JP5873324B2 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor device Download PDFInfo
- Publication number
- JP5873324B2 JP5873324B2 JP2011278998A JP2011278998A JP5873324B2 JP 5873324 B2 JP5873324 B2 JP 5873324B2 JP 2011278998 A JP2011278998 A JP 2011278998A JP 2011278998 A JP2011278998 A JP 2011278998A JP 5873324 B2 JP5873324 B2 JP 5873324B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating layer
- layer
- film
- oxide semiconductor
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 368
- 238000000034 method Methods 0.000 title claims description 112
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 229910052760 oxygen Inorganic materials 0.000 claims description 184
- 239000001301 oxygen Substances 0.000 claims description 183
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 178
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 116
- 229910052757 nitrogen Inorganic materials 0.000 claims description 58
- 230000015572 biosynthetic process Effects 0.000 claims description 27
- 239000013078 crystal Substances 0.000 claims description 17
- 239000010410 layer Substances 0.000 description 841
- 239000010408 film Substances 0.000 description 296
- 239000011229 interlayer Substances 0.000 description 135
- 239000000758 substrate Substances 0.000 description 107
- 238000010438 heat treatment Methods 0.000 description 85
- 238000011282 treatment Methods 0.000 description 77
- 239000007789 gas Substances 0.000 description 56
- 239000001257 hydrogen Substances 0.000 description 56
- 229910052739 hydrogen Inorganic materials 0.000 description 56
- 239000000463 material Substances 0.000 description 55
- 239000012535 impurity Substances 0.000 description 50
- 239000004973 liquid crystal related substance Substances 0.000 description 44
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 43
- 239000000203 mixture Substances 0.000 description 40
- 239000011701 zinc Substances 0.000 description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- 229910001868 water Inorganic materials 0.000 description 32
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 28
- 229910052710 silicon Inorganic materials 0.000 description 28
- 239000010703 silicon Substances 0.000 description 28
- 238000004544 sputter deposition Methods 0.000 description 28
- 230000018044 dehydration Effects 0.000 description 27
- 238000006297 dehydration reaction Methods 0.000 description 27
- 238000006356 dehydrogenation reaction Methods 0.000 description 27
- 230000006870 function Effects 0.000 description 26
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 24
- 229910052581 Si3N4 Inorganic materials 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 21
- 230000008569 process Effects 0.000 description 21
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 21
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 20
- 239000002184 metal Substances 0.000 description 19
- 238000005530 etching Methods 0.000 description 18
- 239000012071 phase Substances 0.000 description 18
- 229910052782 aluminium Inorganic materials 0.000 description 17
- 239000010936 titanium Substances 0.000 description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 15
- 238000005401 electroluminescence Methods 0.000 description 15
- -1 oxygen radicals Chemical class 0.000 description 15
- 239000011521 glass Substances 0.000 description 14
- 239000002245 particle Substances 0.000 description 14
- 229910052719 titanium Inorganic materials 0.000 description 14
- 150000002431 hydrogen Chemical class 0.000 description 13
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 13
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 11
- 239000010409 thin film Substances 0.000 description 11
- 229910021417 amorphous silicon Inorganic materials 0.000 description 10
- 229910052786 argon Inorganic materials 0.000 description 10
- 239000000460 chlorine Substances 0.000 description 10
- 238000000151 deposition Methods 0.000 description 10
- 150000004767 nitrides Chemical class 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 230000008021 deposition Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000002356 single layer Substances 0.000 description 9
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 230000000903 blocking effect Effects 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 238000009616 inductively coupled plasma Methods 0.000 description 8
- 238000005468 ion implantation Methods 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 8
- 150000004706 metal oxides Chemical class 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- 229910052721 tungsten Inorganic materials 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 7
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 7
- 229910052733 gallium Inorganic materials 0.000 description 7
- 238000009832 plasma treatment Methods 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 229910052735 hafnium Inorganic materials 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- 229910003437 indium oxide Inorganic materials 0.000 description 6
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 6
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 6
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000000565 sealant Substances 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 5
- 206010021143 Hypoxia Diseases 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 5
- 229910001882 dioxygen Inorganic materials 0.000 description 5
- 229910001195 gallium oxide Inorganic materials 0.000 description 5
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 5
- 239000001307 helium Substances 0.000 description 5
- 229910052734 helium Inorganic materials 0.000 description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000003094 microcapsule Substances 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000000123 paper Substances 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 5
- 229910018137 Al-Zn Inorganic materials 0.000 description 4
- 229910018573 Al—Zn Inorganic materials 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 229910003902 SiCl 4 Inorganic materials 0.000 description 4
- 229910020994 Sn-Zn Inorganic materials 0.000 description 4
- 229910009069 Sn—Zn Inorganic materials 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 229910007541 Zn O Inorganic materials 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 238000003795 desorption Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 description 4
- 229910000449 hafnium oxide Inorganic materials 0.000 description 4
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 238000010884 ion-beam technique Methods 0.000 description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910001930 tungsten oxide Inorganic materials 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 239000005380 borophosphosilicate glass Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000012905 input function Methods 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229920002620 polyvinyl fluoride Polymers 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 3
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 229910018120 Al-Ga-Zn Inorganic materials 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 229910020868 Sn-Ga-Zn Inorganic materials 0.000 description 2
- 229910020923 Sn-O Inorganic materials 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- GDFCWFBWQUEQIJ-UHFFFAOYSA-N [B].[P] Chemical compound [B].[P] GDFCWFBWQUEQIJ-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- 230000003098 cholesteric effect Effects 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 238000007645 offset printing Methods 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000005477 sputtering target Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- UWCWUCKPEYNDNV-LBPRGKRZSA-N 2,6-dimethyl-n-[[(2s)-pyrrolidin-2-yl]methyl]aniline Chemical compound CC1=CC=CC(C)=C1NC[C@H]1NCCC1 UWCWUCKPEYNDNV-LBPRGKRZSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 206010052128 Glare Diseases 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- 239000005264 High molar mass liquid crystal Substances 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108010083687 Ion Pumps Proteins 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004983 Polymer Dispersed Liquid Crystal Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004990 Smectic liquid crystal Substances 0.000 description 1
- 229910020833 Sn-Al-Zn Inorganic materials 0.000 description 1
- 229910020944 Sn-Mg Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 239000004974 Thermotropic liquid crystal Substances 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910009369 Zn Mg Inorganic materials 0.000 description 1
- 229910007573 Zn-Mg Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000005407 aluminoborosilicate glass Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000000180 cavity ring-down spectroscopy Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 150000001793 charged compounds Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000001307 laser spectroscopy Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000000838 magnetophoresis Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 1
- 229910021334 nickel silicide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- GVGCUCJTUSOZKP-UHFFFAOYSA-N nitrogen trifluoride Chemical compound FN(F)F GVGCUCJTUSOZKP-UHFFFAOYSA-N 0.000 description 1
- 229960001730 nitrous oxide Drugs 0.000 description 1
- 235000013842 nitrous oxide Nutrition 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000004549 pulsed laser deposition Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Thin Film Transistor (AREA)
- Formation Of Insulating Films (AREA)
Description
開示する発明は、半導体装置及び半導体装置の作製方法に関する。 The disclosed invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電気光学装置、発光表示装置、半導体回路及び電子機器は全て半導体装置である。 Note that a semiconductor device in this specification and the like refers to all devices that can function by utilizing semiconductor characteristics, and an electro-optical device, a light-emitting display device, a semiconductor circuit, and an electronic device are all semiconductor devices.
絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が注目されている。該トランジスタは集積回路(IC)や画像表示装置(単に表示装置とも表記する)のような半導体電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。 A technique for forming a transistor using a semiconductor thin film formed over a substrate having an insulating surface has attracted attention. The transistor is widely applied to semiconductor electronic devices such as an integrated circuit (IC) and an image display device (also simply referred to as a display device). A silicon-based semiconductor material is widely known as a semiconductor thin film applicable to a transistor, but an oxide semiconductor has attracted attention as another material.
例えば、酸化物半導体として、Zn−O系酸化物、又はIn−O−Ga−Zn−O系酸化物を用いてトランジスタを作製する技術が開示されている(特許文献1及び特許文献2参照)。
For example, a technique for manufacturing a transistor using a Zn—O-based oxide or an In—O—Ga—Zn—O-based oxide as an oxide semiconductor is disclosed (see
ところで、酸化物半導体においては、水素が含まれることにより伝導帯から浅い準位にドナーが生成されn型化してしまうことが指摘されている。そのため、酸化物半導体の形成時に水素が混入しないような措置を講じることが求められる。また、酸化物半導体のみならず、酸化物半導体に接するゲート絶縁膜の水素を低減することで、しきい値電圧の変動を低減する技術が開示されている(特許文献3参照)。 By the way, it has been pointed out that in an oxide semiconductor, a donor is generated in a shallow level from the conduction band and becomes n-type by containing hydrogen. Therefore, it is required to take measures so that hydrogen is not mixed during formation of the oxide semiconductor. In addition, a technique for reducing variation in threshold voltage by reducing hydrogen in a gate insulating film in contact with an oxide semiconductor as well as an oxide semiconductor is disclosed (see Patent Document 3).
また、酸化物半導体において、酸素欠損はドナーとなり、酸化物半導体中にキャリアである電子を生成する。トランジスタのチャネル形成領域を含む酸化物半導体に酸素欠損が多く存在すると、チャネル形成領域中に電子を生じさせてしまい、トランジスタのしきい値電圧をマイナス方向に変動させる要因となる。 In an oxide semiconductor, oxygen vacancies serve as donors and generate electrons that are carriers in the oxide semiconductor. If there are many oxygen vacancies in the oxide semiconductor including the channel formation region of the transistor, electrons are generated in the channel formation region, which causes the threshold voltage of the transistor to fluctuate in the negative direction.
上述した問題に鑑み、本発明の一態様では、酸化物半導体を用いた半導体装置であって、安定した電気的特性を付与し、高信頼性化を図ることが可能な半導体装置の作製方法を提供することを目的の一とする。 In view of the above problems, in one embodiment of the present invention, a method for manufacturing a semiconductor device using an oxide semiconductor, which can provide stable electrical characteristics and high reliability can be obtained. One purpose is to provide.
酸化物半導体層を含むボトムゲート構造のトランジスタを有する半導体装置において、酸化物半導体層に接して、化学量論的組成比よりも過剰に酸素を含む領域を有し、且つ窒素を含有する絶縁層を設ける。 In a semiconductor device having a bottom-gate transistor including an oxide semiconductor layer, the insulating layer is in contact with the oxide semiconductor layer and includes a region containing oxygen in excess of the stoichiometric composition ratio and containing nitrogen Is provided.
ボトムゲート型のトランジスタにおいて酸化物半導体層と接する絶縁層としては、酸化物半導体層下に接して設けられるゲート絶縁層と、酸化物半導体層上に接して設けられる層間絶縁層とが挙げられる。本明細書に開示する発明において、酸化物半導体層と接する絶縁層である、ゲート絶縁層及び/又は層間絶縁層に、酸素ドープ処理を施すことで、化学量論的組成比よりも酸素を過剰に含む領域(以下、酸素過剰領域とも表記する)を形成する。また、当該酸化物半導体層と接し、酸素過剰領域を有する絶縁層は、その組成として窒素を含有する絶縁層とする。 Examples of the insulating layer in contact with the oxide semiconductor layer in the bottom-gate transistor include a gate insulating layer provided in contact with the oxide semiconductor layer and an interlayer insulating layer provided in contact with the oxide semiconductor layer. In the invention disclosed in this specification, the gate insulating layer and / or the interlayer insulating layer, which is an insulating layer in contact with the oxide semiconductor layer, is subjected to oxygen doping treatment, so that oxygen exceeds the stoichiometric composition ratio. A region (hereinafter also referred to as an oxygen excess region) is formed. The insulating layer in contact with the oxide semiconductor layer and having an oxygen-excess region is an insulating layer containing nitrogen as its composition.
酸化物半導体層と接する絶縁層が、酸素過剰領域を有することで、該絶縁層による酸化物半導体層からの酸素の引き抜きを抑制又は防止することが可能となるため、酸化物半導体層における酸素欠損の発生を抑制することができる。また、酸化物半導体層と接する絶縁層に含まれる過剰な酸素は、酸化物半導体層中の水素を引き抜く効果も奏する。よって、該絶縁層によって、酸化物半導体層の水素濃度を低減し、酸素欠損を抑制することができる。 Since the insulating layer in contact with the oxide semiconductor layer has an oxygen-excess region, oxygen extraction from the oxide semiconductor layer by the insulating layer can be suppressed or prevented; Can be suppressed. In addition, excess oxygen contained in the insulating layer in contact with the oxide semiconductor layer also has an effect of extracting hydrogen in the oxide semiconductor layer. Therefore, the insulating layer can reduce the hydrogen concentration of the oxide semiconductor layer and suppress oxygen vacancies.
また、窒素は3本の結合手を有するため、組成として窒素を含有する絶縁層に酸素ドープ処理を行うことで、膜中に含まれる窒素が導入された酸素と結合し、当該導入された酸素を膜中にトラップさせる効果を奏する。したがって、酸化物半導体層に接する絶縁層において酸素過剰領域を形成することが容易となる、又は、膜中により多量の酸素を含有させることが可能となる。 In addition, since nitrogen has three bonds, by performing oxygen doping treatment on the insulating layer containing nitrogen as a composition, the nitrogen contained in the film is combined with oxygen into which oxygen is introduced, and the introduced oxygen This has the effect of trapping in the film. Therefore, an oxygen-excess region can be easily formed in the insulating layer in contact with the oxide semiconductor layer, or a larger amount of oxygen can be contained in the film.
酸化物半導体層と接する絶縁層は、可能な限り水、水素などの不純物が含まれないことが好ましい。酸化物半導体層と接する絶縁層に水素が含まれると、その水素が酸化物半導体層へ侵入する恐れ、又は、その水素が酸化物半導体層中の酸素を引き抜く恐れがあるためである。よって、酸化物半導体層と接する絶縁層は、脱水化又は脱水素化を目的とした熱処理を施された膜であることが好ましい。 The insulating layer in contact with the oxide semiconductor layer is preferably free of impurities such as water and hydrogen as much as possible. This is because when the insulating layer in contact with the oxide semiconductor layer contains hydrogen, the hydrogen may enter the oxide semiconductor layer or the hydrogen may extract oxygen from the oxide semiconductor layer. Therefore, the insulating layer in contact with the oxide semiconductor layer is preferably a film that has been subjected to heat treatment for dehydration or dehydrogenation.
なお、酸化物半導体層と接する絶縁層への熱処理及び/又は酸素ドープ処理は、複数回繰り返して行ってもよい。また、酸化物半導体層を形成後、当該酸化物半導体層の脱水化又は脱水素化処理を目的とした熱処理を行ってもよい。酸化物半導体層への熱処理は、酸化物半導体層を島状に加工前に行うことが好ましい。 Note that the heat treatment and / or the oxygen doping treatment of the insulating layer in contact with the oxide semiconductor layer may be repeated a plurality of times. Further, after the oxide semiconductor layer is formed, heat treatment for dehydration or dehydrogenation treatment of the oxide semiconductor layer may be performed. The heat treatment of the oxide semiconductor layer is preferably performed before the oxide semiconductor layer is processed into an island shape.
本発明の一態様は、ゲート電極層と、ゲート電極層上に設けられたゲート絶縁層と、ゲート絶縁層を介してゲート電極層と重畳する酸化物半導体層と、酸化物半導体層と電気的に接続するソース電極層及びドレイン電極層と、ソース電極層及びドレイン電極層を覆い、酸化物半導体層と接する層間絶縁層と、を有し、ゲート絶縁層又は層間絶縁層の一方は、化学量論的組成比よりも過剰に酸素を含む領域を有し、且つ窒素を含有する絶縁層である半導体装置である。 One embodiment of the present invention includes a gate electrode layer, a gate insulating layer provided over the gate electrode layer, an oxide semiconductor layer overlapping with the gate electrode layer with the gate insulating layer interposed therebetween, and the oxide semiconductor layer electrically A source electrode layer and a drain electrode layer which are connected to each other, and an interlayer insulating layer which covers the source electrode layer and the drain electrode layer and is in contact with the oxide semiconductor layer, and one of the gate insulating layer and the interlayer insulating layer has a chemical amount This is a semiconductor device that has a region containing oxygen in excess of the theoretical composition ratio and is an insulating layer containing nitrogen.
また、本発明の一態様は、ゲート電極層と、ゲート電極層上に設けられたゲート絶縁層と、ゲート絶縁層を介してゲート電極層と重畳する酸化物半導体層と、酸化物半導体層と電気的に接続するソース電極層及びドレイン電極層と、ソース電極層及びドレイン電極層を覆い、酸化物半導体層と接する層間絶縁層と、を有し、ゲート絶縁層及び層間絶縁層は、化学量論的組成比よりも過剰に酸素を含む領域を有し、且つ窒素を含有する絶縁層である半導体装置である。 One embodiment of the present invention includes a gate electrode layer, a gate insulating layer provided over the gate electrode layer, an oxide semiconductor layer overlapping with the gate electrode layer with the gate insulating layer interposed therebetween, and an oxide semiconductor layer. A source electrode layer and a drain electrode layer which are electrically connected; and an interlayer insulating layer which covers the source electrode layer and the drain electrode layer and is in contact with the oxide semiconductor layer. The gate insulating layer and the interlayer insulating layer have a stoichiometric amount. This is a semiconductor device that has a region containing oxygen in excess of the theoretical composition ratio and is an insulating layer containing nitrogen.
上記の半導体装置において、ゲート絶縁層は、ゲート電極層と接する窒化シリコン膜と、酸化物半導体層と接する窒化酸化シリコン膜と、を含むことが好ましい。 In the above semiconductor device, the gate insulating layer preferably includes a silicon nitride film in contact with the gate electrode layer and a silicon nitride oxide film in contact with the oxide semiconductor layer.
また、上記の半導体装置のいずれか一において、層間絶縁層は、酸化物半導体層と接する窒化酸化シリコン膜と、窒化酸化シリコン膜上に設けられた酸化アルミニウム膜と、を含むことが好ましい。 In any one of the above semiconductor devices, the interlayer insulating layer preferably includes a silicon nitride oxide film in contact with the oxide semiconductor layer and an aluminum oxide film provided over the silicon nitride oxide film.
また、上記の半導体装置のいずれか一において、ゲート絶縁層及び/又は層間絶縁層は、化学気相成長法により形成された膜を含むことが好ましい。 In any one of the above semiconductor devices, the gate insulating layer and / or the interlayer insulating layer preferably includes a film formed by a chemical vapor deposition method.
なお、上記の「酸素ドープ」とは、酸素(少なくとも、酸素ラジカル、酸素原子、酸素分子、オゾン、酸素イオン(酸素分子イオン)、及び/又は酸素クラスタイオンのいずれかを含む)をバルクに添加することを言う。なお、当該「バルク」の用語は、酸素を、薄膜表面のみでなく薄膜内部に添加することを明確にする趣旨で用いている。また、「酸素ドープ」には、プラズマ化した酸素をバルクに添加する「酸素プラズマドープ」が含まれる。 The above “oxygen doping” means adding oxygen (including at least one of oxygen radicals, oxygen atoms, oxygen molecules, ozone, oxygen ions (oxygen molecular ions), and / or oxygen cluster ions) to the bulk. Say to do. The term “bulk” is used for the purpose of clarifying that oxygen is added not only to the surface of the thin film but also to the inside of the thin film. Further, “oxygen doping” includes “oxygen plasma doping” in which oxygen in plasma form is added to a bulk.
酸素ドープ処理には、酸素を含むガスを用いることができる。酸素を含むガスとしては、酸素、一酸化二窒素、二酸化窒素、二酸化炭素、一酸化炭素などを用いることができる。また、酸素ドープ処理において、希ガスを加えてもよい。 A gas containing oxygen can be used for the oxygen doping treatment. As the gas containing oxygen, oxygen, dinitrogen monoxide, nitrogen dioxide, carbon dioxide, carbon monoxide, or the like can be used. Further, a rare gas may be added in the oxygen doping process.
本発明の一形態は、トランジスタ若しくはトランジスタを含んで構成される回路を有する半導体装置に関する。例えば、酸化物半導体でチャネル形成領域が形成される、トランジスタ若しくはトランジスタを含んで構成される回路を有する半導体装置に関する。例えば、LSIや、CPUや、電源回路に搭載されるパワーデバイスや、メモリ、サイリスタ、コンバータ、イメージセンサなどを含む半導体集積回路、液晶表示パネルに代表される電気光学装置や発光素子を有する発光表示装置を部品として搭載した電子機器に関する。 One embodiment of the present invention relates to a semiconductor device including a transistor or a circuit including the transistor. For example, the invention relates to a semiconductor device including a transistor or a circuit including a transistor in which a channel formation region is formed using an oxide semiconductor. For example, power devices mounted on LSIs, CPUs, power supply circuits, semiconductor integrated circuits including memories, thyristors, converters, image sensors, etc., light-emitting displays having electro-optical devices and light-emitting elements typified by liquid crystal display panels The present invention relates to an electronic device equipped with a device as a component.
本発明の一態様により、安定した電気的特性を付与し、高信頼性化を図ることが可能な酸化物半導体を用いた半導体装置を提供することができる。 According to one embodiment of the present invention, a semiconductor device including an oxide semiconductor that can provide stable electrical characteristics and high reliability can be provided.
以下では、本明細書に開示する発明の実施の形態について図面を用いて詳細に説明する。但し、本明細書に開示する発明は以下の説明に限定されず、その形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本明細書に開示する発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する本発明の構成において、同一部分または同様の機能を有する部分には、同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を有する部分を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。 Hereinafter, embodiments of the invention disclosed in this specification will be described in detail with reference to the drawings. However, the invention disclosed in this specification is not limited to the following description, and it is easily understood by those skilled in the art that modes and details can be variously changed. Further, the invention disclosed in this specification is not construed as being limited to the description of the embodiments below. Note that in structures of the present invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and description thereof is not repeated. In addition, when referring to a portion having a similar function, the hatch pattern may be the same, and there may be no particular reference.
なお、本明細書における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、数的に限定するものではないことを付記する。 It should be noted that ordinal numbers such as “first” and “second” in the present specification are added to avoid confusion between components and are not limited in number.
(実施の形態1)
本実施の形態では、半導体装置及び半導体装置の作製方法の一形態を、図1及び図2を用いて説明する。本実施の形態では、半導体装置の一例として酸化物半導体層を有するトランジスタを示す。
(Embodiment 1)
In this embodiment, one embodiment of a semiconductor device and a method for manufacturing the semiconductor device will be described with reference to FIGS. In this embodiment, a transistor including an oxide semiconductor layer is described as an example of a semiconductor device.
図1にトランジスタ420の構成例を示す。図1(A)は、トランジスタ420の平面図であり、図1(B)は、図1(A)のX1−Y1における断面図であり、図1(C)は、図1(A)のV1−W1における断面図である。なお、図1(A)では煩雑になることを避けるため、トランジスタ420の構成要素の一部(例えば、層間絶縁層417等)を省略して図示している。
FIG. 1 illustrates a configuration example of the
図1に示すトランジスタ420は、基板400上に設けられたゲート電極層401と、ゲート電極層401上に設けられたゲート絶縁層402と、ゲート絶縁層402を介してゲート電極層401と重畳する酸化物半導体層403と、酸化物半導体層403と電気的に接続するソース電極層405a及びドレイン電極層405bと、ソース電極層405a及びドレイン電極層405bを覆い、酸化物半導体層403と接する層間絶縁層417と、を含んで構成される。
A
本実施の形態で示すトランジスタ420は、ゲート電極層401側から順に、ゲート絶縁層402a及びゲート絶縁層402bが積層されたゲート絶縁層402と、酸化物半導体層403側から順に、層間絶縁層417a及び層間絶縁層417bが積層された層間絶縁層417と、を含む。但し、本発明の実施の形態はこれに限られず、ゲート絶縁層及び層間絶縁層はそれぞれ単層構造としてもよいし、3層以上の積層構造としてもよい。
A
本実施の形態で示すトランジスタ420において、酸化物半導体層403と接する層間絶縁層417は、化学量論的組成比よりも過剰に酸素を含む領域を有し、且つ窒素を含有する絶縁層である。より具体的には、層間絶縁層417を形成する積層構造のうち、少なくとも酸化物半導体層403と接する層間絶縁層417aは、化学量論的組成比よりも過剰に酸素を含む領域を有し、且つ窒素を含有する絶縁層とする。本実施の形態では、層間絶縁層417aとして、酸素過剰領域を有する酸化窒化シリコン膜を用い、層間絶縁層417bとして酸化アルミニウム膜を用いるものとする。
In the
なお、本明細書において酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多い物質であり、また、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多い物質を意味する。 Note that in this specification, oxynitride is a substance having a higher oxygen content than nitrogen in the composition, and nitride oxide has a nitrogen content higher than oxygen in the composition. Means a substance.
窒素の結合手は3本であり、結合手が2本である酸素よりも多くの結合手を有する。よって、酸化物半導体層に接する絶縁層に酸素過剰領域を形成するために酸素ドープを行う際に、該絶縁層として酸化物絶縁層(例えば、酸化シリコン膜)を用いる場合と比較して、組成として窒素を含む絶縁層(例えば、酸化窒化シリコン膜)を用いることで、導入した酸素をより膜中にトラップさせる効果を奏する。したがって、酸化物半導体層に接する絶縁層において酸素過剰領域を形成することが容易となる、又は、膜中により多量の酸素を含有させることが可能となる。 Nitrogen has three bonds, and has more bonds than oxygen, which has two bonds. Therefore, when oxygen doping is performed to form an oxygen-excess region in the insulating layer in contact with the oxide semiconductor layer, the composition is higher than that in the case where an oxide insulating layer (eg, a silicon oxide film) is used as the insulating layer. By using an insulating layer containing nitrogen (for example, a silicon oxynitride film), the introduced oxygen can be trapped more in the film. Therefore, an oxygen-excess region can be easily formed in the insulating layer in contact with the oxide semiconductor layer, or a larger amount of oxygen can be contained in the film.
また、層間絶縁層417bは、トランジスタ420の保護膜として機能する絶縁層である。酸化アルミニウム膜は、水素、水分などの不純物、及び酸素の両方に対して膜を透過させない遮断(ブロッキング)効果が高い。したがって、層間絶縁層417bとして酸化アルミニウム膜を用いることで、酸化物半導体層403、並びにそれに接する層間絶縁層417aからの酸素の脱離を防止するとともに、酸化物半導体層403への水及び水素の混入を防止することができる。
The interlayer insulating
なお、酸化アルミニウム膜を高密度(膜密度3.2g/cm3以上、好ましくは3.6g/cm3以上)とすると、トランジスタ420に安定な電気特性を付与することができるため、より好ましい。膜密度はラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)や、X線反射率測定法(XRR:X−Ray Reflection)によって測定することができる。
Note that it is more preferable that the aluminum oxide film have a high density (a film density of 3.2 g / cm 3 or more, preferably 3.6 g / cm 3 or more) because the
また、酸化物半導体層403において、銅、アルミニウム、塩素などの不純物がほとんど含まれない高純度化されたものであることが望ましい。トランジスタの製造工程において、これらの不純物が混入または酸化物半導体層表面に付着する恐れのない工程を適宜選択することが好ましく、酸化物半導体層表面に付着した場合には、シュウ酸や希フッ酸などに曝す、またはプラズマ処理(N2Oプラズマ処理など)を行うことにより、酸化物半導体層表面の不純物を除去することが好ましい。具体的には、酸化物半導体層の銅濃度は1×1018atoms/cm3以下、好ましくは1×1017atoms/cm3以下とする。また、酸化物半導体層のアルミニウム濃度は1×1018atoms/cm3以下とする。また、酸化物半導体層の塩素濃度は2×1018atoms/cm3以下とする。
In addition, the
また、酸化物半導体層403は、水や水素などの不純物が可能な限り除去されたものであることが望ましい。例えば、トランジスタ420において、酸化物半導体層403に含まれる水素濃度を、2×1019/cm3以下、好ましくは5×1018/cm3以下、さらに好ましくは2×1018/cm3以下とすることが好ましい。
The
以下、図2を用いて図1に示すトランジスタ420の作製方法の一例を説明する。
Hereinafter, an example of a method for manufacturing the
まず、絶縁表面を有する基板400上にゲート電極層401を形成した後、ゲート電極層401上にゲート絶縁層402a及びゲート絶縁層402bを順に積層してゲート絶縁層402を形成する(図2(A)参照)。
First, after the
絶縁表面を有する基板400に使用することができる基板に大きな制限はないが、少なくとも、後の熱処理に耐えうる程度の耐熱性を有していることが必要となる。例えば、バリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板などの電子工業用に使われる各種ガラス基板を用いることが出来る。なお、基板としては、熱膨張係数が25×10−7/℃以上50×10−7/℃以下(好ましくは、30×10−7/℃以上40×10−7/℃以下)であり、歪み点が650℃以上750℃以下(好ましくは、700℃以上740℃以下)である基板を用いることが好ましい。
There is no particular limitation on a substrate that can be used as the
第5世代(1000mm×1200mmまたは1300mm×1500mm)、第6世代(1500mm×1800mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2500mm)、第9世代(2400mm×2800mm)、第10世代(2880×3130mm)などの大型ガラス基板を用いる場合、半導体装置の作製工程における加熱処理などで生じる基板の縮みによって、微細な加工が困難になる場合ある。そのため、前述したような大型ガラス基板を基板として用いる場合、縮みの少ないものを用いることが好ましい。例えば、基板として、好ましくは450℃、好ましくは500℃の温度で1時間加熱処理を行った後の縮み量が20ppm以下、好ましくは10ppm以下、さらに好ましくは5ppm以下である大型ガラス基板を用いればよい。 5th generation (1000 mm × 1200 mm or 1300 mm × 1500 mm), 6th generation (1500 mm × 1800 mm), 7th generation (1870 mm × 2200 mm), 8th generation (2200 mm × 2500 mm), 9th generation (2400 mm × 2800 mm), 1st When a large glass substrate of 10 generations (2880 × 3130 mm) or the like is used, fine processing may be difficult due to shrinkage of the substrate caused by heat treatment in a manufacturing process of a semiconductor device. Therefore, when a large glass substrate as described above is used as the substrate, it is preferable to use a substrate with less shrinkage. For example, a large glass substrate having a shrinkage of 20 ppm or less, preferably 10 ppm or less, more preferably 5 ppm or less after heat treatment at 450 ° C., preferably 500 ° C. for 1 hour, is preferably used as the substrate. Good.
または、基板400として、セラミック基板、石英基板、サファイア基板などを用いることができる。また、シリコンや炭化シリコンなどの単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウムなどの化合物半導体基板、SOI基板などを適用することもできる。これらの基板上に半導体素子が設けられたものを用いてもよい。
Alternatively, as the
また、基板400として、可撓性基板を用いて半導体装置を作製してもよい。可撓性を有する半導体装置を作製するには、可撓性基板上に酸化物半導体層403を含むトランジスタ420を直接作製してもよいし、他の作製基板に酸化物半導体層403を含むトランジスタ420を作製し、その後可撓性基板に剥離、転置してもよい。なお、作製基板から可撓性基板に剥離、転置するために、作製基板と酸化物半導体層を含むトランジスタ420との間に剥離層を設けるとよい。
Alternatively, a semiconductor device may be manufactured using a flexible substrate as the
基板400上に下地絶縁層を設けてもよい。下地絶縁層としては、プラズマCVD法又はスパッタリング法等により、酸化シリコン、酸化窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、酸化ハフニウム、酸化ガリウムなどの酸化物絶縁膜、窒化シリコン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウムなどの窒化物絶縁膜、又はこれらの混合材料を用いて形成することができる。
A base insulating layer may be provided over the
基板400(又は基板400及び下地絶縁層)に熱処理を行ってもよい。例えば、高温のガスを用いて熱処理を行うGRTA(Gas Rapid Thermal Anneal)装置により、650℃、1分〜5分間、熱処理を行えばよい。なお、GRTAにおける高温のガスには、アルゴンなどの希ガス、または窒素のような、熱処理によって被処理物と反応しない不活性気体が用いられる。また、電気炉により、500℃、30分〜1時間、熱処理を行ってもよい。
Heat treatment may be performed on the substrate 400 (or the
ゲート電極層401の材料は、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウム等の金属材料またはこれらを主成分とする合金材料を用いて形成することができる。また、ゲート電極層401としてリン等の不純物元素をドーピングした多結晶シリコン膜に代表される半導体膜、ニッケルシリサイドなどのシリサイド膜を用いてもよい。ゲート電極層401は、単層構造としてもよいし、積層構造としてもよい。
The material of the
また、ゲート電極層401の材料は、酸化インジウム酸化スズ、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、酸化インジウム酸化亜鉛、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。また、上記導電性材料と、上記金属材料の積層構造とすることもできる。
The material of the
また、ゲート電極層401として、窒素を含む金属酸化物、具体的には、窒素を含むIn−Ga−Zn−O膜や、窒素を含むIn−Sn−O膜や、窒素を含むIn−Ga−O膜や、窒素を含むIn−Zn−O膜や、窒素を含むSn−O膜や、窒素を含むIn−O膜や、金属窒化膜(InN、SnNなど)を用いることができる。これらの膜は5eV(電子ボルト)、好ましくは5.5eV(電子ボルト)以上の仕事関数を有し、ゲート電極層として用いた場合、トランジスタの電気特性のしきい値電圧をプラスにすることができ、所謂ノーマリーオフのスイッチング素子を実現できる。
The
本実施の形態では、スパッタリング法により膜厚100nmのタングステン膜を形成する。 In this embodiment, a tungsten film with a thickness of 100 nm is formed by a sputtering method.
また、ゲート電極層401形成後に、基板400、及びゲート電極層401に熱処理を行ってもよい。例えば、GRTA装置により、650℃、1分〜5分間、熱処理を行えばよい。また、電気炉により、500℃、30分〜1時間、熱処理を行ってもよい。
Further, after the
なお、ゲート絶縁層402の被覆性を向上させるために、ゲート電極層401表面に平坦化処理を行ってもよい。特にゲート絶縁層402として膜厚の薄い絶縁層を用いる場合、ゲート電極層401表面の平坦性が良好であることが好ましい。
Note that planarization treatment may be performed on the surface of the
ゲート絶縁層402aには、プラズマCVD法又はスパッタリング法等により形成する窒化物絶縁層を好ましく用いることができる。例えば、窒化シリコン膜、窒化酸化シリコン膜などが挙げられる。ゲート電極層401及び基板400と接するゲート絶縁層402aとして窒化物絶縁層を適用することで、ゲート電極層401又は基板400からの不純物拡散を防止する効果を奏する。
As the
または、ゲート絶縁層402aとして、チタン(Ti)、モリブデン(Mo)、タングステン(W)、ハフニウム(Hf)、タンタル(Ta)、ランタン(La)、ジルコニウム(Zr)、ニッケル(Ni)、マグネシウム(Mg)、又はバリウム(Ba)の金属元素のいずれかから選択される一以上を含む金属酸化物絶縁膜(例えば、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜、酸化マグネシウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化バリウム膜)、又は金属窒化物絶縁膜(窒化アルミニウム膜、窒化酸化アルミニウム膜)を用いることができる。また、ゲート絶縁層402aには、酸化ガリウム膜、In−Zr−Zn系酸化物膜、In−Fe−Zn系酸化物膜、In−Ce−Zn系酸化物膜なども用いることができる。
Alternatively, as the
本実施の形態ではゲート絶縁層402aとしてプラズマCVD法を用いて形成する膜厚30nmの窒化シリコン膜を用いる。
In this embodiment, a 30-nm-thick silicon nitride film formed by a plasma CVD method is used as the
ゲート絶縁層402bの膜厚は、1nm以上20nm以下とし、スパッタリング法、MBE法、CVD法、パルスレーザ堆積法、ALD法等を適宜用いて形成することができる。また、ゲート絶縁層402bは、スパッタリングターゲット表面に対し、概略垂直に複数の基板表面がセットされた状態で成膜を行うスパッタ装置、所謂CPスパッタ装置を用いて成膜してもよい。
The
ゲート絶縁層402bの材料としては、酸化シリコン膜、酸化ガリウム膜、酸化アルミニウム膜、窒化シリコン膜、酸化窒化シリコン膜、酸化窒化アルミニウム膜、または窒化酸化シリコン膜を用いて形成することができる。
As a material of the
また、ゲート絶縁層402bの材料として酸化ハフニウム、酸化イットリウム、ハフニウムシリケート(HfSixOy(x>0、y>0))、窒素が添加されたハフニウムシリケート(HfSiOxNy(x>0、y>0))、ハフニウムアルミネート(HfAlxOy(x>0、y>0))、酸化ランタンなどのhigh−k材料を用いることでゲートリーク電流を低減できる。
As materials for the
本実施の形態では、高密度プラズマCVD法により膜厚200nmの酸化窒化シリコン膜を形成する。CVD法は、スパッタリング法と比較して、成膜タクトを縮小することができる。また、CVD法は、スパッタリング法よりも成膜した面内におけるバラツキが小さく、パーティクルの混入も起こりにくい。このため、特に基板が大面積化される場合に、CVD法を用いてゲート絶縁層402を成膜することは効果的である。
In this embodiment, a 200-nm-thick silicon oxynitride film is formed by high-density plasma CVD. The CVD method can reduce the film formation tact compared with the sputtering method. In addition, the CVD method has less variation in the surface where the film is formed than the sputtering method, and particles are less likely to be mixed. For this reason, it is effective to form the
なお、ゲート絶縁層402bは、酸化物半導体層403と接する絶縁層であるため、可能な限り水、水素などの不純物が含まれないことが好ましい。しかしながら、プラズマCVD法では、スパッタリング法と比較して膜中の水素濃度を低減させることが困難である。したがって、本実施の形態においては、成膜後のゲート絶縁層402に対して、水素原子の除去を目的とした熱処理(脱水化又は脱水素化処理)を行う。
Note that since the
熱処理の温度は、250℃以上650℃以下、好ましくは450℃以上600℃以下、または基板の歪み点未満とする。例えば、加熱処理装置の一つである電気炉に基板を導入し、ゲート絶縁層402に対して真空(減圧)雰囲気下650℃において1時間の加熱処理を行う。
The heat treatment temperature is 250 ° C. or higher and 650 ° C. or lower, preferably 450 ° C. or higher and 600 ° C. or lower, or lower than the strain point of the substrate. For example, a substrate is introduced into an electric furnace which is one of heat treatment apparatuses, and the
なお、熱処理装置は電気炉に限られず、抵抗発熱体などの発熱体からの熱伝導または熱輻射によって、被処理物を加熱する装置を用いてもよい。例えば、GRTA(Gas Rapid Thermal Anneal)装置、LRTA(Lamp Rapid Thermal Anneal)装置等のRTA(Rapid Thermal Anneal)装置を用いることができる。LRTA装置は、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する装置である。GRTA装置は、高温のガスを用いて熱処理を行う装置である。高温のガスには、アルゴンなどの希ガス、または窒素のような、熱処理によって被処理物と反応しない不活性気体が用いられる。なお、熱処理装置としてGRTA装置を用いる場合には、その処理時間が短いため、650℃〜700℃の高温に加熱した不活性ガス中で基板を加熱してもよい。 Note that the heat treatment apparatus is not limited to an electric furnace, and an apparatus for heating an object to be processed by heat conduction or heat radiation from a heating element such as a resistance heating element may be used. For example, a rapid thermal annealing (RTA) device such as a GRTA (Gas Rapid Thermal Anneal) device or an LRTA (Lamp Rapid Thermal Anneal) device can be used. The LRTA apparatus is an apparatus that heats an object to be processed by radiation of light (electromagnetic waves) emitted from a lamp such as a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high pressure sodium lamp, or a high pressure mercury lamp. The GRTA apparatus is an apparatus that performs heat treatment using a high-temperature gas. As the high-temperature gas, an inert gas that does not react with an object to be processed by heat treatment, such as nitrogen or a rare gas such as argon, is used. Note that when a GRTA apparatus is used as the heat treatment apparatus, the substrate may be heated in an inert gas heated to a high temperature of 650 ° C. to 700 ° C. because the processing time is short.
熱処理は、窒素、酸素、超乾燥空気(水の含有量が20ppm以下、好ましくは1ppm以下、好ましくは10ppb以下の空気)、または希ガス(アルゴン、ヘリウムなど)の雰囲気下で行えばよいが、上記窒素、酸素、超乾燥空気、または希ガス等の雰囲気に水、水素などが含まれないことが好ましい。また、加熱処理装置に導入する窒素、酸素、または希ガスの純度を、6N(99.9999%)以上好ましくは7N(99.99999%)以上(即ち不純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好ましい。 The heat treatment may be performed in an atmosphere of nitrogen, oxygen, ultra-dry air (air with a water content of 20 ppm or less, preferably 1 ppm or less, preferably 10 ppb or less), or a rare gas (such as argon or helium). It is preferable that water, hydrogen, and the like are not contained in the atmosphere of nitrogen, oxygen, ultra-dry air, or rare gas. Further, the purity of nitrogen, oxygen, or a rare gas introduced into the heat treatment apparatus is 6N (99.9999%) or more, preferably 7N (99.99999%) or more (that is, the impurity concentration is 1 ppm or less, preferably 0.1 ppm). Or less).
熱処理によって、ゲート絶縁層402の脱水化または脱水素化を行うことができ、トランジスタの特性変動を引き起こす水素、又は水などの不純物が排除されたゲート絶縁層402を形成することができる。
By the heat treatment, the
脱水化又は脱水素化処理を行う熱処理において、ゲート絶縁層402表面は水素又は水等の放出を妨害するような状態(例えば、水素又は水等を通過させない(ブロックする)膜などを設ける等)とせず、ゲート絶縁層402は表面を露出した状態とすることが好ましい。
In the heat treatment for performing dehydration or dehydrogenation, the surface of the
また、脱水化又は脱水素化のための熱処理は、複数回行ってもよく、他の熱処理と兼ねてもよい。 Further, the heat treatment for dehydration or dehydrogenation may be performed a plurality of times or may be combined with other heat treatments.
次いで、ゲート絶縁層402上に、酸化物半導体層を成膜し、島状に加工して酸化物半導体層403を形成する(図2(B)参照)。
Next, an oxide semiconductor layer is formed over the
なお、ゲート絶縁層402を大気に解放せずにゲート絶縁層402と酸化物半導体層を連続的に形成することが好ましい。ゲート絶縁層402を大気に曝露せずにゲート絶縁層402と酸化物半導体層を連続して形成すると、ゲート絶縁層402表面に水素や水分などの不純物が吸着することを防止することができる。
Note that the
酸化物半導体層403は、単層構造であってもよいし、積層構造であってもよい。また、非晶質構造であってもよいし、結晶性であってもよい。酸化物半導体層403を非晶質構造とする場合には、後の作製工程において、酸化物半導体層403に熱処理を行うことによって、結晶性酸化物半導体層としてもよい。非晶質酸化物半導体層を結晶化させる熱処理の温度は、250℃以上700℃以下、好ましくは、400℃以上、より好ましくは500℃以上、さらに好ましくは550℃以上とする。なお、当該熱処理は、作製工程における他の熱処理を兼ねることも可能である。
The
酸化物半導体層の成膜方法は、スパッタリング法、MBE(Moleculer Beam Epitaxy)法、CVD法、パルスレーザ堆積法、ALD(Atomic Layer Deposition)法等を適宜用いることができる。また、酸化物半導体層は、スパッタリングターゲット表面に対し、概略垂直に複数の基板表面がセットされた状態で成膜を行うスパッタリング装置、所謂CPスパッタリング装置(Columner Plasma Sputtering system)を用いて成膜してもよい。 As a method for forming the oxide semiconductor layer, a sputtering method, an MBE (Molecular Beam Epitaxy) method, a CVD method, a pulse laser deposition method, an ALD (Atomic Layer Deposition) method, or the like can be used as appropriate. The oxide semiconductor layer is formed using a sputtering apparatus that performs film formation in a state where a plurality of substrate surfaces are set substantially perpendicularly to the surface of the sputtering target, that is, a so-called CP sputtering apparatus (Column Plasma Sputtering system). May be.
酸化物半導体層を成膜する際、できる限り酸化物半導体層に含まれる水素濃度を低減させることが好ましい。水素濃度を低減させるには、例えば、スパッタリング法を用いて成膜を行う場合には、スパッタリング装置の処理室内に供給する雰囲気ガスとして、水素、水、水酸基又は水素化物などの不純物が除去された高純度の希ガス(代表的にはアルゴン)、酸素、及び希ガスと酸素との混合ガスを適宜用いる。 When forming the oxide semiconductor layer, it is preferable to reduce the concentration of hydrogen contained in the oxide semiconductor layer as much as possible. In order to reduce the hydrogen concentration, for example, when film formation is performed using a sputtering method, impurities such as hydrogen, water, a hydroxyl group, or a hydride are removed as an atmospheric gas supplied into the processing chamber of the sputtering apparatus. A high-purity rare gas (typically argon), oxygen, or a mixed gas of a rare gas and oxygen is used as appropriate.
また、成膜室内の残留水分を除去しつつ水素及び水分が除去されたスパッタガスを導入して成膜を行うことで、成膜された酸化物半導体層の水素濃度を低減させることができる。成膜室内の残留水分を除去するためには、吸着型の真空ポンプ、例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが好ましい。また、ターボ分子ポンプにコールドトラップを加えたものであってもよい。クライオポンプを用いて排気した成膜室は、例えば、水素分子、水(H2O)など水素原子を含む化合物(より好ましくは炭素原子を含む化合物も)等の排気能力が高いため、当該成膜室で成膜した酸化物半導体層に含まれる不純物の濃度を低減できる。 In addition, the hydrogen concentration of the formed oxide semiconductor layer can be reduced by introducing a sputtering gas from which hydrogen and moisture are removed while removing residual moisture in the deposition chamber. In order to remove moisture remaining in the deposition chamber, it is preferable to use an adsorption-type vacuum pump such as a cryopump, an ion pump, or a titanium sublimation pump. Further, a turbo molecular pump provided with a cold trap may be used. The film formation chamber evacuated using a cryopump has a high exhaust capability such as a compound containing hydrogen atoms (more preferably a compound containing carbon atoms) such as hydrogen molecules and water (H 2 O). The concentration of impurities contained in the oxide semiconductor layer formed in the film chamber can be reduced.
また、酸化物半導体層を成膜する前に、スパッタリング装置内でゲート絶縁層が設けられた基板に対して加熱処理を行ってもよい。該加熱処理は、減圧雰囲気化で行うことが好ましく、真空雰囲気下で行うことがより好ましい。例えば、酸化物半導体層の被成膜面が、成膜温度となるまで、スパッタリング装置内に真空雰囲気下にてゲート絶縁層が設けられた基板400を配置すればよい。この加熱処理によって、ゲート絶縁層の表面に吸着しうる表面吸着水を除去することができるため、成膜された酸化物半導体層の水素濃度を低減させることができる。
Further, before the oxide semiconductor layer is formed, heat treatment may be performed on the substrate provided with the gate insulating layer in the sputtering apparatus. The heat treatment is preferably performed in a reduced-pressure atmosphere, and more preferably performed in a vacuum atmosphere. For example, the
また、酸化物半導体層をスパッタリング法で成膜する場合、成膜に用いる金属酸化物ターゲットの相対密度(充填率)は90%以上100%以下、好ましくは95%以上99.9%以下とする。相対密度の高い金属酸化物ターゲットを用いることにより、成膜した酸化物半導体層を緻密な膜とすることができる。 In the case where the oxide semiconductor layer is formed by a sputtering method, the relative density (filling ratio) of the metal oxide target used for film formation is 90% to 100%, preferably 95% to 99.9%. . By using a metal oxide target having a high relative density, the formed oxide semiconductor layer can be a dense film.
また、基板400を高温に保持した状態で酸化物半導体層を形成することも、酸化物半導体層中に含まれうる不純物濃度を低減するのに有効である。基板400を加熱する温度としては、150℃以上450℃以下とすればよく、好ましくは基板温度が200℃以上350℃以下とすればよい。また、成膜時に基板を高温で加熱することで、結晶性酸化物半導体層を形成することができる。
In addition, forming the oxide semiconductor layer with the
酸化物半導体層403に用いる酸化物半導体としては、少なくともインジウム(In)あるいは亜鉛(Zn)を含むことが好ましい。特にInとZnの双方を含むことが好ましい。また、該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすためのスタビライザーとして、それらに加えてガリウム(Ga)を有することが好ましい。また、スタビライザーとしてスズ(Sn)を有することが好ましい。また、スタビライザーとしてハフニウム(Hf)を有することが好ましい。また、スタビライザーとしてアルミニウム(Al)を有することが好ましい。また、スタビライザーとしてジルコニウム(Zr)を有することが好ましい。
An oxide semiconductor used for the
また、他のスタビライザーとして、ランタノイドである、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)のいずれか一種あるいは複数種を有してもよい。 Other stabilizers include lanthanoids such as lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), and terbium (Tb). , Dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), or lutetium (Lu).
例えば、酸化物半導体として、酸化インジウム、酸化スズ、酸化亜鉛、二元系金属の酸化物であるIn−Zn系酸化物、Sn−Zn系酸化物、Al−Zn系酸化物、Zn−Mg系酸化物、Sn−Mg系酸化物、In−Mg系酸化物、In−Ga系酸化物、三元系金属の酸化物であるIn−Ga−Zn系酸化物(IGZOとも表記する)、In−Al−Zn系酸化物、In−Sn−Zn系酸化物、Sn−Ga−Zn系酸化物、Al−Ga−Zn系酸化物、Sn−Al−Zn系酸化物、In−Hf−Zn系酸化物、In−La−Zn系酸化物、In−Ce−Zn系酸化物、In−Pr−Zn系酸化物、In−Nd−Zn系酸化物、In−Sm−Zn系酸化物、In−Eu−Zn系酸化物、In−Gd−Zn系酸化物、In−Tb−Zn系酸化物、In−Dy−Zn系酸化物、In−Ho−Zn系酸化物、In−Er−Zn系酸化物、In−Tm−Zn系酸化物、In−Yb−Zn系酸化物、In−Lu−Zn系酸化物、四元系金属の酸化物であるIn−Sn−Ga−Zn系酸化物、In−Hf−Ga−Zn系酸化物、In−Al−Ga−Zn系酸化物、In−Sn−Al−Zn系酸化物、In−Sn−Hf−Zn系酸化物、In−Hf−Al−Zn系酸化物を用いることができる。 For example, as an oxide semiconductor, indium oxide, tin oxide, zinc oxide, binary metal oxides such as In—Zn oxide, Sn—Zn oxide, Al—Zn oxide, Zn—Mg oxide Oxides, Sn—Mg oxides, In—Mg oxides, In—Ga oxides, In—Ga—Zn oxides (also referred to as IGZO) which are oxides of ternary metals, In— Al-Zn oxide, In-Sn-Zn oxide, Sn-Ga-Zn oxide, Al-Ga-Zn oxide, Sn-Al-Zn oxide, In-Hf-Zn oxide In-La-Zn-based oxide, In-Ce-Zn-based oxide, In-Pr-Zn-based oxide, In-Nd-Zn-based oxide, In-Sm-Zn-based oxide, In-Eu -Zn oxide, In-Gd-Zn oxide, In-Tb-Zn oxide, n-Dy-Zn-based oxide, In-Ho-Zn-based oxide, In-Er-Zn-based oxide, In-Tm-Zn-based oxide, In-Yb-Zn-based oxide, In-Lu-Zn -Based oxides, In-Sn-Ga-Zn-based oxides that are oxides of quaternary metals, In-Hf-Ga-Zn-based oxides, In-Al-Ga-Zn-based oxides, In-Sn- An Al—Zn-based oxide, an In—Sn—Hf—Zn-based oxide, or an In—Hf—Al—Zn-based oxide can be used.
なお、ここで、例えば、In−Ga−Zn系酸化物とは、InとGaとZnを主成分として有する酸化物という意味であり、InとGaとZnの比率は問わない。また、InとGaとZn以外の金属元素が入っていてもよい。 Note that here, for example, an In—Ga—Zn-based oxide means an oxide containing In, Ga, and Zn as its main components, and there is no limitation on the ratio of In, Ga, and Zn. Moreover, metal elements other than In, Ga, and Zn may be contained.
また、酸化物半導体として、InMO3(ZnO)m(m>0、且つ、mは整数でない)で表記される材料を用いてもよい。なお、Mは、Ga、Fe、Mn及びCoから選ばれた一の金属元素または複数の金属元素を示す。また、酸化物半導体として、In2SnO5(ZnO)n(n>0、且つ、nは整数)で表記される材料を用いてもよい。 Alternatively, a material represented by InMO 3 (ZnO) m (m> 0 is satisfied, and m is not an integer) may be used as the oxide semiconductor. Note that M represents one metal element or a plurality of metal elements selected from Ga, Fe, Mn, and Co. Alternatively, a material represented by In 2 SnO 5 (ZnO) n (n> 0 is satisfied, and n is an integer) may be used as the oxide semiconductor.
例えば、In:Ga:Zn=1:1:1(=1/3:1/3:1/3)、In:Ga:Zn=2:2:1(=2/5:2/5:1/5)、あるいはIn:Ga:Zn=3:1:2(=1/2:1/6:1/3)の原子数比のIn−Ga−Zn系酸化物やその組成の近傍の酸化物を用いることができる。あるいは、In:Sn:Zn=1:1:1(=1/3:1/3:1/3)、In:Sn:Zn=2:1:3(=1/3:1/6:1/2)あるいはIn:Sn:Zn=2:1:5(=1/4:1/8:5/8)の原子数比のIn−Sn−Zn系酸化物やその組成の近傍の酸化物を用いるとよい。 For example, In: Ga: Zn = 1: 1: 1 (= 1/3: 1/3: 1/3), In: Ga: Zn = 2: 2: 1 (= 2/5: 2/5: 1) / 5), or an In—Ga—Zn-based oxide having an atomic ratio of In: Ga: Zn = 3: 1: 2 (= 1/2: 1/6: 1/3) and oxidation in the vicinity of the composition. Can be used. Alternatively, In: Sn: Zn = 1: 1: 1 (= 1/3: 1/3: 1/3), In: Sn: Zn = 2: 1: 3 (= 1/3: 1/6: 1) / 2) or In: Sn: Zn = 2: 1: 5 (= 1/4: 1/8: 5/8) atomic ratio In—Sn—Zn-based oxide or oxide in the vicinity of the composition Should be used.
しかし、これらに限られず、必要とする半導体特性(移動度、しきい値、ばらつき等)に応じて適切な組成のものを用いればよい。また、必要とする半導体特性を得るために、キャリア濃度や不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間結合距離、密度等を適切なものとすることが好ましい。 However, the composition is not limited thereto, and a material having an appropriate composition may be used depending on required semiconductor characteristics (mobility, threshold value, variation, etc.). In order to obtain the required semiconductor characteristics, it is preferable that the carrier concentration, impurity concentration, defect density, atomic ratio of metal element to oxygen, interatomic bond distance, density, and the like are appropriate.
例えば、In−Sn−Zn系酸化物では比較的容易に高い移動度が得られる。しかしながら、In−Ga−Zn系酸化物でも、バルク内欠陥密度を低くすることにより移動度を上げることができる。 For example, high mobility can be obtained relatively easily with an In—Sn—Zn-based oxide. However, mobility can be increased by reducing the defect density in the bulk also in the case of using an In—Ga—Zn-based oxide.
なお、例えば、In、Ga、Znの原子数比がIn:Ga:Zn=a:b:c(a+b+c=1)である酸化物の組成が、原子数比がIn:Ga:Zn=A:B:C(A+B+C=1)の酸化物の組成のrだけ近傍であるとは、a、b、cが、(a−A)2+(b−B)2+(c−C)2≦r2を満たすことをいう。rとしては、例えば、0.05とすればよい。他の酸化物でも同様である。 Note that for example, the composition of an oxide in which the atomic ratio of In, Ga, and Zn is In: Ga: Zn = a: b: c (a + b + c = 1) has an atomic ratio of In: Ga: Zn = A: B: C, (A + B + C = 1) is the vicinity of r of the oxide composition, a, b, c are (a−A) 2 + (b−B) 2 + (c−C) 2 ≦ It refers to meet the r 2. For example, r may be 0.05. The same applies to other oxides.
また酸化物半導体層を、成膜する際に用いるスパッタリングガスは水素、水、水酸基又は水素化物などの不純物が除去された高純度ガスを用いることが好ましい。 As a sputtering gas used for forming the oxide semiconductor layer, a high-purity gas from which impurities such as hydrogen, water, a hydroxyl group, or hydride are removed is preferably used.
また、酸化物半導体層403は、CAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)膜であることが好ましい。
The
CAAC−OS膜は、完全な単結晶ではなく、完全な非晶質でもない。CAAC−OS膜は、非晶質相に結晶部を有する結晶−非晶質混相構造の酸化物半導体層である。なお、当該結晶部は、一辺が100nm未満の立方体内に収まる大きさであることが多い。また、透過型電子顕微鏡(TEM:Transmission Electron Microscope)による観察像では、CAAC−OS膜に含まれる非晶質部と結晶部との境界は明確ではない。また、TEMによってCAAC−OS膜には粒界(グレインバウンダリーともいう)は確認できない。そのため、CAAC−OS膜は、粒界に起因する電子移動度の低下が抑制される。 The CAAC-OS film is not completely single crystal nor completely amorphous. The CAAC-OS film is an oxide semiconductor layer with a crystal-amorphous mixed phase structure where crystal parts are included in an amorphous phase. Note that the crystal part is often large enough to fit in a cube whose one side is less than 100 nm. Further, in the observation image obtained by a transmission electron microscope (TEM), the boundary between the amorphous part and the crystal part included in the CAAC-OS film is not clear. Further, a grain boundary (also referred to as a grain boundary) cannot be confirmed in the CAAC-OS film by TEM. Therefore, in the CAAC-OS film, reduction in electron mobility due to grain boundaries is suppressed.
CAAC−OS膜に含まれる結晶部は、c軸がCAAC−OS膜の被形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向に揃い、かつab面に垂直な方向から見て三角形状または六角形状の原子配列を有し、c軸に垂直な方向から見て金属原子が層状または金属原子と酸素原子とが層状に配列している。なお、異なる結晶部間で、それぞれa軸およびb軸の向きが異なっていてもよい。本明細書において、単に垂直と記載する場合、85°以上95°以下の範囲も含まれることとする。また、単に平行と記載する場合、−5°以上5°以下の範囲も含まれることとする。 In the crystal part included in the CAAC-OS film, the c-axis is aligned in a direction parallel to the normal vector of the formation surface of the CAAC-OS film or the normal vector of the surface, and triangular when viewed from the direction perpendicular to the ab plane. It has a shape or hexagonal atomic arrangement, and metal atoms are arranged in layers or metal atoms and oxygen atoms are arranged in layers as viewed from the direction perpendicular to the c-axis. Note that the directions of the a-axis and the b-axis may be different between different crystal parts. In this specification, a simple term “perpendicular” includes a range from 85 ° to 95 °. In addition, a simple term “parallel” includes a range from −5 ° to 5 °.
なお、CAAC−OS膜において、結晶部の分布が一様でなくてもよい。例えば、CAAC−OS膜の形成過程において、酸化物半導体膜の表面側から結晶成長させる場合、被形成面の近傍に対し表面の近傍では結晶部の占める割合が高くなることがある。また、CAAC−OS膜へ不純物を添加することにより、当該不純物添加領域において結晶部が非晶質化することもある。 Note that the distribution of crystal parts in the CAAC-OS film is not necessarily uniform. For example, in the formation process of the CAAC-OS film, when crystal growth is performed from the surface side of the oxide semiconductor film, the ratio of crystal parts in the vicinity of the surface of the oxide semiconductor film is higher in the vicinity of the surface. In addition, when an impurity is added to the CAAC-OS film, the crystal part in a region to which the impurity is added becomes amorphous in some cases.
CAAC−OS膜に含まれる結晶部のc軸は、CAAC−OS膜の被形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向に揃うため、CAAC−OS膜の形状(被形成面の断面形状または表面の断面形状)によっては互いに異なる方向を向くことがある。なお、結晶部のc軸の方向は、CAAC−OS膜が形成されたときの被形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向となる。結晶部は、成膜することにより、または成膜後に加熱処理などの結晶化処理を行うことにより形成される。 Since the c-axis of the crystal part included in the CAAC-OS film is aligned in a direction parallel to the normal vector of the formation surface of the CAAC-OS film or the normal vector of the surface, the shape of the CAAC-OS film (formation surface) Depending on the cross-sectional shape of the surface or the cross-sectional shape of the surface). Note that the c-axis direction of the crystal part is parallel to the normal vector of the surface where the CAAC-OS film is formed or the normal vector of the surface. The crystal part is formed by film formation or by performing crystallization treatment such as heat treatment after film formation.
CAAC−OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特性の変動を低減することが可能である。よって、当該トランジスタは、信頼性が高い。 A transistor including a CAAC-OS film can reduce variation in electrical characteristics due to irradiation with visible light or ultraviolet light. Therefore, the transistor has high reliability.
酸化物半導体層403としてCAAC−OS膜を適用する場合、該CAAC−OS膜を得る方法としては、三つ挙げられる。一つ目は、成膜温度を200℃以上450℃以下として酸化物半導体層の成膜を行い、表面に概略垂直にc軸配向させる方法である。二つ目は、酸化物半導体層を薄い膜厚で成膜した後、200℃以上700℃以下の熱処理を行い、表面に概略垂直にc軸配向させる方法である。三つ目は、一層目として薄い膜厚で成膜した後、200℃以上700℃以下の熱処理を行い、二層目の成膜を行い、表面に概略垂直にc軸配向させる方法である。
In the case where a CAAC-OS film is used as the
酸化物半導体層の成膜前に、酸化物半導体層の被成膜面に平坦化処理を行ってもよい。平坦化処理としては、特に限定されないが、研磨処理(例えば、化学的機械研磨(Chemical Mechanical Polishing:CMP)法)、ドライエッチング処理、プラズマ処理を用いることができる。 Before the formation of the oxide semiconductor layer, planarization treatment may be performed on the deposition surface of the oxide semiconductor layer. The planarization treatment is not particularly limited, and polishing treatment (for example, chemical mechanical polishing (CMP) method), dry etching treatment, or plasma treatment can be used.
プラズマ処理としては、例えば、アルゴンガスを導入してプラズマを発生させる逆スパッタリングを行うことができる。逆スパッタリングとは、アルゴン雰囲気下で基板側にRF電源を用いて電圧を印加して基板近傍にプラズマを形成して表面を改質する方法をいう。なお、アルゴンに代えて窒素、ヘリウム、酸素などを用いてもよい。逆スパッタリングを行うと、酸化物半導体層の成膜表面に付着している粉状物質(パーティクル、ごみともいう)を除去することができる。 As the plasma treatment, for example, reverse sputtering in which an argon gas is introduced to generate plasma can be performed. Reverse sputtering refers to a method of modifying the surface by applying a voltage to the substrate side using an RF power source in an argon atmosphere to form plasma near the substrate. Note that nitrogen, helium, oxygen, or the like may be used instead of argon. When reverse sputtering is performed, powdered substances (also referred to as particles or dust) attached to the surface of the oxide semiconductor layer can be removed.
平坦化処理として、研磨処理、ドライエッチング処理、プラズマ処理は複数回行ってもよく、それらを組み合わせて行ってもよい。また、組み合わせて行う場合、工程順も特に限定されず、酸化物半導体層の成膜表面の凹凸状態に合わせて適宜設定すればよい。 As the planarization treatment, the polishing treatment, the dry etching treatment, and the plasma treatment may be performed a plurality of times or in combination. In the case where the steps are performed in combination, the order of steps is not particularly limited, and may be set as appropriate depending on the unevenness state of the oxide semiconductor layer.
次いで、ゲート電極層401、ゲート絶縁層402、及び酸化物半導体層403上に、ソース電極層及びドレイン電極層(これと同じ層で形成される配線を含む)となる導電膜を形成する。
Next, a conductive film to be a source electrode layer and a drain electrode layer (including a wiring formed using the same layer) is formed over the
導電膜は後の熱処理に耐えられる材料を用いる。ソース電極層、及びドレイン電極層に用いる導電膜としては、例えば、Al、Cr、Cu、Ta、Ti、Mo、Wからから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。また、Al、Cuなどの金属膜の下側又は上側の一方または双方にTi、Mo、Wなどの高融点金属膜またはそれらの金属窒化物膜(窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)を積層させた構成としても良い。また、ソース電極層、及びドレイン電極層に用いる導電膜としては、導電性の金属酸化物で形成しても良い。導電性の金属酸化物としては酸化インジウム(In2O3)、酸化スズ(SnO2)、酸化亜鉛(ZnO)、酸化インジウム酸化スズ(In2O3−SnO2、ITOと略記する)、酸化インジウム酸化亜鉛(In2O3−ZnO)またはこれらの金属酸化物材料に酸化シリコンを含ませたものを用いることができる。 The conductive film is formed using a material that can withstand heat treatment performed later. As the conductive film used for the source electrode layer and the drain electrode layer, for example, a metal film containing an element selected from Al, Cr, Cu, Ta, Ti, Mo, and W, or a metal containing the above-described element as a component A nitride film (titanium nitride film, molybdenum nitride film, tungsten nitride film) or the like can be used. Further, a refractory metal film such as Ti, Mo, W or the like or a metal nitride film thereof (titanium nitride film, molybdenum nitride film, tungsten nitride film) is provided on one or both of the lower side or the upper side of a metal film such as Al or Cu. It is good also as a structure which laminated | stacked. The conductive film used for the source electrode layer and the drain electrode layer may be formed using a conductive metal oxide. As the conductive metal oxide, indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (In 2 O 3 —SnO 2 , abbreviated as ITO), oxidation Indium zinc oxide (In 2 O 3 —ZnO) or a metal oxide material containing silicon oxide can be used.
フォトリソグラフィ工程により導電膜上にレジストマスクを形成し、選択的にエッチングを行ってソース電極層405a、ドレイン電極層405bを形成する。ソース電極層405a、ドレイン電極層405bを形成した後、レジストマスクを除去する(図2(C)参照)。
A resist mask is formed over the conductive film by a photolithography process, and selective etching is performed to form the
レジストマスク形成時の露光には、紫外線やKrFレーザ光やArFレーザ光を用いるとよい。酸化物半導体層403上で隣り合うソース電極層405aの下端部とドレイン電極層405bの下端部との間隔幅によって後に形成されるトランジスタ440のチャネル長Lが決定される。なお、チャネル長L=25nm未満の露光を行う場合には、数nm〜数10nmと極めて波長が短い超紫外線(Extreme Ultraviolet)を用いてレジストマスク形成時の露光を行うとよい。超紫外線による露光は、解像度が高く焦点深度も大きい。従って、後に形成されるトランジスタのチャネル長Lを10nm以上1000nm以下とすることも可能であり、回路の動作速度を高速化できる。
Ultraviolet light, KrF laser light, or ArF laser light is preferably used for light exposure for forming the resist mask. The channel length L of the
また、フォトリソグラフィ工程で用いるフォトマスク数及び工程数を削減するため、透過した光が複数の強度となる露光マスクである多階調マスクによって形成されたレジストマスクを用いてエッチング工程を行ってもよい。多階調マスクを用いて形成したレジストマスクは複数の膜厚を有する形状となり、エッチングを行うことでさらに形状を変形することができるため、異なるパターンに加工する複数のエッチング工程に用いることができる。よって、一枚の多階調マスクによって、少なくとも二種類以上の異なるパターンに対応するレジストマスクを形成することができる。よって露光マスク数を削減することができ、対応するフォトリソグラフィ工程も削減できるため、工程の簡略化が可能となる。 In order to reduce the number of photomasks used in the photolithography process and the number of processes, the etching process may be performed using a resist mask formed by a multi-tone mask that is an exposure mask in which transmitted light has a plurality of intensities. Good. A resist mask formed using a multi-tone mask has a shape with a plurality of thicknesses, and the shape can be further deformed by etching. Therefore, the resist mask can be used for a plurality of etching processes for processing into different patterns. . Therefore, a resist mask corresponding to at least two kinds of different patterns can be formed by using one multi-tone mask. Therefore, the number of exposure masks can be reduced, and the corresponding photolithography process can be reduced, so that the process can be simplified.
本実施の形態では、導電膜のエッチングには、塩素を含むガス、例えば、塩素(Cl2)、三塩化硼素(BCl3)、四塩化珪素(SiCl4)、四塩化炭素(CCl4)などを含むガスを用いることができる。また、フッ素を含むガス、例えば、四弗化炭素(CF4)、弗化硫黄(SF6)、弗化窒素(NF3)、トリフルオロメタン(CHF3)などを含むガスを用いることができる。また、これらのガスにヘリウム(He)やアルゴン(Ar)などの希ガスを添加したガス、などを用いることができる。 In this embodiment mode, the conductive film is etched using a gas containing chlorine, such as chlorine (Cl 2 ), boron trichloride (BCl 3 ), silicon tetrachloride (SiCl 4 ), carbon tetrachloride (CCl 4 ), or the like. A gas containing can be used. Alternatively, a gas containing fluorine, for example, a gas containing carbon tetrafluoride (CF 4 ), sulfur fluoride (SF 6 ), nitrogen fluoride (NF 3 ), trifluoromethane (CHF 3 ), or the like can be used. Alternatively, a gas obtained by adding a rare gas such as helium (He) or argon (Ar) to these gases can be used.
エッチング法としては、平行平板型RIE(Reactive Ion Etching)法や、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用いることができる。所望の加工形状にエッチングできるように、エッチング条件(コイル型の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極温度等)を適宜調節する。 As an etching method, a parallel plate RIE (Reactive Ion Etching) method or an ICP (Inductively Coupled Plasma) etching method can be used. Etching conditions (such as the amount of power applied to the coil-type electrode, the amount of power applied to the substrate-side electrode, the substrate-side electrode temperature, etc.) are adjusted as appropriate so that the desired processed shape can be etched.
本実施の形態では、導電膜としてスパッタリング法により膜厚100nmのチタン膜、膜厚400nmのアルミニウム膜、膜厚100nmのチタン膜の積層を用いる。導電膜のエッチングは、ドライエッチング法により、チタン膜、アルミニウム膜、チタン膜の積層をエッチングして、ソース電極層405a、ドレイン電極層405bを形成する。
In this embodiment, a stack of a 100-nm-thick titanium film, a 400-nm-thick aluminum film, and a 100-nm-thick titanium film is used as the conductive film by a sputtering method. For the etching of the conductive film, the stack of the titanium film, the aluminum film, and the titanium film is etched by a dry etching method to form the
本実施の形態では、第1のエッチング条件でチタン膜とアルミニウム膜の2層をエッチングした後、第2のエッチング条件で残りのチタン膜単層を除去する。なお、第1のエッチング条件は、エッチングガス(BCl3:Cl2=750sccm:150sccm)を用い、バイアス電力を1500Wとし、ICP電源電力を0Wとし、圧力を2.0Paとする。第2のエッチング条件は、エッチングガス(BCl3:Cl2=700sccm:100sccm)を用い、バイアス電力を750Wとし、ICP電源電力を0Wとし、圧力を2.0Paとする。 In this embodiment, after etching the two layers of the titanium film and the aluminum film under the first etching condition, the remaining titanium film single layer is removed under the second etching condition. Note that the first etching conditions are an etching gas (BCl 3 : Cl 2 = 750 sccm: 150 sccm), a bias power of 1500 W, an ICP power supply power of 0 W, and a pressure of 2.0 Pa. As the second etching condition, an etching gas (BCl 3 : Cl 2 = 700 sccm: 100 sccm) is used, the bias power is 750 W, the ICP power supply power is 0 W, and the pressure is 2.0 Pa.
なお、導電膜のエッチング工程の際に、酸化物半導体層403がエッチングされ、分断することのないようエッチング条件を最適化することが望まれる。しかしながら、導電膜のみをエッチングし、酸化物半導体層403を全くエッチングしないという条件を得ることは難しく、導電膜のエッチングの際に酸化物半導体層403は一部のみがエッチングされ、溝部(凹部)を有する酸化物半導体層となることもある。
Note that it is preferable that etching conditions be optimized so that the
次いで、ソース電極層405a及びドレイン電極層405bを覆い、酸化物半導体層403と接する層間絶縁層427a及び層間絶縁層417bを順に成膜する。
Next, an
酸化物半導体層403と接する層間絶縁層427aとしては、窒素を含有する絶縁層、好ましくは組成として窒素を含有する酸化物絶縁層を用いるものとする。例えば、層間絶縁層427aとして、酸化窒化シリコン膜、窒化シリコン膜、窒化酸化シリコン膜、酸化窒化アルミニウム膜、窒化アルミニウム膜、窒化酸化アルミニウム膜、酸化窒化ガリウム膜、窒化ガリウム膜、窒化酸化ガリウム膜などの無機絶縁層を用いることができる。また、層間絶縁層427aの膜厚は50nm以上100nm以下とすることが好ましい。
As the
層間絶縁層417bとしては、酸化アルミニウム膜、酸化ハフニウム膜、酸化マグネシウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化バリウム膜、または金属窒化物膜(例えば、窒化アルミニウム膜)を用いることができる。
As the
なお、酸化アルミニウム膜は、水素、水分などの不純物、及び酸素の両方に対して膜を通過させない遮断効果(ブロック効果)が高く、作製工程中及び作製後において、変動要因となる水素、水分などの不純物の酸化物半導体層403への混入、及び酸化物半導体を構成する主成分材料である酸素の酸化物半導体層403からの放出を防止する保護膜として機能することができる。よって、層間絶縁層417bとして、酸化アルミニウム膜を設けることが好ましい。
Note that an aluminum oxide film has a high blocking effect (blocking effect) of preventing both hydrogen, moisture and other impurities, and oxygen from passing through the film, and causes hydrogen, moisture, and the like that cause fluctuations during and after the manufacturing process. It can function as a protective film that prevents entry of impurities into the
本実施の形態では、層間絶縁層427aとして、酸化窒化シリコン膜をプラズマCVD法により形成する。また、層間絶縁層417bとして、酸化アルミニウム膜をスパッタリング法により形成する。
In this embodiment, a silicon oxynitride film is formed as the
なお、層間絶縁層427aは、酸化物半導体層403と接する絶縁層であるため、ゲート絶縁層402bと同様に可能な限り水、水素などの不純物が含まれないことが好ましい。したがって、本実施の形態においては、成膜後の層間絶縁層427aに対して、水素原子の除去を目的とした熱処理(脱水化又は脱水素化処理)を行う。なお、本実施の形態において層間絶縁層417bとして用いる酸化アルミニウム膜は、水素又は水等を通過させないブロッキング機能を有する膜である。よって、層間絶縁層427aの脱水化又は脱水素化処理を目的とした熱処理は、層間絶縁層427aの形成後であって、層間絶縁層417bの成膜前に行うことが好ましい。
Note that since the interlayer insulating
熱処理の温度は、250℃以上650℃以下、好ましくは450℃以上600℃以下、または基板の歪み点未満とする。脱水化又は脱水素化処理を目的とした熱処理の詳細は、ゲート絶縁層402bと同様に行うことができる。
The heat treatment temperature is 250 ° C. or higher and 650 ° C. or lower, preferably 450 ° C. or higher and 600 ° C. or lower, or lower than the strain point of the substrate. The details of the heat treatment for dehydration or dehydrogenation treatment can be performed in a manner similar to that of the
次いで、脱水化又は脱水素化処理を行った層間絶縁層427aに対して、層間絶縁層417bを介して酸素454を導入する処理(酸素ドープ処理や、酸素注入処理ともいう)を行う。これによって、酸素過剰領域を有する層間絶縁層417aと、層間絶縁層417bの積層からなる層間絶縁層417が形成される(図2(E)参照)。
Next, treatment for introducing
酸素454には、少なくとも、酸素ラジカル、オゾン、酸素原子、酸素イオン(分子イオン、クラスタイオンを含む)、のいずれかが含まれている。脱水化又は脱水素化処理を行った層間絶縁層に酸素ドープ処理を行うことにより、層間絶縁層中に酸素を含有させることができ、先の熱処理によって脱離することのある酸素を補填するとともに、酸素過剰領域を形成することができる。
The
層間絶縁層427aへの酸素454の導入は、例えば、イオン注入法、イオンドーピング法、プラズマイマージョンイオンインプランテーション法、プラズマ処理等を用いることができる。なお、イオン注入法として、ガスクラスタイオンビームを用いてもよい。また、酸素454の導入は、基板400の全面を一度に処理してもよいし、例えば、線状のイオンビームを用いてもよい。線状のイオンビームを用いる場合には、基板又はイオンビームを相対的に移動(スキャン)させることで、層間絶縁層427a全面に酸素454を導入することができる。
For the introduction of the
酸素454の供給ガスとしては、Oを含有するガスを用いればよく、例えば、O2ガス、N2Oガス、CO2ガス、COガス、NO2ガス等を用いることができる。なお、酸素の供給ガスに希ガス(例えばAr)を含有させてもよい。
As a supply gas of
また、例えば、イオン注入法で酸素の導入を行う場合、酸素454のドーズ量は1×1013ions/cm2以上5×1016ions/cm2以下とするのが好ましく、酸素ドープ処理後の層間絶縁層417a中の酸素の含有量は、層間絶縁層417aの化学量論的組成比を超える程度とするのが好ましい。なお、このような化学量論的組成比よりも酸素を過剰に含む領域は、層間絶縁層417aの一部に存在していればよい。なお、酸素の注入深さは、注入条件により適宜制御すればよい。
For example, when oxygen is introduced by an ion implantation method, the dose of
なお、層間絶縁層417aとして酸化窒化物絶縁層(例えば、酸化窒化シリコン膜)を用いる場合、該酸化窒化物絶縁層において、酸素は主たる成分材料の一つである。このため、酸化窒化物絶縁層中の酸素濃度を、SIMS(Secondary Ion Mass Spectroscopy)などの方法を用いて、正確に見積もることは難しい。つまり、酸化窒化物絶縁層に酸素が意図的に添加されたか否かを判別することは困難であるといえる。
Note that in the case where an oxynitride insulating layer (eg, a silicon oxynitride film) is used as the
ところで、酸素には17Oや18Oといった同位体が存在し、自然界におけるこれらの存在比率はそれぞれ酸素原子全体の0.038%、0.2%程度であることが知られている。つまり、酸化物半導体層と接する絶縁層中(本実施の形態においては、層間絶縁層)におけるこれら同位体の濃度は、SIMSなどの方法によって見積もることができる程度になるから、これらの濃度を測定することで、酸化物半導体層と接する絶縁層中の酸素濃度をより正確に見積もることが可能な場合がある。よって、これらの濃度を測定することで、酸化物半導体層と接する絶縁層に意図的に酸素が添加されたか否かを判別しても良い。 By the way, it is known that oxygen has isotopes such as 17 O and 18 O, and their abundance ratios in the natural world are about 0.038% and 0.2% of the whole oxygen atom, respectively. In other words, the concentration of these isotopes in the insulating layer in contact with the oxide semiconductor layer (the interlayer insulating layer in this embodiment) can be estimated by a method such as SIMS. Thus, the oxygen concentration in the insulating layer in contact with the oxide semiconductor layer may be able to be estimated more accurately. Therefore, by measuring these concentrations, it may be determined whether oxygen is intentionally added to the insulating layer in contact with the oxide semiconductor layer.
なお、層間絶縁層427aへの酸素454の導入を行う前に、層間絶縁層427aに対して窒素を導入する処理を行ってもよい。層間絶縁層427aに導入された窒素は、膜中において酸素454と結合しうる。よって、酸素454の導入効率を向上させることができる。層間絶縁層427aに対して酸素ドープ処理を行う前に、窒素ドープ処理を行う場合には、該層間絶縁層427aとして、酸化シリコン膜、酸化ガリウム膜、酸化アルミニウム膜等の酸化物絶縁層を用いることもできる。
Note that treatment for introducing nitrogen into the
以上の工程によって、本実施の形態のトランジスタ420が形成される。
Through the above process, the
酸化物半導体層の酸素欠損に起因して電荷が生じる場合がある。一般に酸化物半導体層の酸素欠損は、一部がドナーとなりキャリアである電子を放出する。この結果、トランジスタのしきい値電圧がマイナス方向にシフトしてしまう。しかしながら本実施の形態で示すトランジスタは、酸化物半導体層と接する層間絶縁層が、酸素過剰領域を有することで、該絶縁層による酸化物半導体層からの酸素の引き抜きを抑制又は防止することが可能となるため、酸化物半導体層における酸素欠損の発生を抑制することができる。よって、しきい値電圧がマイナス方向へシフトする要因である、酸化物半導体層の酸素欠損密度を低減することができる。 Charges may be generated due to oxygen vacancies in the oxide semiconductor layer. In general, oxygen vacancies in the oxide semiconductor layer partly serve as donors and emit electrons as carriers. As a result, the threshold voltage of the transistor shifts in the negative direction. However, in the transistor described in this embodiment, the interlayer insulating layer in contact with the oxide semiconductor layer has an oxygen-excess region, so that oxygen extraction from the oxide semiconductor layer by the insulating layer can be suppressed or prevented. Therefore, generation of oxygen vacancies in the oxide semiconductor layer can be suppressed. Therefore, the oxygen deficiency density of the oxide semiconductor layer, which is a factor for shifting the threshold voltage in the negative direction, can be reduced.
層間絶縁層417aに含まれる過剰な酸素は、トランジスタの作製工程における熱処理によって、層間絶縁層417aに接する酸化物半導体層403へと供給されうる。したがって、トランジスタ420において、層間絶縁層417aと酸化物半導体層403との界面、又は酸化物半導体層403中(バルク中)の少なくとも一部において、酸素過剰領域が形成されることがある。なお、層間絶縁層417aから酸化物半導体層403への酸素の供給を目的とした熱処理工程を設けてもよい。
Excess oxygen contained in the
酸化物半導体を用いたトランジスタの場合、層間絶縁層から酸化物半導体層に酸素が供給されることで、酸化物半導体層と層間絶縁層との界面準位密度を低減できる。この結果、トランジスタの動作などに起因して、酸化物半導体層と層間絶縁層との界面にキャリアが捕獲されることを抑制することができ、信頼性の高いトランジスタを得ることができる。 In the case of a transistor including an oxide semiconductor, oxygen is supplied from the interlayer insulating layer to the oxide semiconductor layer, whereby the interface state density between the oxide semiconductor layer and the interlayer insulating layer can be reduced. As a result, carriers can be prevented from being trapped at the interface between the oxide semiconductor layer and the interlayer insulating layer due to the operation of the transistor, and a highly reliable transistor can be obtained.
また、本実施の形態のトランジスタ420においては、酸素過剰領域を有する層間絶縁層が酸化物半導体層上に位置するため、酸化物半導体層の側面及び上面からの酸素の脱離を防止することが可能である。
In the
また、酸化物半導体層と接する層間絶縁層に含まれる過剰な酸素は、酸化物半導体層中の水素を引き抜く効果も奏する。よって、酸化物半導体層中のキャリア濃度をより低減させることができるため、層間絶縁層417aを設けることでしきい値電圧の変動が低減された信頼性の高いトランジスタを提供することが可能となる。
In addition, excess oxygen contained in the interlayer insulating layer in contact with the oxide semiconductor layer also has an effect of extracting hydrogen in the oxide semiconductor layer. Thus, the carrier concentration in the oxide semiconductor layer can be further reduced; thus, by providing the
なお、本実施の形態において、層間絶縁層417は、層間絶縁層417aと層間絶縁層417bの積層構造を含む。ここで、層間絶縁層417は、少なくとも酸化物半導体層と接する絶縁層である層間絶縁層417aとして、酸素過剰領域を有し、窒素を含有する絶縁層を含んでいればよく、層間絶縁層417bは必ずしも酸素過剰領域を有さなくてもよい。但し、本実施の形態においては、層間絶縁層417bを介して層間絶縁層417aへ酸素ドープ処理を行うため、層間絶縁層417aへの酸素ドープ処理によって層間絶縁層417bも同様に酸素過剰領域を有する膜となり得る。なお、層間絶縁層417aへの酸素ドープ処理は、層間絶縁層417aの脱水化又は脱水素化処理後であって、層間絶縁層417bの成膜前に行ってもよい。又は、層間絶縁層417bへの酸素ドープ処理を目的とした工程を別途設けてもよい。
Note that in this embodiment, the
また、層間絶縁層への、脱水化又は脱水素化処理及び/又は酸素ドープ処理は、複数回行ってもよい。 Further, the dehydration or dehydrogenation treatment and / or the oxygen doping treatment on the interlayer insulating layer may be performed a plurality of times.
なお、図示しないが、トランジスタ420上に平坦化のための平坦化絶縁層を設けてもよい。平坦化絶縁層としては、ポリイミド、アクリル、ポリイミドアミド、ジンゾシクロブテン、ポリアミド、エポキシ等の耐熱性を有する有機材料を用いることができる。また、上記有機材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いることができる。なお、これらの材料で形成される絶縁層を複数積層させることで平坦化絶縁層を形成してもよい。
Note that although not illustrated, a planarization insulating layer for planarization may be provided over the
また、トランジスタ420を形成後、さらに大気中で、100℃以上400℃以下の熱処理を行ってもよい。この熱処理は、一定の加熱温度を保持して加熱してもよいし、室温から、100℃以上400℃以下の加熱温度への昇温と、加熱温度から室温までの降温を複数回繰り返して行ってもよい。また、この熱処理を、減圧下で行ってもよい。減圧下で熱処理を行うと、加熱時間を短縮することができる。この熱処理よって、層間絶縁層417a含まれる酸素を酸化物半導体層403へ供給しうるため、半導体装置の信頼性を向上することができる。
Further, after the
本実施の形態で示す半導体装置は、酸化物半導体層403に接して設けられる層間絶縁層417aへ酸素ドープ処理を行う。該層間絶縁層417aは、組成として窒素を含有する絶縁層であり、導入された酸素を効果的に膜中にとどまらせることが可能である。また、該絶縁層は、脱水化又は脱水素化処理によって、不純物である水又は水素を可能な限り除去した膜である。酸化物半導体層403に接して水及び水素の含有量を低減し、且つ酸素の含有量を増加させた層間絶縁層417aを形成することで、酸化物半導体層403への水及び水素の混入を抑制しつつ、酸化物半導体層403からの酸素の脱離を抑制することが可能となる。
In the semiconductor device described in this embodiment, oxygen doping treatment is performed on the
これによって、しきい値電圧がマイナス方向へシフトする要因である、酸化物半導体層の酸素欠損密度を低減することができるため、トランジスタ420のしきい値電圧のバラツキを低減することができるとともに、ノーマリオフ型のトランジスタを実現することができる。また、トランジスタ420のサブスレッショルド値(S値)を低減させることができる。
Accordingly, the oxygen deficiency density of the oxide semiconductor layer, which is a factor that shifts the threshold voltage in the negative direction, can be reduced, so that variation in the threshold voltage of the
また、本実施の形態で示す半導体装置は、酸素ドープ処理を酸化物半導体層403の上層に接する層間絶縁層417に対して行うため、酸化物半導体層403へ直接酸素ドープ処理を行う場合と比較して、酸化物半導体層403の膜質及び/又は結晶性を向上させることができる。特に、酸化物半導体層403がCAAC−OS膜である場合に、該CAAC−OS膜へ酸素ドープ処理を行うと結晶性が損なわれる場合があるため、本実施の形態で示す半導体装置の作製方法を適用することは有効である。
Further, in the semiconductor device described in this embodiment, oxygen doping treatment is performed on the
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。 The structures, methods, and the like described in this embodiment can be combined as appropriate with any of the structures, methods, and the like described in the other embodiments.
(実施の形態2)
本実施の形態では、半導体装置及び半導体装置の作製方法の他の一形態を、図3及び図4を用いて説明する。なお、上記実施の形態と同一部分又は同様な機能を有する部分および工程は、上記実施の形態と同様に行うことができ、繰り返しの説明は省略する。また、同じ箇所の詳細な説明は省略する。
(Embodiment 2)
In this embodiment, another embodiment of a semiconductor device and a method for manufacturing the semiconductor device will be described with reference to FIGS. Note that the same portions as those in the above embodiment or portions and processes having similar functions can be performed in the same manner as in the above embodiment, and repeated description is omitted. Detailed descriptions of the same parts are omitted.
図3にトランジスタ430の構成例を示す。図3(A)は、トランジスタ430の平面図であり、図3(B)は、図3(A)のX2−Y2における断面図であり、図3(C)は、図3(A)のV2−W2における断面図である。なお、図3(A)では煩雑になることを避けるため、トランジスタ430の構成要素の一部(例えば、層間絶縁層407等)を省略して図示している。
FIG. 3 illustrates a configuration example of the
図3に示すトランジスタ430は、基板400上に設けられたゲート電極層401と、ゲート電極層401上に設けられたゲート絶縁層412と、ゲート絶縁層412を介してゲート電極層401と重畳する酸化物半導体層403と、酸化物半導体層403と電気的に接続するソース電極層405a及びドレイン電極層405bと、ソース電極層405a及びドレイン電極層405bを覆い、酸化物半導体層403と接する層間絶縁層407と、を含んで構成される。
3 overlaps with the
本実施の形態で示すトランジスタ430は、ゲート電極層401側から順に、ゲート絶縁層412a及びゲート絶縁層412bが積層されたゲート絶縁層412と、酸化物半導体層403側から順に、層間絶縁層407a及び層間絶縁層407bが積層された層間絶縁層407と、を含む。但し、本発明の実施の形態はこれに限られず、ゲート絶縁層及び層間絶縁層はそれぞれ単層構造としてもよいし、3層以上の積層構造としてもよい。
A
本実施の形態で示すトランジスタ430において、酸化物半導体層403と接するゲート絶縁層412は、化学量論的組成比よりも過剰に酸素を含む領域を有し、且つ窒素を含有する絶縁層である。より具体的には、ゲート絶縁層412を形成する積層構造のうち、少なくとも酸化物半導体層403と接するゲート絶縁層412bは、化学量論的組成比よりも過剰に酸素を含む領域を有し、且つ窒素を含有する絶縁層とする。本実施の形態では、ゲート絶縁層402aとして、窒化シリコン膜を用い、ゲート絶縁層412bとして酸素過剰領域を有する酸化窒化シリコン膜を用いるものとする。
In the
以下、図4を用いて本実施の形態のトランジスタ430の作製方法の一例を説明する。
Hereinafter, an example of a method for manufacturing the
絶縁表面を有する基板400上に導電膜を形成し、該導電膜をエッチングして、ゲート電極層401を形成する。次に、ゲート電極層401上にゲート絶縁層412a及びゲート絶縁層412bを順に形成する(図4(A)参照)。ゲート絶縁層412aの材料又は膜厚等は、実施の形態1のゲート絶縁層402aと同様とすることができる。
A conductive film is formed over the
ゲート絶縁層422bの材料としては、組成として窒素を含有する絶縁層、好ましくは組成として窒素を含有する酸化物絶縁層を用いるものとする。例えば、酸化窒化シリコン膜、窒化酸化シリコン膜などの無機絶縁層を用いることができる。また、ゲート絶縁層422bの膜厚は、1nm以上20nm以下とすることが好ましい。
As a material of the
次いで、ゲート絶縁層402に対して、水素原子の除去を目的とした熱処理(脱水化又は脱水素化処理)を行うことが好ましい。熱処理によって、ゲート絶縁層402の脱水化または脱水素化を行うことができ、トランジスタの特性変動を引き起こす水素、又は水などの不純物が排除されたゲート絶縁層402を形成することができる。
Next, heat treatment (dehydration or dehydrogenation treatment) for removing hydrogen atoms is preferably performed on the
次いで、ゲート絶縁層412bに酸素に対して、酸素452を導入する処理(酸素ドープ処理や、酸素注入処理ともいう)を行う。これによって、酸素過剰領域を有するゲート絶縁層412bと、ゲート絶縁層412aの積層からなるゲート絶縁層412が形成される(図4(B)参照)。酸素452を導入する処理の詳細は、実施の形態1の酸素454を導入する処理と同様に行うことができる。
Next, treatment for introducing
なお、ゲート絶縁層への、脱水化又は脱水素化処理及び/又は酸素ドープ処理は、複数回行ってもよい。 Note that dehydration or dehydrogenation treatment and / or oxygen doping treatment on the gate insulating layer may be performed a plurality of times.
なお、本実施の形態において、ゲート絶縁層412は、ゲート絶縁層412aとゲート絶縁層412bの積層構造を含む。ここで、ゲート絶縁層412は、少なくとも酸化物半導体層と接する絶縁層であるゲート絶縁層412bとして、酸素過剰領域を有し、窒素を含有する絶縁層を含んでいればよく、ゲート絶縁層412aは必ずしも酸素過剰領域を有さなくてもよい。但し、ゲート絶縁層412bへの酸素ドープ処理によってゲート絶縁層412aも同様に酸素過剰領域を有する膜となり得る。又は、ゲート絶縁層412aへの酸素ドープ処理を目的とした工程を別途設けてもよい。
Note that in this embodiment, the
次いで、実施の形態1と同様に、ゲート絶縁層402上に酸化物半導体層を成膜する。
Next, as in
酸化物半導体層を成膜後、当該酸化物半導体層に含まれる過剰な水素(水や水酸基を含む)を低減、より好ましくは除去(脱水化又は脱水素化)するための熱処理を行うことが好ましい。熱処理の温度は、300℃以上700℃以下、又は基板の歪み点未満とする。熱処理は減圧下又は窒素雰囲気下などで行うことができる。 After the oxide semiconductor layer is formed, heat treatment for reducing, more preferably removing (dehydrating or dehydrogenating) excess hydrogen (including water and hydroxyl groups) contained in the oxide semiconductor layer may be performed. preferable. The heat treatment temperature is set to be 300 ° C. or higher and 700 ° C. or lower or lower than the strain point of the substrate. The heat treatment can be performed under reduced pressure or a nitrogen atmosphere.
この熱処理によって、n型の導電性を付与する不純物である水素を酸化物半導体から低減又は除去することができる。また、この熱処理によって、ゲート絶縁層402に含まれる酸素が酸化物半導体層へと供給されうる。酸化物半導体層の脱水化又は脱水素化処理によって同時に脱離する酸素をゲート絶縁層402から供給することによって、酸化物半導体層の酸素欠損を補填することが可能である。
By this heat treatment, hydrogen which is an impurity imparting n-type conductivity can be reduced or removed from the oxide semiconductor. Further, by this heat treatment, oxygen contained in the
なお、酸化物半導体層の脱水化又は脱水素化のための熱処理を、島状の酸化物半導体層403への加工前に行うと、ゲート絶縁層402に含まれる酸素が熱処理によって放出されるのを防止することができるため好ましい。
Note that when heat treatment for dehydration or dehydrogenation of the oxide semiconductor layer is performed before the island-shaped
脱水化又は脱水素化のための熱処理は、トランジスタ430の作製工程の他の加熱処理と兼ねてもよい。
The heat treatment for dehydration or dehydrogenation may be combined with another heat treatment in the manufacturing process of the
熱処理においては、窒素、又はヘリウム、ネオン、アルゴン等の希ガスに、水、水素などが含まれないことが好ましい。又は、熱処理装置に導入する窒素、又はヘリウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上好ましくは7N(99.99999%)以上(即ち不純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好ましい。 In the heat treatment, it is preferable that water or hydrogen is not contained in nitrogen or a rare gas such as helium, neon, or argon. Alternatively, the purity of nitrogen or a rare gas such as helium, neon, or argon introduced into the heat treatment apparatus is 6N (99.9999%) or more, preferably 7N (99.99999%) or more (that is, the impurity concentration is 1 ppm or less, preferably Is preferably 0.1 ppm or less).
また、熱処理で酸化物半導体層を加熱した後、加熱温度を維持、又はその加熱温度から徐冷しながら同じ炉に高純度の酸素ガス、高純度の二窒化酸素ガス、又は超乾燥エア(CRDS(キャビティリングダウンレーザー分光法)方式の露点計を用いて測定した場合の水分量が20ppm(露点換算で−55℃)以下、好ましくは1ppm以下、より好ましくは10ppb以下の空気)を導入してもよい。酸素ガス又は二窒化酸素ガスに、水、水素などが含まれないことが好ましい。又は、熱処理装置に導入する酸素ガス又は二窒化酸素ガスの純度を、6N以上好ましくは7N以上(即ち、酸素ガス又は二窒化酸素ガス中の不純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好ましい。酸素ガス又は二窒化酸素ガスの作用により、脱水化又は脱水素化処理による不純物の排除工程によって同時に減少してしまった酸化物半導体を構成する主成分材料である酸素を供給することによって、酸化物半導体層を高純度化及び電気的にi型(真性)化することができる。 In addition, after the oxide semiconductor layer is heated by heat treatment, a high-purity oxygen gas, a high-purity oxygen dinitride gas, or ultra-dry air (CRDS) is maintained in the same furnace while maintaining the heating temperature or gradually cooling from the heating temperature. (Cavity Ring Down Laser Spectroscopy) The amount of water when measured using a dew point meter is 20 ppm (-55 ° C. in terms of dew point) or less, preferably 1 ppm or less, more preferably 10 ppb or less) Also good. It is preferable that water, hydrogen, or the like be not contained in the oxygen gas or the oxygen dinitride gas. Alternatively, the purity of the oxygen gas or oxygen dinitride gas introduced into the heat treatment apparatus is 6 N or more, preferably 7 N or more (that is, the impurity concentration in the oxygen gas or oxygen dinitride gas is 1 ppm or less, preferably 0.1 ppm or less). It is preferable to do. By supplying oxygen, which is a main component material of the oxide semiconductor, which has been simultaneously reduced by the process of removing impurities by dehydration or dehydrogenation treatment by the action of oxygen gas or oxygen dinitride gas, the oxide The semiconductor layer can be highly purified and electrically i-type (intrinsic).
次いで、酸化物半導体層を島状の酸化物半導体層403へと加工した後、酸化物半導体層403上にソース電極層405a及びドレイン電極層405bを形成する(図4(C)参照)。
Next, after the oxide semiconductor layer is processed into the island-shaped
次いで、ソース電極層405a及びドレイン電極層405bを覆い、酸化物半導体層403と接する層間絶縁層407a及び層間絶縁層407bを順に積層し、層間絶縁層407を形成する(図4(D)参照)。
Next, the
層間絶縁層407aの材料としては、酸化シリコン膜、酸化ガリウム膜、酸化アルミニウム膜、窒化シリコン膜、酸化窒化シリコン膜、酸化窒化アルミニウム膜、または窒化酸化シリコン膜を用いて形成することができる。また、層間絶縁層407bは、実施の形態1の層間絶縁層417bと同様の構成とすることができる。
As a material of the interlayer insulating
なお、層間絶縁層407aは、酸化物半導体層403と接する絶縁層であるため、可能な限り水、水素などの不純物が含まれないことが好ましい。よって、成膜後の層間絶縁層407aに対して、水素原子の除去を目的とした熱処理(脱水化又は脱水素化処理)を行うことが好ましい。
Note that since the interlayer insulating
以上の工程によって、本実施の形態のトランジスタ430が形成される。
Through the above process, the
本実施の形態で示す半導体装置は、酸化物半導体層403に接して設けられるゲート絶縁層412bへ酸素ドープ処理を行う。該ゲート絶縁層412bは、組成として窒素を含有する絶縁層であり、導入された酸素を効果的に膜中にとどまらせることが可能である。また、該絶縁層は、脱水化又は脱水素化処理によって、不純物である水又は水素を可能な限り除去した膜である。酸化物半導体層403に接して水及び水素の含有量を低減し、且つ酸素の含有量を増加させたゲート絶縁層412bを形成することで、酸化物半導体層403への水及び水素の混入を抑制しつつ、酸化物半導体層403からの酸素の脱離を抑制することが可能となる。
In the semiconductor device described in this embodiment, oxygen doping treatment is performed on the
これによって、しきい値電圧がマイナス方向へシフトする要因である、酸化物半導体層の酸素欠損密度を低減することができるため、トランジスタ430のしきい値電圧のバラツキを低減することができるとともに、ノーマリオフ型のトランジスタを実現することができる。また、トランジスタ430のサブスレッショルド値(S値)を低減させることができる。
Accordingly, the oxygen deficiency density of the oxide semiconductor layer, which is a factor that shifts the threshold voltage in the negative direction, can be reduced, so that variation in threshold voltage of the
また、本実施の形態で示す半導体装置は、酸素ドープ処理を酸化物半導体層403の下層に接するゲート絶縁層412に対して行うため、酸化物半導体層403へ直接酸素ドープ処理を行う場合と比較して、酸化物半導体層403の膜質及び/又は結晶性を向上させることができる。特に、酸化物半導体層403がCAAC−OS膜である場合に、該CAAC−OS膜へ酸素ドープ処理を行うと結晶性が損なわれる場合があるため、本実施の形態で示す半導体装置の作製方法を適用することは有効である。
Further, in the semiconductor device described in this embodiment, oxygen doping treatment is performed on the
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。 The structures, methods, and the like described in this embodiment can be combined as appropriate with any of the structures, methods, and the like described in the other embodiments.
(実施の形態3)
本実施の形態では、半導体装置の他の一形態を、図5を用いて説明する。なお、上記実施の形態と同一部分又は同様な機能を有する部分および工程は、上記実施の形態と同様に行うことができ、繰り返しの説明は省略する。また、同じ箇所の詳細な説明は省略する。
(Embodiment 3)
In this embodiment, another embodiment of a semiconductor device is described with reference to FIGS. Note that the same portions as those in the above embodiment or portions and processes having similar functions can be performed in the same manner as in the above embodiment, and repeated description is omitted. Detailed descriptions of the same parts are omitted.
図5にトランジスタ440の構成例を示す。図5(A)は、トランジスタ440の平面図であり、図5(B)は、図5(A)のX3−Y3における断面図であり、図5(C)は、図5(A)のV3−W3における断面図である。なお、図5(A)では煩雑になることを避けるため、トランジスタ440の構成要素の一部(例えば、層間絶縁層417等)を省略して図示している。
FIG. 5 illustrates a configuration example of the
図5に示すトランジスタ440は、基板400上に設けられたゲート電極層401と、ゲート電極層401上に設けられたゲート絶縁層412と、ゲート絶縁層412を介してゲート電極層401と重畳する酸化物半導体層403と、酸化物半導体層403と電気的に接続するソース電極層405a及びドレイン電極層405bと、ソース電極層405a及びドレイン電極層405bを覆い、酸化物半導体層403と接する層間絶縁層417と、を含んで構成される。
A
本実施の形態で示すトランジスタ430は、ゲート電極層401側から順に、ゲート絶縁層412a及びゲート絶縁層412bが積層されたゲート絶縁層412と、酸化物半導体層403側から順に、層間絶縁層417a及び層間絶縁層417bが積層された層間絶縁層417と、を含む。但し、本発明の実施の形態はこれに限られず、ゲート絶縁層及び層間絶縁層はそれぞれ単層構造としてもよいし、3層以上の積層構造としてもよい。
A
本実施の形態で示すトランジスタ440において、酸化物半導体層403と接するゲート絶縁層412は、化学量論的組成比よりも過剰に酸素を含む領域を有し、且つ窒素を含有する絶縁層である。より具体的には、ゲート絶縁層412を形成する積層構造のうち、少なくとも酸化物半導体層403と接するゲート絶縁層412bは、化学量論的組成比よりも過剰に酸素を含む領域を有し、且つ窒素を含有する絶縁層とする。本実施の形態では、ゲート絶縁層402aとして、窒化シリコン膜を用い、ゲート絶縁層412bとして酸素過剰領域を有する酸化窒化シリコン膜を用いるものとする。
In the
また、本実施の形態で示すトランジスタ440において、酸化物半導体層403と接する層間絶縁層417は、化学量論的組成比よりも過剰に酸素を含む領域を有し、且つ窒素を含有する絶縁層である。より具体的には、層間絶縁層417を形成する積層構造のうち、少なくとも酸化物半導体層403と接する層間絶縁層417aは、化学量論的組成比よりも過剰に酸素を含む領域を有し、且つ窒素を含有する絶縁層とする。本実施の形態では、層間絶縁層417aとして、酸素過剰領域を有する酸化窒化シリコン膜を用い、層間絶縁層417bとして酸化アルミニウム膜を用いるものとする。
In the
トランジスタ440の構成及び作製方法の詳細は、実施の形態1及び実施の形態2を参酌することができる。
Embodiments 1 and 2 can be referred to for details of the structure and the manufacturing method of the
本実施の形態で示す半導体装置は、酸化物半導体層403の上層及び下層に接して設けられる絶縁層(ゲート絶縁層412b及び層間絶縁層417a)として、組成として窒素を含有する絶縁層を適用する。また、該絶縁層はそれぞれ酸素ドープ処理を施された膜であり、膜中に含有される窒素によって導入された酸素を効果的に膜中にとどまらせることが可能である。また、該絶縁層は、脱水化又は脱水素化処理によって、不純物である水又は水素を可能な限り除去した膜である。酸化物半導体層403の上下に接して水及び水素の含有量を低減し、且つ酸素の含有量を増加させた絶縁層を形成することで、酸化物半導体層403への水及び水素の混入を抑制しつつ、酸化物半導体層403からの酸素の脱離を抑制することが可能となる。
In the semiconductor device described in this embodiment, an insulating layer containing nitrogen is used as an insulating layer (a
これによって、しきい値電圧がマイナス方向へシフトする要因である、酸化物半導体層の酸素欠損密度を低減することができるため、トランジスタ430のしきい値電圧のバラツキを低減することができるとともに、ノーマリオフ型のトランジスタを実現することができる。また、トランジスタ440のサブスレッショルド値(S値)を低減させることができる。
Accordingly, the oxygen deficiency density of the oxide semiconductor layer, which is a factor that shifts the threshold voltage in the negative direction, can be reduced, so that variation in threshold voltage of the
また、本実施の形態で示す半導体装置は、酸素ドープ処理を酸化物半導体層403に接する絶縁層に対して行うため、酸化物半導体層403へ直接酸素ドープ処理を行う場合と比較して、酸化物半導体層403の膜質及び/又は結晶性を向上させることができる。特に、酸化物半導体層403がCAAC−OS膜である場合に、該CAAC−OS膜へ酸素ドープ処理を行うと結晶性が損なわれる場合があるため、本実施の形態で示す半導体装置の作製方法を適用することは有効である。
In addition, since the semiconductor device described in this embodiment performs oxygen doping treatment on the insulating layer in contact with the
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。 The structures, methods, and the like described in this embodiment can be combined as appropriate with any of the structures, methods, and the like described in the other embodiments.
(実施の形態4)
実施の形態1乃至3のいずれかに示したトランジスタを用いて表示機能を有する半導体装置(表示装置ともいう)を作製することができる。また、トランジスタを含む駆動回路の一部又は全体を、画素部と同じ基板上に一体形成し、システムオンパネルを形成することができる。
(Embodiment 4)
A semiconductor device having a display function (also referred to as a display device) can be manufactured using any of the transistors described in any of
図6(A)において、基板4001上に設けられた画素部4002を囲むようにして、シール材4005が設けられ、基板4006によって封止されている。図6(A)においては、基板4001上のシール材4005によって囲まれている領域とは異なる領域に、ICチップ、又は別途用意された基板上に単結晶半導体膜又は多結晶半導体膜で形成された走査線駆動回路4004、信号線駆動回路4003が実装されている。また別途形成された信号線駆動回路4003と、走査線駆動回路4004又は画素部4002に与えられる各種信号及び電位は、FPC(Flexible printed circuit)4018a、4018bから供給されている。
In FIG. 6A, a
図6(B)及び図6(C)において、基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲むようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回路4004の上に基板4006が設けられている。よって画素部4002と、走査線駆動回路4004とは、基板4001とシール材4005と基板4006とによって、表示素子と共に封止されている。図6(B)及び(C)においては、基板4001上のシール材4005によって囲まれている領域とは異なる領域に、ICチップ、又は別途用意された基板上に単結晶半導体膜又は多結晶半導体膜で形成された信号線駆動回路4003が実装されている。図6(B)及び図6(C)においては、別途形成された信号線駆動回路4003と、走査線駆動回路4004又は画素部4002に与えられる各種信号及び電位は、FPC4018、4018bから供給されている。
6B and 6C, a
また図6(B)及び図6(C)においては、信号線駆動回路4003を別途形成し、基板4001に実装している例を示しているが、この構成に限定されない。走査線駆動回路を別途形成して実装してもよいし、信号線駆動回路の一部又は走査線駆動回路の一部のみを別途形成して実装してもよい。
6B and 6C illustrate an example in which the signal
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG(Chip On Glass)方法、ワイヤボンディング方法、或いはTAB(Tape Automated Bonding)方法などを用いることができる。図6(A)は、COG方法により信号線駆動回路4003、走査線駆動回路4004を実装する例であり、図6(B)は、COG方法により信号線駆動回路4003を実装する例であり、図6(C)は、TAB方法により信号線駆動回路4003を実装する例である。
Note that a connection method of a driver circuit which is separately formed is not particularly limited, and a COG (Chip On Glass) method, a wire bonding method, a TAB (Tape Automated Bonding) method, or the like can be used. 6A illustrates an example in which the signal
また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラを含むIC等を実装した状態にあるモジュールとを含む。 The display device includes a panel in which the display element is sealed, and a module in which an IC including a controller is mounted on the panel.
なお、本明細書中における表示装置とは、画像表示デバイス、表示デバイス、もしくは光源(照明装置含む)を指す。また、コネクター、例えばFPCもしくはTABテープもしくはTCPが取り付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュール、又は表示素子にCOG方式によりIC(集積回路)が直接実装されたモジュールも全て表示装置に含むものとする。 Note that a display device in this specification means an image display device, a display device, or a light source (including a lighting device). Further, an IC (integrated circuit) is directly mounted on a connector, for example, a module to which an FPC or TAB tape or TCP is attached, a module in which a printed wiring board is provided at the end of the TAB tape or TCP, or a display element by a COG method. All modules are included in the display device.
また基板上に設けられた画素部及び走査線駆動回路は、トランジスタを複数有しており、実施の形態1乃至3のいずれかに示したトランジスタを適用することができる。
The pixel portion and the scan line driver circuit provided over the substrate include a plurality of transistors, and any of the transistors described in any of
表示装置に設けられる表示素子としては液晶素子(液晶表示素子ともいう)、発光素子(発光表示素子ともいう)を用いることができる。発光素子は、電流又は電圧によって輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electro Luminescence)、有機EL等が含まれる。また、電子インクなど、電気的作用によりコントラストが変化する表示媒体も適用することができる。 As a display element provided in the display device, a liquid crystal element (also referred to as a liquid crystal display element) or a light-emitting element (also referred to as a light-emitting display element) can be used. The light-emitting element includes, in its category, an element whose luminance is controlled by current or voltage, and specifically includes inorganic EL (Electro Luminescence), organic EL, and the like. In addition, a display medium whose contrast is changed by an electric effect, such as electronic ink, can be used.
また、半導体装置の一形態について、図6乃至図8を用いて説明する。図8は、図6(B)のM−Nにおける断面図に相当する。 One embodiment of a semiconductor device will be described with reference to FIGS. FIG. 8 corresponds to a cross-sectional view taken along line MN in FIG.
図6及び図8で示すように、半導体装置は接続端子電極4015及び端子電極4016を有しており、接続端子電極4015及び端子電極4016はFPC4018、4018bが有する端子と異方性導電層4019を介して、電気的に接続されている。
6 and 8, the semiconductor device includes a
接続端子電極4015は、第1の電極層4034と同じ導電層から形成され、端子電極4016は、トランジスタ4040、4011のソース電極層及びドレイン電極層と同じ導電層で形成されている。
The
また基板4001上に設けられた画素部4002と、走査線駆動回路4004は、トランジスタを複数有しており、図6及び図8では、画素部4002に含まれるトランジスタ4040と、走査線駆動回路4004に含まれるトランジスタ4011とを例示している。図8(A)では、トランジスタ4040、4011上には絶縁層4030、4032が設けられ、図8(B)では、さらに、絶縁層4021が設けられている。
In addition, the
トランジスタ4010、4011としては、実施の形態1乃至3のいずれかに示したトランジスタを適用することができる。本実施の形態では、実施の形態1で示したトランジスタ420と同様な構造を有するトランジスタを適用する例を示す。トランジスタ4010、4011は、ボトムゲート構造のトランジスタである。
The transistors described in any of
トランジスタ4010、4011は、酸化物半導体層と接する絶縁層である、ゲート絶縁層4020b及び/又は絶縁層4030として、酸素ドープ処理によって酸素過剰領域を形成された絶縁層を適用したトランジスタである。また酸素過剰領域を有する絶縁層は、その組成として窒素を含有する絶縁層である。よって、酸化物半導体層には、トランジスタ4010、4011の特性変動を引き起こす水素、又は水などの不純物が混入せず、かつ酸素欠損を補填する酸素が供給されうる。よって、トランジスタ4010、4011は、電気特性変動が抑制されている。
The
従って、図6及び図8で示す本実施の形態の酸化物半導体層を用いた安定した電気特性を有するトランジスタ4010、4011を含む半導体装置として信頼性の高い半導体装置を提供することができる。
Therefore, a highly reliable semiconductor device can be provided as a semiconductor device including the
また、駆動回路用のトランジスタ4011の酸化物半導体層のチャネル形成領域と重なる位置にさらに導電層を設けてもよい。導電層を酸化物半導体層のチャネル形成領域と重なる位置に設けることによって、バイアス−熱ストレス試験(BT試験)前後におけるトランジスタ4011のしきい値電圧の変化量をさらに低減することができる。また、導電層は、電位がトランジスタ4011のゲート電極層と同じでもよいし、異なっていても良く、第2のゲート電極層として機能させることもできる。また、導電層の電位がGND、0V、或いはフローティング状態であってもよい。
Further, a conductive layer may be provided in a position overlapping with a channel formation region of the oxide semiconductor layer of the
また、該導電層は外部の電場を遮蔽する、すなわち外部の電場が内部(トランジスタを含む回路部)に作用しないようにする機能(特に静電気に対する静電遮蔽機能)も有する。導電層の遮蔽機能により、静電気などの外部の電場の影響によりトランジスタの電気的な特性が変動することを防止することができる。 The conductive layer also has a function of shielding an external electric field, that is, preventing the external electric field from acting on the inside (a circuit portion including a transistor) (particularly, an electrostatic shielding function against static electricity). With the shielding function of the conductive layer, the electrical characteristics of the transistor can be prevented from changing due to the influence of an external electric field such as static electricity.
画素部4002に設けられたトランジスタ4010は表示素子と電気的に接続し、表示パネルを構成する。表示素子は表示を行うことができれば特に限定されず、様々な表示素子を用いることができる。
A
図8(A)に表示素子として液晶素子を用いた液晶表示装置の例を示す。図8(A)において、表示素子である液晶素子4013は、第1の電極層4034、第2の電極層4031、及び液晶層4008を含む。なお、液晶層4008を挟持するように配向膜として機能する絶縁層4038、4033が設けられている。第2の電極層4031は基板4006側に設けられ、第1の電極層4034と第2の電極層4031とは液晶層4008を介して積層する構成となっている。
FIG. 8A illustrates an example of a liquid crystal display device using a liquid crystal element as a display element. In FIG. 8A, a liquid crystal element 4013 which is a display element includes a
またスペーサ4035は絶縁層を選択的にエッチングすることで得られる柱状のスペーサであり、液晶層4008の膜厚(セルギャップ)を制御するために設けられている。なお球状のスペーサを用いていてもよい。
The
表示素子として、液晶素子を用いる場合、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料(液晶組成物)は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。 When a liquid crystal element is used as the display element, a thermotropic liquid crystal, a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal, a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like can be used. These liquid crystal materials (liquid crystal compositions) exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
また、液晶層4008に、配向膜を用いないブルー相を発現する液晶組成物を用いてもよい。この場合、液晶層4008と、第1の電極層4034及び第2の電極層4031とは接する構造となる。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は、液晶及びカイラル剤を混合させた液晶組成物を用いて発現させることができる。また、ブルー相が発現する温度範囲を広げるために、ブルー相を発現する液晶組成物に重合性モノマー及び重合開始剤などを添加し、高分子安定化させる処理を行って液晶層を形成することもできる。ブルー相を発現する液晶組成物は、応答速度が短く、光学的等方性であるため配向処理が不要であり、視野角依存性が小さい。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる。よって液晶表示装置の生産性を向上させることが可能となる。酸化物半導体層を用いるトランジスタは、静電気の影響によりトランジスタの電気的な特性が著しく変動して設計範囲を逸脱する恐れがある。よって酸化物半導体層を用いるトランジスタを有する液晶表示装置にブルー相を発現する液晶組成物を用いることはより効果的である。
Alternatively, a liquid crystal composition exhibiting a blue phase for which an alignment film is unnecessary may be used for the
また、液晶材料の固有抵抗は、1×109Ω・cm以上であり、好ましくは1×1011Ω・cm以上であり、さらに好ましくは1×1012Ω・cm以上である。なお、本明細書における固有抵抗の値は、20℃で測定した値とする。 The specific resistance of the liquid crystal material is 1 × 10 9 Ω · cm or more, preferably 1 × 10 11 Ω · cm or more, and more preferably 1 × 10 12 Ω · cm or more. In addition, the value of the specific resistance in this specification shall be the value measured at 20 degreeC.
液晶表示装置に設けられる保持容量の大きさは、画素部に配置されるトランジスタのリーク電流等を考慮して、所定の期間の間電荷を保持できるように設定される。保持容量の大きさは、トランジスタのオフ電流等を考慮して設定すればよい。本明細書に開示する酸化物半導体層を有するトランジスタを用いることにより、各画素における液晶容量に対して1/3以下、好ましくは1/5以下の容量の大きさを有する保持容量を設ければ充分である。 The size of the storage capacitor provided in the liquid crystal display device is set so that charges can be held for a predetermined period in consideration of a leakage current of a transistor arranged in the pixel portion. The size of the storage capacitor may be set in consideration of the off-state current of the transistor. By using a transistor including an oxide semiconductor layer disclosed in this specification, a storage capacitor having a capacitance of 1/3 or less, preferably 1/5 or less of the liquid crystal capacitance of each pixel is provided. It is enough.
本明細書に開示する酸化物半導体層を用いたトランジスタは、オフ状態における電流値(オフ電流値)を低く制御することができる。よって、画像信号等の電気信号の保持時間を長くすることができ、電源オン状態では書き込み間隔も長く設定できる。よって、リフレッシュ動作の頻度を少なくすることができるため、消費電力を抑制する効果を奏する。 In a transistor including an oxide semiconductor layer disclosed in this specification, a current value in an off state (off-state current value) can be controlled low. Therefore, the holding time of an electric signal such as an image signal can be increased, and the writing interval can be set longer in the power-on state. Therefore, since the frequency of the refresh operation can be reduced, there is an effect of suppressing power consumption.
また、本明細書に開示する酸化物半導体層を用いたトランジスタは、比較的高い電界効果移動度が得られるため、高速駆動が可能である。例えば、このような高速駆動が可能なトランジスタを液晶表示装置に用いることで、画素部のスイッチングトランジスタと、駆動回路部に使用するドライバートランジスタを同一基板上に形成することができる。すなわち、別途駆動回路として、シリコンウェハ等により形成された半導体装置を用いる必要がないため、半導体装置の部品点数を削減することができる。また、画素部においても、高速駆動が可能なトランジスタを用いることで、高画質な画像を提供することができる。 In addition, a transistor including the oxide semiconductor layer disclosed in this specification can have a relatively high field-effect mobility, and thus can be driven at high speed. For example, by using such a transistor capable of high-speed driving for a liquid crystal display device, the switching transistor in the pixel portion and the driver transistor used in the driver circuit portion can be formed over the same substrate. That is, since it is not necessary to use a semiconductor device formed of a silicon wafer or the like as a separate drive circuit, the number of parts of the semiconductor device can be reduced. In the pixel portion, a high-quality image can be provided by using a transistor that can be driven at high speed.
液晶表示装置には、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optical Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モードなどを用いることができる。 The liquid crystal display device includes a TN (Twisted Nematic) mode, an IPS (In-Plane-Switching) mode, an FFS (Fringe Field Switching) mode, an ASM (Axially Symmetrical Micro-cell) mode, and an OCB mode. An FLC (Ferroelectric Liquid Crystal) mode, an AFLC (Anti Ferroelectric Liquid Crystal) mode, or the like can be used.
また、ノーマリーブラック型の液晶表示装置、例えば垂直配向(VA)モードを採用した透過型の液晶表示装置としてもよい。垂直配向モードとしては、いくつか挙げられるが、例えば、MVA(Multi−Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASV(Advanced Super View)モードなどを用いることができる。また、VA型の液晶表示装置にも適用することができる。VA型の液晶表示装置とは、液晶表示パネルの液晶分子の配列を制御する方式の一種である。VA型の液晶表示装置は、電圧が印加されていないときにパネル面に対して液晶分子が垂直方向を向く方式である。また、画素(ピクセル)をいくつかの領域(サブピクセル)に分け、それぞれ別の方向に分子を倒すよう工夫されているマルチドメイン化あるいはマルチドメイン設計といわれる方法を用いることができる。 Alternatively, a normally black liquid crystal display device such as a transmissive liquid crystal display device employing a vertical alignment (VA) mode may be used. There are several examples of the vertical alignment mode. For example, an MVA (Multi-Domain Vertical Alignment) mode, a PVA (Patterned Vertical Alignment) mode, an ASV (Advanced Super View) mode, and the like can be used. The present invention can also be applied to a VA liquid crystal display device. A VA liquid crystal display device is a type of a method for controlling the alignment of liquid crystal molecules of a liquid crystal display panel. The VA liquid crystal display device is a method in which liquid crystal molecules face a vertical direction with respect to a panel surface when no voltage is applied. Further, a method called multi-domain or multi-domain design in which pixels (pixels) are divided into several regions (sub-pixels) and molecules are tilted in different directions can be used.
また、表示装置において、ブラックマトリクス(遮光層)、偏光部材、位相差部材、反射防止部材などの光学部材(光学基板)などは適宜設ける。例えば、偏光基板及び位相差基板による円偏光を用いてもよい。また、光源としてバックライト、サイドライトなどを用いてもよい。 In the display device, a black matrix (light shielding layer), a polarizing member, a retardation member, an optical member (an optical substrate) such as an antireflection member, and the like are provided as appropriate. For example, circularly polarized light using a polarizing substrate and a retardation substrate may be used. Further, a backlight, a sidelight, or the like may be used as the light source.
また、画素部における表示方式は、プログレッシブ方式やインターレース方式等を用いることができる。また、カラー表示する際に画素で制御する色要素としては、RGB(Rは赤、Gは緑、Bは青を表す)の三色に限定されない。例えば、RGBW(Wは白を表す)、又はRGBに、イエロー、シアン、マゼンタ等を一色以上追加したものがある。なお、色要素のドット毎にその表示領域の大きさが異なっていてもよい。ただし、開示する発明はカラー表示の表示装置に限定されるものではなく、モノクロ表示の表示装置に適用することもできる。 As a display method in the pixel portion, a progressive method, an interlace method, or the like can be used. In addition, the color elements controlled by the pixels when performing color display are not limited to three colors of RGB (R represents red, G represents green, and B represents blue). For example, there is RGBW (W represents white) or RGB in which one or more colors of yellow, cyan, magenta, etc. are added. The size of the display area may be different for each dot of the color element. Note that the disclosed invention is not limited to a display device for color display, and can be applied to a display device for monochrome display.
また、表示装置に含まれる表示素子として、エレクトロルミネッセンスを利用する発光素子を適用することができる。エレクトロルミネッセンスを利用する発光素子は、発光材料が有機化合物であるか、無機化合物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子と呼ばれている。 In addition, as a display element included in the display device, a light-emitting element utilizing electroluminescence can be used. A light-emitting element using electroluminescence is distinguished depending on whether the light-emitting material is an organic compound or an inorganic compound. Generally, the former is called an organic EL element and the latter is called an inorganic EL element.
有機EL素子は、発光素子に電圧を印加することにより、一対の電極から電子および正孔がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャリア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形成し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このような発光素子は、電流励起型の発光素子と呼ばれる。本実施の形態では、発光素子として有機EL素子を用いる例を示す。 In the organic EL element, by applying a voltage to the light emitting element, electrons and holes are respectively injected from the pair of electrodes into the layer containing the light emitting organic compound, and a current flows. Then, these carriers (electrons and holes) recombine, whereby the light-emitting organic compound forms an excited state, and emits light when the excited state returns to the ground state. Due to such a mechanism, such a light-emitting element is referred to as a current-excitation light-emitting element. In this embodiment, an example in which an organic EL element is used as a light-emitting element is described.
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−アクセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明する。 Inorganic EL elements are classified into a dispersion-type inorganic EL element and a thin-film inorganic EL element depending on the element structure. The dispersion-type inorganic EL element has a light-emitting layer in which particles of a light-emitting material are dispersed in a binder, and the light emission mechanism is donor-acceptor recombination light emission using a donor level and an acceptor level. The thin-film inorganic EL element has a structure in which a light emitting layer is sandwiched between dielectric layers and further sandwiched between electrodes, and the light emission mechanism is localized light emission utilizing inner-shell electron transition of metal ions. Note that description is made here using an organic EL element as a light-emitting element.
発光素子は発光を取り出すために少なくとも一対の電極の一方が透光性であればよい。そして、基板上にトランジスタ及び発光素子を形成し、基板とは逆側の面から発光を取り出す上面射出や、基板側の面から発光を取り出す下面射出や、基板側及び基板とは反対側の面から発光を取り出す両面射出構造の発光素子があり、どの射出構造の発光素子も適用することができる。 In order to extract light emitted from the light-emitting element, at least one of the pair of electrodes may be light-transmitting. Then, a transistor and a light emitting element are formed over the substrate, and a top emission that extracts light from a surface opposite to the substrate, a bottom emission that extracts light from a surface on the substrate side, and a surface opposite to the substrate side and the substrate. There is a light-emitting element having a dual emission structure in which light emission is extracted from the light-emitting element.
図7(A)(B)及び図8(B)に表示素子として発光素子を用いた発光装置の例を示す。 7A and 7B illustrate an example of a light-emitting device using a light-emitting element as a display element.
図7(A)は発光装置の平面図であり、図7(A)中の一点鎖線S1−T1、S2−T2、及びS3−T3で切断した断面が図7(B)に相当する。なお、図7(A)の平面図においては、電界発光層542及び第2の電極層543は省略してあり図示していない。
7A is a plan view of the light-emitting device, and a cross section taken along dashed-dotted lines S1-T1, S2-T2, and S3-T3 in FIG. 7A corresponds to FIG. Note that the
図7に示す発光装置は、基板500上に、トランジスタ510、容量素子520、配線層交差部530を有しており、トランジスタ510は発光素子540と電気的に接続している。なお、図7は基板500を通過して発光素子540からの光を取り出す、下面射出型構造の発光装置である。
The light-emitting device illustrated in FIG. 7 includes a
トランジスタ510としては、実施の形態1乃至3のいずれかで示したトランジスタを適用することができる。本実施の形態では、実施の形態1で示したトランジスタ420と同様な構造を有するトランジスタを適用する例を示す。トランジスタ510は、ボトムゲート構造のトランジスタである。
As the
トランジスタ510はゲート電極層511a、511b、ゲート絶縁層502、酸化物半導体層512、ソース電極層又はドレイン電極層として機能する導電層513a、513bを含む。
The
トランジスタ510は酸化物半導体層512と接する絶縁層である、ゲート絶縁層502及び/又は絶縁層524として、酸素ドープ処理によって酸素過剰領域を形成された絶縁層を適用したトランジスタである。また酸素過剰領域を有する絶縁層は、その組成として窒素を含有する絶縁層である。また、本実施の形態において、絶縁層524上に設けられた絶縁層525として、酸化アルミニウム膜を用いる。よって、酸化物半導体層512には、トランジスタ510の特性変動を引き起こす水素、又は水などの不純物が混入せず、かつ酸素欠損を補填する酸素が供給されうる。よって、トランジスタ510は、電気特性変動が抑制されている。
The
従って、図7で示す本実施の形態の酸化物半導体層512を用いた安定した電気特性を有するトランジスタ510を含む半導体装置として信頼性の高い半導体装置を提供することができる。また、そのような信頼性の高い半導体装置を歩留まりよく作製し、高生産化を達成することができる。
Therefore, a highly reliable semiconductor device can be provided as a semiconductor device including the
容量素子520は、導電層521a、521b、ゲート絶縁層502、酸化物半導体層522、導電層523を含み、導電層521a、521bと導電層523とで、ゲート絶縁層502及び酸化物半導体層522を挟む構成とすることで容量を形成する。
The
配線層交差部530は、ゲート電極層511a、511bと、導電層533との交差部であり、ゲート電極層511a、511bと、導電層533とは、間にゲート絶縁層502を介して交差する。
The
本実施の形態においては、ゲート電極層511a及び導電層521aとして膜厚30nmのチタン膜を用い、ゲート電極層511b及び導電層521bとして膜厚200nmの銅薄膜を用いる。よって、ゲート電極層はチタン膜と銅薄膜との積層構造となる。
In this embodiment, a titanium film with a thickness of 30 nm is used as the
酸化物半導体層512、522としては膜厚25mのIGZO膜を用いる。 As the oxide semiconductor layers 512 and 522, an IGZO film with a thickness of 25 m is used.
トランジスタ510、容量素子520、及び配線層交差部530上には層間絶縁層504が形成され、層間絶縁層504上において発光素子540と重畳する領域にカラーフィルタ層505が設けられている。層間絶縁層504及びカラーフィルタ層505上には平坦化絶縁層として機能する絶縁層506が設けられている。
An interlayer insulating
絶縁層506上に第1の電極層541、電界発光層542、第2の電極層543の順に積層した積層構造を含む発光素子540が設けられている。発光素子540とトランジスタ510とは、導電層513aに達する絶縁層506及び層間絶縁層504に形成された開口において、第1の電極層541及び導電層513aが接することによって電気的に接続されている。なお、第1の電極層541の一部及び該開口を覆うように隔壁507が設けられている。
A light-emitting
絶縁層506には膜厚1500nmの感光性のアクリル膜、隔壁507には膜厚1500nmの感光性のポリイミド膜を用いることができる。
A photosensitive acrylic film with a thickness of 1500 nm can be used for the insulating
カラーフィルタ層505としては、例えば有彩色の透光性樹脂を用いることができる。有彩色の透光性樹脂としては、感光性、非感光性の有機樹脂を用いることができるが、感光性の有機樹脂層を用いるとレジストマスク数を削減することができるため、工程が簡略化し好ましい。
As the
有彩色は、黒、灰、白などの無彩色を除く色であり、カラーフィルタ層は、着色された有彩色の光のみを透過する材料で形成される。有彩色としては、赤色、緑色、青色などを用いることができる。また、シアン、マゼンダ、イエロー(黄)などを用いてもよい。着色された有彩色の光のみを透過するとは、カラーフィルタ層における透過光は、その有彩色の光の波長にピークを有するということである。カラーフィルタ層は、含ませる着色材料の濃度と光の透過率の関係に考慮して、最適な膜厚を適宜制御するとよい。例えば、カラーフィルタ層505の膜厚は1500nm以上2000nm以下とすればよい。
A chromatic color is a color excluding achromatic colors such as black, gray, and white, and the color filter layer is formed of a material that transmits only colored chromatic light. As the chromatic color, red, green, blue, or the like can be used. Further, cyan, magenta, yellow (yellow), or the like may be used. To transmit only colored chromatic light means that the transmitted light in the color filter layer has a peak at the wavelength of the chromatic light. In the color filter layer, the optimum film thickness may be appropriately controlled in consideration of the relationship between the concentration of the coloring material to be included and the light transmittance. For example, the thickness of the
図8(B)に示す発光装置においては、表示素子である発光素子4513は、画素部4002に設けられたトランジスタ4010と電気的に接続している。なお発光素子4513の構成は、第1の電極層4034、電界発光層4511、第2の電極層4031の積層構造であるが、示した構成に限定されない。発光素子4513から取り出す光の方向などに合わせて、発光素子4513の構成は適宜変えることができる。
In the light-emitting device illustrated in FIG. 8B, a light-emitting
隔壁4510、507は、有機絶縁材料、又は無機絶縁材料を用いて形成する。特に感光性の樹脂材料を用い、第1の電極層4034、541上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。
The
電界発光層4511、542は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでもよい。
The
発光素子4513、540に酸素、水素、水分、二酸化炭素等が侵入しないように、第2の電極層4031、543及び隔壁4510、507上に保護膜を形成してもよい。保護膜としては、窒化シリコン膜、窒化酸化シリコン膜、DLC膜等を形成することができる。
A protective film may be formed over the
また、発光素子4513、540に酸素、水素、水分、二酸化炭素等が侵入しないように、発光素子4513を覆う有機化合物を含む層を蒸着法により形成してもよい。
Alternatively, a layer containing an organic compound that covers the light-emitting
また、基板4001、基板4006、及びシール材4005によって封止された空間には充填材4514が設けられ密封されている。このように外気に曝されないように気密性が高く、脱ガスの少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィルム等)やカバー材でパッケージング(封入)することが好ましい。
A space sealed by the
充填材4514としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹脂又は熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)又はEVA(エチレンビニルアセテート)を用いることができる。例えば充填材として窒素を用いればよい。
In addition to an inert gas such as nitrogen or argon, an ultraviolet curable resin or a thermosetting resin can be used as the
また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよい。また、偏光板又は円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。 If necessary, an optical film such as a polarizing plate, a circular polarizing plate (including an elliptical polarizing plate), a retardation plate (λ / 4 plate, λ / 2 plate), a color filter, or the like is provided on the light emitting element exit surface. You may provide suitably. Further, an antireflection film may be provided on the polarizing plate or the circularly polarizing plate. For example, anti-glare treatment can be performed that diffuses reflected light due to surface irregularities and reduces reflection.
また、表示装置として、電子インクを駆動させる電子ペーパーを提供することも可能である。電子ペーパーは、電気泳動表示装置(電気泳動ディスプレイ)も呼ばれており、紙と同じ読みやすさ、他の表示装置に比べ低消費電力、薄くて軽い形状とすることが可能という利点を有している。 In addition, as a display device, electronic paper that drives electronic ink can be provided. Electronic paper is also called an electrophoretic display device (electrophoretic display), and has the same readability as paper, low power consumption compared to other display devices, and the advantage that it can be made thin and light. ing.
電気泳動表示装置は、様々な形態が考えられ得るが、プラスの電荷を有する第1の粒子と、マイナスの電荷を有する第2の粒子とを含むマイクロカプセルが溶媒又は溶質に複数分散されたものであり、マイクロカプセルに電界を印加することによって、マイクロカプセル中の粒子を互いに反対方向に移動させて一方側に集合した粒子の色のみを表示するものである。なお、第1の粒子又は第2の粒子は染料を含み、電界がない場合において移動しないものである。また、第1の粒子の色と第2の粒子の色は異なるもの(無色を含む)とする。 The electrophoretic display device may have various forms, and a plurality of microcapsules including first particles having a positive charge and second particles having a negative charge are dispersed in a solvent or a solute. By applying an electric field to the microcapsule, the particles in the microcapsule are moved in opposite directions to display only the color of the particles assembled on one side. Note that the first particle or the second particle contains a dye and does not move in the absence of an electric field. In addition, the color of the first particles and the color of the second particles are different (including colorless).
このように、電気泳動表示装置は、誘電定数の高い物質が高い電界領域に移動する、いわゆる誘電泳動的効果を利用したディスプレイである。 As described above, the electrophoretic display device is a display using a so-called dielectrophoretic effect in which a substance having a high dielectric constant moves to a high electric field region.
上記マイクロカプセルを溶媒中に分散させたものが電子インクと呼ばれるものであり、この電子インクはガラス、プラスチック、布、紙などの表面に印刷することができる。また、カラーフィルタや色素を有する粒子を用いることによってカラー表示も可能である。 A solution in which the above microcapsules are dispersed in a solvent is referred to as electronic ink. This electronic ink can be printed on a surface of glass, plastic, cloth, paper, or the like. Color display is also possible by using particles having color filters or pigments.
なお、マイクロカプセル中の第1の粒子および第2の粒子は、導電体材料、絶縁体材料、半導体材料、磁性材料、液晶材料、強誘電性材料、エレクトロルミネセント材料、エレクトロクロミック材料、磁気泳動材料から選ばれた一種の材料、又はこれらの複合材料を用いればよい。 Note that the first particle and the second particle in the microcapsule are a conductor material, an insulator material, a semiconductor material, a magnetic material, a liquid crystal material, a ferroelectric material, an electroluminescent material, an electrochromic material, or a magnetophoresis. A kind of material selected from the materials or a composite material thereof may be used.
また、電子ペーパーとして、ツイストボール表示方式を用いる表示装置も適用することができる。ツイストボール表示方式とは、白と黒に塗り分けられた球形粒子を、表示素子に用いる電極層である第1の電極層及び第2の電極層の間に配置し、第1の電極層及び第2の電極層に電位差を生じさせて球形粒子の向きを制御することにより、表示を行う方法である。 In addition, a display device using a twisting ball display system can be used as the electronic paper. The twist ball display method is a method in which spherical particles separately painted in white and black are arranged between a first electrode layer and a second electrode layer which are electrode layers used for a display element, and the first electrode layer and In this method, a potential difference is generated in the second electrode layer to control the orientation of spherical particles.
なお、図6乃至図8において、基板4001、500、基板4006としては、ガラス基板の他、可撓性を有する基板も用いることができ、例えば透光性を有するプラスチック基板などを用いることができる。プラスチックとしては、FRP(Fiberglass−Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、ポリエステルフィルム又はアクリル樹脂フィルムを用いることができる。また、透光性が必要でなければ、アルミニウムやステンレスなどの金属基板(金属フィルム)を用いてもよい。例えば、アルミニウムホイルをPVFフィルムやポリエステルフィルムで挟んだ構造のシートを用いることもできる。
6 to 8, as the
本実施の形態では、ゲート絶縁層4020aとして窒化シリコン膜を用いる。また、酸化物半導体層と接するゲート絶縁層4020b及び絶縁層4030としてプラズマCVD法によって形成する酸化窒化シリコン膜を用い、脱水化又は脱水素化のための熱処理及び酸素ドープ処理を行う。また、絶縁層4030上に絶縁層4032を有する。本実施の形態では、絶縁層4032として酸化アルミニウム膜を用いる。
In this embodiment, a silicon nitride film is used as the
酸化アルミニウム膜は、水素、水分などの不純物、及び酸素の両方に対して膜を透過させない遮断効果(ブロック効果)が高い。 An aluminum oxide film has a high blocking effect (blocking effect) that does not allow the film to permeate both impurities such as hydrogen and moisture, and oxygen.
従って、酸化アルミニウム膜は、作製工程中及び作製後において、脱水化又は脱水素化のための熱処理及び酸素ドープ処理を行った酸化窒化シリコン膜への変動要因となる水素、水分などの不純物の混入、及び酸素の放出を防止する保護膜として機能する。 Therefore, the aluminum oxide film is mixed with impurities such as hydrogen and moisture that cause fluctuation in the silicon oxynitride film that has been subjected to heat treatment for dehydration or dehydrogenation and oxygen doping treatment during and after the manufacturing process. And function as a protective film for preventing release of oxygen.
また、平坦化絶縁層として機能する絶縁層4021、506は、アクリル、ポリイミド、ベンゾシクロブテン、ポリアミド、エポキシ等の、耐熱性を有する有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いることができる。なお、これらの材料で形成される絶縁層を複数積層させることで、絶縁層を形成してもよい。
The insulating
絶縁層4021、506の形成法は、特に限定されず、その材料に応じて、スパッタリング法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法)、スクリーン印刷、オフセット印刷等、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコーター等を用いることができる。
The formation method of the insulating
表示装置は光源又は表示素子からの光を透過させて表示を行う。よって光が透過する画素部に設けられる基板、絶縁層、導電層などの薄膜はすべて可視光の波長領域の光に対して透光性とする。 The display device performs display by transmitting light from a light source or a display element. Therefore, thin films such as a substrate, an insulating layer, and a conductive layer provided in the pixel portion where light is transmitted have a light-transmitting property with respect to light in the visible wavelength region.
表示素子に電圧を印加する第1の電極層及び第2の電極層(画素電極層、共通電極層、対向電極層などともいう)においては、取り出す光の方向、電極層が設けられる場所、及び電極層のパターン構造によって透光性、反射性を選択すればよい。 In the first electrode layer and the second electrode layer (also referred to as a pixel electrode layer, a common electrode layer, a counter electrode layer, or the like) that applies a voltage to the display element, the direction of light to be extracted, the place where the electrode layer is provided, and What is necessary is just to select translucency and reflectivity by the pattern structure of an electrode layer.
第1の電極層4034、541、第2の電極層4031、543は、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物、グラフェンなどの透光性を有する導電性材料を用いることができる。
The
また、第1の電極層4034、541、第2の電極層4031、543はタングステン(W)、モリブデン(Mo)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、チタン(Ti)、白金(Pt)、アルミニウム(Al)、銅(Cu)、銀(Ag)等の金属、又はその合金、若しくはその金属窒化物から一つ、又は複数種を用いて形成することができる。
The
本実施の形態においては、図7に示す発光装置は下面射出型なので、第1の電極層541は透光性、第2の電極層543は反射性を有する。よって、第1の電極層541に金属膜を用いる場合は透光性を保てる程度膜厚を薄く、第2の電極層543に透光性を有する導電層を用いる場合は、反射性を有する導電層を積層するとよい。
In this embodiment mode, the light-emitting device illustrated in FIG. 7 is a bottom emission type; therefore, the
また、第1の電極層4034、541、第2の電極層4031、543として、導電性高分子(導電性ポリマーともいう)を含む導電性組成物を用いて形成することができる。導電性高分子としては、いわゆるπ電子共役系導電性高分子が用いることができる。例えば、ポリアニリン又はその誘導体、ポリピロール又はその誘導体、ポリチオフェン又はその誘導体、若しくはアニリン、ピロールおよびチオフェンの2種以上からなる共重合体若しくはその誘導体などがあげられる。
The
また、トランジスタは静電気などにより破壊されやすいため、駆動回路保護用の保護回路を設けることが好ましい。保護回路は、非線形素子を用いて構成することが好ましい。 In addition, since the transistor is easily broken by static electricity or the like, it is preferable to provide a protective circuit for protecting the driving circuit. The protection circuit is preferably configured using a non-linear element.
以上のように実施の形態1乃至3のいずれかで示したトランジスタを適用することで、様々な機能を有する半導体装置を提供することができる。
As described above, by using any of the transistors described in any of
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。 The structures, methods, and the like described in this embodiment can be combined as appropriate with any of the structures, methods, and the like described in the other embodiments.
(実施の形態5)
実施の形態1乃至3のいずれかに示したトランジスタを用いて、対象物の情報を読み取るイメージセンサ機能を有する半導体装置を作製することができる。
(Embodiment 5)
A semiconductor device having an image sensor function of reading information on an object can be manufactured using the transistor described in any of
図9(A)に、イメージセンサ機能を有する半導体装置の一例を示す。図9(A)はフォトセンサの等価回路であり、図9(B)はフォトセンサの一部を示す断面図である。 FIG. 9A illustrates an example of a semiconductor device having an image sensor function. FIG. 9A is an equivalent circuit of the photosensor, and FIG. 9B is a cross-sectional view illustrating part of the photosensor.
フォトダイオード602は、一方の電極がフォトダイオードリセット信号線658に、他方の電極がトランジスタ640のゲートに電気的に接続されている。トランジスタ640は、ソース又はドレインの一方がフォトセンサ基準信号線672に、ソース又はドレインの他方がトランジスタ656のソース又はドレインの一方に電気的に接続されている。トランジスタ656は、ゲートがゲート信号線659に、ソース又はドレインの他方がフォトセンサ出力信号線671に電気的に接続されている。
In the
なお、本明細書における回路図において、酸化物半導体層を用いるトランジスタと明確に判明できるように、酸化物半導体層を用いるトランジスタの記号には「OS」と記載している。図9(A)において、トランジスタ640、トランジスタ656は実施の形態1乃至3のいずれかに示したトランジスタが適用でき、酸化物半導体層を用いるトランジスタである。本実施の形態では、実施の形態1で示したトランジスタ420と同様な構造を有するトランジスタを適用する例を示す。トランジスタ640は、ボトムゲート構造のトランジスタである。
Note that in a circuit diagram in this specification, a symbol of a transistor using an oxide semiconductor layer is described as “OS” so that the transistor can be clearly identified as a transistor using an oxide semiconductor layer. In FIG. 9A, the
図9(B)は、フォトセンサにおけるフォトダイオード602及びトランジスタ640に示す断面図であり、絶縁表面を有する基板601(素子基板)上に、センサとして機能するフォトダイオード602及びトランジスタ640が設けられている。フォトダイオード602、トランジスタ640の上には接着層608を用いて基板613が設けられている。
FIG. 9B is a cross-sectional view of the
トランジスタ640上には絶縁層631、絶縁層632、層間絶縁層633、層間絶縁層634が設けられている。フォトダイオード602は、層間絶縁層633上に形成された電極層641bと、電極層641b上に順に積層された第1半導体膜606a、第2半導体膜606b、及び第3半導体膜606cと、層間絶縁層634上に設けられ、第1乃至第3の半導体膜を介して電極層641bと電気的に接続する電極層642と、電極層641bと同じ層に設けられ、電極層642と電気的に接続する電極層641aと、を有している。
An insulating layer 631, an insulating layer 632, an
電極層641bは、層間絶縁層634に形成された導電層643と電気的に接続し、電極層642は電極層641aを介して導電層645と電気的に接続している。導電層645は、トランジスタ640のゲート電極層と電気的に接続しており、フォトダイオード602はトランジスタ640と電気的に接続している。
The
ここでは、第1半導体膜606aとしてp型の導電型を有する半導体膜と、第2半導体膜606bとして高抵抗な半導体膜(I型半導体膜)、第3半導体膜606cとしてn型の導電型を有する半導体膜を積層するpin型のフォトダイオードを例示している。
Here, a semiconductor film having a p-type conductivity type as the
第1半導体膜606aはp型半導体膜であり、p型を付与する不純物元素を含むアモルファスシリコン膜により形成することができる。第1半導体膜606aの形成には13族の不純物元素(例えばボロン(B))を含む半導体材料ガスを用いて、プラズマCVD法により形成する。半導体材料ガスとしてはシラン(SiH4)を用いればよい。または、Si2H6、SiH2Cl2、SiHCl3、SiCl4、SiF4等を用いてもよい。また、不純物元素を含まないアモルファスシリコン膜を形成した後に、拡散法やイオン注入法を用いて該アモルファスシリコン膜に不純物元素を導入してもよい。イオン注入法等により不純物元素を導入した後に加熱等を行うことで、不純物元素を拡散させるとよい。この場合にアモルファスシリコン膜を形成する方法としては、LPCVD法、気相成長法、又はスパッタリング法等を用いればよい。第1半導体膜606aの膜厚は10nm以上50nm以下となるよう形成することが好ましい。
The
第2半導体膜606bは、I型半導体膜(真性半導体膜)であり、アモルファスシリコン膜により形成する。第2半導体膜606bの形成には、半導体材料ガスを用いて、アモルファスシリコン膜をプラズマCVD法により形成する。半導体材料ガスとしては、シラン(SiH4)を用いればよい。または、Si2H6、SiH2Cl2、SiHCl3、SiCl4、SiF4等を用いてもよい。第2半導体膜606bの形成は、LPCVD法、気相成長法、スパッタリング法等により行ってもよい。第2半導体膜606bの膜厚は200nm以上1000nm以下となるように形成することが好ましい。
The
第3半導体膜606cは、n型半導体膜であり、n型を付与する不純物元素を含むアモルファスシリコン膜により形成する。第3半導体膜606cの形成には、15族の不純物元素(例えばリン(P))を含む半導体材料ガスを用いて、プラズマCVD法により形成する。半導体材料ガスとしてはシラン(SiH4)を用いればよい。または、Si2H6、SiH2Cl2、SiHCl3、SiCl4、SiF4等を用いてもよい。また、不純物元素を含まないアモルファスシリコン膜を形成した後に、拡散法やイオン注入法を用いて該アモルファスシリコン膜に不純物元素を導入してもよい。イオン注入法等により不純物元素を導入した後に加熱等を行うことで、不純物元素を拡散させるとよい。この場合にアモルファスシリコン膜を形成する方法としては、LPCVD法、気相成長法、又はスパッタリング法等を用いればよい。第3半導体膜606cの膜厚は20nm以上200nm以下となるよう形成することが好ましい。
The
また、第1半導体膜606a、第2半導体膜606b、及び第3半導体膜606cは、アモルファス半導体ではなく、多結晶半導体を用いて形成してもよいし、微結晶(セミアモルファス(Semi Amorphous Semiconductor:SAS))半導体を用いて形成してもよい。
In addition, the
また、光電効果で発生した正孔の移動度は電子の移動度に比べて小さいため、pin型のフォトダイオードはp型の半導体膜側を受光面とする方がよい特性を示す。ここでは、pin型のフォトダイオードが形成されている基板601の面からフォトダイオード602が受ける光を電気信号に変換する例を示す。また、受光面とした半導体膜側とは逆の導電型を有する半導体膜側からの光は外乱光となるため、電極層は遮光性を有する導電層を用いるとよい。また、n型の半導体膜側を受光面として用いることもできる。
Further, since the mobility of holes generated by the photoelectric effect is smaller than the mobility of electrons, the pin type photodiode exhibits better characteristics when the p type semiconductor film side is the light receiving surface. Here, an example is shown in which light received by the
絶縁層631、絶縁層632、層間絶縁層633、層間絶縁層634としては、絶縁性材料を用いて、その材料に応じて、スパッタリング法、プラズマCVD法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法)、スクリーン印刷、オフセット印刷等を用いて形成することができる。
As the insulating layer 631, the insulating layer 632, the
絶縁層631としては、無機絶縁材料としては、組成として窒素を含有する酸化物絶縁層を用いることができ、例えば、酸化窒化シリコン層、又は酸化窒化シリコン層等の単層、又は積層を用いることができる。 As the insulating layer 631, an oxide insulating layer containing nitrogen as a composition can be used as the inorganic insulating material. For example, a single layer or a stacked layer such as a silicon oxynitride layer or a silicon oxynitride layer is used. Can do.
本実施の形態では、絶縁層631としてプラズマCVD法によって形成する酸化窒化シリコン膜を用い、脱水化又は脱水素化のための熱処理及び酸素ドープ処理を行う。 In this embodiment, a silicon oxynitride film formed by a plasma CVD method is used as the insulating layer 631, and heat treatment and oxygen doping treatment for dehydration or dehydrogenation are performed.
さらに、脱水化又は脱水素化のための熱処理及び酸素ドープ処理を行った酸化窒化シリコン膜上に酸化アルミニウム膜を形成し、熱処理を行うことが好ましい。本実施の形態では、絶縁層631上に絶縁層632を設け、該絶縁層632として酸化アルミニウム膜を適用する。 Further, it is preferable that an aluminum oxide film be formed over the silicon oxynitride film that has been subjected to heat treatment and oxygen doping treatment for dehydration or dehydrogenation, and then heat treatment is performed. In this embodiment, an insulating layer 632 is provided over the insulating layer 631, and an aluminum oxide film is used as the insulating layer 632.
酸化アルミニウム膜は、水素、水分などの不純物、及び酸素の両方に対して膜を透過させない遮断効果(ブロック効果)が高い。 An aluminum oxide film has a high blocking effect (blocking effect) that does not allow the film to permeate both impurities such as hydrogen and moisture, and oxygen.
従って、酸化アルミニウム膜は、作製工程中及び作製後において、脱水化又は脱水素化のための熱処理及び酸素ドープ処理を行った酸化窒化シリコン膜への変動要因となる水素、水分などの不純物の混入、及び酸素の放出を防止する保護膜として機能する。 Therefore, the aluminum oxide film is mixed with impurities such as hydrogen and moisture that cause fluctuation in the silicon oxynitride film that has been subjected to heat treatment for dehydration or dehydrogenation and oxygen doping treatment during and after the manufacturing process. And function as a protective film for preventing release of oxygen.
層間絶縁層633、634としては、表面凹凸を低減するため平坦化絶縁層として機能する絶縁層が好ましい。層間絶縁層633、634としては、例えばポリイミド、アクリル樹脂、ベンゾシクロブテン樹脂、ポリアミド、エポキシ樹脂等の、耐熱性を有する有機絶縁材料を用いることができる。また上記有機絶縁材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等の単層、又は積層を用いることができる。
As the
フォトダイオード602に入射する光を検出することによって、被検出物の情報を読み取ることができる。なお、被検出物の情報を読み取る際にバックライトなどの光源を用いることができる。
By detecting light incident on the
トランジスタ640は、酸化物半導体層に接するゲート絶縁層及び/又は絶縁層631に、窒素を含有する絶縁層を用い、該絶縁層に酸素ドープ処理を行って作製されたトランジスタである。よって、酸化物半導体層には、トランジスタ640の酸素欠損を補填する酸素が供給されうる。よって、トランジスタ640は、電気特性変動が抑制されている。
The
従って、本実施の形態の酸化物半導体層を用いた安定した電気特性を有するトランジスタ640を含む信頼性の高い半導体装置を提供することができる。また、信頼性の高い半導体装置を歩留まりよく作製し、高生産化を達成することができる。
Therefore, a highly reliable semiconductor device including the
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。 The structures, methods, and the like described in this embodiment can be combined as appropriate with any of the structures, methods, and the like described in the other embodiments.
(実施の形態6)
本明細書に開示する半導体装置は、さまざまな電子機器(遊技機も含む)に適用することができる。電子機器としては、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、遊技機(パチンコ機、スロットマシン等)、ゲーム筐体が挙げられる。これらの電子機器の具体例を図10に示す。
(Embodiment 6)
The semiconductor device disclosed in this specification can be applied to a variety of electronic devices (including game machines). As electronic devices, television devices (also referred to as televisions or television receivers), monitors for computers, digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, portable information terminals, sound Examples include a playback device, a gaming machine (such as a pachinko machine or a slot machine), and a game housing. Specific examples of these electronic devices are shown in FIGS.
図10(A)は、表示部を有するテーブル9000を示している。テーブル9000は、筐体9001に表示部9003が組み込まれており、表示部9003により映像を表示することが可能である。なお、4本の脚部9002により筐体9001を支持した構成を示している。また、電力供給のための電源コード9005を筐体9001に有している。
FIG. 10A illustrates a table 9000 having a display portion. In the table 9000, a
上記実施の形態のいずれかに示す半導体装置は、表示部9003に用いることが可能であり、電子機器に高い信頼性を付与することができる。
The semiconductor device described in any of the above embodiments can be used for the
表示部9003は、タッチ入力機能を有しており、テーブル9000の表示部9003に表示された表示ボタン9004を指などで触れることで、画面操作や、情報を入力することができ、また他の家電製品との通信を可能とする、又は制御を可能とすることで、画面操作により他の家電製品をコントロールする制御装置としてもよい。例えば、実施の形態5に示したイメージセンサ機能を有する半導体装置を用いれば、表示部9003にタッチ入力機能を持たせることができる。
The
また、筐体9001に設けられたヒンジによって、表示部9003の画面を床に対して垂直に立てることもでき、テレビジョン装置としても利用できる。狭い部屋においては、大きな画面のテレビジョン装置は設置すると自由な空間が狭くなってしまうが、テーブルに表示部が内蔵されていれば、部屋の空間を有効に利用することができる。
Further, the hinge of the
図10(B)は、テレビジョン装置9100を示している。テレビジョン装置9100は、筐体9101に表示部9103が組み込まれており、表示部9103により映像を表示することが可能である。なお、ここではスタンド9105により筐体9101を支持した構成を示している。
FIG. 10B illustrates a
テレビジョン装置9100の操作は、筐体9101が備える操作スイッチや、別体のリモコン操作機9110により行うことができる。リモコン操作機9110が備える操作キー9109により、チャンネルや音量の操作を行うことができ、表示部9103に表示される映像を操作することができる。また、リモコン操作機9110に、当該リモコン操作機9110から出力する情報を表示する表示部9107を設ける構成としてもよい。
The
図10(B)に示すテレビジョン装置9100は、受信機やモデムなどを備えている。テレビジョン装置9100は、受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線又は無線による通信ネットワークに接続することにより、一方向(送信者から受信者)又は双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
A
上記実施の形態のいずれかに示す半導体装置は、表示部9103、9107に用いることが可能であり、テレビジョン装置、及びリモコン操作機に高い信頼性を付与することができる。
The semiconductor device described in any of the above embodiments can be used for the
図10(C)はコンピュータであり、本体9201、筐体9202、表示部9203、キーボード9204、外部接続ポート9205、ポインティングデバイス9206等を含む。
FIG. 10C illustrates a computer, which includes a
上記実施の形態のいずれかに示す半導体装置は、表示部9203に用いることが可能であり、コンピュータに高い信頼性を付与することができる。
The semiconductor device described in any of the above embodiments can be used for the
図11(A)及び図11(B)は2つ折り可能なタブレット型端末である。図11(A)は、開いた状態であり、タブレット型端末は、筐体9630、表示部9631a、表示部9631b、表示モード切り替えスイッチ9034、電源スイッチ9035、省電力モード切り替えスイッチ9036、留め具9033、操作スイッチ9038、を有する。
11A and 11B illustrate a tablet terminal that can be folded. In FIG. FIG. 11A illustrates an open state in which the tablet terminal includes a
上記実施の形態のいずれかに示す半導体装置は、表示部9631a、表示部9631bに用いることが可能であり、信頼性の高いタブレット型端末とすることが可能となる。
The semiconductor device described in any of the above embodiments can be used for the
表示部9631aは、一部をタッチパネルの領域9632aとすることができ、表示された操作キー9638にふれることでデータ入力をすることができる。なお、表示部9631aにおいては、一例として半分の領域が表示のみの機能を有する構成、もう半分の領域がタッチパネルの機能を有する構成を示しているが該構成に限定されない。表示部9631aの全ての領域がタッチパネルの機能を有する構成としても良い。例えば、表示部9631aの全面をキーボードボタン表示させてタッチパネルとし、表示部9631bを表示画面として用いることができる。
Part of the
また、表示部9631bにおいても表示部9631aと同様に、表示部9631bの一部をタッチパネルの領域9632bとすることができる。また、タッチパネルのキーボード表示切り替えボタン9639が表示されている位置に指やスタイラスなどでふれることで表示部9631bにキーボードボタン表示することができる。
Further, in the
また、タッチパネルの領域9632aとタッチパネルの領域9632bに対して同時にタッチ入力することもできる。
Touch input can be performed simultaneously on the
また、表示モード切り替えスイッチ9034は、縦表示又は横表示などの表示の向きを切り替え、白黒表示やカラー表示の切り替えなどを選択できる。省電力モード切り替えスイッチ9036は、タブレット型端末に内蔵している光センサで検出される使用時の外光の光量に応じて表示の輝度を最適なものとすることができる。タブレット型端末は光センサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置を内蔵させてもよい。
A display
また、図11(A)では表示部9631bと表示部9631aの表示面積が同じ例を示しているが特に限定されず、一方のサイズともう一方のサイズが異なっていてもよく、表示の品質も異なっていてもよい。例えば一方が他方よりも高精細な表示を行える表示パネルとしてもよい。
FIG. 11A illustrates an example in which the display areas of the
図11(B)は、閉じた状態であり、タブレット型端末は、筐体9630、太陽電池9633、充放電制御回路9634を有する。なお、図11(B)では充放電制御回路9634の一例としてバッテリー9635、DCDCコンバータ9636を有する構成について示している。
FIG. 11B illustrates a closed state, in which the tablet terminal includes a
なお、タブレット型端末は2つ折り可能なため、未使用時に筐体9630を閉じた状態にすることができる。従って、表示部9631a、表示部9631bを保護できるため、耐久性に優れ、長期使用の観点からも信頼性の優れたタブレット型端末を提供できる。
Note that since the tablet terminal can be folded in two, the
また、この他にも図11(A)及び図11(B)に示したタブレット型端末は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。 In addition, the tablet terminal shown in FIGS. 11A and 11B has a function for displaying various information (still images, moving images, text images, etc.), a calendar, a date, or a time. A function for displaying on the display unit, a touch input function for performing touch input operation or editing of information displayed on the display unit, a function for controlling processing by various software (programs), and the like can be provided.
タブレット型端末の表面に装着された太陽電池9633によって、電力をタッチパネル、表示部、又は映像信号処理部等に供給することができる。なお、太陽電池9633は、筐体9630の一面又は二面に効率的なバッテリー9635の充電を行う構成とすることができるため好適である。なおバッテリー9635としては、リチウムイオン電池を用いると、小型化を図れる等の利点がある。
Electric power can be supplied to the touch panel, the display unit, the video signal processing unit, or the like by the
また、図11(B)に示す充放電制御回路9634の構成、及び動作について図11(C)にブロック図を示し説明する。図11(C)には、太陽電池9633、バッテリー9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3、表示部9631について示しており、バッテリー9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3が、図11(B)に示す充放電制御回路9634に対応する箇所となる。
Further, the structure and operation of the charge /
まず外光により太陽電池9633により発電がされる場合の動作の例について説明する。太陽電池で発電した電力は、バッテリー9635を充電するための電圧となるようDCDCコンバータ9636で昇圧又は降圧がなされる。そして、表示部9631の動作に太陽電池9633からの電力が用いられる際にはスイッチSW1をオンにし、コンバータ9637で表示部9631に必要な電圧に昇圧又は降圧をすることとなる。また、表示部9631での表示を行わない際には、SW1をオフにし、SW2をオンにしてバッテリー9635の充電を行う構成とすればよい。
First, an example of operation in the case where power is generated by the
なお太陽電池9633については、発電手段の一例として示したが、特に限定されず、圧電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電手段によるバッテリー9635の充電を行う構成であってもよい。例えば、無線(非接触)で電力を送受信して充電する無接点電力電送モジュールや、また他の充電手段を組み合わせて行う構成としてもよい。
Note that the
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。 The structures, methods, and the like described in this embodiment can be combined as appropriate with any of the structures, methods, and the like described in the other embodiments.
本実施例では、開示する発明に係る半導体装置において用いる窒素を含有する絶縁層に酸素ドープ処理を行い、酸素ドープ処理の効果について評価を行った。本実施例においては、酸素ドープ処理としてアッシング装置を用いた酸素プラズマ処理を行った。図12に結果を示す。評価方法としては、TDS(Thermal Desorption Spectroscopy:昇温脱離ガス分光法)分析法を用いた。 In this example, oxygen doping treatment was performed on an insulating layer containing nitrogen used in the semiconductor device according to the disclosed invention, and the effect of the oxygen doping treatment was evaluated. In this example, oxygen plasma treatment using an ashing apparatus was performed as oxygen doping treatment. The results are shown in FIG. As an evaluation method, a TDS (Thermal Desorption Spectroscopy) analysis method was used.
本実施例において評価に用いた試料の作製方法を以下に示す。本実施例では、シリコン基板上に膜厚100nmの酸化窒化シリコン膜を成膜し、これを比較試料Aとした。また、比較試料Aに酸素ドープ処理を施し、これを実施例試料Bとした。 A method for manufacturing a sample used for evaluation in this example is described below. In this example, a silicon oxynitride film having a thickness of 100 nm was formed on a silicon substrate, and this was used as a comparative sample A. Moreover, the oxygen dope process was given to the comparative sample A, and this was made into the Example sample B.
比較試料A及び実施例試料Bにおいて、酸化窒化シリコン膜の成膜にはプラズマCVD装置を用いた。また、成膜条件は、成膜ガスとしてSiH4及びN2O(SiH4:N2O=20sccm:3000sccm)を用い、圧力を40Paとし、基板温度を350℃とし、高周波(RF)電源電力を1000Wとした。 In Comparative Sample A and Example Sample B, a plasma CVD apparatus was used to form a silicon oxynitride film. The deposition conditions are SiH 4 and N 2 O (SiH 4 : N 2 O = 20 sccm: 3000 sccm) as a deposition gas, the pressure is 40 Pa, the substrate temperature is 350 ° C., and the radio frequency (RF) power supply power Was set to 1000W.
また、実施例試料Bにおいて、酸素ドープ処理の条件は、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)電力を0Wとし、バイアス電力を5000Wとし、圧力を15.0Paとして、O2ガスを流量250sccm(16O:18O=150sccm:100sccm)で流した。 In Example Sample B, the conditions for the oxygen doping treatment were ICP (Inductively Coupled Plasma) power of 0 W, bias power of 5000 W, pressure of 15.0 Pa, and O 2 gas flow rate of 250 sccm. ( 16 O: 18 O = 150 sccm: 100 sccm).
図12(A)に酸化窒化シリコン膜に酸素ドープ処理を行った実施例試料Bにおいて測定されたM/z=30(NO)のTDS結果を示す。また、図12(B)に酸素ドープ処理を行っていない比較例試料Aにおいて測定されたM/z=30(NO)のTDS結果を示す。 FIG. 12A shows a TDS result of M / z = 30 (NO) measured in Example Sample B in which the silicon oxynitride film was subjected to oxygen doping treatment. FIG. 12B shows a TDS result of M / z = 30 (NO) measured in the comparative sample A not subjected to oxygen doping treatment.
図12(A)及び図12(B)に示すように、酸素ドープ処理を行った実施例試料Bからは、酸化窒化シリコン膜からの一酸化窒素(NO)の放出が見られるが、酸素ドープ処理を行っていない比較例試料Aにおいては、TDS測定のバックグラウンド以下であった。 As shown in FIGS. 12 (A) and 12 (B), from the sample B subjected to the oxygen doping treatment, nitrogen monoxide (NO) is released from the silicon oxynitride film. In the comparative sample A that had not been processed, it was below the background of TDS measurement.
以上の結果から、窒素を含有する絶縁層に対して酸素ドープ処理を行うことによって、膜中に含まれる窒素と、導入された酸素との結合が形成されることが確認された。 From the above results, it was confirmed that by performing oxygen doping treatment on the insulating layer containing nitrogen, a bond between nitrogen contained in the film and the introduced oxygen was formed.
よって、該絶縁層を酸化物半導体層と接する絶縁層として適用することで、該絶縁層による酸化物半導体層からの酸素の引き抜きを抑制又は防止することが可能となるため、酸化物半導体層における酸素欠損の発生を抑制することができる。 Therefore, by applying the insulating layer as an insulating layer in contact with the oxide semiconductor layer, oxygen extraction from the oxide semiconductor layer by the insulating layer can be suppressed or prevented. Oxygen deficiency can be suppressed.
400 基板
401 ゲート電極層
402 ゲート絶縁層
402a ゲート絶縁層
402b ゲート絶縁層
403 酸化物半導体層
405a ソース電極層
405b ドレイン電極層
407 層間絶縁層
407a 層間絶縁層
407b 層間絶縁層
412 ゲート絶縁層
412a ゲート絶縁層
412b ゲート絶縁層
417 層間絶縁層
417a 層間絶縁層
417b 層間絶縁層
420 トランジスタ
422b ゲート絶縁層
427a 層間絶縁層
430 トランジスタ
440 トランジスタ
452 酸素
454 酸素
500 基板
502 ゲート絶縁層
504 層間絶縁層
505 カラーフィルタ層
506 絶縁層
507 隔壁
510 トランジスタ
511a ゲート電極層
511b ゲート電極層
512 酸化物半導体層
513a 導電層
513b 導電層
520 容量素子
521a 導電層
521b 導電層
522 酸化物半導体層
523 導電層
524 絶縁層
525 絶縁層
530 配線層交差部
533 導電層
540 発光素子
541 電極層
542 電界発光層
543 電極層
601 基板
602 フォトダイオード
606a 半導体膜
606b 半導体膜
606c 半導体膜
608 接着層
613 基板
631 絶縁層
632 絶縁層
633 層間絶縁層
634 層間絶縁層
640 トランジスタ
641a 電極層
641b 電極層
642 電極層
643 導電層
645 導電層
656 トランジスタ
658 フォトダイオードリセット信号線
659 ゲート信号線
671 フォトセンサ出力信号線
672 フォトセンサ基準信号線
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4008 液晶層
4010 トランジスタ
4011 トランジスタ
4013 液晶素子
4015 接続端子電極
4016 端子電極
4018 FPC
4019 異方性導電層
4020a ゲート絶縁層
4020b ゲート絶縁層
4021 絶縁層
4030 絶縁層
4031 電極層
4032 絶縁層
4033 絶縁層
4034 電極層
4035 スペーサ
4038 絶縁層
4040 トランジスタ
4510 隔壁
4511 電界発光層
4513 発光素子
4514 充填材
9000 テーブル
9001 筐体
9002 脚部
9003 表示部
9004 表示ボタン
9005 電源コード
9033 留め具
9034 スイッチ
9035 電源スイッチ
9036 スイッチ
9038 操作スイッチ
9100 テレビジョン装置
9101 筐体
9103 表示部
9105 スタンド
9107 表示部
9109 操作キー
9110 リモコン操作機
9201 本体
9202 筐体
9203 表示部
9204 キーボード
9205 外部接続ポート
9206 ポインティングデバイス
9630 筐体
9631 表示部
9631a 表示部
9631b 表示部
9632a 領域
9632b 領域
9633 太陽電池
9634 充放電制御回路
9635 バッテリー
9636 DCDCコンバータ
9637 コンバータ
9638 操作キー
9639 ボタン
400 Substrate 401 Gate electrode layer 402 Gate insulating layer 402a Gate insulating layer 402b Gate insulating layer 403 Oxide semiconductor layer 405a Source electrode layer 405b Drain electrode layer 407 Interlayer insulating layer 407a Interlayer insulating layer 407b Interlayer insulating layer 412 Gate insulating layer 412a Gate insulating layer Layer 412b gate insulating layer 417 interlayer insulating layer 417a interlayer insulating layer 417b interlayer insulating layer 420 transistor 422b gate insulating layer 427a interlayer insulating layer 430 transistor 440 transistor 452 oxygen 454 oxygen 500 substrate 502 gate insulating layer 504 interlayer insulating layer 505 color filter layer 506 Insulating layer 507 Partition 510 Transistor 511a Gate electrode layer 511b Gate electrode layer 512 Oxide semiconductor layer 513a Conductive layer 513b Conductive layer 520 Capacitance element 521a Conduction Layer 521b conductive layer 522 oxide semiconductor layer 523 conductive layer 524 insulating layer 525 insulating layer 530 wiring layer intersection 533 conductive layer 540 light emitting element 541 electrode layer 542 electroluminescent layer 543 electrode layer 601 substrate 602 photodiode 606a semiconductor film 606b semiconductor film 606c Semiconductor film 608 Adhesive layer 613 Substrate 631 Insulating layer 632 Insulating layer 633 Interlayer insulating layer 634 Interlayer insulating layer 640 Transistor 641a Electrode layer 641b Electrode layer 642 Electrode layer 643 Conductive layer 645 Conductive layer 656 Transistor 658 Photodiode reset signal line 659 Gate signal Line 671 Photosensor output signal line 672 Photosensor reference signal line 4001 Substrate 4002 Pixel portion 4003 Signal line driver circuit 4004 Scan line driver circuit 4005 Seal material 4006 Substrate 4008 Liquid crystal layer 4 10 4011 transistor 4013 liquid crystal element 4015 connection terminal electrode 4016 terminal electrodes 4018 FPC
4019 Anisotropic
Claims (1)
前記ゲート電極層上方に、ゲート絶縁層を形成し、
前記ゲート絶縁層上方に、前記ゲート電極層と重なる領域を有するように、非単結晶であって、且つ、被形成面に対して85°以上95°以下の範囲でc軸が配向した領域を有する酸化物半導体層を形成し、
前記酸化物半導体層と電気的に接続するソース電極層及びドレイン電極層を形成し、
前記ソース電極層上方及び前記ドレイン電極層上方に、前記酸化物半導体層と重なる領域を有する絶縁層を形成し、
前記絶縁層に、窒素を添加した後、酸素を添加し、
熱を加え、前記絶縁層中の酸素を前記酸化物半導体層に供給することを特徴とする半導体装置の作製方法。 Forming a gate electrode layer;
Forming a gate insulating layer above the gate electrode layer;
A region that is non-single-crystal and has a c-axis oriented in a range of 85 ° to 95 ° with respect to a formation surface so as to have a region overlapping with the gate electrode layer above the gate insulating layer. Forming an oxide semiconductor layer having,
Forming a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer;
An insulating layer having a region overlapping with the oxide semiconductor layer is formed above the source electrode layer and the drain electrode layer;
After adding nitrogen to the insulating layer, oxygen is added,
A method for manufacturing a semiconductor device, wherein heat is applied to supply oxygen in the insulating layer to the oxide semiconductor layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011278998A JP5873324B2 (en) | 2011-12-20 | 2011-12-20 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011278998A JP5873324B2 (en) | 2011-12-20 | 2011-12-20 | Method for manufacturing semiconductor device |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2013131582A JP2013131582A (en) | 2013-07-04 |
JP2013131582A5 JP2013131582A5 (en) | 2014-11-06 |
JP5873324B2 true JP5873324B2 (en) | 2016-03-01 |
Family
ID=48908925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011278998A Active JP5873324B2 (en) | 2011-12-20 | 2011-12-20 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5873324B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102268435B1 (en) * | 2013-12-04 | 2021-06-23 | 주성엔지니어링(주) | Gate Insulating film and Thin film transistor using the same |
US10361290B2 (en) | 2014-03-14 | 2019-07-23 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device comprising adding oxygen to buffer film and insulating film |
JP6676316B2 (en) | 2014-09-12 | 2020-04-08 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
US20160155803A1 (en) * | 2014-11-28 | 2016-06-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor Device, Method for Manufacturing the Semiconductor Device, and Display Device Including the Semiconductor Device |
KR20240090743A (en) * | 2015-02-04 | 2024-06-21 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device, method for manufacturing the semiconductor device, or display device including the semiconductor device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011058913A1 (en) * | 2009-11-13 | 2011-05-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
WO2011070929A1 (en) * | 2009-12-11 | 2011-06-16 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and electronic device |
WO2011132625A1 (en) * | 2010-04-23 | 2011-10-27 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
-
2011
- 2011-12-20 JP JP2011278998A patent/JP5873324B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013131582A (en) | 2013-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7187602B2 (en) | light emitting device | |
JP6338640B2 (en) | Method for manufacturing semiconductor device | |
JP6423901B2 (en) | Method for manufacturing transistor | |
JP6141002B2 (en) | Method for manufacturing semiconductor device | |
JP6231743B2 (en) | Method for manufacturing semiconductor device | |
JP6286512B2 (en) | Method for manufacturing semiconductor device | |
JP6226518B2 (en) | Semiconductor device | |
JP5839592B2 (en) | Method for manufacturing semiconductor device | |
JP6257141B2 (en) | Semiconductor device | |
JP5947629B2 (en) | Semiconductor device | |
JP6148829B2 (en) | Semiconductor device | |
JP6145267B2 (en) | Method for manufacturing semiconductor device | |
JP2019186581A (en) | Semiconductor device manufacturing method | |
JP6199583B2 (en) | Semiconductor device | |
JP6317500B2 (en) | Method for manufacturing semiconductor device | |
JP5873324B2 (en) | Method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140923 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140923 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150908 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150910 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5873324 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |