JP5872184B2 - Lightning resistance test apparatus and test method - Google Patents

Lightning resistance test apparatus and test method Download PDF

Info

Publication number
JP5872184B2
JP5872184B2 JP2011095105A JP2011095105A JP5872184B2 JP 5872184 B2 JP5872184 B2 JP 5872184B2 JP 2011095105 A JP2011095105 A JP 2011095105A JP 2011095105 A JP2011095105 A JP 2011095105A JP 5872184 B2 JP5872184 B2 JP 5872184B2
Authority
JP
Japan
Prior art keywords
lightning
circuit
voltage
lightning impulse
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011095105A
Other languages
Japanese (ja)
Other versions
JP2012225830A (en
Inventor
健作 宮崎
健作 宮崎
喜悦 工藤
喜悦 工藤
賢宏 種子田
賢宏 種子田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011095105A priority Critical patent/JP5872184B2/en
Publication of JP2012225830A publication Critical patent/JP2012225830A/en
Application granted granted Critical
Publication of JP5872184B2 publication Critical patent/JP5872184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、電力系統への多数回の落雷時、事故系統を分離する落雷電力用遮断器または電力用開閉器の耐雷性能を評価する試験装置及び試験方法に関する。 Embodiments of the present invention relate to a test apparatus and a test method for evaluating the lightning resistance performance of a lightning strike circuit breaker or a power switch that separates an accident system during multiple lightning strikes to a power system.

電力系統に落雷があった場合、過電圧は避雷器で保護し、短絡事故が発生した場合には遮断器で事故系統を分離する保護システムが一般的に確立しているが、電力系統の信頼性をより一層向上させるために、1回目の落雷に付随して発生する2回目以降の落雷に対する多重雷対策が注目されており、従来から、短絡事故電流遮断直後の落雷に対する遮断器の性能を検証するための検証試験がおこなわれている。   In the event of a lightning strike in the power system, an overvoltage is protected by a lightning arrester, and in the event of a short-circuit accident, a protection system that isolates the fault system with a circuit breaker is generally established. In order to improve it further, multiple lightning countermeasures for the second and subsequent lightning strikes that accompany the first lightning strike have attracted attention. Conventionally, the performance of the circuit breaker against lightning strikes immediately after a short-circuit fault current interruption has been verified. Verification tests are being conducted.

特開平7−35831号公報JP 7-35831 A 特開平8−7712号公報JP-A-8-7712

「多重雷を考慮した遮断器の対策と試験方法」電気学会 開閉保護装置研究会SPD−91−2 宮地 厳 植村哲夫 松久孝司 (原稿受付日 平成2年12月25日)"Countermeasures and test methods for circuit breakers considering multiple lightnings" The Institute of Electrical Engineers of Japan, Protection and Protection System Study Group SPD-91-2 Tetsuo Uemura Takashi Matsuhisa (Reception date December 25, 1990)

従来の試験装置に適用される回路図を図13に示す。この試験回路は、試験に用いられる落雷電力用遮断器または電力用開閉器(以下、「供試器」という。)22に対して、短絡発電機1を電源として短絡電流を供給する電流源回路23と、インパルス電圧を印加する雷インパルス発生回路18とから構成されている。   A circuit diagram applied to a conventional test apparatus is shown in FIG. This test circuit is a current source circuit for supplying a short-circuit current to a lightning circuit breaker or power switch (hereinafter referred to as “test device”) 22 used for the test by using the short-circuit generator 1 as a power source. 23 and a lightning impulse generating circuit 18 for applying an impulse voltage.

この従来例においては、落雷試験時に所定の手順で短絡電流を遮断した後、雷インパルス発生回路18によりインパルス電圧を供試器22に印加する。そして、どの程度のインパルス電圧に耐えたかどうかで電気的耐電圧特性などの耐雷性能が評価される。   In this conventional example, after a short-circuit current is interrupted in a predetermined procedure during a lightning strike test, an impulse voltage is applied to the EUT 22 by the lightning impulse generation circuit 18. Then, lightning resistance performance such as electrical withstand voltage characteristics is evaluated depending on how much impulse voltage it has withstood.

ところで、供試器22の端子間でどの程度のインパルス電圧に耐え得るかどうかを評価する場合、このような試験回路では、限界電流値を求める際、より短期間で製品レベルでの電気的耐電圧特性を把握するため、印加する電圧が過剰になることがある。このとき、雷インパルス発生回路18に印加された過剰なインパルス電圧は、補助開閉器16にも同様に印加される。従って補助開閉器16は印加されるインパルス電圧では閃絡しないように供試器22より耐電圧性能の高い補助開閉器16を使用する必要がある。例えば供試器22の定格電圧が550KVの場合、補助開閉器16はそれ以上の性能を有する必要があり、試験装置が大型化し、試験のためのコストも高くなるという課題があった。   By the way, when evaluating whether the impulse voltage can be withstood between the terminals of the EUT 22, in such a test circuit, when the limit current value is obtained, the electrical resistance at the product level in a shorter period of time. In order to grasp the voltage characteristics, the applied voltage may be excessive. At this time, the excessive impulse voltage applied to the lightning impulse generation circuit 18 is also applied to the auxiliary switch 16 in the same manner. Therefore, it is necessary to use the auxiliary switch 16 having a higher withstand voltage performance than the EUT 22 so that the auxiliary switch 16 does not flash with the applied impulse voltage. For example, when the rated voltage of the EUT 22 is 550 KV, the auxiliary switch 16 needs to have more performance, and there is a problem that the test apparatus becomes larger and the cost for the test becomes higher.

上記課題を解決するために各実施形態では、電力用遮断器または電力用開閉器からなる供試器と、初回の落雷試験時に短絡電流を前記供試器に供給する電流源回路と、2回目以降の落雷試験時に前記供試器の一方の端子に極性の異なる雷インパルス電圧をそれぞれ印加する複数の雷インパルス発生回路と、前記供試器と前記複数の雷インパルス発生回路との間にそれぞれ接続された補助開閉器と、前記供試器の他方の端子に、前記雷インパルス発生回路により印加する前記雷インパルス電圧の極性の逆極性の交流電圧を印加する電圧回路とを備えている。 In order to solve the above-described problem, in each embodiment, a tester including a power breaker or a power switch, a current source circuit that supplies a short-circuit current to the tester during a first lightning strike, and a second time A plurality of lightning impulse generating circuits that respectively apply lightning impulse voltages having different polarities to one terminal of the EUT during a subsequent lightning strike test, and connection between the EUT and the plurality of lightning impulse generating circuits, respectively. And a voltage circuit for applying an AC voltage having a polarity opposite to that of the lightning impulse voltage applied by the lightning impulse generating circuit to the other terminal of the EUT.

以下に述べる各実施形態は、上記課題を解決するためになされたものであり、多重雷発生時の耐雷性能を既存の耐雷性能試験装置に所定の電圧回路を追加するだけで、試験装置のコンパクト化が図られ、迅速かつ的確に試験をすることができる。   Each embodiment described below has been made to solve the above-mentioned problem. The lightning resistance performance at the time of occurrence of multiple lightnings can be reduced by simply adding a predetermined voltage circuit to an existing lightning resistance performance testing apparatus. It is possible to test quickly and accurately.

第1の実施形態に係る多重雷発生時の耐雷性能試験装置の回路図。FIG. 3 is a circuit diagram of a lightning resistance performance test apparatus when multiple lightning occurs according to the first embodiment. 第1の実施形態に係る電圧、電流波形を示す波形図(オシログラム)と図1の回路部品のオン・オフタイミングを表す図。FIG. 2 is a waveform diagram (oscillogram) showing voltage and current waveforms according to the first embodiment and a diagram showing on / off timings of the circuit components of FIG. 1. 第2の実施形態に係る多重雷発生時の耐雷性能試験装置の回路図。The circuit diagram of the lightning resistance performance test apparatus at the time of the multiple lightning generation which concerns on 2nd Embodiment. 第2の実施形態に係る電圧、電流波形を示す波形図(オシログラム)と図3の回路部品のオン・オフタイミングを表す図。FIG. 4 is a waveform diagram (oscillogram) showing voltage and current waveforms according to the second embodiment and a diagram showing on / off timings of the circuit components of FIG. 3. 第3の実施形態に係る多重雷発生時の耐雷性能試験装置の回路図。The circuit diagram of the lightning resistance performance test apparatus at the time of the multiple lightning generation which concerns on 3rd Embodiment. 第3の実施形態に係る電圧、電流波形を示す波形図(オシログラム)と図5の回路部品のオン・オフタイミングを表す図。FIG. 6 is a waveform diagram (oscillogram) showing voltage and current waveforms according to the third embodiment and a diagram showing on / off timings of the circuit components of FIG. 5. 第4の実施形態に係る多重雷発生時の耐雷性能試験装置の回路図。The circuit diagram of the lightning resistance performance test apparatus at the time of the multiple lightning generation which concerns on 4th Embodiment. 第4の実施形態に係る電圧、電流波形を示す波形図(オシログラム)と図7の回路部品のオン・オフタイミングを表す図。FIG. 8 is a waveform diagram (oscillogram) showing voltage and current waveforms according to the fourth embodiment and a diagram showing on / off timings of the circuit components of FIG. 第5の実施形態に係る多重雷発生時の耐雷性能試験装置の回路図。The circuit diagram of the lightning resistance performance test apparatus at the time of the multiple lightning generation which concerns on 5th Embodiment. 第5の実施形態に係る電圧、電流波形を示す波形図(オシログラム)と図9の回路部品のオン・オフタイミングを表す図。FIG. 10 is a waveform diagram (oscillogram) showing voltage and current waveforms according to the fifth embodiment and a diagram showing on / off timings of the circuit components of FIG. 第6の実施形態に係る多重雷発生時の耐雷性能試験装置の回路図。The circuit diagram of the lightning resistance performance test apparatus at the time of the multiple lightning generation which concerns on 6th Embodiment. 第6の実施形態に係る電圧、電流波形を示す波形図(オシログラム)と図11の回路部品のオン・オフタイミングを表す図。FIG. 12 is a waveform diagram (oscillogram) showing voltage and current waveforms according to the sixth embodiment and a diagram showing on / off timings of the circuit components of FIG. 11. 従来の多重雷発生時の耐雷性能試験装置の回路図。The circuit diagram of the conventional lightning resistance performance testing apparatus at the time of the multiple lightning strike.

以下、本発明に係る実施形態について、図面を参照して説明する。
(第1の実施形態)
本発明の第1の実施形態に係る多重雷発生時の耐雷性能試験装置を、図1〜2を用いて説明する。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
(First embodiment)
A lightning resistance test apparatus for multiple lightning occurrence according to a first embodiment of the present invention will be described with reference to FIGS.

図1において、耐雷性能試験装置は、従来の回路図(図13)と同一構成部分である電流源回路23については説明を省略する。図2は、第1の実施形態に係る試験での電圧、電流波形を示す波形図(オシログラム)と図1の回路部品のオン・オフタイミングを表す図である。   In FIG. 1, the lightning resistance test apparatus omits the description of the current source circuit 23 which is the same component as the conventional circuit diagram (FIG. 13). FIG. 2 is a waveform diagram (oscillogram) showing voltage and current waveforms in the test according to the first embodiment, and a diagram showing on / off timings of the circuit components of FIG.

本実施形態において、電流源回路23と例えば電力用遮断機からなる供試器22との間には、補助開閉器(SA2)14と接地点と電流測定器21が直列接続されている。供試器22が短絡電流を遮断した後、供試器22の一方の端子に交流電圧を印加させるAC電圧印加回路24は、電源に短絡発電機(Gen2)2を用い、保護遮断器(SB2)4、投入開閉器(SM2)6、電流抑制用リアクトル(L2)8、試験用変圧器(Tr2)12、電流抑制用抵抗(Rv1)10、及び補助開閉器(SA3)15とが供試器機22に対し直列接続されている。   In the present embodiment, an auxiliary switch (SA2) 14, a grounding point, and a current measuring device 21 are connected in series between the current source circuit 23 and a test device 22 made of, for example, a power breaker. After the EUT 22 interrupts the short-circuit current, the AC voltage application circuit 24 for applying an AC voltage to one terminal of the EUT 22 uses the short-circuit generator (Gen2) 2 as a power source, and a protective circuit breaker (SB2 ) 4, switch-on switch (SM2) 6, current suppression reactor (L2) 8, test transformer (Tr2) 12, current suppression resistor (Rv1) 10, and auxiliary switch (SA3) 15 The device 22 is connected in series.

試験用変圧器(Tr2)12の2次側片方の端子は接地している。ここでは、電源に短絡発電機(Gen2)2を用いたが、商用電源から誘導電圧調整器(IVR)を用いることも可能である。   The terminal on the secondary side of the test transformer (Tr2) 12 is grounded. Here, the short-circuit generator (Gen2) 2 is used as the power source, but it is also possible to use an induction voltage regulator (IVR) from the commercial power source.

また、供試器22と雷インパルス発生回路(IG1)18との間に直列接続される補助開閉器(SA4)16は、短絡電流遮断直後に発生する電流源回路23の回復電圧が雷インパルス発生回路(IG1)18に印加されないようにするためのスイッチである。補助開閉器(SA4)16は、単なる開閉器でもよいが、ここでは、ギャップスイッチを用いている。このギャップスイッチは、例えば、一定のギャップを設けて対向配置された電極の近傍に、トリガー電極を配置し、両電極には高電圧が印加されている。   In addition, the auxiliary switch (SA4) 16 connected in series between the EUT 22 and the lightning impulse generator circuit (IG1) 18 has the recovery voltage of the current source circuit 23 generated immediately after the short-circuit current is interrupted to generate the lightning impulse. This is a switch for preventing the circuit (IG1) 18 from being applied. The auxiliary switch (SA4) 16 may be a simple switch, but here, a gap switch is used. In this gap switch, for example, a trigger electrode is disposed in the vicinity of electrodes that are arranged to face each other with a certain gap, and a high voltage is applied to both electrodes.

AC電圧印加回路24により印加される電圧の極性(例えば、プラス)は、前記雷インパルス発生回路18により印加する雷インパルス電圧の極性(例えば、マイナス)とは逆極性である。また、その大きさは任意ではあるが例えば、AC電圧波高値とすることにより、従来のように電力用遮断器に対し、一方の端子からのみ雷インパルス電圧を対アース間で印加することなく、電力用遮断器22の両端子からそれぞれ逆特性の電圧を印加さすることにより電力用遮断器には所望の電圧を印加することができる。   The polarity (for example, plus) of the voltage applied by the AC voltage application circuit 24 is opposite to the polarity (for example, minus) of the lightning impulse voltage applied by the lightning impulse generating circuit 18. In addition, although the size is arbitrary, for example, by setting the AC voltage peak value, without applying the lightning impulse voltage between the terminal and the ground with respect to the power circuit breaker as in the past, A desired voltage can be applied to the power breaker by applying voltages having opposite characteristics from both terminals of the power breaker 22.

ここで、電力用遮断器22と接続されている補助開閉器13〜15にはAC電圧のみが、また補助開閉器16にはインパルス電圧のみが印加されるが、それぞれの電圧を比較的低く設定できるので、各補助開閉器13〜16のいずれにおいても閃絡することは無い。このように、極性の異なる電圧を供試器の両端子に印加することで、所望の大きさの電圧を供試器に印加し、閃絡試験をおこなうことにより、供試器22の端子間の閃絡電圧を把握することができる。   Here, only the AC voltage is applied to the auxiliary switches 13 to 15 connected to the power circuit breaker 22 and only the impulse voltage is applied to the auxiliary switch 16, but the respective voltages are set to be relatively low. Therefore, there is no flashing in any of the auxiliary switches 13-16. In this way, by applying voltages of different polarities to both terminals of the EUT, a voltage of a desired magnitude is applied to the EUT and a flash test is performed. Can be grasped.

ここで、図2を参照して、第1の実施形態の耐雷性能試験装置による試験手順(1)〜(7)を説明する。   Here, with reference to FIG. 2, the test procedure (1)-(7) by the lightning-proof performance test apparatus of 1st Embodiment is demonstrated.

(1)所定の短絡電流となるように電流抑制用リアクトル(L1)7を選定する。保護遮断器(SB2)4をON、投入開閉器(SM2)6をON 、AC電圧印加回路24の補助開閉器(SA3)15をOFF、雷インパルス発生回路(IG1)18の補助開閉器(SA4)16をOFFとし、試験前に雷インパルス発生回路(IG1)18を所定の充電電圧に充電完了させ、短絡発電機(Gen1)1、短絡発電機(Gen2)2および試験用変圧器(Tr2)12は所定の励磁状態とする。 (1) Select the current suppressing reactor (L1) 7 so as to obtain a predetermined short-circuit current. The protective circuit breaker (SB2) 4 is turned on, the closing switch (SM2) 6 is turned on, the auxiliary switch (SA3) 15 of the AC voltage application circuit 24 is turned off, and the auxiliary switch (SA4) of the lightning impulse generator circuit (IG1) 18 ) 16 is turned off, and the lightning impulse generator circuit (IG1) 18 is fully charged to the specified charging voltage before the test. Short-circuit generator (Gen1) 1, short-circuit generator (Gen2) 2, and test transformer (Tr2) Reference numeral 12 denotes a predetermined excitation state.

(2)電流源回路23の保護遮断器(SB1)3をON、投入開閉器(SM1)5をOFF、補助開閉器(SA1)13をOFF、供試器22をON、補助開閉器(SA2)14をONとする。 (2) Protective circuit breaker (SB1) 3 of current source circuit 23 is turned on, closing switch (SM1) 5 is turned off, auxiliary switch (SA1) 13 is turned off, EUT 22 is turned on, auxiliary switch (SA2 ) Set 14 to ON.

(3)試験シーケンスを起動し、最初に時点t1で補助開閉器(SA1)13をONとする。時点t2で投入開閉器(SM1)5をONとする。この時点t2で短絡発電機(Gen1)1により交流の短絡電流を供試器22に供給する。 (3) Start the test sequence, and first turn on the auxiliary switch (SA1) 13 at time t1. At time t2, the closing switch (SM1) 5 is turned ON. At this time t2, an AC short-circuit current is supplied to the EUT 22 by the short-circuit generator (Gen1) 1.

(4)時点t3で供試器22を所定のアーク時間となるように開極させ、短絡電流を遮断させる。 (4) At time t3, the EUT 22 is opened so that a predetermined arc time is reached, and the short-circuit current is interrupted.

(5)時点t4で補助開閉器(SA1)13, 及び補助開閉器(SA2)14を共にOFFにし、電流源回路23と供試器22を分離させる。 (5) At time t4, the auxiliary switch (SA1) 13 and the auxiliary switch (SA2) 14 are both turned off, and the current source circuit 23 and the test device 22 are separated.

(6)時点t5で補助開閉器(SA3)15をONにし、AC電圧印加回路24を供試器22の一方の端子に接続する。 (6) At time t5, the auxiliary switch (SA3) 15 is turned ON, and the AC voltage application circuit 24 is connected to one terminal of the EUT 22.

(7)時点t6で補助開閉器(SA4)16をONにし、雷インパルス発生回路(IG1)18において雷インパルス電圧を、AC電圧と逆極性となる電圧極性及びAC電圧波高値で印加し、短絡電流遮断後数十ミリ秒後に雷インパルス発生回路(IG1)18を始動させる。印加タイミングとしては、例えば、分圧器(不図示)で測定された電圧、雷インパルス発生回路(IG1)の始動指令を充電放電制御装置(不図示)が検出し、充電放電制御装置に入力されたタイミングで印加する。 (7) At time t6, the auxiliary switch (SA4) 16 is turned on, and the lightning impulse generator circuit (IG1) 18 applies a lightning impulse voltage with a voltage polarity and an AC voltage peak value that are opposite to the AC voltage. The lightning impulse generation circuit (IG1) 18 is started several tens of milliseconds after the current interruption. As the application timing, for example, a voltage measured by a voltage divider (not shown), a start command for a lightning impulse generation circuit (IG1) is detected by a charge / discharge control device (not shown), and input to the charge / discharge control device. Apply at the timing.

以上説明したように、本第1の実施形態によれば、極性の異なるAC電圧と雷インパルス電圧を供試器の両端子に印加することで所望の大きさの電圧を供試器に印加し、これにより、耐電圧特性の低い小型の補助開閉器を使用することができるため、耐雷性能試験装置の小型化及び低コスト化を図ることができるとともに、信頼性の高い耐雷性能試験装置を提供することができる。   As described above, according to the first embodiment, by applying an AC voltage and a lightning impulse voltage having different polarities to both terminals of the EUT, a voltage having a desired magnitude is applied to the EUT. As a result, a small auxiliary switch with low withstand voltage characteristics can be used, so it is possible to reduce the size and cost of the lightning resistance test equipment and provide a highly reliable lightning resistance test equipment. can do.

(第2の実施形態)
次に、本発明の第2の実施形態に係る多重雷発生時の耐雷性能試験装置を、図3〜4を用いて説明する。
本実施形態の回路図を図3に示す。図4は、第2の実施形態に係る電圧、電流波形を示す波形図(オシログラム)と図3の回路部品のオン・オフタイミングを表す図である。
(Second Embodiment)
Next, a lightning resistance performance test apparatus at the time of occurrence of multiple lightnings according to a second embodiment of the present invention will be described with reference to FIGS.
A circuit diagram of this embodiment is shown in FIG. FIG. 4 is a waveform diagram (oscillogram) showing voltage and current waveforms according to the second embodiment, and a diagram showing on / off timings of the circuit components of FIG.

本実施形態が第1の実施形態と異なる点は電圧回路として、AC電圧印加回路24に代えて直流電圧を発生させるDC電圧印加回路25を用いたことである。
本第2の実施形態によれば、第1の実施形態で述べた作用効果に加え、供試器の一方の端子に雷インパルス電圧の極性とは逆の極性のDC電圧を印加することで、電圧回路の構成が簡便になると共に、雷インパルスを始動するタイミングはt5〜t6の期間はいつでも可能となる等、制御が簡便な耐雷性能試験装置を提供することができる。
This embodiment differs from the first embodiment in that a DC voltage application circuit 25 that generates a DC voltage is used as a voltage circuit instead of the AC voltage application circuit 24.
According to the second embodiment, in addition to the effects described in the first embodiment, by applying a DC voltage having a polarity opposite to the polarity of the lightning impulse voltage to one terminal of the EUT, It is possible to provide a lightning resistance performance testing apparatus that can be easily controlled such that the configuration of the voltage circuit becomes simple and the timing for starting the lightning impulse can be anytime during the period from t5 to t6.

(第3の実施形態)
次に、本発明の第3の実施形態に係る多重雷発生時の耐雷性能試験装置を、図5〜6を用いて説明する。
本実施形態の回路図を図5に示す。図6は、第3の実施形態に係る電圧、電流波形を示す波形図(オシログラム)と図5の回路部品のオン・オフタイミングを表す図である。
(Third embodiment)
Next, a lightning resistance test apparatus for occurrence of multiple lightning according to the third embodiment of the present invention will be described with reference to FIGS.
A circuit diagram of this embodiment is shown in FIG. FIG. 6 is a waveform diagram (oscillogram) showing voltage and current waveforms according to the third embodiment and a diagram showing on / off timings of the circuit components of FIG.

本実施形態が第1の実施形態と異なる点は電圧回路28として、AC電圧印加回路24に代えて雷インパルス発生回路(IG2)19を用いたことである。
本第3の実施形態によれば、第1の実施形態で延べた作用効果に加えて、供試器22の両側に雷インパルス発生回路18,19を用いることにより、2組の雷インパルス発生回路の充電極性は互いに逆極性とし、両雷インパルス発生回路18,19に対し同一の始動信号で制御できる。また、補助開閉器(SA3)15として第1の実施形態と同様にギャップスイッチを用いる事が可能となる等、より制御が簡単な耐雷性能試験装置を提供することができる。
This embodiment is different from the first embodiment in that a lightning impulse generating circuit (IG2) 19 is used as the voltage circuit 28 in place of the AC voltage applying circuit 24.
According to the third embodiment, in addition to the operational effects extended in the first embodiment, two sets of lightning impulse generation circuits are provided by using the lightning impulse generation circuits 18 and 19 on both sides of the EUT 22. The charging polarities of these are opposite to each other, and the lightning impulse generating circuits 18 and 19 can be controlled by the same starting signal. Further, it is possible to provide a lightning resistance test apparatus that can be controlled more easily, such as using a gap switch as the auxiliary switch (SA3) 15 as in the first embodiment.

(第4の実施形態)
次に、本発明の第4の実施形態を図面に基づいて説明する。
本実施形態の回路図を図7に示す。図8は、第4の実施形態に係る電圧、電流波形を示す波形図(オシログラム)と図7の回路部品のオン・オフタイミングを表す図である。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described with reference to the drawings.
A circuit diagram of this embodiment is shown in FIG. FIG. 8 is a waveform diagram (oscillogram) showing voltage and current waveforms according to the fourth embodiment and a diagram showing on / off timings of the circuit components of FIG.

本実施形態が第1の実施形態と異なる点は雷インパルス発生回路を複数組用いたことである。ここでは二組の雷インパルス発生回路を用いた例について説明する。二組の雷インパルス発生回路を制御するために、雷インパルス発生回路18と雷インパルス発生回路20の始動信号はそれぞれ別々に制御することになる。また、補助開閉器(SA5)17が追加されるため、補助開閉器(SA4)16とはそれぞれ別々に制御する。   This embodiment is different from the first embodiment in that a plurality of sets of lightning impulse generation circuits are used. Here, an example using two sets of lightning impulse generation circuits will be described. In order to control the two sets of lightning impulse generation circuits, the start signals of the lightning impulse generation circuit 18 and the lightning impulse generation circuit 20 are controlled separately. Further, since an auxiliary switch (SA5) 17 is added, the auxiliary switch (SA4) 16 is controlled separately.

第1の実施形態では補助開閉器(SA4)16はギャップスイッチを用いているが、本実施形態の場合、雷インパルス発生回路18始動時に雷インパルス発生回路20に電圧が印加されないように絶縁を確保する補助開閉器(SA5)17を用いており、また逆に雷インパルス発生回路20始動時に雷インパルス発生回路18に電圧が印加されないように絶縁を確保する補助開閉器(SA4)16を用いている。
以下は本実施形態に係る試験の手順であるが、基本的に第1の実施形態の手順と同様であるが、異なる点について第1の実施形態の手順を修正している。
In the first embodiment, the auxiliary switch (SA4) 16 uses a gap switch, but in this embodiment, insulation is ensured so that no voltage is applied to the lightning impulse generator circuit 20 when the lightning impulse generator circuit 18 is started. The auxiliary switch (SA4) 16 is used to secure insulation so that no voltage is applied to the lightning impulse generator circuit 18 when the lightning impulse generator circuit 20 is started. .
The following is a test procedure according to the present embodiment, which is basically the same as the procedure of the first embodiment, but the procedure of the first embodiment is modified with respect to different points.

(1)所定の短絡電流となる様に電流抑制用リアクトル(L1)7を選定する。保護遮断器(SB2)4をON、投入開閉器(SM2)6をON、AC電圧印加回路24の補助開閉器(SA3)15をOFF、雷インパルス発生回路(IG1)18の補助開閉器(SA4)16及び雷インパルス発生回路(IG3)20の補助開閉器(SA5)17をOFFとし、試験前に雷インパルス発生回路(IG1,IG3)18,20を所定の充電電圧に充電完了させ、短絡発電機1,2及び試験用変圧器(Tr2)12は所定の励磁状態とする。
(2)〜(5)は第1の実施形態と同様である。
(1) Select the current suppressing reactor (L1) 7 so as to obtain a predetermined short-circuit current. The protective circuit breaker (SB2) 4 is turned on, the closing switch (SM2) 6 is turned on, the auxiliary switch (SA3) 15 of the AC voltage application circuit 24 is turned off, and the auxiliary switch (SA4) of the lightning impulse generator circuit (IG1) 18 ) 16 and the auxiliary switch (SA5) 17 of the lightning impulse generation circuit (IG3) 20 are turned off, and the lightning impulse generation circuits (IG1, IG3) 18 and 20 are completely charged to a predetermined charging voltage before the test. Machines 1 and 2 and test transformer (Tr2) 12 are in a predetermined excitation state.
(2) to (5) are the same as in the first embodiment.

(6)時点t5で補助開閉器(SA3,SA4)15,16をONさせ、AC電圧印加回路24を供試器22の一方の端子に、及び雷インパルス発生回路(IG1)18を供試器22の他方の端子にそれぞれ接続する。 (6) At time t5, the auxiliary switches (SA3, SA4) 15, 16 are turned on, the AC voltage application circuit 24 is connected to one terminal of the tester 22, and the lightning impulse generation circuit (IG1) 18 is used. 22 is connected to the other terminal.

(7)第1の実施形態と同様に、雷インパルス発生回路(IG1)18の電圧極性と逆極性となるAC電圧波高値(時点t6)で雷インパルス発生回路(IG1)18を始動させる。 (7) Similarly to the first embodiment, the lightning impulse generation circuit (IG1) 18 is started with an AC voltage peak value (time point t6) having a polarity opposite to the voltage polarity of the lightning impulse generation circuit (IG1) 18.

(8)次に、補助開閉器(SA4)16をOFF、補助開閉器(SA5)17をONさせ、雷インパルス発生回路(IG3)20の電圧極性と逆極性となるAC電圧波高値(時点t7)でインパルス(IG3)20を始動させる。 (8) Next, the auxiliary switch (SA4) 16 is turned off, the auxiliary switch (SA5) 17 is turned on, and the AC voltage peak value (time point t7) having the opposite polarity to the voltage polarity of the lightning impulse generator circuit (IG3) 20 is turned on. ) To start the impulse (IG3) 20.

本第4の実施形態によれば、第1の実施形態で述べた効果に加え、1度の検証試験で2回の耐雷性能を評価、すなわち、雷インパルス発生回路(IG1)18始動時の耐雷性能と雷インパルス発生回路(IG3)20始動時の耐雷性能を同時に検証することが出来る。また、雷インパルス発生回路(IG1)18始動時に供試器22が閃絡しなかった場合に、雷インパルス発生回路(IG3)20を始動することで確実に試験を行うことができ、有効なバックアップ手段とすることができる。さらに、雷インパルス発生回路の個数を任意に接続することで、耐雷性能評価を任意の回数まで行うことができる。   According to the fourth embodiment, in addition to the effects described in the first embodiment, the lightning resistance performance is evaluated twice in one verification test, that is, the lightning resistance at the start of the lightning impulse generation circuit (IG1) 18. It is possible to verify the performance and the lightning resistance performance at the start of lightning impulse generator (IG3) 20 at the same time. Also, if the EUT 22 does not flash when the lightning impulse generator circuit (IG1) 18 is started, the lightning impulse generator circuit (IG3) 20 can be started to perform a reliable test, and effective backup is possible. It can be a means. Further, by arbitrarily connecting the number of lightning impulse generation circuits, it is possible to perform lightning resistance evaluation up to an arbitrary number of times.

(第5の実施形態)
次に、本発明の第5の実施形態を図面に基づいて説明する。
本実施形態の回路図を図9に示す。図10は、第5の実施形態に係る電圧、電流波形を示す波形図(オシログラム)と図9の回路部品のオン・オフタイミングを表す図である。
(Fifth embodiment)
Next, a fifth embodiment of the present invention will be described with reference to the drawings.
A circuit diagram of this embodiment is shown in FIG. FIG. 10 is a waveform diagram (oscillogram) showing voltage and current waveforms according to the fifth embodiment, and a diagram showing on / off timings of the circuit components of FIG.

本実施形態が第4の実施形態と異なる点は、AC電圧印加回路に代えて直流電圧を発生させるDC電圧印加回路25を用いたことである。
本第5の実施形態によれば、第4の実施形態で述べた効果に加え、雷インパルス発生回路(IG1,IG3)18,20を始動するタイミングはt5〜t6の期間はいつでも可能となる。
This embodiment differs from the fourth embodiment in that a DC voltage application circuit 25 that generates a DC voltage is used instead of the AC voltage application circuit.
According to the fifth embodiment, in addition to the effects described in the fourth embodiment, the timing for starting the lightning impulse generating circuits (IG1, IG3) 18, 20 can be made at any time from t5 to t6.

(第6の実施形態)
最後に、本発明の第6の実施形態を図面に基づいて説明する。
本実施形態の回路図を図11に示す。図12は、第6の実施形態に係る電圧、電流波形を示す波形図(オシログラム)と図11の回路部品のオン・オフタイミングを表す図である。
(Sixth embodiment)
Finally, a sixth embodiment of the present invention will be described with reference to the drawings.
A circuit diagram of this embodiment is shown in FIG. FIG. 12 is a waveform diagram (oscillogram) showing voltage and current waveforms according to the sixth embodiment, and a diagram showing on / off timings of the circuit components of FIG.

本実施形態が第4の実施形態と異なる点は、電流源回路が1回目の落雷試験時に短絡電流を前記供試器に供給すると共に2回目の落雷試験時に交流電流を前記供試器に供給する点、短絡電流を供給する短絡試験用変圧器11とAC電圧を供給する試験用変圧器12とを兼用する多数タップ付変圧器27とする点である。   This embodiment differs from the fourth embodiment in that the current source circuit supplies a short-circuit current to the EUT during the first lightning test and supplies an AC current to the EUT during the second lightning test. The point which makes it the transformer 27 with many taps which combines the transformer 11 for a short circuit test which supplies a short circuit current, and the test transformer 12 which supplies an AC voltage.

本第6の実施形態によれば、第4の実施形態で述べた効果に加え、短絡発電機や変圧器などの構成部品が電流源回路と共有でき、耐雷性能試験装置が簡素化できる。
なお、上記の各実施形態では、2回目の落雷に対する耐雷性能を評価する試験について説明しているが、供試器の性能劣化などを勘案して必要に応じて3回目以降についても2回目と同様の耐雷性能を評価する試験を行うことは可能である。
According to the sixth embodiment, in addition to the effects described in the fourth embodiment, components such as a short-circuit generator and a transformer can be shared with the current source circuit, and the lightning resistance test apparatus can be simplified.
In each of the above-described embodiments, the test for evaluating the lightning resistance performance against the second lightning strike is described. However, considering the performance degradation of the EUT, the second and subsequent times are also considered as necessary. It is possible to conduct a test for evaluating the same lightning resistance.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…短絡発電機(Gen1)、2…短絡発電機(Gen2)、3…保護遮断器(SB1)、4…保護遮断器(SB2)、5…投入開閉器(SM1)、6…投入開閉器(SM2)、7…電流抑制用リアクトル(L1)、8…電流抑制用リアクトル(L2)、9…アーク延長回路(ML)、10…電流抑制用抵抗(Rv1)、11…短絡試験用変圧器(Tr1)、12…試験用変圧器(Tr2)、13…補助開閉器(SA1)、14…補助開閉器(SA2)、15…補助開閉器(SA3)、16…補助開閉器(SA4)、17…補助開閉器(SA5)、18…雷インパルス発生回路(IG1)、19…雷インパルス発生回路(IG2)、20…雷インパルス発生回路(IG3)、21…電流測定器(CT)、22…供試器、23…電流源回路、24…AC電圧印加回路(電圧回路)、25…DC電圧印加回路(電圧回路)、26…DC電源、27…多数タップ付き変圧器、28…電圧回路。   DESCRIPTION OF SYMBOLS 1 ... Short-circuit generator (Gen1), 2 ... Short-circuit generator (Gen2), 3 ... Protection circuit breaker (SB1), 4 ... Protection circuit breaker (SB2), 5 ... Opening switch (SM1), 6 ... Switching switch (SM2), 7 ... Reactor for current suppression (L1), 8 ... Reactor for current suppression (L2), 9 ... Arc extension circuit (ML), 10 ... Resistance for current suppression (Rv1), 11 ... Transformer for short circuit test (Tr1), 12 ... Test transformer (Tr2), 13 ... Auxiliary switch (SA1), 14 ... Auxiliary switch (SA2), 15 ... Auxiliary switch (SA3), 16 ... Auxiliary switch (SA4), 17 ... Auxiliary switch (SA5), 18 ... Lightning impulse generation circuit (IG1), 19 ... Lightning impulse generation circuit (IG2), 20 ... Lightning impulse generation circuit (IG3), 21 ... Current measuring device (CT), 22 ... EUT, 23 ... Current source circuit, 24 ... AC voltage application circuit (voltage circuit), 25 ... DC voltage application circuit (voltage circuit), 26 ... DC Source, 27 ... many tapped transformers, 28 ... voltage circuit.

Claims (3)

電力用遮断器または電力用開閉器からなる供試器と、初回の落雷試験時に短絡電流を前記供試器に供給する電流源回路と、2回目以降の落雷試験時に前記供試器の一方の端子に極性の異なる雷インパルス電圧をそれぞれ印加する複数の雷インパルス発生回路と、前記供試器と前記複数の雷インパルス発生回路との間にそれぞれ接続された補助開閉器と、前記供試器の他方の端子に、前記雷インパルス発生回路により印加する前記雷インパルス電圧の極性の逆極性の交流電圧を印加する電圧回路とを備えたことを特徴とする耐雷性能試験装置。   A tester comprising a power circuit breaker or a power switch, a current source circuit for supplying a short-circuit current to the EUT during the first lightning strike, and one of the EUTs during a second or subsequent lightning test. A plurality of lightning impulse generation circuits each applying lightning impulse voltages of different polarities to terminals, auxiliary switches connected between the EUT and the plurality of lightning impulse generation circuits, and A lightning resistance test apparatus, comprising: a voltage circuit for applying an AC voltage having a polarity opposite to that of the lightning impulse voltage applied by the lightning impulse generation circuit to the other terminal. 電力用遮断器または電力用開閉器からなる供試器と、初回の落雷試験時に短絡電流を前記供試器に供給する電流源回路と、2回目以降の落雷試験時に前記供試器の一方の端子に極性の同じ雷インパルス電圧をそれぞれ印加する複数の雷インパルス発生回路と、前記供試器と前記複数の雷インパルス発生回路との間にそれぞれ接続された補助開閉器と、前記供試器の他方の端子に、前記雷インパルス発生回路により印加する前記雷インパルス電圧の極性の逆極性の直流電圧を印加する電圧回路とを備えたことを特徴とする耐雷性能試験装置。   A tester comprising a power circuit breaker or a power switch, a current source circuit for supplying a short-circuit current to the EUT during the first lightning strike, and one of the EUTs during a second or subsequent lightning test. A plurality of lightning impulse generation circuits each applying a lightning impulse voltage of the same polarity to the terminal, an auxiliary switch connected between the EUT and the plurality of lightning impulse generation circuits, and the EUT An apparatus for testing lightning resistance, comprising: a voltage circuit for applying a DC voltage having a polarity opposite to that of the lightning impulse voltage applied by the lightning impulse generating circuit to the other terminal. 電力用遮断器または電力用開閉器からなる供試器に対し初回の落雷試験時に、電流源回路により短絡電流を供給し、2回目以降の落雷試験時に、複数の雷インパルス発生回路により前記供試器の一方の端子に極性の異なる雷インパルス電圧を補助開閉器を介してそれぞれ印加し、電圧回路により、前記供試器の他方の端子に前記雷インパルス発生回路により印加する前記雷インパルス電圧の極性の逆極性の交流電圧を印加することを特徴とする耐雷性能試験方法。During the first lightning strike test, a short-circuit current is supplied to the EUT comprising a power circuit breaker or power switch, and the test is performed by a plurality of lightning impulse generation circuits during the second and subsequent lightning strike tests. A lightning impulse voltage having a different polarity is applied to one terminal of the device via an auxiliary switch, and the polarity of the lightning impulse voltage applied to the other terminal of the EUT by the lightning impulse generation circuit is A method for testing lightning resistance, which is characterized by applying an AC voltage having a reverse polarity.
JP2011095105A 2011-04-21 2011-04-21 Lightning resistance test apparatus and test method Active JP5872184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011095105A JP5872184B2 (en) 2011-04-21 2011-04-21 Lightning resistance test apparatus and test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011095105A JP5872184B2 (en) 2011-04-21 2011-04-21 Lightning resistance test apparatus and test method

Publications (2)

Publication Number Publication Date
JP2012225830A JP2012225830A (en) 2012-11-15
JP5872184B2 true JP5872184B2 (en) 2016-03-01

Family

ID=47276153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011095105A Active JP5872184B2 (en) 2011-04-21 2011-04-21 Lightning resistance test apparatus and test method

Country Status (1)

Country Link
JP (1) JP5872184B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048500A (en) * 2012-12-19 2013-04-17 苏州泰思特电子科技有限公司 Impulse current generator for surge test
CN105021876A (en) * 2014-04-28 2015-11-04 国家电网公司 Electric current monitoring instrument and electric current monitoring system
CN104034984B (en) * 2014-06-20 2017-02-15 中国西电电气股份有限公司 Short-circuit test method for engineering valve assembly in running test for flexible direct current transmission
CN112578204B (en) * 2020-12-02 2022-05-31 国网浙江省电力有限公司电力科学研究院 Lightning protection true type test system for power distribution network and multi-space-time scale dynamic evaluation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125569A (en) * 1983-12-09 1985-07-04 Fuji Electric Corp Res & Dev Ltd Testing method of multithunder operating duty of lightning arrester
JPH01216285A (en) * 1988-02-25 1989-08-30 Toshiba Corp Testing apparatus for compositing circuit breaker stepping-out
JPH04348288A (en) * 1991-05-27 1992-12-03 Mitsubishi Electric Corp Test circuit for breaker

Also Published As

Publication number Publication date
JP2012225830A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
CN107966633B (en) Method and system for rapidly judging single-phase earth fault line of power distribution network of power supply system
US10403449B2 (en) Direct-current circuit breaker
Belda et al. Full-power test of HVDC circuit-breakers with AC short-circuit generators operated at low power frequency
JP6645758B2 (en) DC breaker test method
JP5872184B2 (en) Lightning resistance test apparatus and test method
CN110073229B (en) Test device of direct current breaker
US8228645B2 (en) Systems and methods for protecting a series capacitor bank
Yao et al. Experimental study of series DC arc in distribution systems
JP2009168733A (en) Thunder impulse voltage testing device
KR101054244B1 (en) Trigger device and driving method for impulse generator
CN109655744B (en) Direct current breaker test voltage generation circuit and generation method
Kopp et al. Circuit behavior during operation duty test applying spark gap technology based arresters
Marukatat et al. Design and Construction of a Combination Wave Generator
JPH03202793A (en) Testing apparatus for circuit breaker
Wahyudi et al. Application of wavelet cumulative energy and artificial neural network for classification of ferroresonance signal during symmetrical and unsymmetrical switching of three-phases distribution transformer
JP7325937B2 (en) Input test apparatus for vacuum circuit breaker and test method thereof
Palazzo et al. Investigation on the occurrence of delayed current zeros phenomena in power stations and related stress imposed on generator circuit-breakers
JP2003115242A (en) Breaker testing circuit
JPH08271596A (en) Synthetic equivalent test method for circuit breaker
RU2306574C1 (en) Device for testing switching capacity of high voltage switches
JP2012229951A (en) Impulse voltage testing apparatus and testing method thereof
Tanaka et al. Field test of lightning performance at DC traction substation
Bunov et al. Externally gapped line arresters-First experience with the new IEC 60099-8 standard and Line study analysis
JP2012194076A (en) Test device for switching device and test method of the same
JPH08278349A (en) Method for synthetic equalization testing of breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150730

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160113

R151 Written notification of patent or utility model registration

Ref document number: 5872184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151