JP5872963B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP5872963B2
JP5872963B2 JP2012121098A JP2012121098A JP5872963B2 JP 5872963 B2 JP5872963 B2 JP 5872963B2 JP 2012121098 A JP2012121098 A JP 2012121098A JP 2012121098 A JP2012121098 A JP 2012121098A JP 5872963 B2 JP5872963 B2 JP 5872963B2
Authority
JP
Japan
Prior art keywords
bypass
rate
differential
temperature
bypass rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012121098A
Other languages
Japanese (ja)
Other versions
JP2013245895A (en
Inventor
厚志 山根
厚志 山根
Original Assignee
株式会社パロマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パロマ filed Critical 株式会社パロマ
Priority to JP2012121098A priority Critical patent/JP5872963B2/en
Publication of JP2013245895A publication Critical patent/JP2013245895A/en
Application granted granted Critical
Publication of JP5872963B2 publication Critical patent/JP5872963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

本発明は、入水管と出湯管との間に、熱交換器をバイパスするバイパス管を接続したバイパスミキシング式の給湯装置に関する。   The present invention relates to a bypass mixing hot water supply apparatus in which a bypass pipe that bypasses a heat exchanger is connected between a water inlet pipe and a hot water outlet pipe.

バイパスミキシング式の給湯装置は、バーナによって加熱される熱交換器に、水道水を供給する入水管と、バーナの燃焼排気との熱交換によって加熱された湯を出湯する出湯管とを接続し、入水管と出湯管との間に、熱交換器をバイパスするバイパス管を接続して、熱交換器から出湯される湯にバイパス管からの水を混合することで、設定温度の湯を得るようになっている。
このような給湯装置においては、出湯停止後、所定時間をおいて再出湯を行う際、消火中に湯水が流れて温度が低下した器具内の湯にバイパス管からの水が混合されることで、湯温の落ち込みが生じる。そこで、特許文献1に開示の如く、熱交換器からの出湯温度が基準温度(設定温度)以下となった場合には、バイパス管に設けたバイパス弁を閉じる一方、再出湯によって熱交換器からの出湯温度が第1の基準値以上となったら、バイパス弁を開き、出湯管からの湯の温度が第2の基準値以下になると、再びバイパス弁を閉じるという開閉制御を行うことで、再出湯時の湯温変動の抑制を図るようにした発明が提案されている。
The bypass mixing type hot water supply apparatus connects a heat exchanger heated by a burner with a water inlet pipe for supplying tap water and a hot water outlet pipe for discharging hot water heated by heat exchange with the combustion exhaust of the burner, A bypass pipe that bypasses the heat exchanger is connected between the water inlet pipe and the hot water outlet pipe, and the hot water discharged from the heat exchanger is mixed with the water from the bypass pipe to obtain hot water at the set temperature. It has become.
In such a hot water supply device, when re-bathing is performed after a predetermined time has elapsed after stopping the hot water supply, the water from the bypass pipe is mixed with the hot water in the appliance whose temperature has dropped due to the flow of hot water during fire extinguishing. This causes a drop in hot water temperature. Therefore, as disclosed in Patent Document 1, when the temperature of the hot water from the heat exchanger becomes equal to or lower than the reference temperature (set temperature), the bypass valve provided in the bypass pipe is closed while the hot water is discharged from the heat exchanger by re-heating. When the temperature of the hot water reaches or exceeds the first reference value, the bypass valve is opened, and when the temperature of the hot water from the hot water pipe becomes lower than or equal to the second reference value, the bypass valve is closed again to perform opening / closing control. An invention has been proposed in which the hot water temperature fluctuation at the time of tapping is suppressed.

特開平6−249504号公報JP-A-6-249504

しかし、特許文献1の発明においては、常開型のバイパス弁を用いて、出湯停止時にはバイパス管を開弁させている上、再出湯時も単純に開閉制御するに過ぎないため、バイパス管を制御しても出湯温度が設定温度を大きく下回るアンダーシュートは回避できない。   However, in the invention of Patent Document 1, a normally open bypass valve is used to open the bypass pipe when hot water is stopped, and the opening / closing control is also simply performed during re-watering. Undershoot cannot be avoided even if the temperature is controlled so that the tapping temperature is much lower than the set temperature.

そこで、本発明は、再出湯時のアンダーシュートを好適に抑制できるバイパスミキシング式の給湯装置を提供することを目的としたものである。   Therefore, an object of the present invention is to provide a bypass mixing type hot water supply apparatus that can suitably suppress undershoot during re-heating.

上記目的を達成するために、請求項1に記載の発明は、燃焼室内でバーナによって加熱される熱交換器と、その熱交換器に接続されて水道水を供給する入水管と、その入水管内の水温を検出する入水温度検出手段と、熱交換器に接続されて加熱された湯を出湯する出湯管と、入水管と出湯管との間に接続されて熱交換器をバイパスするバイパス管と、バイパス管を流れる流量を制御可能な流量制御手段と、出湯管における燃焼室からの出口際での温度である内胴温度を検出する内胴温度検出手段と、その内胴温度検出手段によって得られる内胴温度に応じて流量制御手段の動作を制御する制御手段と、を備えた給湯装置であって、
制御手段は、出湯時に内胴温度が所定の低下勾配を示している場合は、以下の式1により微分FB(フィードバック)バイパス率を算出し、
微分FBバイパス率=内胴温度傾き×30/(内胴ねらい温度−入水温度)・・式1
算出された今回の微分FBバイパス率が、前回算出して記憶された前回微分FBバイパス率を下回っている場合は、今回の微分FBバイパス率を用いて目標バイパス率を算出して、算出された目標バイパス率に基づいて流量制御手段によってバイパス管を流れる流量を減少させる一方、
今回の微分FBバイパス率が、前回微分FBバイパス率を上回っている場合は、以下の式2によって平滑化した微分FBバイパス率を算出し、当該平滑化した微分FBバイパス率を用いて目標バイパス率を算出して、算出された目標バイパス率に基づいて流量制御手段によってバイパス管を流れる流量を徐々に増加させることを特徴とするものである。
微分FBバイパス率=(前回微分FBバイパス率×m+微分FBバイパス率×n)/(m+n) (m、nは平滑化のための重みの大きさ、但し、m>n)・・式2
In order to achieve the above object, the invention described in claim 1 includes a heat exchanger heated by a burner in a combustion chamber, a water inlet pipe connected to the heat exchanger to supply tap water, and the water inlet pipe. Water temperature detecting means for detecting the water temperature of the water, a hot water pipe connected to the heat exchanger for discharging hot water, a bypass pipe connected between the incoming water pipe and the hot water pipe and bypassing the heat exchanger, Obtained by a flow rate control means capable of controlling the flow rate through the bypass pipe, an inner cylinder temperature detecting means for detecting an inner cylinder temperature which is a temperature at the exit from the combustion chamber in the tapping pipe, and the inner cylinder temperature detecting means. A hot water supply apparatus comprising a control means for controlling the operation of the flow rate control means according to the inner cylinder temperature,
The control means calculates the differential FB (feedback) bypass rate by the following formula 1 when the inner trunk temperature shows a predetermined decrease gradient at the time of hot water,
Differential FB bypass rate = Inner trunk temperature gradient × 30 / (Inner trunk target temperature−Incoming water temperature) ·· Equation 1
When the calculated current differential FB bypass rate is lower than the previously calculated and stored previous differential FB bypass rate, the target bypass rate is calculated using the current differential FB bypass rate. While reducing the flow rate through the bypass pipe by the flow rate control means based on the target bypass rate ,
If the current differential FB bypass rate is higher than the previous differential FB bypass rate, the differential FB bypass rate smoothed by the following equation 2 is calculated, and the target bypass rate is calculated using the smoothed differential FB bypass rate. And the flow rate flowing through the bypass pipe is gradually increased by the flow rate control means based on the calculated target bypass rate .
Differential FB bypass rate = (previous differential FB bypass rate × m + differential FB bypass rate × n) / (m + n) (m and n are weights for smoothing, where m> n).

請求項1に記載の発明によれば、内胴温度の所定の低下勾配に応じて微分FBバイパス率を算出して前回微分FBバイパス率と比較し、今回の微分FBバイパス率が前回微分FBバイパス率を下回っている場合は、今回の微分FBバイパス率を用いて目標バイパス率を算出し、算出された目標バイパス率に基づいて流量制御手段によってバイパス管を流れる流量を減少させるようにしているので、再出湯時のアンダーシュートを好適に抑制可能となる。
一方、今回の微分FBバイパス率が前回微分FBバイパス率を上回っている場合は、平滑化した微分FBバイパス率を算出し、当該平滑化した微分FBバイパス率を用いて目標バイパス率を算出して、算出された目標バイパス率に基づいて流量制御手段によってバイパス管を流れる流量を徐々に増加させるようにしているので、内胴温度が上昇する際のバイパス水量の急激な増加が抑制されて出湯温度の低下が抑えられる。
According to the first aspect of the present invention, the differential FB bypass rate is calculated according to the predetermined decrease gradient of the inner body temperature and compared with the previous differential FB bypass rate, and the current differential FB bypass rate is the previous differential FB bypass. If it is lower than the rate, the target bypass rate is calculated using the current differential FB bypass rate, and the flow rate flowing through the bypass pipe is reduced by the flow rate control means based on the calculated target bypass rate . In addition, undershoot during re-bathing can be suitably suppressed.
On the other hand, when the current differential FB bypass rate exceeds the previous differential FB bypass rate, the smoothed differential FB bypass rate is calculated, and the target bypass rate is calculated using the smoothed differential FB bypass rate. Since the flow rate of the flow rate through the bypass pipe is gradually increased by the flow rate control means based on the calculated target bypass rate, the rapid increase in the amount of bypass water when the inner trunk temperature rises is suppressed, and the hot water temperature Can be prevented from decreasing.

給湯装置の概略図である。It is the schematic of a hot-water supply apparatus. ミキシング制御のフローチャートである。It is a flowchart of mixing control. 微分FBバイパス率の算出方法のフローチャートである。It is a flowchart of the calculation method of a differential FB bypass rate. 再出湯時の内胴温度、出湯温度、ミキシングモータの位置の変化をそれぞれ示すグラフである。It is a graph which each shows the change of the position of the inner trunk temperature at the time of re-bathing, a tapping temperature, and a mixing motor.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、バイパスミキシング式の給湯装置の一例を示す概略図で、給湯装置1は、器具本体内に、図示しない給気ファンを備えた燃焼室を形成して、燃焼室の内部に、燃料ガスと給気ファンからの一次空気との混合ガスを燃焼させるバーナ2を備えると共に、バーナ2の燃焼によって加熱され、入水管3と出湯管4とを接続した熱交換器5を設けている。バーナ2へのガス管6には、元電磁弁7及びガス比例弁8、メイン電磁弁9がそれぞれ設けられて、各弁が制御手段としての図示しないコントローラによって制御可能となっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing an example of a bypass mixing type hot water supply apparatus. The hot water supply apparatus 1 forms a combustion chamber with an air supply fan (not shown) in the appliance body, and a fuel is formed inside the combustion chamber. A burner 2 that combusts a mixed gas of gas and primary air from an air supply fan is provided, and a heat exchanger 5 that is heated by the combustion of the burner 2 and that connects a water inlet pipe 3 and a hot water outlet pipe 4 is provided. The gas pipe 6 to the burner 2 is provided with an original solenoid valve 7, a gas proportional valve 8, and a main solenoid valve 9, and each valve can be controlled by a controller (not shown) as control means.

また、入水管3と出湯管4との間には、熱交換器5をバイパスするバイパス管10が接続されて、入水管3におけるバイパス管10との接続部よりも上流側には、入水管3を流れる水量を制御する水絞りモータ11と、入水管3内の水流を検出する水流センサ12と、入水管3内の水温を検出する入水サーミスタ13とが設けられ、バイパス管10には、バイパス管10への水量を制御する流量制御手段としてのミキシングモータ14が設けられて、それぞれコントローラに電気的接続されている。一方、出湯管4には、燃焼室からの出口際での温度である内胴温度を検出する内胴温度検出手段としての内胴サーミスタ15と、バイパス管10との接続部より下流側の湯温を検出する出湯サーミスタ16とが設けられて、それぞれコントローラに電気的接続されている。   Further, a bypass pipe 10 that bypasses the heat exchanger 5 is connected between the water inlet pipe 3 and the hot water outlet pipe 4, and the water inlet pipe is located upstream of the connection portion of the water inlet pipe 3 with the bypass pipe 10. 3, a water throttle motor 11 that controls the amount of water flowing through the water inlet 3, a water flow sensor 12 that detects the water flow in the water inlet pipe 3, and a water inlet thermistor 13 that detects the water temperature in the water inlet pipe 3. A mixing motor 14 is provided as a flow rate control means for controlling the amount of water to the bypass pipe 10 and is electrically connected to each controller. On the other hand, the hot water discharge pipe 4 has hot water on the downstream side of the connection portion between the inner pipe thermistor 15 serving as an inner cylinder temperature detecting means for detecting the inner cylinder temperature, which is the temperature at the exit from the combustion chamber, and the bypass pipe 10. A hot water thermistor 16 for detecting the temperature is provided, and each is electrically connected to the controller.

以上の如く構成された給湯装置1は、出湯管4に接続された図示しない給湯栓を開いて器具内に通水させ、水流センサ12から得られる信号によって器具内の通水が確認されると、コントローラは、入水サーミスタ13から得られる入水温度と、図示しないリモコンで設定される設定温度との差が所定温度(例えば10℃)以上であれば、水絞りモータ11を動作させて規定水量から所定量絞った位置とする。両温度差が所定温度を超えていなければ、水絞りモータ11を規定水量の位置とする。その後、給気ファンを回転させてプリパージを行い、元電磁弁7及びガス比例弁8、メイン電磁弁9をそれぞれ開いてバーナ2にガスを供給し、図示しないイグナイタを作動させてバーナ2の点火制御を行う。   When the hot water supply device 1 configured as described above opens a hot water tap (not shown) connected to the hot water discharge pipe 4 and allows water to pass through the appliance, and the signal obtained from the water flow sensor 12 confirms the water passing through the appliance. When the difference between the incoming water temperature obtained from the incoming water thermistor 13 and the set temperature set by a remote controller (not shown) is equal to or higher than a predetermined temperature (for example, 10 ° C.), the controller operates the water throttle motor 11 from the specified water amount. The position is reduced by a predetermined amount. If the temperature difference between the two does not exceed the predetermined temperature, the water squeezing motor 11 is set to the position of the specified water amount. Thereafter, the air supply fan is rotated to perform pre-purge, the original solenoid valve 7, the gas proportional valve 8 and the main solenoid valve 9 are opened to supply gas to the burner 2, and the igniter (not shown) is operated to ignite the burner 2. Take control.

その後コントローラは、出湯サーミスタ16で検出された出湯温度と、リモコンで設定された設定温度との差に応じて、ガス比例弁8の開度を制御してガス量を連続的に変化させ、出湯温度を設定温度に一致させる出湯温制御を行うと共に、内胴サーミスタ15で検出される内胴温度が所定の内胴ねらい温度となるようにミキシングモータ14を制御して目標バイパス率を設定する。この目標バイパス率を設定するミキシング制御を、図2のフローチャートに基づいて説明する。   Thereafter, the controller continuously changes the gas amount by controlling the opening of the gas proportional valve 8 according to the difference between the hot water temperature detected by the hot water thermistor 16 and the set temperature set by the remote controller. The hot water temperature control is performed so that the temperature coincides with the set temperature, and the target bypass rate is set by controlling the mixing motor 14 so that the inner cylinder temperature detected by the inner cylinder thermistor 15 becomes a predetermined target temperature. The mixing control for setting the target bypass rate will be described based on the flowchart of FIG.

まず、このミキシング制御は、水流センサ12がONして器具内の通水が確認された後(S1)、0.25秒ごとに行われる(S2)。
次に、S3ではFFバイパス率が算出される。このFFバイパス率は、以下の式(1)によって計算される。
FFバイパス率=(内胴ねらい温度−設定温度)/(内胴ねらい温度−入水温度) ・・(1)
First, this mixing control is performed every 0.25 seconds (S2) after the water flow sensor 12 is turned on and water passing through the appliance is confirmed (S1).
Next, in S3, the FF bypass rate is calculated. This FF bypass rate is calculated by the following equation (1).
FF bypass rate = (inner trunk target temperature−set temperature) / (inner trunk target temperature−incoming water temperature) (1)

次に、S4ではオフセットバイパス率が算出される。このオフセットバイパス率は、ミキシングモータ14のステップ位置とバイパス率との関係において、デフォルト中心値と実際値との差分があった場合に、当該差分を補正するバイパス率の補正値で、後述するFBバイパス率と微分FBバイパス率とが共に0の時に適正なバイパス率にするのが狙いである。   Next, in S4, an offset bypass rate is calculated. This offset bypass rate is a correction value of the bypass rate that corrects the difference when there is a difference between the default center value and the actual value in the relationship between the step position of the mixing motor 14 and the bypass rate. The aim is to obtain an appropriate bypass rate when both the bypass rate and the differential FB bypass rate are zero.

次に、S5ではFBバイパス率が算出される。このFBバイパス率は、出湯温度に基づいたバイパス率の補正値で、以下の式(2)によって計算される。αは定数である。
FBバイパス率(出湯温度−設定温度)×α/(内胴ねらい温度−入水温度) ・・(2)
そして、S6では、微分FBバイパス率が算出される。この微分FBバイパス率は、内胴温度の変化(傾き)に応じて後述のように決定される。
最後にS7では、算出されたFFバイパス率と、オフセットバイパス率と、FBバイパス率と、微分FBバイパス率とを加算して、目標バイパス率が算出される。
Next, in S5, the FB bypass rate is calculated. This FB bypass rate is a correction value of the bypass rate based on the tapping temperature, and is calculated by the following equation (2). α is a constant.
FB Bypass Rate (Tempered Water Temperature-Set Temperature) x α / (Inner Body Target Temperature-Incoming Water Temperature) (2)
In S6, the differential FB bypass rate is calculated. This differential FB bypass rate is determined as described later in accordance with the change (slope) of the inner trunk temperature.
Finally, in S7, the target bypass rate is calculated by adding the calculated FF bypass rate, offset bypass rate, FB bypass rate, and differential FB bypass rate.

図3は、微分FBバイパス率の算出方法を示すフローチャートで、まずS10では内胴温度の傾きを求める。この傾きは、検出された内胴温度と前回の制御で記憶された前回内胴温度との差を求めることで得る。こうして得られた内胴温度は、次回に使用する前回内胴温度としてS11で記憶される。
次に、S12では、S10で得られた内胴温度の傾きが、−0.1℃を超えているか否か、すなわち低下傾向にないか否かを判別する。ここで傾きが−0.1℃を超えていれば、低下傾向でないとして、S13で内胴温度の傾きは0とする。一方、傾きが−0.1℃を超えていなければ、低下傾向であるとして、S14で、以下の式(3)によって微分FBバイパス率を算出する。
微分FBバイパス率=内胴温度傾き×30/(内胴ねらい温度−入水温度) ・・(3)
FIG. 3 is a flowchart showing a method for calculating the differential FB bypass rate. First, in S10, the inclination of the inner body temperature is obtained. This inclination is obtained by obtaining the difference between the detected inner cylinder temperature and the previous inner cylinder temperature stored in the previous control. The inner cylinder temperature obtained in this way is stored in S11 as the previous inner cylinder temperature to be used next time.
Next, in S12, it is determined whether or not the inclination of the inner body temperature obtained in S10 exceeds −0.1 ° C., that is, whether or not there is a tendency to decrease. Here, if the inclination exceeds −0.1 ° C., the inclination of the inner trunk temperature is set to 0 in S13 because it is not a decreasing tendency. On the other hand, if the inclination does not exceed −0.1 ° C., the differential FB bypass rate is calculated by the following equation (3) in S14 because it is in a decreasing tendency.
Differential FB bypass rate = Inner trunk temperature gradient x 30 / (Inner trunk target temperature-Incoming water temperature) (3)

そして、S15の判別では、前回算出して記憶された前回微分FBバイパス率が、S14で得た今回の微分FBバイパス率を下回っているか否かを判別する。ここで前回微分FBバイパス率が今回の微分FBバイパス率を下回っていなければ、S17において、今回の微分FBバイパス率を微分FBバイパス率とし、これを次回使用する前回微分FBバイパス率として記憶する。一方、前回微分FBバイパス率が今回の微分FBバイパス率を下回っていれば、S16において、以下の式(4)によって微分FBバイパス率を修正する。これは、前回微分FBバイパス率と今回の微分FBバイパス率とを用いて平滑化した微分FBバイパス率を得るものである。
微分FBバイパス率=(前回微分FBバイパス率×m+微分FBバイパス率×n)/(m+n) (但し、m>n) ・・(4)
こうしてS14或いはS16で得られた微分FBバイパス率を図2における目標バイパス率の算出に用いることになる。
In the determination in S15, it is determined whether or not the previous differential FB bypass rate calculated and stored last time is lower than the current differential FB bypass rate obtained in S14. If the previous differential FB bypass rate is not lower than the current differential FB bypass rate, the current differential FB bypass rate is set as the differential FB bypass rate in S17 and stored as the previous differential FB bypass rate to be used next time. On the other hand, if the previous differential FB bypass rate is lower than the current differential FB bypass rate, the differential FB bypass rate is corrected by the following equation (4) in S16. This is to obtain a smoothed differential FB bypass rate using the previous differential FB bypass rate and the current differential FB bypass rate.
Differential FB bypass rate = (previous differential FB bypass rate × m + differential FB bypass rate × n) / (m + n) (where m> n) (4)
Thus, the differential FB bypass rate obtained in S14 or S16 is used for calculation of the target bypass rate in FIG.

ここで、m=14、n=1として具体的に数値を挙げて説明すると、設定温度40℃、出湯温度42℃、入水温度10℃、内胴ねらい温度60℃、内胴温度傾き−0.2℃、前回微分FBバイパス率−0.18とした場合、まずFFバイパス率は、上記式(1)より、(60−40)/(60−10)=0.40となる。
オフセットバイパス率は、ミキシングモータ14のステップ位置とバイパス率との関係が、デフォルト中心値と実際値とで差がないとして、ここでは0とする。
次に、FBバイパス率は、上記式(2)より、(42−40)×0.5/(60−10)=0.02となる。
Here, m = 14 and n = 1 will be described specifically with numerical values. The set temperature is 40 ° C., the tapping temperature is 42 ° C., the incoming water temperature is 10 ° C., the inner trunk target temperature is 60 ° C., the inner trunk temperature slope is −0. Assuming that the previous differential FB bypass rate is −0.18 at 2 ° C., first, the FF bypass rate is (60−40) / (60−10) = 0.40 from the above equation (1).
The offset bypass rate is assumed here to be 0, assuming that the relationship between the step position of the mixing motor 14 and the bypass rate does not differ between the default center value and the actual value.
Next, the FB bypass rate is (42−40) × 0.5 / (60−10) = 0.02 from the above equation (2).

そして、微分FBバイパス率は、上記式(3)より、−0.2×30/(60−10)=−0.12となる。しかし、この値は前回微分FBバイパス率(−0.18)を上回ることになるため、上記式(4)より、微分FBバイパス率は、−0.18×14+(−0.12)×1/15=−0.176となる。
よって、目標バイパス率は、0.40+0.00+0.02+(−0.176)=0.244となる。
Then, the differential FB bypass rate is −0.2 × 30 / (60−10) = − 0.12 from the above equation (3). However, since this value exceeds the previous differential FB bypass rate (−0.18), the differential FB bypass rate is −0.18 × 14 + (− 0.12) × 1 from the above equation (4). /15=−0.176.
Therefore, the target bypass rate is 0.40 + 0.00 + 0.02 + (− 0.176) = 0.244.

図4は、再出湯時の内胴温度、出湯温度、ミキシングモータ14の位置の変化をそれぞれ示すタイムチャートで、Aが内胴温度、Bが出湯温度、Cがミキシングモータ14の位置となっている。なお、ミキシングモータ14の位置は上が閉弁側、下が開弁側となる。
図4において、時点t1で給湯栓を開栓して再出湯させると、内胴温度Aは後沸き時間t1−t2の間急上昇することになるが、この急上昇時には内胴温度Aの傾きは0となり、微分FBバイパス率も0となるため、図2で算出される目標バイパス率は大きくなる。
FIG. 4 is a time chart showing changes in the inner trunk temperature, the tapping temperature, and the position of the mixing motor 14 during re-bathing. A is the inner trunk temperature, B is the tapping temperature, and C is the position of the mixing motor 14. Yes. Note that the position of the mixing motor 14 is the valve closing side and the bottom is the valve opening side.
In FIG. 4, when the hot-water tap is opened at time point t1 and the hot water is discharged again, the inner trunk temperature A suddenly rises during the post-boiling time t1-t2. At this sudden rise, the slope of the inner trunk temperature A is 0. Since the differential FB bypass rate is also 0, the target bypass rate calculated in FIG. 2 is increased.

その後、時点t2から内胴温度Aが低下すると、内胴温度Aの傾きが検出されるため、図2のS6で微分FBバイパス率が得られ、目標バイパス率は徐々に小さくなる(t2−t3間でミキシングモータ14は徐々に絞られる)。従って、バイパス管10内の水が出湯管4内の水に混合される量は少なくなり、出湯温度の低下は抑えられる。
なお、内胴温度の傾きが徐々に大きくなることで、微分FBバイパス率は前回の値よりも小さくなるため、微分FBバイパス率は図3のS14で算出される数値となる。
Thereafter, when the inner cylinder temperature A decreases from the time point t2, the slope of the inner cylinder temperature A is detected, so that the differential FB bypass rate is obtained in S6 of FIG. 2, and the target bypass rate gradually decreases (t2-t3). In the meantime, the mixing motor 14 is gradually throttled). Accordingly, the amount of water in the bypass pipe 10 mixed with the water in the tap water pipe 4 is reduced, and a decrease in the hot water temperature is suppressed.
In addition, since the differential FB bypass rate becomes smaller than the previous value as the gradient of the inner body temperature gradually increases, the differential FB bypass rate is a numerical value calculated in S14 of FIG.

次に、時点t3から内胴温度Aが上昇に転じ、図3におけるS15の判別で前回微分FBバイパス率よりもS14で算出された微分FBバイパス率が上回るようになると、S16において平滑化された微分FBバイパス率が算出される。すなわち、微分FBバイパス率が急に開く計算になっても、14:1の比率で値が変化することになるため、ミキシングモータ14は急激に開くことはなく、t3−t4間の時定数を持って徐々に開くものとなる。従って、バイパス水量の急激な増加が抑制されて出湯温度Bの低下が抑えられる。   Next, when the inner cylinder temperature A starts to increase from the time point t3 and the differential FB bypass rate calculated in S14 exceeds the previous differential FB bypass rate in the determination of S15 in FIG. 3, it is smoothed in S16. A differential FB bypass rate is calculated. That is, even if the differential FB bypass rate is suddenly opened, the value changes at a ratio of 14: 1. Therefore, the mixing motor 14 does not open suddenly, and the time constant between t3 and t4 is set. It will gradually open with you. Therefore, a rapid increase in the amount of bypass water is suppressed, and a decrease in the hot water temperature B is suppressed.

このように、上記形態の給湯装置1によれば、燃焼室内でバーナ2によって加熱される熱交換器5と、その熱交換器5に接続されて水道水を供給する入水管3と、熱交換器5に接続されて加熱された湯を出湯する出湯管4と、入水管3と出湯管4との間に接続されて熱交換器5をバイパスするバイパス管10と、バイパス管10を流れる流量を制御可能なミキシングモータ14と、出湯管4における燃焼室からの出口際での内胴温度を検出する内胴サーミスタ15と、その内胴サーミスタ15によって得られる内胴温度に応じてミキシングモータ14の動作を制御するコントローラと、を備えたものにおいて、コントローラは、内胴サーミスタ15によって得られる内胴温度の低下勾配に応じて、ミキシングモータ14によってバイパス管10を流れる流量を減少させるようにしている。従って、再出湯時のアンダーシュートを好適に抑制できる。   Thus, according to the hot water supply apparatus 1 of the said form, the heat exchanger 5 heated by the burner 2 within a combustion chamber, the inlet pipe 3 connected to the heat exchanger 5, and supplying tap water, and heat exchange A hot water outlet pipe 4 connected to the water heater 5 for discharging heated water, a bypass pipe 10 connected between the incoming water pipe 3 and the hot water outlet pipe 4 to bypass the heat exchanger 5, and a flow rate flowing through the bypass pipe 10 A mixing motor 14 capable of controlling the inner cylinder, an inner cylinder thermistor 15 for detecting the inner cylinder temperature at the exit from the combustion chamber in the tapping pipe 4, and the mixing motor 14 according to the inner cylinder temperature obtained by the inner cylinder thermistor 15. And a controller for controlling the operation of the bypass pipe 1 by the mixing motor 14 in accordance with the decreasing gradient of the inner cylinder temperature obtained by the inner cylinder thermistor 15. And to reduce the flow rate through the. Therefore, the undershoot at the time of re-heating can be suitably suppressed.

特にここでは、コントローラは、バイパス管10を流れる流量を減少させた後、内胴温度が上昇に転じた際には、時定数を持たせてバイパス管10を流れる流量を徐々に増加させるようにしているので、内胴温度が上昇する際のバイパス水量の急激な増加が抑制されて出湯温度の低下が抑えられる。   In particular, here, the controller reduces the flow rate through the bypass pipe 10 and then gradually increases the flow rate through the bypass pipe 10 with a time constant when the inner cylinder temperature starts to rise. Therefore, a rapid increase in the amount of bypass water when the inner body temperature rises is suppressed, and a decrease in the tapping temperature is suppressed.

なお、各バイパス率の計算は上記形態に限らず、適宜設計変更可能で、給湯装置自体の構成も、風呂釜(風呂熱交換器)付きのものであったりしても本発明は適用可能である。   The calculation of each bypass rate is not limited to the above-described form, and the design can be changed as appropriate. The present invention can be applied even if the structure of the hot water supply device itself is provided with a bath tub (bath heat exchanger). is there.

1・・給湯装置、2・・バーナ、3・・入水管、4・・出湯管、5・・熱交換器、6・・ガス管、7・・元電磁弁、8・・ガス比例弁、9・・メイン電磁弁、10・・バイパス管、13・・入水サーミスタ、14・・ミキシングモータ、15・・内胴サーミスタ、16・・出湯サーミスタ。   1 .... Hot water supply equipment, 2 .... Burner, 3 .... Inlet pipe, 4 .... Hot water pipe, 5 .... Heat exchanger, 6 .... Gas pipe, 7 .... Original solenoid valve, 8 .... Gas proportional valve, 9 .... Main solenoid valve, 10 .... Bypass pipe, 13 .... Water-filled thermistor, 14 .... Mixing motor, 15 .... Inner body thermistor, 16 ..

Claims (1)

燃焼室内でバーナによって加熱される熱交換器と、その熱交換器に接続されて水道水を供給する入水管と、その入水管内の水温を検出する入水温度検出手段と、前記熱交換器に接続されて加熱された湯を出湯する出湯管と、前記入水管と前記出湯管との間に接続されて前記熱交換器をバイパスするバイパス管と、前記バイパス管を流れる流量を制御可能な流量制御手段と、前記出湯管における前記燃焼室からの出口際での温度である内胴温度を検出する内胴温度検出手段と、その内胴温度検出手段によって得られる前記内胴温度に応じて前記流量制御手段の動作を制御する制御手段と、を備えた給湯装置であって、
前記制御手段は、出湯時に前記内胴温度が所定の低下勾配を示している場合は、以下の式1により微分FB(フィードバック)バイパス率を算出し、
微分FBバイパス率=内胴温度傾き×30/(内胴ねらい温度−入水温度)・・式1
算出された今回の前記微分FBバイパス率が、前回算出して記憶された前回微分FBバイパス率を下回っている場合は、今回の前記微分FBバイパス率を用いて目標バイパス率を算出して、算出された前記目標バイパス率に基づいて前記流量制御手段によって前記バイパス管を流れる流量を減少させる一方、
今回の前記微分FBバイパス率が、前回微分FBバイパス率を上回っている場合は、以下の式2によって平滑化した微分FBバイパス率を算出し、当該平滑化した前記微分FBバイパス率を用いて目標バイパス率を算出して、算出された前記目標バイパス率に基づいて前記流量制御手段によって前記バイパス管を流れる流量を徐々に増加させることを特徴とする給湯装置。
微分FBバイパス率=(前回微分FBバイパス率×m+微分FBバイパス率×n)/(m+n) (m、nは平滑化のための重みの大きさ、但し、m>n)・・式2
A heat exchanger heated by a burner in the combustion chamber, an inlet pipe connected to the heat exchanger for supplying tap water, an incoming water temperature detecting means for detecting the water temperature in the inlet pipe , and connected to the heat exchanger A hot water outlet pipe for discharging hot water that has been heated, a bypass pipe connected between the water inlet pipe and the hot water outlet pipe to bypass the heat exchanger, and a flow rate control capable of controlling the flow rate through the bypass pipe Means, an inner cylinder temperature detecting means for detecting an inner cylinder temperature which is a temperature at the exit from the combustion chamber in the tapping pipe, and the flow rate according to the inner cylinder temperature obtained by the inner cylinder temperature detecting means. A hot water supply device comprising a control means for controlling the operation of the control means,
The control means calculates a differential FB (feedback) bypass rate by the following formula 1 when the inner drum temperature shows a predetermined decreasing gradient at the time of hot water,
Differential FB bypass rate = Inner trunk temperature gradient × 30 / (Inner trunk target temperature−Incoming water temperature) ·· Equation 1
When the calculated current differential FB bypass rate is lower than the previously calculated and stored previous differential FB bypass rate, the target bypass rate is calculated using the current differential FB bypass rate. While reducing the flow rate flowing through the bypass pipe by the flow rate control means based on the target bypass rate made ,
If the current differential FB bypass rate exceeds the previous differential FB bypass rate, the differential FB bypass rate smoothed by the following equation 2 is calculated, and the target is obtained using the smoothed differential FB bypass rate. A hot water supply apparatus that calculates a bypass rate, and gradually increases a flow rate flowing through the bypass pipe by the flow rate control unit based on the calculated target bypass rate .
Differential FB bypass rate = (previous differential FB bypass rate × m + differential FB bypass rate × n) / (m + n) (m and n are weights for smoothing, where m> n).
JP2012121098A 2012-05-28 2012-05-28 Water heater Active JP5872963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012121098A JP5872963B2 (en) 2012-05-28 2012-05-28 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012121098A JP5872963B2 (en) 2012-05-28 2012-05-28 Water heater

Publications (2)

Publication Number Publication Date
JP2013245895A JP2013245895A (en) 2013-12-09
JP5872963B2 true JP5872963B2 (en) 2016-03-01

Family

ID=49845813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012121098A Active JP5872963B2 (en) 2012-05-28 2012-05-28 Water heater

Country Status (1)

Country Link
JP (1) JP5872963B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091384B (en) * 2016-07-15 2022-01-25 珠海格力电器股份有限公司 Wall-mounted stove

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974425A (en) * 1982-10-19 1984-04-26 Matsushita Electric Ind Co Ltd Hot water supply control device
JPH04251152A (en) * 1990-12-25 1992-09-07 Noritz Corp Hot water and cold water mixing temperature control device
JPH07127909A (en) * 1993-11-08 1995-05-19 Noritz Corp Hot water supply heater
JPH1151479A (en) * 1997-07-29 1999-02-26 Gastar Corp Hot water feeding device
JP2004053081A (en) * 2002-07-18 2004-02-19 Noritz Corp Combustion apparatus

Also Published As

Publication number Publication date
JP2013245895A (en) 2013-12-09

Similar Documents

Publication Publication Date Title
JP6952985B2 (en) Water heater
US8165726B2 (en) Water heater energy savings algorithm for reducing cold water complaints
US8322312B2 (en) Water heater stacking detection and control
JP5872963B2 (en) Water heater
JP5454914B2 (en) Water heater
JP2018100810A (en) Combustion apparatus
JP5508300B2 (en) Combined combustion device
JP5200748B2 (en) Water heater
JP6341000B2 (en) Water heater
JP5970529B2 (en) Water heater
JP6735572B2 (en) Water heater
JP6867684B2 (en) Water heater
JP3463455B2 (en) How to measure the amount of hot water remaining in the bathtub of a bath with hot water supply function
JP2024092319A (en) Water heater
JP3845099B2 (en) Water heater heating control device
JP7126671B2 (en) Water heater
JP2024090834A (en) Water heater
JP2015222137A (en) Heating heat source apparatus
JP3133701B2 (en) Water heater
JP3888783B2 (en) Water heater
JP3996157B2 (en) Water heater
JP2019015426A (en) Water heater
JP2019066126A (en) Bath water heater
JP2018119749A (en) Water heater
JPH03260551A (en) Controlling device for water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160114

R150 Certificate of patent or registration of utility model

Ref document number: 5872963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250