JP5873242B2 - Straightness inspection method - Google Patents

Straightness inspection method Download PDF

Info

Publication number
JP5873242B2
JP5873242B2 JP2011011937A JP2011011937A JP5873242B2 JP 5873242 B2 JP5873242 B2 JP 5873242B2 JP 2011011937 A JP2011011937 A JP 2011011937A JP 2011011937 A JP2011011937 A JP 2011011937A JP 5873242 B2 JP5873242 B2 JP 5873242B2
Authority
JP
Japan
Prior art keywords
detection
inspection object
inspection
linearity
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011011937A
Other languages
Japanese (ja)
Other versions
JP2012154673A (en
Inventor
伊藤 毅
毅 伊藤
雅文 比嘉
雅文 比嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
KMEW Co Ltd
Original Assignee
Panasonic Corp
Kubota Matsushitadenko Exterior Works Ltd
Matsushita Electric Industrial Co Ltd
KMEW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Kubota Matsushitadenko Exterior Works Ltd, Matsushita Electric Industrial Co Ltd, KMEW Co Ltd filed Critical Panasonic Corp
Priority to JP2011011937A priority Critical patent/JP5873242B2/en
Publication of JP2012154673A publication Critical patent/JP2012154673A/en
Application granted granted Critical
Publication of JP5873242B2 publication Critical patent/JP5873242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、直線度検査方法、殊に被検査物を移動させながら被検査物の平面視における端辺の直線度を検査する方法に関するものである。   The present invention relates to a linearity inspection method, and more particularly to a method for inspecting the linearity of an edge in a plan view of an inspection object while moving the inspection object.

従来から、被検査物の直線度を検査する方法として、一次元変位センサで被検査物との距離を測定して直線度を算出する一次元変位センサ方式がある。そして、該方式を用いたものとして、例えば、表面の凹凸を検査するものであるが特許文献1に示すように、水平方向に移動自在な移動体に、被検査物の測定面までの距離を測定する3台の光学式センサを等間隔で同じ高さ位置で配置したものがある。このものでは、センサ間隔移動毎に3台のセンサの距離検出信号を入力し、この間隔毎に逐次多点法により測定面と移動体の基準水平面との距離を演算して記憶し、真直度を測定・評価するものとなっている。   Conventionally, as a method for inspecting the linearity of an object to be inspected, there is a one-dimensional displacement sensor method in which a linearity is calculated by measuring a distance from the object to be inspected by a one-dimensional displacement sensor. Then, as an example of using this method, for example, inspecting the surface irregularities, as shown in Patent Document 1, the distance to the measurement surface of the object to be inspected is set on a movable body that is movable in the horizontal direction. Some optical sensors to be measured are arranged at the same height at equal intervals. In this system, the distance detection signals of three sensors are input every time the sensor interval moves, and the distance between the measurement surface and the reference horizontal plane of the moving body is calculated and stored sequentially for each interval by the multipoint method. Is to be measured and evaluated.

特開平7−146125号公報JP 7-146125 A

しかしながら、特許文献1のものでは、光学式センサを移動させるガイド体を備えるため、被検査物の全長以上の設置スペースが必要であると共に、被検査物が動くと検査精度が低下するため、被検査物を固定する固定手段を設ける必要がある。   However, since the thing of patent document 1 is provided with the guide body which moves an optical sensor, since installation space more than the full length of a to-be-inspected object is required, and inspection accuracy will fall if an to-be-inspected object moves, It is necessary to provide a fixing means for fixing the inspection object.

そのため、生産工程の途中に組み込むには、被検査物の固定配置用のスペースを設けるために、搬送手段のラインから分けた別の場所に被検査物を移す必要がある。そして、検査時に搬送手段を停める構成にして、生産ライン上に組み込むと、被検査物の搬送距離が、被検査物の全長以上であるガイド体の長さ分長くなる。   Therefore, in order to incorporate in the middle of the production process, it is necessary to move the inspection object to another place separated from the line of the conveying means in order to provide a space for fixing and arranging the inspection object. When the conveying means is stopped at the time of inspection and incorporated on the production line, the conveying distance of the inspection object becomes longer by the length of the guide body that is equal to or longer than the entire length of the inspection object.

このように、従来のものは、設置場所に制限が生じ易いという問題や、コストや生産時間が増大する等の問題がある。   As described above, the conventional ones have a problem that the installation location is likely to be limited, and a problem that costs and production time increase.

そこで、これら事情を鑑み、設置場所の制限を軽減すると共に、コストの増加を抑えて、被検査物の端辺の直線度を検査可能な直線度検査方法を提供することを課題とした。   In view of these circumstances, an object of the present invention is to provide a linearity inspection method capable of inspecting the linearity of the edge of an object to be inspected while reducing the restriction on the installation location and suppressing an increase in cost.

上記課題を解決するために、本発明の直線度検査方法は、検査装置を用いて被検査物の平面視における端辺の直線度を検査する検査方法であって、前記検査装置は、前記被検査物を前記端辺の一端側から他端側に移動させる移動手段と、移動中の前記被検査物の前記端辺までの距離を検出する距離検出部と、前記距離検出部の検出結果から前記端辺の直線度を求める情報処理部と、を備え、前記距離検出部は、前記移動手段による前記検査装置の移動方向に沿って等間隔に並ぶ少なくとも三つのセンサを有し、前記移動手段は、前記移動手段の移動動作に対応した情報を出力する移動動作出力部を有し、前記情報処理部は、前記移動動作出力部から出力された情報に基づいて、前記移動手段による前記被検査物の推定移動量を求め、前記推定移動量が、前記センサの前記移動方向に並ぶ間隔と同じ値になる毎に、前記距離検出部の各センサが、前記端辺までの距離の検出動作を行い、複数の検出点で測定された測定結果の内、重複して測定した各検出点の測定結果を夫々重ね合わせて各検出結果を並べてプロットした、前記被検査物の前記端辺の一端から他端までのイメージ図を作成し、このイメージ図の前記被検査物の前記端辺の一端と他端の検出点を直線で結んで基準直線を求め、この基準直線と前記イメージ図とを比較して、前記基準直線に対して直交する向きで最も離れた検出点を求めることにより直線度を算出し、この直線度を視認可能に出力するものであり、前記検査装置は、移動中の前記被検査物の位置を検知するワークセンサを更に備え、前記情報処理部は、前記ワークセンサから出力された前記被検査物の位置の情報と、前記推定移動量に基づいて、前記被検査物の実際の移動量と前記推定移動量との間のずれを検知し、このずれの検知結果に応じて、前記距離検出部の検出動作の動作タイミングを調整する制御を行うものであることを特徴とする。 In order to solve the above problems, a linearity inspection method of the present invention is an inspection method for inspecting the linearity of an edge in a plan view of an object to be inspected using an inspection apparatus, and the inspection apparatus includes the inspection target. From the moving means for moving the inspection object from one end side to the other end side of the end side, the distance detection unit for detecting the distance to the end side of the moving inspection object, and the detection result of the distance detection unit An information processing unit for obtaining a linearity of the end side, and the distance detecting unit includes at least three sensors arranged at equal intervals along a moving direction of the inspection apparatus by the moving unit, and the moving unit Has a moving operation output unit that outputs information corresponding to the moving operation of the moving unit, and the information processing unit is configured to output the information to be inspected by the moving unit based on the information output from the moving operation output unit. Obtain the estimated amount of movement of the object Momentum is measured for each time the same value as the interval arranged in the moving direction of the sensor, the sensor of the distance detection section performs the detection operation of the distance to said end edges, measured at the plurality of detection points Among the results, the measurement results of the respective detection points measured in duplicate are overlapped, and the detection results are arranged and plotted, and an image diagram from one end to the other end of the inspection object is created, and this image diagram A reference straight line is obtained by connecting the detection points at one end and the other end of the inspection object with a straight line, and the reference straight line is compared with the image diagram so that the reference line is perpendicular to the reference straight line. The degree of linearity is calculated by obtaining a remote detection point, and the degree of linearity is output in a visually recognizable manner.The inspection apparatus further includes a work sensor that detects the position of the object to be inspected. The information processing unit A deviation between the actual movement amount of the inspection object and the estimated movement amount is detected on the basis of the position information of the inspection object output from the mark sensor and the estimated movement amount, and detection of this deviation According to the result, control for adjusting the operation timing of the detection operation of the distance detection unit is performed.

このような構成としたことで、従来のものに比べて、設置場所の制限を軽減すると共に、コストの増加を抑えて、被検査物の端辺の直線度を検査することができる。   By adopting such a configuration, it is possible to inspect the straightness of the edge of the object to be inspected while reducing restrictions on the installation location and suppressing an increase in cost as compared with the conventional one.

実施形態の一例の直線度検査方法における装置構成図である。It is an apparatus block diagram in the linearity test | inspection method of an example of embodiment. 検査動作の構成説明図である。It is a configuration explanatory view of the inspection operation. 検査動作の処理フローの図である。It is a figure of a processing flow of inspection operation. 測定毎に測定結果を纏めた図である。It is the figure which put together the measurement result for every measurement. 各測定結果を重ね合わせたイメージ図である。It is an image figure which piled up each measurement result.

以下、図面に基づいて本発明の実施形態を例示して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

実施形態の一例の直線度検査方法は、図1に示すような矩形状のパネル等の板材を被検査物7とし、該被検査物7の平面視における端辺8の直線度を検査装置を用いて求めるものとなっている。   In the linearity inspection method according to an example of the embodiment, a plate material such as a rectangular panel as shown in FIG. 1 is used as an inspection object 7, and the linearity of the edge 8 in a plan view of the inspection object 7 is measured using an inspection apparatus. It is what you want to use.

そして、検査装置は、被検査物7の端辺8までの距離に対応した情報を検出する距離検出部2と、距離検出部2で得た検出結果から直線度を求める情報処理部1と、被検査物7を距離検出部2に対して移動させる移動手段4と、を備えている。   The inspection apparatus includes a distance detection unit 2 that detects information corresponding to the distance to the edge 8 of the inspection object 7, an information processing unit 1 that obtains a linearity from the detection result obtained by the distance detection unit 2, Moving means 4 for moving the inspection object 7 with respect to the distance detection unit 2.

直線度検査方法は、移動手段4で被検査物7を距離検出部2に対して端辺8の一端9側から他端10側に向けて移動させながら、距離検出部2で端辺8までの距離を略等間隔に複数点測定して、得られた情報から情報処理部1で該端辺8の直線度を求めている。そのため、被検査物7の移動方向Tは他端10側から一端9側へ向かう向きとなっている。   In the linearity inspection method, the moving means 4 moves the inspection object 7 from the one end 9 side to the other end 10 side of the end side 8 with respect to the distance detection unit 2 while the distance detection unit 2 moves to the end side 8. A plurality of points are measured at substantially equal intervals, and the straightness of the edge 8 is obtained by the information processing unit 1 from the obtained information. Therefore, the moving direction T of the inspection object 7 is directed from the other end 10 side toward the one end 9 side.

詳しくは、移動手段4が、図1に示すように、移動方向Tに沿って並ぶ複数のローラ5で主体が構成されている。そして、各ローラ5は回転中心が移動方向Tに対して直交して配置されており、移動手段4は、被検査物7を生産する生産装置に組み込まれた搬送手段が兼ねており、該ローラ5の回転によって被検査物7を移動方向Tに搬送している。   Specifically, as shown in FIG. 1, the moving means 4 is mainly composed of a plurality of rollers 5 arranged along the moving direction T. Each roller 5 is arranged such that the center of rotation is perpendicular to the moving direction T, and the moving means 4 also serves as a conveying means incorporated in a production apparatus for producing the inspected object 7. The inspection object 7 is conveyed in the moving direction T by the rotation of 5.

更に、移動手段4は、ローラ5の回転速度や回転時間或いは搬送ピッチ等の移動手段4の動作に対応した情報を出力する移動動作出力部6を備えており、移動動作出力部6は、情報処理部1にエンコーダパルスを出力するエンコーダ等となっている。   Furthermore, the moving unit 4 includes a moving operation output unit 6 that outputs information corresponding to the operation of the moving unit 4 such as the rotation speed, rotation time, or conveyance pitch of the roller 5. An encoder that outputs encoder pulses to the processing unit 1 is used.

なお、移動手段4は、移動方向Tに沿って長い帯を移動方向Tに動かして帯上に載置した被検査物7を搬送するものや、自走可能な車両等で構成して移動手段4自体を移動させて被検査物7を移動させるもの等であってもよい。   The moving means 4 is configured by a long belt moving in the moving direction T in the moving direction T to convey the inspection object 7 placed on the belt, a self-propelled vehicle, or the like. 4 or the like may be used to move the inspected object 7.

また、距離検出部2は、移動方向Tに沿って略等間隔に三つ並んで配置されたセンサ3で主体が構成されており、センサ3は被検査物7の端辺8側である平面視側方に配置されて、被検査物7の端辺8に対向している。そして、センサ3は、例えば、光や音波或いは磁気を用いて間接的に端辺8までの距離を測定する一次元変位センサとなっている。   Further, the distance detection unit 2 is mainly composed of three sensors 3 arranged at substantially equal intervals along the movement direction T, and the sensor 3 is a plane on the end 8 side of the object 7 to be inspected. It arrange | positions to a visual side and opposes the edge 8 of the to-be-inspected object 7. FIG. And the sensor 3 is a one-dimensional displacement sensor which measures the distance to the edge 8 indirectly, for example using light, a sound wave, or magnetism.

距離検出部2は、センサ3で距離を測定することで、センサ3から端辺8までの距離に対応した情報を検出しており、該検出結果(検出した情報)を情報処理部1に出力している。   The distance detection unit 2 detects the information corresponding to the distance from the sensor 3 to the edge 8 by measuring the distance with the sensor 3, and outputs the detection result (detected information) to the information processing unit 1. doing.

以下、三つのセンサ3を区別して説明する際には、図2に示す状態を基準に、端辺8の一端9に最も近いものを第1センサ3とし、他端10に最も近いものを第3センサ3とし、第1センサ3と第3センサ3の間のものを第2センサ3とする。   In the following description, the three sensors 3 will be described with reference to the state shown in FIG. 2, the sensor closest to the one end 9 of the edge 8 is defined as the first sensor 3, and the sensor closest to the other end 10 is defined as the first sensor 3. The third sensor 3 is the first sensor 3 and the third sensor 3 is the second sensor 3.

情報処理部1は、コンピュータ等の演算機器で主体が構成されており、距離検出部2からの検出結果を用いて、演算処理や算出処理等の情報処理を行うことで、端辺8の直線度を求めている。   The information processing unit 1 is mainly composed of an arithmetic device such as a computer, and the straight line of the edge 8 is obtained by performing information processing such as arithmetic processing and calculation processing using the detection result from the distance detection unit 2. Seeking a degree.

また、情報処理部1は移動動作出力部6から、移動手段4の動作に対応した情報が入力されており、情報処理部1は、該入力された情報に基づいて、移動手段4による被検査物7の移動量を推定している。   The information processing unit 1 receives information corresponding to the operation of the moving unit 4 from the moving operation output unit 6, and the information processing unit 1 performs the inspection by the moving unit 4 based on the input information. The amount of movement of the object 7 is estimated.

そして、情報処理部1は、この推定した被検査物7の移動量(推定移動量)に基づいて、距離検出部2に検出動作を行わせるタイミングを判断すると共に、判断したタイミングで距離検出部2に検出動作を行わせる制御を行っている。そのため、情報処理部1は直線度を求めるだけでなく、距離検出部2の検出動作を制御する制御部と、移動動作に検出動作を対応させる等の距離検出部2の動作タイミングを調整する調整部と、を兼ねている。   Then, the information processing unit 1 determines the timing at which the distance detection unit 2 performs the detection operation based on the estimated movement amount (estimated movement amount) of the inspection object 7, and at the determined timing, the distance detection unit 2 is controlled to perform the detection operation. Therefore, the information processing unit 1 not only obtains the linearity but also adjusts the control unit that controls the detection operation of the distance detection unit 2 and the operation timing of the distance detection unit 2 such as making the detection operation correspond to the movement operation. And also part.

以下、直線度検査方法を、図3に示す処理フローに基づき、説明するが、距離検出部2による検出動作の流れ(動作タイミング)を先に述べ、検出結果から直線度を求める情報処理は後述する。   Hereinafter, the linearity inspection method will be described based on the processing flow shown in FIG. 3, but the flow of the detection operation (operation timing) by the distance detection unit 2 will be described first, and information processing for obtaining the linearity from the detection result will be described later. To do.

本方法は、被検査物7が移動されて、図2に示すように、第1センサ3で初めて端辺8を検知した位置を、一端9側の開始位置と規定し、該開始位置から直線度の検査を開始するものとなっている。そして、図3に示すように、該開始位置では、初回の検出動作(初回測定)が行われている。   In this method, as shown in FIG. 2, the position at which the first sensor 3 detects the edge 8 for the first time is defined as the start position on the one end 9 side, and a straight line extends from the start position. The inspection of the degree will be started. Then, as shown in FIG. 3, the first detection operation (initial measurement) is performed at the start position.

更に、センサ3による距離測定は瞬間的に行われるため、移動手段4による被検査物7の搬送を停止しなくても、各センサ3で夫々端辺8の異なる一点までの距離を測定することができるものとなっている。   Furthermore, since the distance measurement by the sensor 3 is performed instantaneously, each sensor 3 measures the distance to a different point on the edge 8 without stopping the conveyance of the inspection object 7 by the moving means 4. It is possible to do.

また、初回測定後、情報処理部1は、初回測定の位置からの推定移動量が、センサ3の移動方向Tに沿って並ぶ間隔Lと略同じ値になると、距離検出部2に二回目の検出動作を行わせる。   In addition, after the first measurement, the information processing unit 1 causes the distance detection unit 2 to perform the second time when the estimated movement amount from the position of the first measurement becomes substantially the same value as the interval L aligned along the movement direction T of the sensor 3. Perform detection operation.

このとき、センサ3の間隔L分移動した状態で検出動作を行うため、第1センサ3は、初回測定時に第2センサ3で測定した検出点を測定し、第2センサ3は、初回測定時に第3センサ3で測定した検出点を測定する。そして、第3センサ3は、新たな検出点を測定する。   At this time, since the detection operation is performed in a state where the sensor 3 is moved by the interval L, the first sensor 3 measures the detection point measured by the second sensor 3 at the first measurement, and the second sensor 3 The detection point measured by the third sensor 3 is measured. Then, the third sensor 3 measures a new detection point.

二回目測定後、情報処理部1は、二回目測定の位置からの推定移動量が、センサ3の並ぶ間隔Lと略同じ値になると、距離検出部2に三回目の検出動作を行わせる。そして、情報処理部1は、第3センサ3で被検査物7の端辺8を検知できなくなるまで、距離検出部2に、推定移動量に応じた検出動作を繰り返し行わせる。   After the second measurement, the information processing section 1 causes the distance detection section 2 to perform the third detection operation when the estimated movement amount from the position of the second measurement becomes substantially the same value as the interval L where the sensors 3 are arranged. Then, the information processing unit 1 causes the distance detection unit 2 to repeatedly perform the detection operation according to the estimated movement amount until the third sensor 3 cannot detect the edge 8 of the inspection object 7.

そのため、距離検出部2は、被検査物7の端辺8を一端9側から他端10側まで略等間隔に複数回測定すると共に、二回目以降の各検出動作時に、前回測定時に測定済の検出点を第1センサ3と第2センサ3で再度測定するものとなっている。そして、距離検出部2は、図4に示すように、検出動作毎に、三つのセンサ3での測定結果を纏めた情報を、検出結果として情報処理部1に出力している。   Therefore, the distance detection unit 2 measures the edge 8 of the inspected object 7 a plurality of times at substantially equal intervals from the one end 9 side to the other end 10 side, and has been measured at the time of the previous measurement during the second and subsequent detection operations. These detection points are measured again by the first sensor 3 and the second sensor 3. As shown in FIG. 4, the distance detection unit 2 outputs, to the information processing unit 1, information obtained by collecting the measurement results of the three sensors 3 for each detection operation.

また、距離検出部2で検出される端辺8の検出点の数は、端辺8の略全長である直線度を求める範囲の寸法を、センサ3の間隔Lで、割った整数(本例では11)となっている。そして、各センサ3で検出動作を行う回数は夫々、センサ3の数を1減算した値(本例では2)を、検出点の数から更に減算した回数(本例では9回)となっている。なお、センサ3の並ぶ間隔Lは、該間隔Lの整数倍が端辺8の略全長となるように、設定することが好ましい。   Further, the number of detection points of the edge 8 detected by the distance detection unit 2 is an integer obtained by dividing the dimension of the range for obtaining the linearity that is substantially the entire length of the edge 8 by the interval L of the sensor 3 (this example). Then 11). The number of times that each sensor 3 performs the detection operation is the number of times obtained by further subtracting the value obtained by subtracting 1 from the number of sensors 3 (2 in this example) from the number of detection points (9 times in this example). Yes. Note that the interval L in which the sensors 3 are arranged is preferably set so that an integral multiple of the interval L is substantially the entire length of the edge 8.

以下、直線度を求める情報処理を説明する。なお、説明の便宜上、各検出点を、図2に示すように、一端9側から他端10側に向かって順に夫々、第1検出点P1、第2検出点P2、第3検出点P3、・・・第11検出点P11として、区別する。   Hereinafter, the information processing for obtaining the linearity will be described. For convenience of explanation, as shown in FIG. 2, the respective detection points are arranged in order from the one end 9 side to the other end 10 side, respectively, a first detection point P1, a second detection point P2, a third detection point P3, ... It distinguishes as the 11th detection point P11.

情報処理部1は、検出動作毎に夫々出力された検出結果を記憶すると共に、図5に示すように、各検出結果を重ね合わせて、検出点毎に測定結果をプロットしたイメージ図を作成する。そして、端辺8の他端10側までの測定が完了して、一端9側から他端10側まで端辺8のイメージ図が作成されると、図3に示すように、記憶した検出動作毎の測定結果や、作成したイメージ図から、直線度を求める。   The information processing unit 1 stores the detection results output for each detection operation and, as shown in FIG. 5, creates an image diagram in which the detection results are superimposed and the measurement results are plotted for each detection point. Then, when the measurement to the other end 10 side of the end side 8 is completed and an image diagram of the end side 8 is created from the one end 9 side to the other end 10 side, as shown in FIG. The linearity is obtained from the measurement results and the created image diagram.

イメージ図は、二回目測定以降に作成されて、情報処理部内に記憶されるものとなっており、検出結果を得る毎(測定毎)に更新されるものとなっている。そして、イメージ図は、初回の測定結果を基準として、重複して測定した各検出点(二点)の測定結果を夫々重ね合わせて、各検出結果を相対的に並べて配置したものとなっている。   The image diagram is created after the second measurement and stored in the information processing unit, and is updated every time a detection result is obtained (every measurement). In the image diagram, the measurement results of the respective detection points (two points) measured in duplicate are overlapped with the first measurement result as a reference, and the respective detection results are arranged side by side.

詳しくは、初回測定時に第2センサ3で測定した第2検出点P2の測定結果に、二回目測定時に第1センサ3で測定した第2検出点P2の測定結果を重ね合わせている。そして、初回測定時に第3センサ3で測定した第3検出点P3の測定結果に、二回目測定時に第2センサ3で測定した第3検出点P3の測定結果重ね合わせている。 Specifically, the measurement result of the second detection point P2 measured by the first sensor 3 during the second measurement is superimposed on the measurement result of the second detection point P2 measured by the second sensor 3 during the first measurement. Then, the measurement result of the third detection point P3 measured by the second sensor 3 during the second measurement is superimposed on the measurement result of the third detection point P3 measured by the third sensor 3 during the first measurement.

更に、第2検出点P2及び第3検出点P3の各測定結果を重ね合わせたことで、二回目測定時に第3センサ3で測定した第4検出点P4の測定結果が、第1検出点P1の測定結果に対して相対的に位置規定される。そのため、第1検出点P1から第4検出点P4までの各検出点を線で結んで繋げたものとなっている。   Furthermore, by superimposing the measurement results of the second detection point P2 and the third detection point P3, the measurement result of the fourth detection point P4 measured by the third sensor 3 during the second measurement is the first detection point P1. The position is defined relative to the measurement result. Therefore, the detection points from the first detection point P1 to the fourth detection point P4 are connected by connecting with a line.

また、三回目測定が行われると、該測定時の測定結果が、第1検出点P1から第4検出点P4までを繋げて配置したイメージ図に、更に重ね合わされるため、第1検出点P1から第5検出点P5までを繋げたものとなり、イメージ図の検出点を繋ぐ線が更に長くなる。すなわち、イメージ図は、第1検出点を基準として、各検出点の測定結果を相対的に繋ぎ合わせた所謂数珠繋ぎ状の図となっており、検出点を結ぶ線が、端辺8の平面視形状を模式的に示すものとなっている。   In addition, when the third measurement is performed, the measurement result at the time of measurement is further superimposed on the image diagram arranged by connecting the first detection point P1 to the fourth detection point P4. The line up to the fifth detection point P5 is connected, and the line connecting the detection points in the image diagram becomes longer. That is, the image diagram is a so-called bead-connected diagram in which the measurement results of the respective detection points are relatively connected with the first detection point as a reference, and the line connecting the detection points is the shape in plan view of the edge 8. Is schematically shown.

また、情報処理部1はイメージ図作成後、最も一端9側の検出点から最も他端10側の検出点までを連続して繋いだイメージ図から、仮想の基準直線Sを演算すると共に、検出点を結ぶ線を、基準直線Sに比較することで、直線度を求めている。   In addition, after the image diagram is created, the information processing unit 1 calculates a virtual reference straight line S from the image diagram in which the detection point on the one end 9 side to the detection point on the other end 10 side are continuously connected, and detects the detection point. The straightness is obtained by comparing the connecting line with the reference straight line S.

詳しくは、図5に示すように、第1検出点P1と第11検出点P11を通る仮想の直線を演算して、該直線を基準直線Sとする。そして、イメージ図に示すように相対的に位置を規定した各検出点の測定結果から、該基準直線Sに対して直交する向きで最も離れた検出点を求めると共に、求めた検出点から基準直線Sまでの離れた距離を算出する。更に、該算出結果を端辺8の直線度として、被検査物7の生産装置や表示手段等の外部装置に出力する。   Specifically, as shown in FIG. 5, a virtual straight line passing through the first detection point P1 and the eleventh detection point P11 is calculated, and the straight line is set as a reference straight line S. Then, as shown in the image diagram, from the measurement result of each detection point whose position is relatively defined, a detection point farthest in the direction orthogonal to the reference straight line S is obtained, and the reference straight line S is obtained from the obtained detection point. Calculate the distance up to. Further, the calculation result is output as the straightness of the edge 8 to an external device such as a production device for the inspection object 7 or a display means.

このように、被検査物7を移動させながら距離検出部2で端辺8を複数回測定したことで、端辺8のサンプリング点数(検出点の数)をセンサ3の数より多くして、端辺8の直線度を求めることができる。   In this way, by measuring the edge 8 a plurality of times by the distance detection unit 2 while moving the inspection object 7, the number of sampling points (number of detection points) of the edge 8 is made larger than the number of sensors 3, The straightness of the edge 8 can be obtained.

そのため、センサ3を本例のサンプリング点数と同数並べて設けた従来技術のものに比べて、検査装置の設備コストの増加を抑えて、略同様の検査精度を得ることができる。   Therefore, compared with the prior art device in which the same number of the sensors 3 as the number of sampling points in this example are arranged, an increase in equipment cost of the inspection apparatus can be suppressed and substantially the same inspection accuracy can be obtained.

また、複数回の測定時に検出点を前回測定時と重複して測定すると共に、重複して測定した検出点の測定結果を重ね合わせたことで、複数回の検出結果を互いに対応させることができる。   In addition, the detection points at the time of multiple measurements are overlapped with those at the previous measurement, and the measurement results of the detection points measured at the same time are overlapped, so that the detection results of multiple times can be made to correspond to each other. .

そのため、イメージ図作成時等の情報処理時に、測定毎の検出結果における移動方向Tに対する端辺8の傾きの変動を補正することができる。そして、傾きを補正可能としたことで、検査中の移動時における被検査物7の蛇行に伴う検査精度の低下を抑制することができると共に、蛇行の有無や蛇行に伴う測定毎の端辺8の傾きの変化等を把握することもできる。   Therefore, at the time of information processing such as when creating an image diagram, it is possible to correct the variation in the inclination of the edge 8 with respect to the moving direction T in the detection result for each measurement. Since the inclination can be corrected, it is possible to suppress a decrease in inspection accuracy associated with the meandering of the inspection object 7 during movement during the inspection, and the presence / absence of meandering and the edge 8 for each measurement accompanying meandering. It is also possible to grasp a change in the inclination of the.

また、イメージ図を作成したことで、基準直線Sを情報処理によって得ることができて、基準直線Sとなる直線部材等を被検査物7の平面視側方に配置しなくても、直線度を求めることができる。そのため、検査精度の低下を抑制して、基準直線Sの管理コストや設置コスト等を削減することができる。そして、イメージ図によって端辺8を模した線を得ることができるため、該線を直線度の指標として用いることができて、作業者等に視覚的に直線度を認識させることもできる。   In addition, since the image diagram is created, the reference straight line S can be obtained by information processing, and the linearity can be obtained without arranging a straight member or the like to be the reference straight line S on the side of the object 7 in plan view. Can be sought. Therefore, it is possible to reduce the management cost, installation cost, and the like of the reference straight line S while suppressing a decrease in inspection accuracy. Since a line imitating the edge 8 can be obtained from the image diagram, the line can be used as an index of linearity, and the operator can visually recognize the linearity.

更に、生産装置の搬送手段が移動手段4を兼ねたことで、サンプリング点数や測定可能な範囲(測定可能な端辺8の全長の上限)を低減しなくても、検査装置を生産ラインの途中に組み込む際の搬送距離の増加を抑えることができる。   Further, since the conveying means of the production apparatus also serves as the moving means 4, the inspection apparatus can be placed in the middle of the production line without reducing the number of sampling points and the measurable range (upper limit of the total length of the measurable edge 8). An increase in the transport distance when incorporated into the can be suppressed.

詳しくは、ライン組込時に生じる生産工程における搬送距離の増分が、全てのセンサ3を移動方向Tに沿って並べた幅(センサ3の間隔Lの合算値)となり、被検査物7の全長以上増加する従来のものに比べて、搬送距離を抑えることができる。   Specifically, the increment of the transport distance in the production process that occurs when the line is assembled is the width in which all the sensors 3 are arranged along the moving direction T (the sum of the distances L between the sensors 3), which is greater than the total length of the inspection object 7 Compared to the increasing conventional one, the transport distance can be suppressed.

そして、検査タイミング(検出動作のタイミング)が、ローラ5の回転速度等の搬送手段の動作に対応したものとなっているため、生産工程の間に配置して直線度を検査することができる。   Since the inspection timing (detection operation timing) corresponds to the operation of the conveying means such as the rotation speed of the roller 5, the linearity can be inspected by being arranged during the production process.

そのため、生産ラインに組み込んでも設置場所の制限を緩和することができると共に、生産時間の増加を抑えることができて、ラインへの負担やコストの増加を抑えて、検査装置を組み込むことができる。   Therefore, even if it is incorporated in the production line, the restriction on the installation location can be relaxed, the increase in production time can be suppressed, and the inspection apparatus can be incorporated while suppressing the burden on the line and the increase in cost.

また、検査装置は、移動中被検査物7の位置を検知するワークセンサ(特に図示しない)を備えている。該ワークセンサは、被検査物7の位置に対応した情報を情報処理部1に出力することで、情報処理部1に移動時の被検査物7の移動量の実測値を把握させるものとなっている。 The inspection apparatus includes a workpiece sensor to detect the position of the object 7 in the mobile (not specifically shown). The work sensor outputs information corresponding to the position of the inspected object 7 to the information processing unit 1 so that the information processing unit 1 grasps an actual measurement value of the amount of movement of the inspected object 7 during movement. ing.

そして、情報処理部1は、ワークセンサからの情報と、推定移動量と、を比較することで、移動時の被検査物7の移動量における設定値(推定移動量)に対する実測値の誤差の有無や、誤差の量の情報を得ている。更に、情報処理部1は、得られた誤差の有無や量等の情報に基づき、被検査物7の実測値が設定値と略同じ値になった際に検出動作を行うように動作タイミングを調整する制御を行っている。   Then, the information processing unit 1 compares the information from the work sensor with the estimated movement amount, and thereby the error of the actually measured value with respect to the set value (estimated movement amount) in the movement amount of the inspection object 7 at the time of movement. Information on presence / absence and error amount is obtained. Furthermore, the information processing unit 1 sets the operation timing so that the detection operation is performed when the measured value of the inspection object 7 becomes substantially the same as the set value based on the obtained information such as the presence or absence of the error and the amount. Control to adjust.

そのため、ワークセンサと情報処理部1は、被検査物7の移動量の設定値と実測値のズレを検知するズレ検知部を構成しており、情報処理部1は更にズレ検知部の検知結果に応じて動作タイミングを調整する調整部も兼ねている。   Therefore, the work sensor and the information processing unit 1 constitute a deviation detection unit that detects a deviation between the set value of the movement amount of the inspection object 7 and the actual measurement value, and the information processing unit 1 further detects the detection result of the deviation detection unit. It also serves as an adjustment unit that adjusts the operation timing according to the above.

このように、ズレ検知部を設けたことで、被検査物7の移動手段4に対する滑り等によって、被検査物7の実際の移動量が、移動手段4の動作量等の移動量の設定値に比べて小さくなった際に、該移動量のズレを検知することができる。そして、移動量のズレを検知したことで、移動量のズレに伴う検出結果の誤差等を軽減することができて、直線度の検査精度を向上させることができる。なお、ズレ検知部は、例示の構成に限らず、情報処理部1とは異なる演算機器を備えて、該演算機器で誤差等を演算した結果を、情報処理部1に出力するものであってもよい。そして、ワークセンサで開始位置を検知して、直線度の検査を開始するものとしてもよい。   As described above, by providing the deviation detection unit, the actual movement amount of the inspection object 7 is set to the movement amount such as the movement amount of the movement means 4 due to the slip of the inspection object 7 with respect to the movement means 4. The shift of the movement amount can be detected when it becomes smaller than. Then, by detecting the shift of the movement amount, it is possible to reduce an error in the detection result accompanying the shift of the movement amount, and to improve the accuracy of the linearity inspection. The deviation detection unit is not limited to the illustrated configuration, and includes a calculation device that is different from the information processing unit 1, and outputs a result of calculating an error or the like by the calculation device to the information processing unit 1. Also good. And it is good also as what starts a linearity test | inspection by detecting a start position with a work sensor.

また、本直線度検査方法は、イメージ図における各測定結果を繋いだ曲線の近似式を直線度の指標として出力するものや、イメージ図を直線度の指標として出力するもの等であってもよい。   In addition, this linearity inspection method may be one that outputs an approximate expression of a curve connecting measurement results in an image diagram as an index of linearity, or one that outputs an image diagram as an index of linearity.

なお、前述の説明では、便宜上、測定毎にイメージ図を更新する情報処理を行っているが、イメージ図を作成する処理を省略して、測定毎に各測定結果を纏めた情報を演算処理して直線度を求めるものであってもよい。そして、端辺8の測定後にイメージ図を作成するものや、測定毎に各測定結果を纏めた情報を記憶しないもの等であってもよい。更に、直線度検査方法は、被検査物7を移動させながら各検出点を測定するものに限らず、測定毎に移動手段4による移動動作を停止するものであってもよい。   In the above description, for convenience, information processing for updating the image diagram is performed for each measurement. However, the processing for creating the image diagram is omitted, and information that summarizes each measurement result for each measurement is calculated and processed. The degree may be obtained. And what produces an image figure after the measurement of the edge 8 or what does not memorize | store the information which summarized each measurement result for every measurement may be sufficient. Further, the linearity inspection method is not limited to the method of measuring each detection point while moving the inspection object 7, but may be a method of stopping the moving operation by the moving means 4 for each measurement.

また、距離検出部2は移動方向Tに四つ以上センサ3が並ぶものであってもよく、センサ3を四つ以上備えたものでは、センサ3の間隔Lが等間隔でなくてもよい。   Further, the distance detection unit 2 may be configured such that four or more sensors 3 are arranged in the moving direction T. In the case where four or more sensors 3 are provided, the distance L between the sensors 3 may not be equal.

このものでは、センサ3の間隔Lの一つを基準に、残りの間隔が基準とした間隔の整数倍で離れたものとなっている。そして、検出動作を行う周期(推定移動量)は、基準とした間隔の、センサ3の数から3以上減算した値以下の整数倍となっている。そのため、被検査物7が蛇行しても、検査精度の低下を抑制して、端辺8の直線度を検査することができる。   In this case, with one of the intervals L of the sensor 3 as a reference, the remaining intervals are separated by an integral multiple of the reference interval. The period (estimated movement amount) at which the detection operation is performed is an integral multiple of a value obtained by subtracting 3 or more from the number of sensors 3 as a reference interval. Therefore, even if the inspection object 7 meanders, it is possible to inspect the linearity of the edge 8 while suppressing a decrease in inspection accuracy.

1 情報処理部
2 距離検出部
3 センサ
4 移動手段
7 被検査物
8 端辺
9 一端
10 他端
T 移動方向
L センサの並ぶ間隔
DESCRIPTION OF SYMBOLS 1 Information processing part 2 Distance detection part 3 Sensor 4 Moving means 7 Inspected object 8 End side 9 One end 10 Other end T Movement direction L Sensor arrangement interval

Claims (1)

検査装置を用いて被検査物の平面視における端辺の直線度を検査する検査方法であって、
前記検査装置は、
前記被検査物を前記端辺の一端側から他端側に移動させる移動手段と、
移動中の前記被検査物の前記端辺までの距離を検出する距離検出部と、
前記距離検出部の検出結果から前記端辺の直線度を求める情報処理部と、を備え、
前記距離検出部は、前記移動手段による前記被検査物の移動方向に沿って等間隔に並ぶ少なくとも三つのセンサを有し、
前記移動手段は、前記移動手段の動作に対応した情報を出力する移動動作出力部を有し、
前記情報処理部は、
前記移動動作出力部から出力された情報に基づいて、前記移動手段による前記被検査物の推定移動量を求め、
前記推定移動量が、前記センサの前記移動方向に並ぶ間隔と同じ値になる毎に、前記距離検出部の各センサが、前記端辺までの距離の検出動作を行い、
複数の検出点で測定された測定結果の内、重複して測定した各検出点の測定結果を夫々重ね合わせて各検出結果を並べてプロットした、前記被検査物の前記端辺の一端から他端までのイメージ図を作成し、
このイメージ図の前記被検査物の前記端辺の一端と他端の検出点を直線で結んで基準直線を求め、
この基準直線と前記イメージ図とを比較して、前記基準直線に対して直交する向きで最も離れた検出点を求めることにより直線度を算出し、この直線度を視認可能に出力するものであり、
前記検査装置は、
移動中の前記被検査物の位置を検知するワークセンサを更に備え、
前記情報処理部は、
前記ワークセンサから出力された前記被検査物の位置の情報と、前記推定移動量に基づいて、前記被検査物の実際の移動量と前記推定移動量との間のずれを検知し、
このずれの検知結果に応じて、前記距離検出部の検出動作の動作タイミングを調整する制御を行うものであることを特徴とする直線度検査方法。
An inspection method for inspecting the linearity of an edge in a plan view of an inspection object using an inspection device,
The inspection device includes:
Moving means for moving the inspection object from one end side to the other end side of the end side ;
A distance detection unit for detecting a distance to the edge of the inspection object in motion;
An information processing unit for obtaining a linearity of the edge from the detection result of the distance detection unit,
The distance detection unit has at least three sensors arranged at equal intervals along the moving direction of the inspection object by the moving unit,
The moving means has a moving operation output unit that outputs information corresponding to the operation of the moving means,
The information processing unit
Based on the information output from the moving operation output unit, obtain an estimated movement amount of the inspection object by the moving means,
Each time the estimated movement amount becomes the same value as the interval in the movement direction of the sensor, each sensor of the distance detection unit performs a distance detection operation to the end side,
Among the measurement results measured at a plurality of detection points, the measurement results of the respective detection points measured in duplicate are overlapped and plotted, and the respective detection results are arranged and plotted from one end to the other end of the inspection object. Create an image up to
The reference line is obtained by connecting the detection points at one end and the other end of the edge of the inspection object in this image diagram,
Comparing this reference line and the image diagram, calculating the linearity by obtaining the detection point furthest away in the direction orthogonal to the reference straight line, and outputting the linearity so as to be visible,
The inspection device includes:
A work sensor for detecting the position of the inspection object in motion;
The information processing unit
Based on the position information of the inspection object output from the work sensor and the estimated movement amount, a shift between the actual movement amount of the inspection object and the estimated movement amount is detected,
A linearity inspection method characterized by performing control for adjusting the operation timing of the detection operation of the distance detection unit in accordance with the detection result of the deviation.
JP2011011937A 2011-01-24 2011-01-24 Straightness inspection method Active JP5873242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011011937A JP5873242B2 (en) 2011-01-24 2011-01-24 Straightness inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011011937A JP5873242B2 (en) 2011-01-24 2011-01-24 Straightness inspection method

Publications (2)

Publication Number Publication Date
JP2012154673A JP2012154673A (en) 2012-08-16
JP5873242B2 true JP5873242B2 (en) 2016-03-01

Family

ID=46836566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011011937A Active JP5873242B2 (en) 2011-01-24 2011-01-24 Straightness inspection method

Country Status (1)

Country Link
JP (1) JP5873242B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957112A (en) * 1982-09-28 1984-04-02 Mitsubishi Heavy Ind Ltd Measurement of straightness
JP4571256B2 (en) * 1999-11-30 2010-10-27 佐藤 ▼壽▲芳 Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method
JP4452651B2 (en) * 2005-05-31 2010-04-21 株式会社ナガセインテグレックス Zero error correction method and zero error correction apparatus in sequential three-point method
JP4994950B2 (en) * 2007-05-25 2012-08-08 株式会社神戸製鋼所 Roll surface inspection method and surface defect inspection device

Also Published As

Publication number Publication date
JP2012154673A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
KR101912647B1 (en) Method for thickness measurement on measurement objects and device for applying the method
US8646300B2 (en) Method and controlled machine for continuous bending
CN103890540B (en) thickness measurement system and method for measuring thickness
ITBS20150085A1 (en) METHOD AND DEVICE FOR MEASURING THE STRAIGHTNESS ERROR OF BARS AND PIPES
CN104848786B (en) A kind of glass geometric parameter measurement method
US10586320B2 (en) Method for correcting a predetermined cutting path for cutting a sheet metal blank
CN105203053A (en) Tile flatness detecting method and device
JP5760629B2 (en) How to correct meandering of steel strip
JP5983311B2 (en) Steel plate shape correction method
US10184784B2 (en) Device and method for measuring the width and thickness of a flat object
JP2007163340A (en) Plate length measuring device and method for measuring plate length
JP5873242B2 (en) Straightness inspection method
US20160146598A1 (en) Positioning system and method
EP2899500B1 (en) Method for compensating measurement errors due to thermally induced structural deformations in a coordinate measurement machine
KR101167126B1 (en) Method for measuring size of slab
JP6705139B2 (en) Side trimming device, side trimming system and trim margin measuring method
CN110522068B (en) Tobacco sheet offset amount detection device and tobacco sheet processing system
CN104121856A (en) Method and system for measuring carrying surface of conveying belt
JP2017049019A (en) Long-sized material length measuring apparatus
CN205027320U (en) Ceramic chip flatness detection device
JP4488806B2 (en) Profile measuring device for plate products
TWI521188B (en) Error Correction Method for Position Detector
CN114787447B (en) Guidance system
JP2014153237A (en) Dimension measuring method of building board
JP2009198370A (en) Noncontact type position measuring device by image processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160115

R150 Certificate of patent or registration of utility model

Ref document number: 5873242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250