. The direction of polarization of the vertically polarized light is controlled by the switching characteristics of the liquid crystal layer 14 and reaches the polarizing plate 12. Since the polarization directions of the polarizing plates 16 and 12 are different, the incident light to the first light receiving portion to the third light receiving portion of the solid-state imaging device 1 can be controlled to be exposed or blocked by switching the liquid crystal layer 14. As a result, there is no need to provide a vertical transfer region shielded by the light shielding film as in the prior art.
The light passing through the lower polarizing plate 12 reaches the first light receiving part to the third light receiving part of the solid-state imaging device 1 as it is because the transparent electrodes 6 to 11 are adopted as the electrodes. The first light receiving part to the third light receiving part of the solid-state imaging device 1 are provided with a P-type injection region 4 and an N-type injection region 5 in a vertical direction in a plan view. Here, the photoelectrically converted electrons (signal charges) are The P-type injection region 4 gathers on the N-type injection region 5 side where the potential is low, and imaging is performed for each pixel.
At this time, each of the first to third light receiving portions (each photodiode portion) having a three-layer structure has an absorption coefficient different depending on the wavelength of light depending on the depth direction, and thus each of the photodiodes optimally multilayered In the unit, it is possible to image each color (RGB here) in each layer, and as a result, it is possible to perform multicolor imaging (three primary color imaging) with one pixel. In this case, in the first light receiving part to the third light receiving part having the three-layer structure, although the colors are mixed, it is possible to obtain the R honor, G signal and B signal by signal processing. The signal processing will be described later in detail.

最後に、電荷転送方法ついては、縦方向に順次並べて配置された横方向の透明電極6〜11に対する駆動電圧を、縦方向に順送りすることにより、画素毎の各信号電荷を電荷転送することができる。この場合、透明電極6〜11を用いたため、1層配線での転送が可能となる。   Finally, with regard to the charge transfer method, each signal charge for each pixel can be transferred by transferring the drive voltage for the transparent electrodes 6 to 11 in the horizontal direction arranged in sequence in the vertical direction in the vertical direction. . In this case, since the transparent electrodes 6 to 11 are used, it is possible to transfer with one-layer wiring.

ここで、本実施形態1の固体撮像素子1の電荷転送方法の一例について図3(a)〜図3(c)を用いて詳細に説明する。   Here, an example of the charge transfer method of the solid-state imaging device 1 according to the first embodiment will be described in detail with reference to FIGS. 3 (a) to 3 (c).

図3(a)〜図3(c)は、図1の固体撮像素子1に入る光が多い場合の電荷転送パターンを模式的に示す平面図である。ここで、透明電極6〜11に印加する低電圧を「0V」、高電圧を「5V」する。   FIGS. 3A to 3C are plan views schematically showing charge transfer patterns in the case where there is a lot of light entering the solid-state imaging device 1 of FIG. Here, the low voltage applied to the transparent electrodes 6 to 11 is “0 V”, and the high voltage is “5 V”.

まず、図3(a)の「Time1」に示すように、P型注入領域4とN型注入領域5が縦方向に設けられており、最も上の1行目(行R1)の電荷転送用の横方向の透明電極6に駆動電圧「0V」が印加される場合に、P型注入領域4のポテンシャル電位が「0V」で、N型注入領域5のポテンシャル電位が「5V」になって深くなっている。このとき、上から2、3行目(行R2、3)の電荷転送用の透明電極7,8に駆動電圧「5V」が印加されるので、P型注入領域4のポテンシャル電位が「5V」で、N型注入領域5のポテンシャル電位が「10V」になってさらに深くなって信号電荷を蓄積することができる。よって、最も深い「10V」の透明電極7,8下のN型注入領域5(N型注入領域5a〜5c)に信号電荷が蓄積されて保持される。   First, as indicated by “Time 1” in FIG. 3A, the P-type implantation region 4 and the N-type implantation region 5 are provided in the vertical direction, and are used for charge transfer in the uppermost first row (row R1). When the drive voltage “0V” is applied to the transparent electrode 6 in the horizontal direction, the potential potential of the P-type implantation region 4 is “0V” and the potential potential of the N-type implantation region 5 is “5V”. It has become. At this time, since the drive voltage “5V” is applied to the transparent electrodes 7 and 8 for charge transfer in the second and third rows (rows R2 and 3) from the top, the potential potential of the P-type implantation region 4 is “5V”. Thus, the potential potential of the N-type implantation region 5 becomes “10 V” and becomes deeper and signal charges can be accumulated. Therefore, signal charges are accumulated and held in the N-type injection region 5 (N-type injection regions 5a to 5c) under the deepest "10V" transparent electrodes 7 and 8.

次に、図3(b)の「Time2」に示すように、最も上の1、2行目(行R1、2)の電荷転送用の透明電極6、7に駆動電圧「0V」が印加され、P型注入領域4のポテンシャル電位が「0V」で、N型注入領域5のポテンシャル電位が「5V」になる。このとき、上から3行目(行R3)の電荷転送用の透明電極8に駆動電圧「5V」が印加され、P型注入領域4のポテンシャル電位が「5V」で、N型注入領域5のポテンシャル電位が「10V」になっている。さらに、上から4、5行目(行R4、5)の電荷転送用の透明電極9,10に駆動電圧「0V」が印加されて、P型注入領域4のポテンシャル電位が「0V」で、N型注入領域5のポテンシャル電位が「5V」になっている。さらに、上から6行目(行R6)の電荷転送用の透明電極11に駆動電圧「5V」が印加され、P型注入領域4のポテンシャル電位が「5V」で、N型注入領域5のポテンシャル電位が「10V」になっている。     Next, as shown in “Time 2” of FIG. 3B, the drive voltage “0 V” is applied to the transparent electrodes 6 and 7 for charge transfer in the first and second rows (rows R1 and 2). The potential potential of the P-type implantation region 4 is “0V” and the potential potential of the N-type implantation region 5 is “5V”. At this time, the drive voltage “5V” is applied to the charge transfer transparent electrode 8 in the third row (row R3) from the top, the potential potential of the P-type implantation region 4 is “5V”, and the N-type implantation region 5 The potential potential is “10V”. Further, the drive voltage “0V” is applied to the transparent electrodes 9 and 10 for charge transfer in the fourth and fifth rows (rows R4 and 5) from the top, and the potential potential of the P-type implantation region 4 is “0V”. The potential potential of the N-type implantation region 5 is “5V”. Further, a driving voltage “5V” is applied to the transparent electrode 11 for charge transfer in the sixth row (row R6) from the top, the potential potential of the P-type implantation region 4 is “5V”, and the potential of the N-type implantation region 5 The potential is “10V”.

その後、図3(c)の「Time3」において、最も上の1行目(行R1)の電荷転送用の透明電極6に駆動電圧「5V」が印加され、P型注入領域4のポテンシャル電位が「5V」で、N型注入領域5のポテンシャル電位が「10V」になる。このとき、上から2行目(行R2)の電荷転送用の透明電極7に駆動電圧「0V」が印加され、P型注入領域4のポテンシャル電位が「0V」で、N型注入領域5のポテンシャル電位が「5V」になっている。さらに、上から3、4行目(行R3、4)の電荷転送用の透明電極8,9に駆動電圧「5V」が印加されて、P型注入領域4のポテンシャル電位が「5V」で、N型注入領域5のポテンシャル電位が「10V」になって深くなっている。   Thereafter, in “Time 3” of FIG. 3C, the drive voltage “5 V” is applied to the transparent electrode 6 for charge transfer in the uppermost row (row R1), and the potential potential of the P-type injection region 4 is At “5 V”, the potential potential of the N-type implantation region 5 becomes “10 V”. At this time, the drive voltage “0V” is applied to the transparent electrode 7 for charge transfer in the second row (row R2) from the top, the potential potential of the P-type implantation region 4 is “0V”, and the N-type implantation region 5 The potential potential is “5V”. Further, the driving voltage “5V” is applied to the charge transfer transparent electrodes 8 and 9 in the third and fourth rows (rows R3 and 4) from the top, and the potential potential of the P-type implantation region 4 is “5V”. The potential potential of the N-type implantation region 5 becomes “10 V” and becomes deeper.

これによって、「Time1」で透明電極7、8下のN型注入領域5に保持された信号電荷が、「Time3」では透明電極8、9下のN型注入領域5に電荷転送されて垂直方向に一つ電荷転送される。この電荷転送が、撮像領域全面の第1受光部〜第3受光部で垂直方向に行われて、これが繰り返され、垂直方向に電荷転送された信号電荷が次に水平方向に電荷転送されることになる。   As a result, the signal charge held in the N-type injection region 5 under the transparent electrodes 7 and 8 by “Time 1” is transferred to the N-type injection region 5 under the transparent electrodes 8 and 9 in “Time 3”, and the vertical direction One charge is transferred to each other. This charge transfer is performed in the vertical direction by the first light receiving unit to the third light receiving unit in the entire imaging region, and this is repeated, and then the signal charge transferred in the vertical direction is then transferred in the horizontal direction. become.

なお、図3(a)〜図3(c)では、入射光が多い場合の電荷転送パターンであって、駆動電圧「0V」および「5V」の各透明電極への印加パターンを垂直方向に順次ずらして行くことにより、「Time1」で2行の透明電極7、8下のN型注入領域5に保持された信号電荷を垂直方向に順次電荷転送する場合について説明したが、これに限らず、駆動電圧「0V」および「5V」の各透明電極への印加パターンを垂直方向に順次ずらして行くことにより、入射光が少ない場合の電荷転送パターンとして、「Time1」でより画素面積の広い3行の透明電極7〜9下のN型注入領域5に保持された信号電荷を垂直方向に順次電荷転送するようにしてもよいし、さらに、「Time1」でより画素面積の広い4行の透明電極7〜10下のN型注入領域5に保持された信号電荷を垂直方向に順次電荷転送するようにしてもよい。   3A to 3C are charge transfer patterns in the case where there is a large amount of incident light, and the application patterns of the drive voltages “0 V” and “5 V” to the respective transparent electrodes are sequentially arranged in the vertical direction. Although the case where the signal charges held in the N-type injection regions 5 under the two rows of transparent electrodes 7 and 8 are sequentially transferred in the vertical direction by shifting the timing is described, the present invention is not limited to this. By sequentially shifting the application patterns of the drive voltages “0V” and “5V” to the respective transparent electrodes in the vertical direction, as a charge transfer pattern in the case where the incident light is small, “Time 1” has three rows with a larger pixel area. The signal charges held in the N-type injection region 5 below the transparent electrodes 7 to 9 may be sequentially transferred in the vertical direction, and four rows of transparent electrodes having a larger pixel area with “Time 1”. 7-10 down May be sequentially charge transfer signal charges held in the mold injection region 5 in the vertical direction.

次に、液晶セルを組み合わした固体撮像素子1の製造方法について説明する。   Next, the manufacturing method of the solid-state image sensor 1 which combined the liquid crystal cell is demonstrated.

図4(a)〜図4(c)は、貼り合せSOIウエハの各事例について模式的に示す断面図である。図5(a)および図5(b)は、貼り合せSOIウエハの製造方法の事例1を模式的に示す断面図である。   FIG. 4A to FIG. 4C are cross-sectional views schematically showing each example of a bonded SOI wafer. FIGS. 5A and 5B are cross-sectional views schematically showing Example 1 of the method for manufacturing a bonded SOI wafer.

図5(a)に示すように、半導体基板21(または半導体層)の表面を熱酸化により透明絶縁層であるSiO膜22を形成し、その上にSi層(デバイス層)23aを貼り合せ、図5(b)に示すように、貼り合せたSi層23aを所定の厚さに研磨してSi層23とする。図4(a)に示すように、このSi層23に対して所定パターンにてP型不純物とN型不純物をそれぞれ所定の不純物濃度にイオン注入して、前述した第3受光部を構成する縦方向のP型注入領域4cとN型注入領域5cとを交互に横方向に配置させる。 As shown in FIG. 5A, the surface of the semiconductor substrate 21 (or semiconductor layer) is thermally oxidized to form a SiO 2 film 22 as a transparent insulating layer, and an Si layer (device layer) 23a is bonded thereon. As shown in FIG. 5B, the bonded Si layer 23 a is polished to a predetermined thickness to form the Si layer 23. As shown in FIG. 4A, P-type impurities and N-type impurities are ion-implanted into the Si layer 23 in a predetermined pattern to a predetermined impurity concentration, thereby forming the above-described third light receiving unit. Directional P-type implantation regions 4c and N-type implantation regions 5c are alternately arranged in the lateral direction.

また同様に、縦方向のP型注入領域4cとN型注入領域5cの表面を熱酸化によりSiO膜22を形成し、その上にSi層(デバイス層)23aを貼り合せ、貼り合せたSi層23aを所定の厚さに研磨してSi層23とする。図4(b)に示すように、このSi層23に対して、下側の縦方向のP型注入領域4cとN型注入領域5cのパターンと位置整合するように位置決めして、所定パターンでP型不純物とN型不純物をそれぞれ所定の不純物濃度でイオン注入して、前述した第2受光部を構成する縦方向のP型注入領域4bとN型注入領域5bとを交互に横方向に配置させる。 Similarly, the SiO 2 film 22 is formed by thermal oxidation on the surfaces of the P-type implantation region 4c and the N-type implantation region 5c in the vertical direction, and a Si layer (device layer) 23a is laminated thereon, and the bonded Si The layer 23a is polished to a predetermined thickness to form the Si layer 23. As shown in FIG. 4B, the Si layer 23 is positioned so as to be aligned with the patterns of the P-type implantation region 4c and the N-type implantation region 5c in the lower vertical direction. P-type impurities and N-type impurities are each ion-implanted at a predetermined impurity concentration, and the above-described vertical P-type implantation regions 4b and N-type implantation regions 5b constituting the second light receiving portion are alternately arranged in the lateral direction. Let

さらに同様に、縦方向のP型注入領域4bとN型注入領域5bの表面を熱酸化によりSiO膜22を形成し、その上にSi層(デバイス層)23aを貼り合せ、貼り合せたSi層23aを所定の厚さに研磨してSi層23とする。図4(c)に示すように、このSi層23に対して、下側の縦方向のP型注入領域4bとN型注入領域5bのパターンと位置が整合するように位置決めして、所定パターンでP型不純物とN型不純物をそれぞれ所定の不純物濃度でイオン注入して、前述した第1受光部を構成する縦方向のP型注入領域4aとN型注入領域5aとを交互に横方向に配置させる。 Further, similarly, the SiO 2 film 22 is formed by thermal oxidation on the surfaces of the P-type implantation region 4b and the N-type implantation region 5b in the vertical direction, and a Si layer (device layer) 23a is laminated thereon, and the bonded Si The layer 23a is polished to a predetermined thickness to form the Si layer 23. As shown in FIG. 4C, the Si layer 23 is positioned so that the positions of the P-type implantation region 4b and the N-type implantation region 5b in the lower vertical direction are aligned, and a predetermined pattern is obtained. Then, the P-type impurity and the N-type impurity are ion-implanted at a predetermined impurity concentration, and the vertical P-type implantation region 4a and the N-type implantation region 5a constituting the first light receiving portion described above are alternately laterally arranged. Arrange.

次に、前述した第1受光部を構成する縦方向のP型注入領域4aとN型注入領域5aの表面を熱酸化によりSiO膜3aを形成し、その上に、フォトリソ技術を用いて各横方向の透明電極6〜11を連続して形成する。 Next, the SiO 2 film 3a is formed on the surfaces of the P-type implantation region 4a and the N-type implantation region 5a in the vertical direction constituting the first light receiving portion described above by thermal oxidation, and each of them is formed by using a photolithography technique. The transparent electrodes 6 to 11 in the horizontal direction are continuously formed.

さらにその上に、偏光板12、透明電極13、液晶層14、透明電極15および偏光板16で構成された入射光透過/遮光制御手段としての液晶手段である液晶セルが貼り合わされる。これによって、液晶セルが組み合わされた本実施形態1の固体撮像素子1を製造することができる。   Further thereon, a liquid crystal cell, which is a liquid crystal means as an incident light transmission / light shielding control means, composed of a polarizing plate 12, a transparent electrode 13, a liquid crystal layer 14, a transparent electrode 15, and a polarizing plate 16 is bonded. As a result, the solid-state imaging device 1 of Embodiment 1 combined with a liquid crystal cell can be manufactured.

なお、図5(a)および図5(b)では、半導体基板21(または半導体層)の表面を熱酸化により透明絶縁層であるSiO膜22を形成し、その上にSi層(デバイス層)23aを貼り合せたが、これとは逆に、図6(a)および図6(b)のように、Si層(デバイス層)23aの表面を熱酸化により透明絶縁層であるSiO膜22を形成し、その下に半導体基板21(または半導体層)を貼り合わせてもよい。 5A and 5B, the surface of the semiconductor substrate 21 (or semiconductor layer) is thermally oxidized to form a SiO 2 film 22 as a transparent insulating layer, and an Si layer (device layer) is formed thereon. On the contrary, as shown in FIGS. 6A and 6B, the surface of the Si layer (device layer) 23a is thermally oxidized to form a SiO 2 film that is a transparent insulating layer. 22 may be formed, and a semiconductor substrate 21 (or a semiconductor layer) may be bonded thereto.

ここで、3層積層構造の第1受光部〜第3受光部において、混色はするが、信号処理によりR尊号、G信号およびB信号を得ることが可能である。この場合の信号処理について以下に詳細に説明する。   Here, in the first light receiving part to the third light receiving part having a three-layer structure, although the colors are mixed, it is possible to obtain the R honor, G signal, and B signal by signal processing. The signal processing in this case will be described in detail below.

3層積層構造の第1受光部〜第3受光部において、上から第1受光部〜第3受光部とし、第1受光部の膜厚をx1とし、第2受光部の膜厚をx2とし、第3受光部の膜厚をx3とする。入射する可視光

をR,G,Bの合成と考え、それぞれの初期値を

、吸収係数を

としたときの深さxでの各光量を、

とすると、次の式(1)が成立する。
In the first to third light receiving portions having a three-layer structure, the first light receiving portion to the third light receiving portion are arranged from the top, the film thickness of the first light receiving portion is x1, and the film thickness of the second light receiving portion is x2. The film thickness of the third light receiving portion is x3. Incident visible light

Is the composition of R, G, B, and the initial value of each

, Absorption coefficient

Each light quantity at depth x when

Then, the following formula (1) is established.

Figure 0005873661
Figure 0005873661

今、各層の信号量をJとすると、次の式(2)が成立する。   Now, assuming that the signal amount of each layer is J, the following equation (2) is established.

Figure 0005873661
Figure 0005873661

したがって、第1層目の信号量は、次の式(3)で現される。   Therefore, the signal amount of the first layer is expressed by the following equation (3).

Figure 0005873661
Figure 0005873661

第2層の信号量は、次の式(4)で現される。   The signal amount of the second layer is expressed by the following equation (4).

Figure 0005873661
Figure 0005873661

第3層の信号量は、次の式(5)で現される。   The signal amount of the third layer is expressed by the following equation (5).

Figure 0005873661
Figure 0005873661

ここで、各層の信号としてJiが得られる。この情報から入射する可視光のIi(R,G,B)の信号量を求める。   Here, Ji is obtained as a signal of each layer. From this information, the signal amount of incident light Ii (R, G, B) is obtained.

上式では、各波長の吸収係数と各層の膜厚は既知であることから、Iiの係数は全て求められる。   In the above equation, since the absorption coefficient of each wavelength and the film thickness of each layer are known, all the coefficients of Ii are obtained.

ここで層番号をiとして、次の式(6)で置き換える。   Here, the layer number is i, and is replaced by the following formula (6).

Figure 0005873661
Figure 0005873661

上記式(3)〜式(5)は式(7)となる。   The above formulas (3) to (5) become formula (7).

Figure 0005873661
Figure 0005873661

行列Aを次の式(8)とする。   The matrix A is represented by the following formula (8).

Figure 0005873661
Figure 0005873661

このように、行列Aを次の式(8)とし、ベクトルをブラケット表記すると、次の式(9)となる。   Thus, when the matrix A is expressed by the following equation (8) and the vector is represented in brackets, the following equation (9) is obtained.

Figure 0005873661
Figure 0005873661

したがって、式(10)となる。   Therefore, Expression (10) is obtained.

Figure 0005873661
Figure 0005873661

ここで、多層化に対して一般化(N次元化)すると、各波長に合わせた層で信号を得る場合、層Noをi、波長をλとすると上記式(1)および式(2)は次の式(1’)および式(2’)になる。   Here, when generalization (N-dimensionalization) with respect to multilayering is performed, when a signal is obtained in a layer matched to each wavelength, when layer No is i and wavelength is λ, the above formulas (1) and (2) are The following equations (1 ′) and (2 ′) are obtained.

Figure 0005873661
Figure 0005873661

上記式(6)は各波長λが層iにて吸収される量としてCを次式で再定義すると、次の式(6’)になる。   The above formula (6) becomes the following formula (6 ′) when C is redefined as the amount of each wavelength λ absorbed in the layer i by the following formula.

Figure 0005873661
Figure 0005873661

このとき、行列Aの成分は、連続量である波長λを離散量として扱う(層iに対応するλを決める)。上記式(8)は次の式(8’)になる。   At this time, the component of the matrix A handles the continuous wavelength λ as a discrete amount (determines λ corresponding to the layer i). The above equation (8) becomes the following equation (8 ').

Figure 0005873661
Figure 0005873661

このとき、式(9)および式(10)はN次元の場合での一般性を失わない。したがって、式(10)によって、入射する可視光のλ成分

が求まる。これによって、第1受光部〜第3受光部からの画素毎の各撮像信号からRGB信号を信号処理により得ることができる。
At this time, Formula (9) and Formula (10) do not lose generality in the case of N dimensions. Therefore, according to Equation (10), the λ component of incident visible light

Is obtained. Thereby, RGB signals can be obtained by signal processing from the respective imaging signals for each pixel from the first light receiving unit to the third light receiving unit.

以上により、本実施形態1によれば、半導体層または半導体基板に交互に一方向に隣接配置されたP型注入領域4およびN型注入領域5であって、被写体からの画像光を光電変換する複数層の光電変換部(3層のP型注入領域4a〜4cおよびN型注入領域5a〜5c)が、光電変換部とはバンドギャップの異なる透明層(SiO膜3a〜3d)をその各間に介在して積層され、一方向に直交する他方向にそれぞれ配置された3層のP型注入領域4およびN型注入領域5と、P型注入領域4およびN型注入領域5上に設けられた一方向の複数の電荷転送駆動用の透明電極6〜11と、複数の電荷転送駆動用の透明電極6〜11上に設けられ、入射光を透過または遮光制御する入射光透過/遮光制御手段とを有している。 As described above, according to the first embodiment, the P-type injection region 4 and the N-type injection region 5 alternately adjacent to the semiconductor layer or the semiconductor substrate in one direction, and photoelectrically convert the image light from the subject. A plurality of photoelectric conversion portions (three layers of P-type injection regions 4a to 4c and N-type injection regions 5a to 5c) are formed of transparent layers (SiO 2 films 3a to 3d) having different band gaps from the photoelectric conversion portions. Provided on three layers of P-type implantation region 4 and N-type implantation region 5, which are stacked in an intervening manner and arranged in the other direction orthogonal to one direction, and P-type implantation region 4 and N-type implantation region 5. A plurality of charge transfer driving transparent electrodes 6 to 11 in one direction and a plurality of charge transfer driving transparent electrodes 6 to 11 for transmitting or blocking incident light. Means.

これによって、次の(1)〜(8)の効果を得ることができる。   As a result, the following effects (1) to (8) can be obtained.

(1)多層のフォトダイオード部(第1受光部〜第3受光部)の構造から、カラーフィルタやその上のレンズを形成するオンチップ(OnChip)工程が不要である。1画素毎に多原色撮像が可能である。各色の容量を、透明電極6〜11に対する電圧印加制御や半導体層厚により変更できる。   (1) The on-chip (OnChip) process for forming a color filter and a lens thereon is unnecessary because of the structure of the multilayer photodiode section (first light receiving section to third light receiving section). Multi-primary color imaging is possible for each pixel. The capacity of each color can be changed by voltage application control to the transparent electrodes 6 to 11 and the semiconductor layer thickness.

(2)従来の構成(図11,12)では、PD部、垂直転送部、画素分離領域が必要であったが、本実施形態1では、垂直転送部と画素分離領域が不必要となり、その結果、受光部上の開効率が向上して感度特性が向上する。   (2) In the conventional configuration (FIGS. 11 and 12), the PD unit, the vertical transfer unit, and the pixel separation region are necessary. However, in the first embodiment, the vertical transfer unit and the pixel separation region are not necessary. As a result, the opening efficiency on the light receiving portion is improved and the sensitivity characteristics are improved.

(3)液晶層14のスイッチイング特性により、光を透過または遮断でき、フォトダイオード部(第1受光部〜第3受光部)と垂直転送部が一体となっており、原理上スミアが発生しない。   (3) The switching characteristic of the liquid crystal layer 14 allows light to be transmitted or blocked, and the photodiode portion (first light receiving portion to third light receiving portion) and the vertical transfer portion are integrated, and in principle, smear does not occur. .

(4)透明電極6〜11を用いることにより、単層電極での電荷転送が可能になった。   (4) Use of the transparent electrodes 6 to 11 enables charge transfer with a single-layer electrode.

(5)固体撮像素子1の画素部に必要な不純物イオン注入工程が縦方向一体となって単純なことから、白傷不良などの不良を低減でき、高歩留まりが期待できる。   (5) Since the impurity ion implantation process necessary for the pixel portion of the solid-state imaging device 1 is integrated in the vertical direction and is simple, defects such as white defects can be reduced, and high yield can be expected.

(6)垂直転送部への信号電荷の移動(読み出し)が不必要であり、その結果、透明電極6〜11の基準電圧が最低2つ(高電圧と低電圧)で済む。低電圧化によって低消費電力化を実現することができる。   (6) It is unnecessary to move (read out) the signal charge to the vertical transfer unit, and as a result, at least two reference voltages (high voltage and low voltage) are required for the transparent electrodes 6 to 11. Low power consumption can be realized by lowering the voltage.

(7)透明電極6〜11への印加電圧パターンが可変なため、画素サイズを自由に変更できる。   (7) Since the applied voltage pattern to the transparent electrodes 6 to 11 is variable, the pixel size can be freely changed.

(8)レンズレスで撮像を行うことができる。   (8) Imaging can be performed without a lens.

したがって、入射光を透過または遮光制御する入射光透過/遮光制御手段を設けたため、画素部の微細化に伴う受光感度特性の劣化およびスミア特性の劣化を抑制すると共に、遮光膜の形成プロセスがなく製造を簡略化することができ、かつ信号読み出し制御をも無くすことができることを前提として、被写体からの画像光を光電変換する複数層の光電変換部が、この光電変換部とはバンドギャップの異なる透明層をその各間に介在して積層されるため、コレステリック液晶に代えて多層化した複数層の受光部により複数の色信号を、1画素部で一括して同時に検出した1画素部毎の各層の信号電荷から得ると共に、静止画および動画のいずれであっても鮮明なフルカラー撮像を実現することができる。   Therefore, since the incident light transmission / shielding control means for transmitting or shielding the incident light is provided, the deterioration of the light receiving sensitivity characteristic and the smear characteristic due to the miniaturization of the pixel portion is suppressed, and there is no process for forming the light shielding film. A multi-layer photoelectric conversion unit that photoelectrically converts image light from a subject has a band gap different from that of the photoelectric conversion unit on the premise that manufacturing can be simplified and signal readout control can be eliminated. Since a transparent layer is interposed between each layer, a plurality of color signals are simultaneously detected in one pixel unit by a plurality of layers of light-receiving units instead of cholesteric liquid crystal, and are detected for each pixel unit. While obtaining from the signal charges of each layer, it is possible to realize clear full-color imaging for both still images and moving images.

(実施形態2)
本実施形態2では、上記実施形態1の場合よりも暗い場合でも1画素部の平面視面積を増やしかつ近赤外をも検出して、静止画および動画のいずれであっても鮮明なフルカラー撮像を実現する場合について事例的に説明する。
(Embodiment 2)
In the second embodiment, even when it is darker than in the first embodiment, the planar view area of one pixel unit is increased and the near infrared is detected, so that clear full-color imaging is possible for both still images and moving images. A case will be described as an example.

図7は、本発明の実施形態2における固体撮像素子の要部構成例を示す平面図である。図8は、図7の固体撮像素子のA−B線縦断面図である。なお、図7および図8では、図1および図2の構成部材と同一の作用効果を奏する構成部材には同一の番号を付してその説明を省略する。   FIG. 7 is a plan view showing a configuration example of a main part of a solid-state imaging device according to Embodiment 2 of the present invention. FIG. 8 is a longitudinal sectional view taken along line AB of the solid-state imaging device of FIG. 7 and 8, the same reference numerals are given to the constituent members having the same effects as the constituent members of FIGS. 1 and 2, and the description thereof is omitted.

図7および図8において、本実施形態2の固体撮像装置1Aにおいて、上記実施形態1の固体撮像装置1の場合と異なるのは、図1の1列のN型注入領域5が、図7の固体撮像素子1Aでは、2列のN型注入領域5,5になって上面から見て、左右の幅を広く取っていることと、第4受光部を更に設けて4層積層構造にした点が異なっている。この場合、2列のN型注入領域5,5の間は薄いN型拡散層になっている。P型注入領域4と2列のN型注入領域5,5とが半導体層に交互に一方向に隣接配置されている。両側のP型注入領域4がその間の2つ分のN型領域5,5を分離することができる。前述したように撮像対象が更に暗い場合に、2列のN型注入領域5,5と例えば3行の透明電極下のN型注入領域5,5とを平面視で1画素部として組み合わせて画素サイズを大きく取ることができる。要するに、N型領域を大きく(上面から見て、左右の幅を広く取る)することと、透明電極を2行から3行(または4行またはそれ以上)など増やして電圧を印加すれば、平面視画素サイズがより大きく取ることができる。   7 and 8, the solid-state imaging device 1A according to the second embodiment is different from the solid-state imaging device 1 according to the first embodiment in that one column of the N-type injection region 5 in FIG. In the solid-state imaging device 1A, two rows of N-type injection regions 5 and 5 are formed, and the left and right widths are wide as viewed from above, and a fourth light receiving portion is further provided to form a four-layer stacked structure. Is different. In this case, a thin N-type diffusion layer is formed between the two rows of N-type implantation regions 5 and 5. P-type implantation regions 4 and two rows of N-type implantation regions 5 and 5 are alternately arranged adjacent to one direction in the semiconductor layer. The P-type implantation regions 4 on both sides can separate the two N-type regions 5 and 5 therebetween. As described above, when the object to be imaged is darker, two columns of N-type injection regions 5 and 5 and, for example, three rows of N-type injection regions 5 and 5 under the transparent electrode are combined as one pixel portion in plan view to form a pixel. Large size can be taken. In short, if the voltage is applied by enlarging the N-type region (widening the left and right widths when viewed from above) and increasing the number of transparent electrodes from 2 to 3 rows (or 4 rows or more), a plane is obtained. The viewing pixel size can be made larger.

即ち、半導体基板2(または半導体層)上に透明絶縁層であるSiO膜3eを介して、第4受光部を構成する縦方向のP型注入領域4dと2列のN型注入領域5dとが交互に横方向に隣接配置されている。これらのP型注入領域4dおよび2列のN型注入領域5d上に透明絶縁層であるSiO膜3dを介して、第3受光部を構成する縦方向のP型注入領域4cと2列のN型注入領域5cとが交互に横方向に配置されている。これらのP型注入領域4c,4dおよび2列のN型注入領域5c,5dはそれぞれ間にSiO膜3dを介して上下に配置されている。これらのP型注入領域4cおよびN型注入領域5c上に透明絶縁層であるSiO膜3cを介して、第2受光部を構成する縦方向のP型注入領域4bと2列のN型注入領域5bとが交互に横方向に隣接配置されている。これらのP型注入領域4b,4cおよび2列のN型注入領域5b,5cはそれぞれ間にSiO膜3cを介して上下に配置されている。これらのP型注入領域4bおよびN型注入領域5b上に透明絶縁層であるSiO膜3bを介して、第1受光部を構成する縦方向のP型注入領域4aと2列のN型注入領域5aとが交互に横方向に隣接配置されている。これらのP型注入領域4a、4bおよび2列のN型注入領域5a、5bはそれぞれ間にSiO膜3bを介して上下に配置されている。これらのP型注入領域4a〜4dと2列のN型注入領域5a〜5dはそれぞれ、平面視で縦方向に一致するように配置されている。 That is, the vertical P-type injection region 4d and the two rows of N-type injection regions 5d constituting the fourth light receiving portion are disposed on the semiconductor substrate 2 (or the semiconductor layer) via the SiO 2 film 3e which is a transparent insulating layer. Are alternately arranged in the horizontal direction. A vertical P-type implantation region 4c constituting the third light-receiving portion and two rows are arranged on the P-type implantation region 4d and the two rows of N-type implantation regions 5d via the SiO 2 film 3d which is a transparent insulating layer. N-type implantation regions 5c are alternately arranged in the lateral direction. These P-type implantation regions 4c and 4d and the two rows of N-type implantation regions 5c and 5d are arranged above and below via the SiO 2 film 3d. A vertical P-type injection region 4b constituting the second light receiving part and two rows of N-type injections are formed on the P-type injection region 4c and the N-type injection region 5c via the SiO 2 film 3c which is a transparent insulating layer. The regions 5b are alternately arranged adjacent to each other in the horizontal direction. These P-type implantation regions 4b and 4c and the two rows of N-type implantation regions 5b and 5c are arranged vertically with an SiO 2 film 3c interposed therebetween. A vertical P-type injection region 4a constituting the first light-receiving portion and two rows of N-type injections are formed on the P-type injection region 4b and the N-type injection region 5b via the SiO 2 film 3b which is a transparent insulating layer. The regions 5a are alternately arranged adjacent to each other in the horizontal direction. These P-type implantation regions 4a and 4b and the two rows of N-type implantation regions 5a and 5b are arranged above and below with an SiO 2 film 3b interposed therebetween. These P-type implantation regions 4a to 4d and two rows of N-type implantation regions 5a to 5d are arranged so as to coincide with each other in the vertical direction in plan view.

P型注入領域4およびN型注入領域5で構成される第1受光部〜第4受光部がそれぞれ透明絶縁層であるSiO膜をそれぞれ介して4層の多層積層構造になっている。この4層の多層積層構造は、撮像素子のカラーフィルタレスを実現するため、各受光部(フォトダイオード部)を構成する4層のSi層(P型注入領域およびN型注入領域)をそれぞれSiO膜3a〜3eの各透明膜で上下に挟み込んだ構造である。SiO膜3a〜3eのバンドギャップがSi層よりも大きいため4層の各Si層に光電変換された信号電荷を閉じ込めることができる。このように、バンドギャップの異なる透明層(ここではSiO膜とSi層)を組み合わせ4層の第1受光部〜第4受光部(光電変換部)からなっている。つまり、一導電型注入領域および他導電型注入領域は、P型注入領域およびN型注入領域で構成される複数層(ここでは4層)の光電変換部がそれぞれ、各間に光電変換部とはバンドギャップの異なる透明層(SiO膜)を介在させた多層積層構造になっている。 The first light receiving portion to the fourth light receiving portion configured by the P-type injection region 4 and the N-type injection region 5 each have a four-layer multilayer structure through respective SiO 2 films that are transparent insulating layers. In order to realize the color filter-less imaging device, this four-layer multi-layer structure has four Si layers (P-type injection region and N-type injection region) constituting each light receiving portion (photodiode portion). In this structure, the two films 3a to 3e are sandwiched between upper and lower transparent films. Since the band gap of the SiO 2 films 3a to 3e is larger than that of the Si layer, the signal charges photoelectrically converted in each of the four Si layers can be confined. As described above, the transparent layer (here, SiO 2 film and Si layer) having different band gaps is combined to form four layers of the first light receiving part to the fourth light receiving part (photoelectric conversion part). In other words, the one-conductivity-type injection region and the other-conductivity-type injection region are each composed of a plurality of layers (here, four layers) of photoelectric conversion units each composed of a P-type injection region and an N-type injection region. Has a multilayer laminated structure in which transparent layers (SiO 2 films) having different band gaps are interposed.

SiO膜3a〜3eおよび4層のSi層は可視光が透過しかつ、4層のSi層はその深さに応じた光の波長による吸収係数の違いから、4層のSi層は各色の受光部(ダイオード部)とすることができる。例えば第1受光部を構成する縦方向のP型注入領域4aと2列のN型注入領域5aは、最上層であり光の波長が最も短い青色光(B)を主に吸収して光電変換し、第2受光部を構成する縦方向のP型注入領域4bと2列のN型注入領域5bは、中間層であり光の波長が中間の緑色光(G)を主に吸収して光電変換し、第3受光部を構成する縦方向のP型注入領域4cと2列のN型注入領域5cは、最下層であり光の波長が長い赤色光(R)を主に吸収して光電変換し、第4受光部を構成する一方向のP型注入領域4dと2列のN型注入領域5dにおける光電変換部は、光の波長が最も長い近赤外光を吸収して光電変換するようになっている。このように、光電変換部である第1受光部〜第4受光部の多層化による多原色(ここでは三原色のRGBおよび近赤外)のフルカラー撮像を各画素毎に一括して同時に行うことができる。 The SiO 2 films 3a to 3e and the four Si layers transmit visible light, and the four Si layers have different absorption coefficients depending on the wavelength of light according to their depths. It can be set as a light receiving part (diode part). For example, the vertical P-type injection region 4a and the two rows of N-type injection regions 5a constituting the first light receiving portion are mainly the uppermost layer and absorb blue light (B) having the shortest wavelength of light to perform photoelectric conversion. The vertical P-type injection region 4b and the two rows of N-type injection regions 5b constituting the second light receiving unit are intermediate layers, and mainly absorb green light (G) having an intermediate wavelength of light, and photoelectrically The vertical P-type injection region 4c and the two rows of N-type injection regions 5c constituting the third light receiving portion are converted into photoelectric layers by mainly absorbing red light (R), which is the lowest layer and has a long wavelength of light. The photoelectric conversion units in the unidirectional P-type injection region 4d and the two rows of N-type injection regions 5d constituting the fourth light receiving unit absorb and absorb near-infrared light having the longest wavelength of light to perform photoelectric conversion. It is like that. As described above, full-color imaging of multi-primary colors (in this case, the three primary colors RGB and near-infrared) by multilayering the first to fourth light-receiving units, which are photoelectric conversion units, can be simultaneously performed for each pixel at once. it can.

図8の偏光板12、透明電極13、液晶層14、透明電極15および偏光板16から入射光透過/遮光制御手段としての液晶手段である液晶セルが構成されており、この液晶セルと組み合わせて、被写体からの画像光を光電変換して撮像する第1受光部〜第4受光部の4層積層構造を持つ固体撮像素子1Aが構成されている。この液晶セルは、そのスイッチイング特性により、露光時に入射光を透過し、電荷転送時に入射光を遮蔽するように機能する。   The polarizing plate 12, the transparent electrode 13, the liquid crystal layer 14, the transparent electrode 15 and the polarizing plate 16 of FIG. 8 constitute a liquid crystal cell as liquid crystal means as incident light transmission / light shielding control means, and combined with this liquid crystal cell. A solid-state imaging device 1A having a four-layer stacked structure of a first light receiving portion to a fourth light receiving portion that captures an image by photoelectrically converting image light from a subject is configured. Due to its switching characteristics, this liquid crystal cell functions to transmit incident light during exposure and to block incident light during charge transfer.

ここで、本実施形態2の固体撮像素子1Aの電荷転送方法の一例について図9(a)〜図9(c)を用いて詳細に説明する。   Here, an example of the charge transfer method of the solid-state imaging device 1A of the second embodiment will be described in detail with reference to FIGS. 9A to 9C.

図9(a)〜図9(c)は、図7の固体撮像素子1Aにおいて2列3行に受光領域を拡張した場合のCCD転送事例を示す平面図である。ここで、透明電極6〜11に印加する低電圧を「0V」、高電圧を「5V」する。   FIG. 9A to FIG. 9C are plan views showing CCD transfer examples in the case where the light receiving area is expanded to 2 columns and 3 rows in the solid-state imaging device 1A of FIG. Here, the low voltage applied to the transparent electrodes 6 to 11 is “0 V”, and the high voltage is “5 V”.

図9(a)の「Time1」に示すように、P型注入領域4と2列のN型注入領域5が縦方向に設けられており、最も上の行R1の電荷転送用の横方向の透明電極6(R1)に駆動電圧「0V」が印加された場合に、最も上の行R1のP型注入領域4のポテンシャル電位が「0V」で、2列のN型注入領域5のポテンシャル電位が「5V」になって深くなている。このとき、上から2〜4行目(R2〜R4)の電荷転送用の透明電極7〜9に駆動電圧「5V」が印加されるので、上から2〜4行目(R2〜R4)のP型注入領域4のポテンシャル電位が「5V」で、2列のN型注入領域5のポテンシャル電位が「10V」になってさらに深くなって信号電荷を蓄積することができる。よって、最も深い「10V」の透明電極7〜9下の2列のN型注入領域5に信号電荷が蓄積されて保持される。   As shown in “Time 1” of FIG. 9A, a P-type implantation region 4 and two columns of N-type implantation regions 5 are provided in the vertical direction, and the horizontal direction for charge transfer in the uppermost row R1 is provided. When the drive voltage “0V” is applied to the transparent electrode 6 (R1), the potential potential of the P-type implantation region 4 in the uppermost row R1 is “0V”, and the potential potential of the N-type implantation regions 5 in the two columns Becomes “5V” and deepens. At this time, since the drive voltage “5 V” is applied to the transparent electrodes 7 to 9 for charge transfer in the second to fourth rows (R2 to R4) from the top, the second to fourth rows (R2 to R4) from the top When the potential potential of the P-type implantation region 4 is “5V” and the potential potential of the two rows of N-type implantation regions 5 becomes “10V”, the signal charge can be further deepened and accumulated. Therefore, signal charges are accumulated and held in the two rows of N-type injection regions 5 below the deepest “10 V” transparent electrodes 7 to 9.

次に、図9(b)の「Time2」に示すように、最も上の行R1と2行目の行R2の電荷転送用の透明電極6、7に駆動電圧「0V」が印加され、最も上の行R1と2行目の行R2のP型注入領域4のポテンシャル電位が「0V」で、2列のN型注入領域5のポテンシャル電位が「5V」になる。このとき、上から3、4行目の行R3、4の電荷転送用の透明電極8、9に駆動電圧「5V」が印加され、上から3、4行目の行R3、4のP型注入領域4のポテンシャル電位が「5V」で、2列のN型注入領域5のポテンシャル電位が「10V」になっている。さらに、上から5、6行目の行R5およびR6の電荷転送用の透明電極10,11に駆動電圧「0V」が印加されて、上から5、6行目の行R5およびR6のP型注入領域4のポテンシャル電位が「0V」で、2列のN型注入領域5のポテンシャル電位が「5V」になっている。   Next, as shown in “Time 2” of FIG. 9B, the driving voltage “0 V” is applied to the transparent electrodes 6 and 7 for charge transfer in the uppermost row R1 and the second row R2, The potential potential of the P-type implantation region 4 in the upper row R1 and the second row R2 is “0V”, and the potential potential of the N-type implantation region 5 in two columns is “5V”. At this time, the drive voltage “5V” is applied to the charge transfer transparent electrodes 8 and 9 in the third and fourth rows R3 and 4 from the top, and the P-type in the third and fourth rows R3 and 4 from the top. The potential potential of the implantation region 4 is “5V”, and the potential potential of the two rows of N-type implantation regions 5 is “10V”. Further, the drive voltage “0 V” is applied to the charge transfer transparent electrodes 10 and 11 in the fifth and sixth rows R5 and R6 from the top, and the P-type in the rows R5 and R6 in the fifth and sixth rows from the top. The potential potential of the implantation region 4 is “0V”, and the potential potential of the two rows of N-type implantation regions 5 is “5V”.

その後、図9(c)の「Time3」に示すように、最も上の行R1の電荷転送用の透明電極6に駆動電圧「5V」が印加され、最も上の行R1のP型注入領域4のポテンシャル電位が「5V」で、2列のN型注入領域5のポテンシャル電位が「10V」になる。このとき、上から2行目(R2)の電荷転送用の透明電極7に駆動電圧「0V」が印加され、上から2行目の行R2のP型注入領域4のポテンシャル電位が「0V」で、2列のN型注入領域5のポテンシャル電位が「5V」になっている。さらに、上から3〜5行目の行R3〜R5の電荷転送用の透明電極8〜10に駆動電圧「5V」が印加されて、上から3〜5行目の行R3〜R5のP型注入領域4のポテンシャル電位が「5V」で、2列のN型注入領域5のポテンシャル電位が「10V」になって深くなている。よって、透明電極8〜10下の2列のN型注入領域5に保持された信号電荷が、透明電極8〜10下の2列のN型注入領域5に保持されて垂直方向に一一コマ電荷転送されることになる。この電荷転送が、撮像領域全面で垂直方向に行われて、これが繰り返され、垂直方向に電荷転送された信号電荷が水平方向に電荷転送されることになる。   Thereafter, as shown in “Time 3” of FIG. 9C, the drive voltage “5 V” is applied to the transparent electrode 6 for charge transfer in the uppermost row R1, and the P-type injection region 4 in the uppermost row R1. The potential potential of the N-type implantation regions 5 in the two rows is “10V”. At this time, the drive voltage “0 V” is applied to the transparent electrode 7 for charge transfer in the second row (R2) from the top, and the potential potential of the P-type injection region 4 in the second row R2 from the top is “0 V”. Thus, the potential potential of the two rows of N-type implantation regions 5 is “5V”. Further, a drive voltage “5V” is applied to the charge transfer transparent electrodes 8 to 10 in the third to fifth rows R3 to R5 from the top, so that the P type of the third to fifth rows R3 to R5 is applied. The potential potential of the implantation region 4 is “5V”, and the potential potential of the two rows of N-type implantation regions 5 is “10V”, which is deeper. Therefore, the signal charges held in the two rows of the N-type injection regions 5 under the transparent electrodes 8 to 10 are held in the two rows of the N-type injection regions 5 under the transparent electrodes 8 to 10 and one frame in the vertical direction. Charges are transferred. This charge transfer is performed in the vertical direction on the entire surface of the imaging region, and this is repeated, so that the signal charge transferred in the vertical direction is transferred in the horizontal direction.

電荷転送用の単層の透明電極6〜11およびその下の4層のP型注入領域4a〜4dとN型注入領域5a〜5dが繰り返し配設されて、各画素毎の信号電荷が複数列を垂直方向に電荷転送され、その後、水平方向に、電荷転送用の単層の透明電極6〜11およびその下の4層のP型注入領域4a〜4dとN型注入領域5a〜5dが繰り返し配設されて水平方向に電荷転送される。その後、4層に対応した各電荷検出部により電荷検出されて4層分の信号電荷がそれぞれ増幅されて各撮像信号として出力される。前述したが、4層分の各撮像信号は所定の信号処理部により信号処理されて各画素毎のRGB信号および近赤外信号を得ることができる。   Single-layer transparent electrodes 6 to 11 for charge transfer and four layers of P-type injection regions 4a to 4d and N-type injection regions 5a to 5d thereunder are repeatedly arranged, and a plurality of signal charges for each pixel are arranged. Are transferred in the vertical direction, and then, in the horizontal direction, single-layer transparent electrodes 6 to 11 for charge transfer and four layers of P-type injection regions 4a to 4d and N-type injection regions 5a to 5d thereunder are repeated. The charge is transferred in the horizontal direction. Thereafter, charges are detected by the charge detection units corresponding to the four layers, and the signal charges for the four layers are amplified and output as image pickup signals. As described above, the image signals for the four layers are subjected to signal processing by a predetermined signal processing unit, and RGB signals and near-infrared signals for each pixel can be obtained.

以上により、本実施形態2によれば、上記実施形態1の場合と同様の効果を得ることができる。   As described above, according to the second embodiment, the same effect as in the first embodiment can be obtained.

特に、本実施形態2によれば、上記実施形態1の場合よりも暗い場合でも1画素部の平面視面積を増やしかつ近赤外をも検出して、静止画および動画のいずれであっても鮮明なフルカラー撮像を実現することができる。   In particular, according to the second embodiment, even when the image is darker than in the first embodiment, the planar view area of one pixel unit is increased and the near infrared is detected, and either a still image or a moving image is detected. Clear full-color imaging can be realized.

(実施形態3)
本実施形態3では、電荷転送用の透明電極が照射面側とは反対側に存在する裏面照射の場合について説明する。
(Embodiment 3)
In the third embodiment, a case of backside illumination in which a transparent electrode for charge transfer exists on the side opposite to the irradiated surface side will be described.

図15は、本発明の実施形態3における固体撮像素子の要部構成例を示す断面図である。なお、図15では、図2の構成部材と同一の作用効果を奏する構成部材には同一の番号を付してその説明を省略する。   FIG. 15 is a cross-sectional view illustrating a configuration example of a main part of a solid-state imaging device according to Embodiment 3 of the present invention. In FIG. 15, the same reference numerals are given to the constituent members having the same effects as the constituent members in FIG. 2, and the description thereof is omitted.

図15に示すように、裏面照射の固体撮像素子1Bは、半導体層(または半導体基板)に交互に一方向に隣接配置されたP型注入領域4およびN型注入領域5であって、被写体からの画像光を光電変換する複数層(ここでは3層)の光電変換部が、この光電変換部とはバンドギャップの異なる透明層(SiO膜3a〜3e)をその各間に介在させて積層され、一方向に直交する他方向にそれぞれ配置された3層のP型注入領域4a〜4cおよびN型注入領域5a〜5cと、P型注入領域4cおよびN型注入領域5c上に透明層(SiO膜3e)を介して設けられた一方向の複数の電荷転送駆動用の透明電極6〜11と、P型注入領域4aおよびN型注入領域5a上に透明層(SiO膜3a)を介して入射光を透過または遮光制御する入射光透過/遮光制御手段としての液晶セルとを有している。 As shown in FIG. 15, the back-illuminated solid-state imaging device 1B includes P-type injection regions 4 and N-type injection regions 5 that are alternately arranged adjacent to a semiconductor layer (or a semiconductor substrate) in one direction. A plurality of layers (here, three layers) of photoelectric conversion portions that photoelectrically convert the image light are laminated with transparent layers (SiO 2 films 3a to 3e) having different band gaps from the photoelectric conversion portions. And three layers of P-type implantation regions 4a to 4c and N-type implantation regions 5a to 5c respectively disposed in the other direction orthogonal to one direction, and a transparent layer on the P-type implantation region 4c and the N-type implantation region 5c ( A transparent layer (SiO 2 film 3a) is formed on the plurality of unidirectional charge transfer driving transparent electrodes 6 to 11 provided via the SiO 2 film 3e) and the P-type injection region 4a and the N-type injection region 5a. Controls transmission or blocking of incident light via And a liquid crystal cell as Shako transmission / light shielding control unit.

液晶セルは、横方向の偏光を通す偏光板12、液晶制御用の下側の透明電極13、ツイストネマテック(TN)またはスーパーツイストネマテック(STN)の液晶材料などからなる液晶層14、液晶制御用の上側の透明電極15、縦方向の偏光を通す偏光板16をこの順に積層する。なお、液晶材料としては、偏光板12、16を用いずに、ツイストネマテック(TN)やスーパーツイストネマテック(STN)以外のシャッタ機能に用いる液晶材料であって、動作速度の速い液晶材料を選定して用いることもできる。このように、入射光を受光する第1受光部〜第3受光部からなるSi層の3層積層構造の上部に液晶セルによるシャッタ機構を導入しかつ、電荷転送用の透明電極6〜11が照射面側とは反対側に存在する裏面照射により、第1受光部〜第3受光部の開口サイズを、従来の遮光膜の開口サイズに比べて格段に向上させ、受光感度特性の改善とスミア特性の改善を図ることが可能となる。この場合、透明電極6〜11は、入射光を遮断してもよく透明電極でなくてもよい。   The liquid crystal cell includes a polarizing plate 12 that transmits laterally polarized light, a lower transparent electrode 13 for liquid crystal control, a liquid crystal layer 14 made of a twisted nematic (TN) or super twisted nematic (STN) liquid crystal material, and the like. The upper transparent electrode 15 for control and the polarizing plate 16 that passes the polarized light in the vertical direction are laminated in this order. As the liquid crystal material, a liquid crystal material that is used for a shutter function other than Twist Nematic (TN) or Super Twist Nematic (STN) without using the polarizing plates 12 and 16 and has a high operating speed is used. It can also be selected and used. In this way, a shutter mechanism using a liquid crystal cell is introduced on the upper part of the three-layered structure of the Si layer composed of the first light receiving part to the third light receiving part for receiving incident light, and the transparent electrodes 6 to 11 for charge transfer are provided. By the backside irradiation existing on the side opposite to the irradiation surface side, the opening size of the first light receiving part to the third light receiving part is remarkably improved as compared with the opening size of the conventional light shielding film, and the light receiving sensitivity characteristic is improved and smear is achieved. It is possible to improve the characteristics. In this case, the transparent electrodes 6 to 11 may block incident light or may not be transparent electrodes.

本実施形態3の固体撮像素子1Bによれば、電荷転送用の透明電極6〜11が照射面側とは反対側に存在するため、P型注入領域4aおよびN型注入領域5aに光入射させるのに、液晶セルを通過した入射光は上記実施形態1,2のように透明電極6〜11を通過する必要ななく、その分、入射光の利用効率がよくなる。   According to the solid-state imaging device 1B of the third embodiment, since the charge transfer transparent electrodes 6 to 11 exist on the opposite side to the irradiation surface side, light is incident on the P-type injection region 4a and the N-type injection region 5a. However, the incident light that has passed through the liquid crystal cell does not need to pass through the transparent electrodes 6 to 11 as in the first and second embodiments, and the use efficiency of the incident light is improved accordingly.

なお、本実施形態3では特に説明しなかったが、間にSiO膜が介在した3層のP型注入領域4a〜4cおよびN型注入領域5a〜5cの製造方法や、透明電極6〜11による電荷転送方法について上記実施形態1,2と同様である。要するに、電荷転送用の透明電極6〜11が、P型注入領域4およびN型注入領域5の照射面側とは反対側に位置している以外は上記実施形態1,2と同様である。 Although not specifically described in the third embodiment, a method of manufacturing three layers of P-type implantation regions 4a to 4c and N-type implantation regions 5a to 5c with an SiO 2 film interposed therebetween, and transparent electrodes 6 to 11 The charge transfer method is the same as in the first and second embodiments. In short, the present embodiment is the same as Embodiments 1 and 2 except that the transparent electrodes 6 to 11 for charge transfer are located on the opposite side of the irradiation surface side of the P-type injection region 4 and the N-type injection region 5.

(実施形態4)
図10は、本発明の実施形態4として、本発明の実施形態1〜3の固体撮像素子1または1Aからの撮像信号を信号処理する固体撮像装置を撮像部に用いた電子情報機器の概略構成例を示すブロック図である。
(Embodiment 4)
FIG. 10 shows a schematic configuration of an electronic information device using, as an imaging unit, a solid-state imaging device that performs signal processing on an imaging signal from the solid-state imaging device 1 or 1A according to Embodiments 1 to 3 of the present invention as Embodiment 4 of the present invention. It is a block diagram which shows an example.

図10において、本実施形態4の電子情報機器90は、上記実施形態1〜3の固体撮像素子1、1Aおよび1Bのいずれかからの撮像信号に対して所定の信号処理を行ってカラー画像信号を得る固体撮像装置91と、この固体撮像装置91からのカラー画像信号を記録用に所定の信号処理した後にデータ記録可能とする記録メディアなどのメモリ部92と、この固体撮像装置91からのカラー画像信号を表示用に所定の信号処理した後に液晶表示画面などの表示画面上に表示可能とする液晶表示装置などの表示部93と、この固体撮像装置91からのカラー画像信号を通信用に所定の信号処理をした後に通信処理可能とする送受信装置などの通信部94と、この固体撮像装置91からのカラー画像信号を印刷用に所定の印刷信号処理をした後に印刷処理可能とするプリンタなどの画像出力部95とを有している。なお、この電子情報機器90として、これに限らず、固体撮像装置91の他に、メモリ部92と、表示部93と、通信部94と、プリンタなどの画像出力部95とのうちの少なくともいずれかを有していてもよい。   In FIG. 10, the electronic information device 90 according to the fourth embodiment performs predetermined signal processing on the imaging signal from any one of the solid-state imaging devices 1, 1 </ b> A, and 1 </ b> B according to the first to third embodiments to obtain a color image signal. A solid-state image pickup device 91 that obtains the image, a memory unit 92 such as a recording medium that can record data after a predetermined signal processing is performed on the color image signal from the solid-state image pickup device 91, and the color from the solid-state image pickup device 91 A display unit 93 such as a liquid crystal display device that can display an image signal on a display screen such as a liquid crystal display screen after performing predetermined signal processing for display, and a color image signal from the solid-state imaging device 91 for communication. After performing the predetermined print signal processing for printing the color image signal from the solid-state imaging device 91 and the communication unit 94 such as a transmission / reception device that can perform communication processing after the signal processing of And an image output unit 95 such as a printer which allows printing process. The electronic information device 90 is not limited to this, but in addition to the solid-state imaging device 91, at least one of a memory unit 92, a display unit 93, a communication unit 94, and an image output unit 95 such as a printer. You may have.

この電子情報機器90としては、前述したように例えばデジタルビデオカメラ、デジタルスチルカメラなどのデジタルカメラや、監視カメラ、ドアホンカメラ、車載用後方監視カメラなどの車載用カメラおよびテレビジョン電話用カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、カメラ付き携帯電話装置および携帯端末装置(PDA)などの画像入力デバイスを有した電子機器が考えられる。   As described above, the electronic information device 90 includes, for example, a digital camera such as a digital video camera and a digital still camera, an in-vehicle camera such as a surveillance camera, a door phone camera, and an in-vehicle rear surveillance camera, and a video phone camera. An electronic device having an image input device such as an image input camera, a scanner device, a facsimile device, a camera-equipped mobile phone device, and a portable terminal device (PDA) is conceivable.

したがって、本実施形態4によれば、この固体撮像装置91からのカラー画像信号に基づいて、これを表示画面上に良好に表示したり、これを紙面にて画像出力部95により良好にプリントアウト(印刷)したり、これを通信データとして有線または無線にて良好に通信したり、これをメモリ部92に所定のデータ圧縮処理を行って良好に記憶したり、各種データ処理を良好に行うことができる。   Therefore, according to the fourth embodiment, on the basis of the color image signal from the solid-state imaging device 91, the image is displayed on the display screen, or the image is output by the image output unit 95 on the paper. (Printing), communicating this as communication data in a wired or wireless manner, performing a predetermined data compression process in the memory unit 92 and storing it in a good manner, or performing various data processings satisfactorily Can do.

なお、本実施形態1〜3では、光電変換部を構成する半導体層(または半導体基板)がシリコン層(またはシリコン基板)であり、透明層が二酸化シリコン層である場合について説明したが、これに限らず、光電変換部を構成する半導体層(または半導体基板)がゲルマニュウム層(またはゲルマニュウム基板)であり、透明層が二酸化シリコン層であってもよい。要するに、半導体層(または半導体基板)が可視光または近赤外まで受光できるバンドギャップをもつ半導体(例えばシリコンまたはゲルマニュウムなど)であり、透明層が可視光を透過するバンドギャップをもつ二酸化シリコン層などである。   In the first to third embodiments, the case where the semiconductor layer (or semiconductor substrate) constituting the photoelectric conversion unit is a silicon layer (or silicon substrate) and the transparent layer is a silicon dioxide layer has been described. The semiconductor layer (or semiconductor substrate) constituting the photoelectric conversion unit is not limited to a germanium layer (or germanium substrate), and the transparent layer may be a silicon dioxide layer. In short, a semiconductor layer (or a semiconductor substrate) is a semiconductor (for example, silicon or germanium) having a band gap that can receive visible light or near infrared, and a transparent layer has a band gap that transmits visible light. It is.

なお、本実施形態1〜3では、特に詳細には説明しなかったが、高電圧の電荷転送駆動用の透明電極6〜11の印加位置を一または複数に印加することにより、画素部毎の信号電荷を各光電変換部で保持する平面視画素露光サイズが制御可能とされており、画素露光サイズは、他方向の一導電型注入領域または他導電型注入領域のn(nは自然数)列と、一方向の電荷転送駆動用の透明電極のm(mは自然数)行の隣接半導体領域を1画素部として組み合わせている。高電圧は複数の高電圧を有して、半導体層または半導体基板のポテンシャ電位が電荷転送方向に順次深くなるように半導体層または半導体基板に高電圧を付与するようにしてもよい。この場合の半導体層または半導体基板は、導電型がN型半導体、P型半導体および真性半導体の少なくともいずれかである。   Although not described in detail in Embodiments 1 to 3, by applying one or a plurality of application positions of the transparent electrodes 6 to 11 for high-voltage charge transfer driving, The planar pixel exposure size for holding the signal charge in each photoelectric conversion unit can be controlled, and the pixel exposure size is one-conductivity type injection region in another direction or n (n is a natural number) column in the other conductivity type injection region. The adjacent semiconductor regions of m (m is a natural number) rows of transparent electrodes for driving charge transfer in one direction are combined as one pixel portion. The high voltage may include a plurality of high voltages, and the high voltage may be applied to the semiconductor layer or the semiconductor substrate so that the potential of the semiconductor layer or the semiconductor substrate is gradually deepened in the charge transfer direction. In this case, the semiconductor layer or the semiconductor substrate is at least one of an N-type semiconductor, a P-type semiconductor, and an intrinsic semiconductor.

以上のように、本発明の好ましい実施形態1〜4を用いて本発明を例示してきたが、本発明は、この実施形態1〜4に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1〜4の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。   As mentioned above, although this invention has been illustrated using preferable Embodiment 1-4 of this invention, this invention should not be limited and limited to this Embodiment 1-4. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range from the description of specific preferred embodiments 1 to 4 of the present invention based on the description of the present invention and the common general technical knowledge. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood.

本発明は、液晶セルと組み合わせて、被写体からの画像光を光電変換して撮像する半導体素子で構成された特に高画素、高感度、高スミア特性向けの固体撮像素子、この固体撮像素子を、画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、画像入力カメラ、スキャナ装置、ファクシミリ装置、DSC、監視カメラ、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器の分野において、入射光を透過または遮光制御する入射光透過/遮光制御手段を設けたため、画素部の微細化に伴う受光感度特性の劣化およびスミア特性の劣化を抑制すると共に、遮光膜の形成プロセスがなく製造を簡略化することができ、かつ信号読み出し制御をも無くすことができることを前提として、被写体からの画像光を光電変換する複数層の光電変換部が、この光電変換部とはバンドギャップの異なる透明層をその各間に介在して積層されるため、コレステリック液晶に代えて多層化した複数層の受光部により複数の色信号を、1画素部で一括して同時に検出した1画素部毎の各層の信号電荷から得ると共に、静止画および動画のいずれであっても鮮明なフルカラー撮像を実現することができる。   The present invention, in combination with a liquid crystal cell, is a solid-state image sensor for a particularly high pixel, high sensitivity, high smear characteristic composed of a semiconductor element that photoelectrically converts image light from a subject and images the solid-state image sensor. Digital cameras such as digital video cameras and digital still cameras used as image input devices as image input devices, image input cameras, scanner devices, facsimile devices, DSCs, surveillance cameras, television telephone devices, mobile phone devices with cameras, etc. In the field of electronic information equipment, since incident light transmission / shielding control means for transmitting or shielding incident light is provided, it is possible to suppress deterioration of light receiving sensitivity characteristics and smear characteristics due to miniaturization of the pixel portion, and to prevent light shielding film Manufacturing process can be simplified, and signal readout control can be eliminated. As a premise, multiple layers of photoelectric conversion units that photoelectrically convert image light from the subject are stacked with a transparent layer having a band gap different from that of the photoelectric conversion unit. Instead, a plurality of color signals are obtained from the signal charges of each layer for each pixel unit detected simultaneously by a single pixel unit by a multi-layered light receiving unit, and can be either a still image or a moving image. Clear full-color imaging can be realized.

1、1A、1B 固体撮像素子
2 半導体基板(または半導体層)
3a〜3e SiO膜(透明層)
4、4a〜4d P型注入領域
5、5a〜5d N型注入領域
6〜11 透明電極
12 偏光板
13 透明電極
14 液晶層
15 透明電極
16 偏光板
21 半導体基板(または半導体層)
22 SiO
23a,23 Si層
90 電子情報機器
91 固体撮像装置
92 メモリ部
93 表示部
94 通信部
95 画像出力部
1, 1A, 1B Solid-state imaging device 2 Semiconductor substrate (or semiconductor layer)
3a-3e SiO 2 film (transparent layer)
4, 4a to 4d P-type injection region 5, 5a to 5d N-type injection region 6 to 11 Transparent electrode 12 Polarizing plate 13 Transparent electrode 14 Liquid crystal layer 15 Transparent electrode 16 Polarizing plate 21 Semiconductor substrate (or semiconductor layer)
22 SiO 2 film 23a, 23 Si layer 90 Electronic information device 91 Solid-state imaging device 92 Memory unit 93 Display unit 94 Communication unit 95 Image output unit

Claims (16)

半導体層または半導体基板に形成された光電変換領域を備えた固体撮像素子であって、
該光電変換領域は、被写体からの画像光を光電変換する複数層の光電変換部が、該光電変換部とはバンドギャップの異なる透明層をその各間に介在させて積層された積層構造を有し
該複数層の光電変換部の各々は、
交互に一方向に隣接配置され、該一方向に直交する他方向にそれぞれ該積層構造の各層に沿って延びる一導電型注入領域および他導電型注入領域を有し
該固体撮像素子は、
該光電変換領域の、該画像光が入射する照射面とは反対側の表面に該一方向に延びるように設けられた複数の電荷転送駆動用の電極と、
該光電変換領域の該照射面上に設けられ、該画像光を透過または遮光制御する入射光透過/遮光制御手段とを有している固体撮像素子。
A solid-state imaging device including a photoelectric conversion region formed on a semiconductor layer or a semiconductor substrate ,
Photoelectric conversion region, chromatic photoelectric conversion unit of the plurality of layers for photoelectrically converting an image light from an object, a stacked structure stacked by interposing a transparent layer having different band gaps between the respective the photoelectric conversion portion And
Each of the photoelectric conversion portions of the plurality of layers is
Alternately in one direction are arranged adjacent to, has one conductivity type implanted regions and other conductive type implanted region extending along each of the respective laminated structure in another direction perpendicular to said one direction,
The solid-state image sensor is
The photoelectric conversion region, and the electrode of the charge transfer driving of several provided to extend in the one direction on the surface opposite to the irradiated surface of the image light is incident,
A solid-state imaging device having incident light transmission / shielding control means that is provided on the irradiation surface of the photoelectric conversion region and controls transmission or shielding of the image light.
前記透明層のバンドギャップが前記複数層の光電変換部の半導体層のバンドギャップよりも大きく、該光電変換部がその下層および上層の該透明層に挟み込まれて、該複数層の光電変換部光電変換により得られた各信号電荷が該光電変換部毎にそれぞれ閉じ込められるように構成されている請求項1に記載の固体撮像素子。 The larger than the band gap of the semiconductor layer of the photoelectric conversion portion of the band gap of the transparent layer the plurality of layers, the photoelectric conversion portion is sandwiched on the transparent layer of the lower layer and the upper layer, the photoelectric conversion unit of the plurality several layers The solid-state imaging device according to claim 1, wherein each signal charge obtained by photoelectric conversion is confined for each photoelectric conversion unit. 前記複数層の光電変換部の深さに応じた光の波長による吸収係数の違いから、1画素部毎の複数の色信号が該複数層の光電変換部からの各信号電荷に基づいて算出可能である請求項1に記載の固体撮像素子。   From the difference in absorption coefficient depending on the wavelength of light according to the depth of the multiple layers of photoelectric conversion units, multiple color signals for each pixel unit can be calculated based on each signal charge from the multiple layers of photoelectric conversion units The solid-state imaging device according to claim 1. 前記光電変換領域は、前記光電変換部が3層積層された3層構造を有し、該3層構造の光電変換領域を構成する第1の光電変換部は、光の波長が最も短い青色光を主に吸収して光電変換し、該3層構造の光電変換領域を構成する第2光電変換部は、光の波長が中間の緑色光を主に吸収して光電変換し、該3層構造の光電変換領域を構成する第3光電変換部は、光の波長が最も長い赤色光を主に吸収して光電変換する請求項3に記載の固体撮像素子。 The photoelectric conversion region, have a three-layer structure in which the photoelectric conversion unit are three-layer, the first photoelectric conversion unit in the photoelectric conversion region of the three-layer structure, the wavelength of light is the shortest blue light the mainly absorbed by photoelectric conversion, a second photoelectric conversion unit in the photoelectric conversion region of the three-layer structure, when the wavelength of the light is mainly absorbed intermediate green light to photoelectric conversion, the 3-layer The solid-state imaging device according to claim 3 , wherein the third photoelectric conversion unit constituting the photoelectric conversion region of the structure mainly absorbs red light having the longest wavelength of light and performs photoelectric conversion. 前記光電変換領が、前記光電変換部が4層積層された4層構造を有該4層構造の光電変換領域を構成する第1の光電変換部は、光の波長が最も短い青色光を主に吸収して光電変換し、該4層構造の光電変換領域を構成する第2光電変換部は、光の波長が中間の緑色光を主に吸収して光電変換し、該4層構造の光電変換領域を構成する第3光電変換部は、光の波長が長い赤色光を主に吸収して光電変換し、該4層構造の光電変換領域を構成する第4光電変換部は、光の波長が最も長い近赤外光を吸収して光電変換する請求項3に記載の固体撮像素子。 The photoelectric conversion area is, have a four-layer structure wherein the photoelectric conversion unit are stacked four layers, a first photoelectric conversion unit in the photoelectric conversion region of the four-layer structure, the wavelength of light is the shortest blue photoelectrically converted mainly absorb light, second photoelectric conversion unit in the photoelectric conversion region of the four-layer structure, when the wavelength of the light is mainly absorbed intermediate green light to photoelectric conversion, the 4 third photoelectric conversion unit in the photoelectric conversion region of the layer structure, when the wavelength of the light is mainly absorbed long red light to photoelectric conversion, a fourth photoelectric included in the photoelectric conversion region of the four-layer structure conversion The solid-state imaging device according to claim 3, wherein the unit photoelectrically converts near-infrared light having the longest light wavelength. 前記半導体層または前記半導体基板に形成された光電変換領域は可視光または近赤外光まで受光できるバンドギャップを持ち、前記透明層は可視光を透過するバンドギャップを持っている請求項1に記載の固体撮像素子。 The photoelectric conversion region formed in the semiconductor layer or the semiconductor substrate has a band gap that can receive visible light or near infrared light, and the transparent layer has a band gap that transmits visible light. Solid-state image sensor. 前記数の電荷転送駆動用の電極に電荷転送駆動用電圧を順次印加可能とする電荷転送制御手段がさらに設けられ、該電荷転送制御手段を用いて、該複数の電荷転送駆動用の電極に印加する高電圧と低電圧のうちの高電圧の印加隣接電極数を調整することにより、前記複数の光電変換部の平面視画素露光サイズを変更して、隣接する前記一導電型注入領域と前記他導電型注入領域との接合容量であるフォトダイオード容量を変更可能としている請求項1に記載の固体撮像素子。 The multiple charge transfer control means is further provided for enabling sequentially applied to the charge transfer drive voltage to the electrodes of the charge transfer driving, using the charge transfer control means, the electrode for charge transfer driving the plurality of By adjusting the number of adjacent electrodes to be applied between the high voltage and the low voltage to be applied, the pixel exposure size in plan view of the plurality of photoelectric conversion units is changed , and the adjacent one-conductivity-type injection region and the adjacent ones The solid-state imaging device according to claim 1, wherein a photodiode capacitance that is a junction capacitance with another conductivity type injection region can be changed . 記複数の光電変換部の膜厚は、隣接する前記一導電型注入領域と前記他導電型注入領域との接合容量であるフォトダイオード容量を決定する要素の1つである請求項1に記載の固体撮像素子。 The film thickness before Symbol plurality of photoelectric conversion portions, according to claim 1 which is one of the factors that determine the photodiode capacitance is the junction capacitance between the one conductivity type implantation region adjacent to the other conductivity type implanted region Solid-state image sensor. 前記入射光透過/遮光制御手段は、露光時に前記画像光を透過し、電荷転送時に該画像光を遮光する液晶手段で構成されている請求項1に記載の固体撮像素子。 2. The solid-state imaging device according to claim 1, wherein the incident light transmission / shielding control unit is configured by a liquid crystal unit that transmits the image light during exposure and shields the image light during charge transfer. 前記液晶手段は、第1の方向および該第1の方向に直交する第2の方向の一方の偏光を通す偏光板、液晶制御用の下側の透明電極、液晶層、液晶制御用の上側の透明電極、該第1の一方向および該第2の方向のうちの他方の偏光を通す偏光板この順に積層してなる構造を有する請求項9に記載の固体撮像素子。 Said liquid crystal means, a second direction one pass polarization polarizing plate orthogonal to the first direction and the first direction, the lower side of the transparent electrode for liquid crystal control, the liquid crystal layer, the upper liquid crystal control transparent electrode, the first one-way and the solid-state imaging device according to claim 9 having the other of passing polarized light formed by laminating a polarizing plate in this order of the second direction. 前記複数の電荷転送駆動用の電極に電荷転送駆動用電圧を順次印加可能とする電荷転送制御手段がさらに設けられ、露光時に、前記液晶手段が前記画像光を透過制御した状態で、該電荷転送駆動用電圧のうちの高電圧と低電圧を該電荷転送駆動用の電極の一または複数毎に交互に印加することにより、該電荷転送駆動用の電極上の記一導電型注入領域および前記他導電型注入領域のうちの深いポテンシャル電位領域に画素部毎の信号電荷が保持される請求項9に記載の固体撮像素子。 Charge transfer control means for sequentially applying a charge transfer drive voltage to the plurality of charge transfer drive electrodes is further provided, and the charge transfer is performed while the liquid crystal means controls transmission of the image light during exposure. by applying a high voltage alternating low voltage to one or more each of the charge transfer driving electrode of the driving voltage, prior Symbol one conductivity type on the electrodes for driving the charge transfer implanted region and the The solid-state imaging device according to claim 9, wherein signal charges for each pixel unit are held in a deep potential potential region in the other conductivity type injection region. 前記一方向の複数の電荷転送駆動用の電極に電荷転送駆動用電圧を順次印加可能とする電荷転送制御手段がさらに設けられ、電荷転送時に、前記液晶手段が前記画像光を遮光制御した状態で、該電荷転送駆動用電圧のうちの高電圧と低電圧を該電荷転送駆動用の電極の一または複数の交互の印加位置を順次所定方向にずらすことにより、該電荷転送駆動用の電極上の記一導電型注入領域および前記他導電型注入領域のうちの深いポテンシャル電位領域に画素部毎の信号電荷を保持して所定方向に電荷転送する請求項9または11に記載の固体撮像素子。 Charge transfer control means for sequentially applying a charge transfer drive voltage to the plurality of charge transfer drive electrodes in one direction is further provided, and the liquid crystal means controls the image light to be blocked during the charge transfer. The one or more alternating application positions of the high voltage and the low voltage of the charge transfer drive voltage are sequentially shifted in a predetermined direction on the charge transfer drive electrode. the solid-state imaging device according to claim 9 or 11, pre-Symbol holds one conductivity type implantation region and the other conductivity type implantation among deep potential level area to the pixel unit every signal charge area charge transfer in a predetermined direction. 前記高電圧が印加される前記電荷転送駆動用の電極の置を調整することにより、前記画素部毎の信号電荷を保持する画素サイズが制御可能とされており、該画素サイズは、前記他方向に延びる前記一導電型注入領域または前記他導電型注入領域のn(nは自然数)列と、前記一方向に延びる前記電荷転送駆動用の電極のm(mは自然数)行とが交差する領域を1画素部として制御される請求項11または12に記載の固体撮像素子。 By adjusting the position of the charge transfer driving electrode the high voltage is applied, the provided pixels sized to hold the signal charges of each pixel portion is controllable, the pixel size, the other (n is a natural number) n of the one conductivity type implanted region or the other conductivity type implantation region extending in a direction and columns, m of the charge transfer driving electrodes extending in the one direction (m is a natural number) and a row intersect The solid-state imaging device according to claim 11, wherein the region is controlled with one pixel unit. 前記高電圧として、電位の異なる複数の高電圧、前記光電変換領域のポテンシャル電位が電荷転送方向に深くなるように該光電変換領域に付される請求項13に記載の固体撮像素子。 As the high voltage, a plurality of different high voltage potentials is, the solid-state imaging device according to claim 13 in which the potential level of the photoelectric conversion region Ru is granted to the photoelectric conversion region to be deeper in the direction of charge transfer. 前記光電変換領域を形成するための半導体層または半導体基板は、型半導体、P型半導体および真性半導体の少なくともいずれかからなる半導体層または半導体基板が用いられる請求項1に記載の固体撮像素子。 Wherein the semiconductor layer or the semiconductor substrate for forming the photoelectric conversion region, N-type semiconductor, solid-state imaging according to the semiconductor layer or the claims 1 semiconductor substrate that is used consists of at least one of P-type semiconductor and an intrinsic semiconductor element. 請求項1から15のいずれかに記載の固体撮像素子を画像入力デバイスとして撮像部に用いた電子情報機器。   An electronic information device using the solid-state imaging device according to claim 1 as an image input device in an imaging unit.
JP2011174387A 2011-08-09 2011-08-09 Solid-state imaging device and electronic information device Expired - Fee Related JP5873661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011174387A JP5873661B2 (en) 2011-08-09 2011-08-09 Solid-state imaging device and electronic information device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011174387A JP5873661B2 (en) 2011-08-09 2011-08-09 Solid-state imaging device and electronic information device

Publications (2)

Publication Number Publication Date
JP2013038286A JP2013038286A (en) 2013-02-21
JP5873661B2 true JP5873661B2 (en) 2016-03-01

Family

ID=47887595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174387A Expired - Fee Related JP5873661B2 (en) 2011-08-09 2011-08-09 Solid-state imaging device and electronic information device

Country Status (1)

Country Link
JP (1) JP5873661B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6792486B2 (en) * 2017-02-27 2020-11-25 日本放送協会 Image sensor and image sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298771A (en) * 1992-11-09 1994-03-29 Xerox Corporation Color imaging charge-coupled array with photosensitive layers in potential wells
JP2004221506A (en) * 2002-11-22 2004-08-05 Sony Corp Solid-state image sensing element and its manufacturing method
JP5408964B2 (en) * 2008-10-30 2014-02-05 シャープ株式会社 Solid-state imaging device and electronic information device

Also Published As

Publication number Publication date
JP2013038286A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP6987950B2 (en) Solid-state image sensor and its manufacturing method, and electronic devices
KR102134489B1 (en) Solid-state imaging device and imaging device
JP4384198B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
US20090078856A1 (en) Solid-state image capturing device and electronic information device
US20100177231A1 (en) Solid-state image capturing apparatus, method for manufacturing the same, and electronic information device
TW201535695A (en) Solid-state imaging device
JP2008060476A (en) Solid state imaging apparatus, and electronic information apparatus
KR20110097047A (en) Stack-type image sensor
JP5504382B2 (en) Solid-state imaging device and imaging apparatus
JP4696104B2 (en) Back-illuminated solid-state imaging device and manufacturing method thereof
JP2005268476A (en) Photoelectric converting film laminated solid state imaging apparatus
JP4495949B2 (en) Two-plate color solid-state imaging device and digital camera
JP5735318B2 (en) Solid-state imaging device and electronic information device
JP2004221506A (en) Solid-state image sensing element and its manufacturing method
WO2013136981A1 (en) Solid-state image pickup apparatus and electronic apparatus
JP5873661B2 (en) Solid-state imaging device and electronic information device
JP5408964B2 (en) Solid-state imaging device and electronic information device
JP4645578B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
JP5309559B2 (en) Manufacturing method of solid-state imaging device
WO2022149488A1 (en) Light detection device and electronic apparatus
JP4712767B2 (en) Solid-state imaging device and electronic information device
JP2021190481A (en) Color imaging device and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20151002

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5873661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees