JP5870325B2 - Initial activation method and hydrogenation method of hydrogen storage metal or alloy - Google Patents

Initial activation method and hydrogenation method of hydrogen storage metal or alloy Download PDF

Info

Publication number
JP5870325B2
JP5870325B2 JP2006036658A JP2006036658A JP5870325B2 JP 5870325 B2 JP5870325 B2 JP 5870325B2 JP 2006036658 A JP2006036658 A JP 2006036658A JP 2006036658 A JP2006036658 A JP 2006036658A JP 5870325 B2 JP5870325 B2 JP 5870325B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
storage metal
plasma
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006036658A
Other languages
Japanese (ja)
Other versions
JP2007216095A (en
Inventor
慶彦 廣岡
慶彦 廣岡
西川 雅弘
雅弘 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inter University Research Institute Corp National Institute of Natural Sciences
Original Assignee
Inter University Research Institute Corp National Institute of Natural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inter University Research Institute Corp National Institute of Natural Sciences filed Critical Inter University Research Institute Corp National Institute of Natural Sciences
Priority to JP2006036658A priority Critical patent/JP5870325B2/en
Publication of JP2007216095A publication Critical patent/JP2007216095A/en
Application granted granted Critical
Publication of JP5870325B2 publication Critical patent/JP5870325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、例えば板状の水素貯蔵(吸蔵)金属にヘリウム等の希ガスのプラズマを照射し、その表面の酸化膜を除去することによって水素貯蔵金属又は合金表面の活性化を行う水素貯蔵金属又は合金の初期活性化方法及び水素プラズマの照射によって水素注入を行う水素化方法に関するものである。   The present invention, for example, irradiates a plate-like hydrogen storage (occlusion) metal with a plasma of a rare gas such as helium and removes an oxide film on the surface thereof to activate the hydrogen storage metal or alloy surface. Alternatively, the present invention relates to an initial activation method of an alloy and a hydrogenation method in which hydrogen is injected by irradiation with hydrogen plasma.

一般に、水素貯蔵金属又は合金の初期活性化とは、500℃程度の高温に加熱された水素貯蔵金属又は合金を数気圧の高圧の気体水素に曝した後、冷却することで表面付近に水素化物を析出させ、その内部応力で表面に微細な亀裂(マイクロクラック)を発生させ、その繰返しで十分な亀裂を確保し、その後の水素化のために表面状態を整えることをいう。ところが、この初期活性化は、異種合金は言うに及ばず、同種合金でもその製造過程における熱処理等の条件の相違に敏感に影響される。このため、初期活性化が不十分で、再現性が乏しく、それらに起因してこれまで水素貯蔵金属又は合金の利用が制限されてきた。   In general, the initial activation of a hydrogen storage metal or alloy means that a hydrogen storage metal or alloy heated to a high temperature of about 500 ° C. is exposed to gaseous hydrogen at a high pressure of several atmospheres and then cooled to hydride near the surface. This is to cause fine cracks (microcracks) on the surface by the internal stress, to secure sufficient cracks by repeating the process, and to prepare the surface state for subsequent hydrogenation. However, this initial activation is sensitive to differences in conditions such as heat treatment in the manufacturing process of the same kind of alloy, not to mention dissimilar alloys. For this reason, initial activation is inadequate and reproducibility is poor, and thus the use of hydrogen storage metals or alloys has been limited so far.

具体的には、450〜800℃の温度において、チタンに対する水素の吸収及び放出の挙動が研究されている(例えば、非特許文献1を参照)。この場合、水素の吸収と放出の活性化エネルギーは、それぞれ74KJ/mol及び25KJ/molであった。
Journal of Nuclear Materials 96(1981)227-232
Specifically, the behavior of hydrogen absorption and release with respect to titanium at a temperature of 450 to 800 ° C. has been studied (for example, see Non-Patent Document 1). In this case, the activation energies for hydrogen absorption and release were 74 KJ / mol and 25 KJ / mol, respectively.
Journal of Nuclear Materials 96 (1981) 227-232

ところで、閉じられた系内に置かれた金属と水素ガスとの反応は、与えられた温度と圧力で決まる熱力学的平衡状態に達する。つまり、ある温度での金属中の水素濃度は、水素ガスの外圧で決定される。例えば、金属の水素化が閉じられた反応系で行われる場合、水素外圧は金属による水素吸収とともに低下し、最終的には平衡圧力に達する。一旦、この平衡状態に達すると、金属中の水素濃度(水素吸収量)をそれ以上増加させることができないため、水素ガスを注ぎ足して外圧を増加させる必要がある。その際、酸素等の不純物が入る可能性があり、その酸素によって金属表面が酸化されたりすると、再び初期活性化を行う必要がある。このように、高温高圧の水素ガスと高温の水素貯蔵金属又は合金を接触させる従来の水素化方法では、非常に効率が悪く、再現性に欠けるものであった。しかも、熱力学的平衡状態に達すると水素ガスを注ぎ足す必要があり、その結果として再度初期化を行わなければならないという問題があった。   By the way, the reaction between metal and hydrogen gas placed in a closed system reaches a thermodynamic equilibrium state determined by given temperature and pressure. That is, the hydrogen concentration in the metal at a certain temperature is determined by the external pressure of the hydrogen gas. For example, when metal hydrogenation is carried out in a closed reaction system, the external hydrogen pressure decreases with hydrogen absorption by the metal and eventually reaches an equilibrium pressure. Once this equilibrium state is reached, the hydrogen concentration in the metal (hydrogen absorption amount) cannot be increased any further, so it is necessary to add hydrogen gas to increase the external pressure. At that time, impurities such as oxygen may enter, and if the metal surface is oxidized by the oxygen, it is necessary to perform initial activation again. As described above, the conventional hydrogenation method in which a high-temperature and high-pressure hydrogen gas is brought into contact with a high-temperature hydrogen storage metal or alloy is very inefficient and lacks reproducibility. In addition, when the thermodynamic equilibrium state is reached, it is necessary to add hydrogen gas, and as a result, there is a problem that initialization must be performed again.

本発明は、このような従来技術の問題点に鑑みてなされたものであり、その目的とするところは、水素貯蔵金属又は合金の初期活性化を十分に効率的に、かつ再現性良く行うことができる水素貯蔵金属又は合金の初期活性化方法及び水素吸収量を増加させることができる水素化方法を提供することにある。   The present invention has been made in view of such problems of the prior art, and its object is to perform initial activation of a hydrogen storage metal or alloy sufficiently efficiently and with good reproducibility. It is an object of the present invention to provide an initial activation method of a hydrogen storage metal or alloy that can be used and a hydrogenation method that can increase hydrogen absorption.

上記の目的を達成するために、請求項1に記載の発明の水素貯蔵金属又は合金の初期活性化方法は、水素プラズマを照射して水素注入を行うことを前提に水素貯蔵金属又は合金に水素を含まない希ガスのプラズマを照射し、その表面の酸化膜を除去し活性化する水素貯蔵金属又は合金の初期活性化方法であって、前記プラズマの密度が1016/m〜1018/mであり、前記水素貯蔵金属又は合金は、鉄−チタン合金、純チタン、チタン−ニッケル合金、及びマグネシウム−チタン合金から選ばれる少なくとも一種であることを特徴とするものである。 To achieve the above object, the initial activation method of the hydrogen storage metal or alloy of the first aspect of the present invention, the hydrogen to the hydrogen storage metal or alloy on the assumption that perform hydrogen implantation by irradiating hydrogen plasma This is an initial activation method of a hydrogen storage metal or alloy that is activated by irradiating with a rare gas plasma not containing oxygen, removing the oxide film on the surface thereof, and having a plasma density of 10 16 / m 3 to 10 18 / m 3 , and the hydrogen storage metal or alloy is at least one selected from iron-titanium alloy, pure titanium, titanium-nickel alloy, and magnesium-titanium alloy.

請求項2に記載の発明の水素貯蔵金属又は合金の初期活性化方法は、請求項1に係る発明において、前記プラズマ照射時における電子温度が3eV〜10eVであることを特徴とするものである。   The method for initial activation of a hydrogen storage metal or alloy according to a second aspect of the invention is characterized in that, in the invention according to the first aspect, an electron temperature during the plasma irradiation is 3 eV to 10 eV.

請求項3に記載の発明の水素貯蔵金属又は合金の水素化方法は、請求項1又は請求項2に記載の水素貯蔵金属又は合金の初期活性化方法を実施した後、水素貯蔵金属又は合金に水素プラズマを照射して水素注入を行うことを特徴とすることを特徴とするものである。   The hydrogen storage metal or alloy hydrogenation method according to the third aspect of the invention is the hydrogen storage metal or alloy after the initial activation method of the hydrogen storage metal or alloy according to the first or second aspect. It is characterized in that hydrogen implantation is performed by irradiating with hydrogen plasma.

請求項4に記載の発明の水素貯蔵金属又は合金の水素化方法は、請求項3に係る発明において、前記水素プラズマの照射は、水素貯蔵金属又は合金の温度が100〜300℃の条件下で行われることを特徴とするものである。   The hydrogen storage metal or alloy hydrogenation method according to a fourth aspect of the present invention is the method according to the third aspect, wherein the hydrogen plasma irradiation is performed under a condition that the temperature of the hydrogen storage metal or alloy is 100 to 300 ° C. It is characterized by being performed.

本発明によれば、次のような効果を発揮することができる。
請求項1に記載の発明の水素貯蔵金属又は合金の初期活性化方法では、水素貯蔵金属又は合金に水素を含まない希ガスのプラズマを照射し、水素貯蔵金属又は合金の表面を活性化するもので、プラズマの密度が1016/m〜1018/mである。このため、水素貯蔵金属又は合金の表面に存在する酸化膜に対し、高密度の水素を含まない希ガスプラズマが照射され、そのスパッタリング作用により酸化膜が除去される。従って、水素貯蔵金属又は合金の初期活性化を十分に効率的に、かつ再現性良く行うことができる。
According to the present invention, the following effects can be exhibited.
In the initial activation method of the hydrogen storage metal or alloy according to claim 1, the hydrogen storage metal or alloy is irradiated with a rare gas plasma not containing hydrogen to activate the surface of the hydrogen storage metal or alloy. The plasma density is 10 16 / m 3 to 10 18 / m 3 . For this reason, the oxide film present on the surface of the hydrogen storage metal or alloy is irradiated with a rare gas plasma not containing high-density hydrogen, and the oxide film is removed by the sputtering action. Therefore, the initial activation of the hydrogen storage metal or alloy can be performed sufficiently efficiently and with good reproducibility.

請求項2に記載の発明の水素貯蔵金属又は合金の初期活性化方法では、プラズマ照射時における電子温度が3eV〜10eVに設定され、不活性ガスのプラズマの強度が十分に発揮されることから、請求項1に係る発明の効果を向上させることができる。   In the initial activation method of the hydrogen storage metal or alloy of the invention according to claim 2, the electron temperature at the time of plasma irradiation is set to 3 eV to 10 eV, and the plasma intensity of the inert gas is sufficiently exhibited. The effect of the invention according to claim 1 can be improved.

請求項3に記載の発明の水素貯蔵金属又は合金の水素化方法では、上記の水素貯蔵金属又は合金の初期活性化方法を実施した後、水素貯蔵金属又は合金に水素プラズマを照射して水素注入を行うものである。前記水素貯蔵金属又は合金の初期活性化方法により、水素貯蔵金属又は合金表面の酸化膜が除去された状態で、水素プラズマの照射により水素注入が行われる。従って、水素注入が効果的に行われるとともに、水素プラズマの非平衡性に基づいて水素吸収量を増加させることができる。   In the hydrogen storage metal or alloy hydrogenation method according to claim 3, after the initial activation method of the hydrogen storage metal or alloy is performed, the hydrogen storage metal or alloy is irradiated with hydrogen plasma to perform hydrogen injection. Is to do. Hydrogen is injected by irradiation with hydrogen plasma in a state where the oxide film on the surface of the hydrogen storage metal or alloy is removed by the initial activation method of the hydrogen storage metal or alloy. Therefore, hydrogen injection can be performed effectively, and the amount of hydrogen absorption can be increased based on the non-equilibrium nature of the hydrogen plasma.

請求項4に記載の発明の水素貯蔵金属又は合金の水素化方法では、水素プラズマの照射は、水素貯蔵金属又は合金の温度が100〜300℃の条件下で行われる。従って、従来よりも低温で請求項3に係る発明の効果を十分に発揮させることができる。   In the hydrogen storage metal or alloy hydrogenation method according to the fourth aspect of the invention, the hydrogen plasma irradiation is performed under the condition that the temperature of the hydrogen storage metal or alloy is 100 to 300 ° C. Therefore, the effect of the invention according to claim 3 can be sufficiently exerted at a temperature lower than that of the prior art.

以下、本発明の最良と思われる実施形態を図面に基づいて詳細に説明する。
本実施形態の水素貯蔵金属又は合金(以下、単に水素貯蔵金属ともいう)の初期活性化及び水素化に用いられる装置は、ヘリウム(He)、アルゴン(Ar)等の希ガス、水素(H)ガスを含む真空系に適用され、それらのガスのプラズマを発生させるための装置である。図1は、本実施形態における希ガス又は水素ガスのプラズマを発生させ、水素貯蔵金属の初期活性化及び水素化を行う装置10を模式的に示す説明図である。同図に示すように、四角箱状をなすステンレス鋼製の真空チャンバー11にはターボ分子ポンプ12が連通管13を介して接続され、真空チャンバー11内が10−5Pa台まで真空に排気されるようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments that are considered to be the best of the present invention will be described below in detail with reference to the drawings.
An apparatus used for initial activation and hydrogenation of the hydrogen storage metal or alloy (hereinafter also simply referred to as hydrogen storage metal) of this embodiment is a rare gas such as helium (He) or argon (Ar), hydrogen (H 2). It is an apparatus for generating a plasma of gas applied to a vacuum system containing gas. FIG. 1 is an explanatory view schematically showing an apparatus 10 for generating a rare gas or hydrogen gas plasma and performing initial activation and hydrogenation of a hydrogen storage metal in the present embodiment. As shown in the figure, a turbo-molecular pump 12 is connected to a stainless steel vacuum chamber 11 having a square box shape via a communication pipe 13, and the inside of the vacuum chamber 11 is evacuated to a level of 10 −5 Pa. It has become so.

水素貯蔵金属又は水素貯蔵合金としては、鉄−チタン合金、純チタン、チタン−ニッケル合金、マグネシウム−チタン合金等一般に水素貯蔵金属として使用されているものが挙げられる。水素貯蔵金属の形状は、板状、棒状等の塊(ブロック)状であることが好ましく、粉状は好ましくない。希ガスとしては、ヘリウム、アルゴンのほか、ネオン(Ne)、クリプトン(Kr)又はキセノン(Xe)が用いられる。   Examples of the hydrogen storage metal or hydrogen storage alloy include those generally used as hydrogen storage metals such as iron-titanium alloy, pure titanium, titanium-nickel alloy, magnesium-titanium alloy. The shape of the hydrogen storage metal is preferably a block shape such as a plate shape or a rod shape, and a powder shape is not preferred. As the rare gas, neon (Ne), krypton (Kr), or xenon (Xe) is used in addition to helium and argon.

真空チャンバー11内には電気的に絶縁された板状をなす抵抗加熱式のヒータ14が片持ち支持され、その先端部が真空チャンバー11内の中心に位置するようになっている。係るヒータ14の先端部の上面にはるつぼ15が保持され、該るつぼ15内には板状の水素貯蔵金属16がセットされる。るつぼ15には熱電対17の一端が接続され、水素貯蔵金属16の温度が測定される。真空チャンバー11の側方位置には圧力計18が接続され、真空チャンバー11内の圧力が計測される。   An electrically insulated plate-like resistance heating type heater 14 is cantilevered in the vacuum chamber 11, and its tip is positioned at the center in the vacuum chamber 11. A crucible 15 is held on the upper surface of the tip of the heater 14, and a plate-like hydrogen storage metal 16 is set in the crucible 15. One end of a thermocouple 17 is connected to the crucible 15 and the temperature of the hydrogen storage metal 16 is measured. A pressure gauge 18 is connected to a side position of the vacuum chamber 11 to measure the pressure in the vacuum chamber 11.

真空チャンバー11の上方位置には、電子サイクロトロン共鳴型(ECR)のプラズマ発生装置21が連結パイプ22を介して配設され、プラズマ発生装置21によって発生されるプラズマを真空チャンバー11内のるつぼ15にセットされた水素貯蔵金属16に照射するように構成されている。ここで、プラズマとは、気体の温度が上昇することで気体分子が解離して原子になり、さらなる温度上昇で原子核のまわりの電子が原子核から離れて正イオンと電子に電離し、その電離によって生じた荷電粒子を含む気体を意味する。水素貯蔵金属16に照射されるプラズマの照射粒子束は、プラズマ発生装置21の出力によって決定される。連結パイプ22のプラズマ発生装置21側にはガス導入部としてのガス導入パイプ23が接続され、ヘリウム等の希ガス又は水素を含有するガスを連結パイプ22内に導入し、プラズマ発生装置21によって発生するプラズマにより希ガス又は水素ガスのプラズマ柱24を生成する。   Above the vacuum chamber 11, an electron cyclotron resonance (ECR) plasma generator 21 is disposed via a connecting pipe 22, and plasma generated by the plasma generator 21 is placed in a crucible 15 in the vacuum chamber 11. The set hydrogen storage metal 16 is irradiated. Here, plasma means that gas molecules dissociate and become atoms when the temperature of the gas rises, and electrons around the nucleus move away from the nucleus and ionize into positive ions and electrons as the temperature rises further. It means a gas containing the generated charged particles. The irradiation particle bundle of the plasma irradiated on the hydrogen storage metal 16 is determined by the output of the plasma generator 21. A gas introduction pipe 23 as a gas introduction part is connected to the plasma generator 21 side of the connection pipe 22, and a rare gas such as helium or a gas containing hydrogen is introduced into the connection pipe 22 and generated by the plasma generation apparatus 21. A plasma column 24 of rare gas or hydrogen gas is generated by the plasma to be generated.

連結パイプ22内には一定の開口直径(例えば、3.5cm)の円孔25aを有するドーナツリミター25がプラズマ柱24と直交するように配置され、その開口直径によってプラズマ柱24の直径が設定される。プラズマ発生装置21、連結パイプ22、真空チャンバー11及びターボ分子ポンプ12の周囲には、円環状をなす3台の電磁石26が一定間隔をおいて配置され、プラズマ発生装置21によって発生したプラズマ柱24がるつぼ15上の水素貯蔵金属16へ誘導されるようにしている。連結パイプ22のほぼ中央部にはプラズマ密度測定探針27が配設され、前後動可能に支持されている。このプラズマ密度測定探針27の先端は前記プラズマ柱24に達するように支持され、プラズマ柱24の密度と電子温度(電子ボルト、eV)とが測定される。それらの密度と電子温度とから前記照射粒子束が計算される。   A donut limiter 25 having a circular hole 25a having a constant opening diameter (for example, 3.5 cm) is arranged in the connecting pipe 22 so as to be orthogonal to the plasma column 24, and the diameter of the plasma column 24 is set by the opening diameter. The Around the plasma generator 21, the connecting pipe 22, the vacuum chamber 11, and the turbo molecular pump 12, three circular electromagnets 26 are arranged at regular intervals, and the plasma column 24 generated by the plasma generator 21 is arranged. It is guided to the hydrogen storage metal 16 on the crucible 15. A plasma density measuring probe 27 is disposed at substantially the center of the connection pipe 22 and is supported so as to be movable back and forth. The tip of the plasma density measuring probe 27 is supported so as to reach the plasma column 24, and the density and electron temperature (electron volt, eV) of the plasma column 24 are measured. The irradiation particle bundle is calculated from their density and electron temperature.

次に、上記の装置を用いた水素貯蔵金属の初期活性化方法及び水素化方法について説明する。
水素貯蔵金属16の初期活性化方法においては、ガス導入パイプ23から希ガスを連結パイプ22内に導入し、プラズマ発生装置21によってヘリウム等の希ガスのプラズマ柱24を形成する。そのプラズマ柱24を3台の電磁石26の線型磁場によってるつぼ15内の水素貯蔵金属16へ誘導する。水素貯蔵金属16に希ガスのプラズマ柱24が照射されることにより、水素貯蔵金属16の表面が活性化される。
Next, the initial activation method and hydrogenation method of the hydrogen storage metal using the above apparatus will be described.
In the initial activation method of the hydrogen storage metal 16, a rare gas is introduced into the connection pipe 22 from the gas introduction pipe 23, and a plasma column 24 of a rare gas such as helium is formed by the plasma generator 21. The plasma column 24 is guided to the hydrogen storage metal 16 in the crucible 15 by the linear magnetic field of the three electromagnets 26. The surface of the hydrogen storage metal 16 is activated by irradiating the hydrogen storage metal 16 with the plasma column 24 of a rare gas.

この場合、水素貯蔵金属16の初期活性化を十分に、かつ効率良く行うために、希ガスのプラズマの密度が1016/m〜1018/mに設定される。プラズマの密度が1016/m未満の場合には、プラズマの密度が低く、水素貯蔵金属16表面の酸化膜の除去を効率的に実施することができず、結局初期化に長時間を要する。一方、1018/mを越える場合には、プラズマ照射による熱負荷が大き過ぎるため試料が溶融するおそれがある。また、希ガスの圧力は、1.33×10−1Pa〜1.33×10Paであることが好ましい。希ガスの圧力が1.33×10−1Pa未満の場合、圧力が低く、ECRによるプラズマ着火性が悪いため、水素貯蔵金属16の初期活性化の目的を十分に達成できなくなる。一方、1.33×10Paを越える場合、圧力が高過ぎるためECRプラズマ着火性が悪くなる。 In this case, in order to perform the initial activation of the hydrogen storage metal 16 sufficiently and efficiently, the plasma density of the rare gas is set to 10 16 / m 3 to 10 18 / m 3 . When the plasma density is less than 10 16 / m 3 , the plasma density is low, and the removal of the oxide film on the surface of the hydrogen storage metal 16 cannot be performed efficiently, and eventually initialization takes a long time. . On the other hand, if it exceeds 10 18 / m 3 , the thermal load due to plasma irradiation is too large, and the sample may melt. Further, the pressure of the rare gas is preferably 1.33 × 10 −1 Pa to 1.33 × 10 0 Pa. When the pressure of the rare gas is less than 1.33 × 10 −1 Pa, since the pressure is low and the plasma ignitability by ECR is poor, the purpose of initial activation of the hydrogen storage metal 16 cannot be sufficiently achieved. On the other hand, when it exceeds 1.33 × 10 0 Pa, the pressure is too high, and the ECR plasma ignitability deteriorates.

また、水素貯蔵金属16の初期活性化をより効率的に行うために、プラズマ照射時における電子温度は3eV〜10eVであることが望ましい。この電子温度が3eV未満の場合には、1016/m以上のプラズマ密度を維持することが難しくなる。電子温度が10eVを越える場合には、プラズマによる熱負荷が高くなり、試料が溶融するおそれがある。 Moreover, in order to perform the initial activation of the hydrogen storage metal 16 more efficiently, the electron temperature at the time of plasma irradiation is desirably 3 eV to 10 eV. When this electron temperature is less than 3 eV, it becomes difficult to maintain a plasma density of 10 16 / m 3 or more. When the electron temperature exceeds 10 eV, the heat load due to the plasma becomes high and the sample may be melted.

さらに、希ガスプラズマの照射粒子束は、希ガスプラズマの密度を高め、その強度を発揮するために1016ions/sec.m2以上であることが望ましい。この照射粒子束が1016ions/sec.cm2未満の場合には、希ガスプラズマの密度が低く、その強度を十分に発揮することができなくなる。その上限は特に限定されないが、1018ions/sec.cm2以下であることが望ましい。照射粒子束が1018ions/sec.cm2を越える場合には、プラズマによる熱負荷が高くなり、試料が溶融するおそれがある。 Further, the irradiation particle bundle of the rare gas plasma is desirably 10 16 ions / sec.m 2 or more in order to increase the density of the rare gas plasma and to exert its strength. When the irradiation particle bundle is less than 10 16 ions / sec.cm 2 , the density of the rare gas plasma is low, and the intensity cannot be fully exhibited. The upper limit is not particularly limited, but is desirably 10 18 ions / sec.cm 2 or less. When the irradiation particle bundle exceeds 10 18 ions / sec.cm 2 , the heat load due to the plasma becomes high and the sample may be melted.

加えて、希ガスプラズマのスパッタリング速度を高めて水素貯蔵金属16の初期活性化の効率を高めるために、水素貯蔵金属に50〜300Vの直流電圧を印加することが好ましい。この直流電圧が50V未満の場合には、希ガスプラズマの衝撃力を十分に向上させることができず、好ましくない。一方、300Vを越える場合には、プラズマ柱の生成に際してアーク放電が起きて水素貯蔵金属表面に予想外の傷を付ける結果となって好ましくない。   In addition, in order to increase the sputtering rate of the rare gas plasma and increase the efficiency of initial activation of the hydrogen storage metal 16, it is preferable to apply a DC voltage of 50 to 300 V to the hydrogen storage metal. When this DC voltage is less than 50 V, the impact force of the rare gas plasma cannot be sufficiently improved, which is not preferable. On the other hand, when the voltage exceeds 300 V, arc discharge occurs during the generation of the plasma column, which results in unexpected damage to the surface of the hydrogen storage metal.

次に、水素貯蔵金属16の水素化方法は、前述した水素貯蔵金属16の初期活性化方法を実施した後、水素貯蔵金属16に水素プラズマを照射して水素注入をすることにより行われる。この場合、水素プラズマの照射は、その温度と水素の圧力とを制御して行うことが好ましく、水素貯蔵金属の温度が100〜300℃の条件下で行われることが好ましい。温度が100℃未満の場合には、温度が低くなり過ぎて拡散速度が低くなり、水素貯蔵金属16に対する水素注入の効率が低下する。一方、300℃を越える場合には、そのような高温にしても水素貯蔵金属16に対する水素注入の効率は上昇せず、かえって加熱のために水素の放出が起こる。   Next, the hydrogen storage metal 16 is hydrogenated by performing the initial activation method of the hydrogen storage metal 16 described above and then irradiating the hydrogen storage metal 16 with hydrogen plasma to inject hydrogen. In this case, the irradiation with hydrogen plasma is preferably performed by controlling the temperature and the pressure of hydrogen, and is preferably performed under the condition that the temperature of the hydrogen storage metal is 100 to 300 ° C. When the temperature is lower than 100 ° C., the temperature becomes too low and the diffusion rate becomes low, and the efficiency of hydrogen injection into the hydrogen storage metal 16 is lowered. On the other hand, when the temperature exceeds 300 ° C., the efficiency of hydrogen injection with respect to the hydrogen storage metal 16 does not increase even at such a high temperature, but hydrogen is released due to heating.

さて、本実施形態の作用について説明すると、図1に示す装置10において、水素貯蔵金属16表面の初期活性化に当たり、水素貯蔵金属16を真空チャンバー11内のるつぼ15上にセットする。そして、ガス導入パイプ23から希ガスを導入し、プラズマ発生装置21で希ガスのプラズマ柱24を形成し、水素貯蔵金属16に照射する。このとき、少なくともプラズマ柱24の密度を1016/m〜1018/mに設定し、好ましくは電子温度を3eV〜10eVに設定する。このような条件設定により、希ガスのプラズマ柱24から飛来する希ガスイオン(又は希ガスの中性原子)が水素貯蔵金属16の表面に到達する。このときの浮遊電位は、特にプラズマ柱24の電子温度で決まり、この電位に従って希ガスイオンが水素貯蔵金属16の表面を衝撃する。この衝撃力が水素貯蔵金属16表面の酸化膜を除去することで、清浄な金属表面が露出され、水素貯蔵金属16の初期活性化が行われる。 Now, the operation of this embodiment will be described. In the apparatus 10 shown in FIG. 1, the hydrogen storage metal 16 is set on the crucible 15 in the vacuum chamber 11 in the initial activation of the surface of the hydrogen storage metal 16. Then, a rare gas is introduced from the gas introduction pipe 23, a rare gas plasma column 24 is formed by the plasma generator 21, and the hydrogen storage metal 16 is irradiated. At this time, at least the density of the plasma column 24 is set to 10 16 / m 3 to 10 18 / m 3 , and preferably the electron temperature is set to 3 eV to 10 eV. With such a condition setting, rare gas ions (or neutral atoms of the rare gas) flying from the rare gas plasma column 24 reach the surface of the hydrogen storage metal 16. The floating potential at this time is determined in particular by the electron temperature of the plasma column 24, and the rare gas ions bombard the surface of the hydrogen storage metal 16 according to this potential. This impact force removes the oxide film on the surface of the hydrogen storage metal 16 so that a clean metal surface is exposed and the hydrogen storage metal 16 is initially activated.

続いて、初期活性化処理された水素貯蔵金属16の水素化に当たり、水素貯蔵金属16の表面に水素プラズマを照射する。このとき、好ましくは水素貯蔵金属の温度を100〜300℃に設定する。このような条件設定により、水素貯蔵金属16の表面が清浄な状態で水素化を有効に、しかも水素吸収量の増大をもって行うことができる。以上のように、希ガスをプラズマ化し、そのプラズマが水素貯蔵金属16に直接接触することで水素貯蔵金属16の初期活性化が行われ、その後水素プラズマにより連続的に水素化が行われる。この方法では連続的に水素プラズマが照射され、プラズマの非平衡性により従来のような飽和点がなく水素吸収量が増大を続ける。   Subsequently, in hydrogenating the hydrogen storage metal 16 subjected to the initial activation treatment, the surface of the hydrogen storage metal 16 is irradiated with hydrogen plasma. At this time, the temperature of the hydrogen storage metal is preferably set to 100 to 300 ° C. By setting such conditions, the hydrogenation can be effectively performed with the surface of the hydrogen storage metal 16 being clean, and the hydrogen absorption amount can be increased. As described above, the rare gas is turned into plasma, and the plasma is brought into direct contact with the hydrogen storage metal 16, whereby the initial activation of the hydrogen storage metal 16 is performed, and then hydrogenation is continuously performed with hydrogen plasma. In this method, hydrogen plasma is continuously irradiated, and there is no saturation point as in the prior art due to plasma non-equilibrium, and the amount of hydrogen absorption continues to increase.

以上詳述した実施形態によって発揮される効果を以下にまとめて記載する。
・ 本実施形態における水素貯蔵金属又は合金の初期活性化方法では、水素貯蔵金属16に希ガスのプラズマを照射し、水素貯蔵金属16の表面を活性化するもので、プラズマの密度が1016/m〜1018/mである。このため、水素貯蔵金属16の表面に存在する酸化膜に対し、高密度の希ガスプラズマが照射され、そのスパッタリング作用により酸化膜が除去される。従って、水素貯蔵金属16の初期活性化を十分に効率的に、かつ再現性良く行うことができる。
The effects exhibited by the embodiment described in detail above will be collectively described below.
In the initial activation method of the hydrogen storage metal or alloy in the present embodiment, the hydrogen storage metal 16 is irradiated with a rare gas plasma to activate the surface of the hydrogen storage metal 16, and the plasma density is 10 16 / m 3 to 10 18 / m 3 . For this reason, the oxide film present on the surface of the hydrogen storage metal 16 is irradiated with high-density rare gas plasma, and the oxide film is removed by the sputtering action. Therefore, the initial activation of the hydrogen storage metal 16 can be performed sufficiently efficiently and with good reproducibility.

・ さらに、プラズマ照射時における電子温度が3eV〜10eVに設定されることから、上記の効果を向上させることができる。
・ また、水素貯蔵金属16の水素化方法では、前記の水素貯蔵金属の初期活性化方法を実施した後、水素貯蔵金属16に水素プラズマを照射して水素注入を行うものである。この場合、水素貯蔵金属16の前記初期活性化により、水素貯蔵金属16表面の酸化膜が除去され、清浄な金属表面が露出した状態で、水素プラズマの照射により水素注入が行われる。その結果、水素注入が効果的に行われるとともに、水素プラズマの非平衡性に基づいて水素吸収量を増加させることができる。
Furthermore, since the electron temperature at the time of plasma irradiation is set to 3 eV to 10 eV, the above effect can be improved.
-In the hydrogenation method of the hydrogen storage metal 16, after the initial activation method of the hydrogen storage metal is performed, the hydrogen storage metal 16 is irradiated with hydrogen plasma to perform hydrogen injection. In this case, by the initial activation of the hydrogen storage metal 16, the oxide film on the surface of the hydrogen storage metal 16 is removed, and hydrogen implantation is performed by irradiation with hydrogen plasma with the clean metal surface exposed. As a result, hydrogen injection is effectively performed, and the amount of hydrogen absorption can be increased based on the non-equilibrium nature of the hydrogen plasma.

・ 加えて、その水素化方法において、水素プラズマの照射は、水素貯蔵金属の温度が100〜300℃の条件下で行われることにより、従来よりも低温で前記の効果を十分に発揮させることができる。   -In addition, in the hydrogenation method, the irradiation of hydrogen plasma is performed under the condition that the temperature of the hydrogen storage metal is 100 to 300 ° C, so that the above effect can be sufficiently exerted at a temperature lower than conventional. it can.

以下、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明するが、本発明はそれらの実施例に限定されるものではない。
(実施例1及び2)
図1に示す装置10を使用し、前述した初期活性化方法に従って、水素貯蔵金属16表面の活性化を行った。実施例1では、水素貯蔵金属16として、鉄90原子%、チタン10原子%の鉄チタン合金を用いた。また、実施例2では、水素貯蔵金属16として純チタンを用いた。水素貯蔵金属16の形状を、いずれも直径28mm、厚さ2mmの円盤状とした。また、希ガスとしてヘリウムを用い、ヘリウムプラズマを形成し、そのヘリウムのプラズマ柱24の直径を3.5cmに設定した。
Hereinafter, although the embodiment will be described more specifically with reference to examples and comparative examples, the present invention is not limited to these examples.
(Examples 1 and 2)
Using the apparatus 10 shown in FIG. 1, the surface of the hydrogen storage metal 16 was activated according to the above-described initial activation method. In Example 1, an iron-titanium alloy containing 90 atomic% iron and 10 atomic% titanium was used as the hydrogen storage metal 16. In Example 2, pure titanium was used as the hydrogen storage metal 16. The shape of the hydrogen storage metal 16 was a disk having a diameter of 28 mm and a thickness of 2 mm. Further, helium was used as a rare gas to form helium plasma, and the diameter of the helium plasma column 24 was set to 3.5 cm.

初期活性化の条件として、印加電圧(直流電圧)100V、プラズマ照射時間10分、水素貯蔵金属16の温度を600℃とした。また、ヘリウムプラズマの密度を3×1016/m、電子温度を3eV、ヘリウムプラズマの照射粒子束を約5×1020He-ions/m2.secとした。 The initial activation conditions were an applied voltage (DC voltage) of 100 V, a plasma irradiation time of 10 minutes, and a temperature of the hydrogen storage metal 16 of 600 ° C. The density of helium plasma was set to 3 × 10 16 / m 3 , the electron temperature was set to 3 eV, and the irradiation particle bundle of the helium plasma was set to about 5 × 10 20 He-ions / m 2 .sec.

ここで、純チタンの場合、スパッタリング率が約0.046であることから、ヘリウムプラズマの粒子束から、1cm当たり約1.4×1018個のチタン原子が表面から除去されたことになり、これをチタンの厚さに換算すると約2000Åになる。同様に、鉄の厚さに換算すると、約3000Åになる。これらの値は、近似的に酸化物(TiO、FeO、Fe)にも当てはまるものと考えられるので、金相学(金属組織学)的に表面酸化膜除去として十分な厚さであるといえる。 Here, in the case of pure titanium, since the sputtering rate is about 0.046, about 1.4 × 10 18 titanium atoms per cm 2 were removed from the surface from the helium plasma particle bundle. When this is converted into the thickness of titanium, it becomes about 2000 mm. Similarly, when converted into the thickness of iron, it is about 3000 mm. Since these values are considered to apply to oxides (TiO 2 , FeO, Fe 2 O 3 ) approximately, the thickness is sufficient for surface oxide film removal in terms of metal phase (metal structure). I can say that.

このようにして初期活性化処理された水素貯蔵金属16に対して水素プラズマを次のような条件で照射し、水素化を行った。すなわち、温度を300℃に設定した。直流電圧は印加しなかった。その理由は、直流電圧を印加すると水素の注入速度は上昇するが、水素貯蔵金属16の温度も上昇するため、水素吸収量が放出により減少する可能性があるからである。そして、水素プラズマによる水素ガス曝露時間(分)に対する水素吸収量(水素原子個数)を次のような方法で測定した。   The hydrogen storage metal 16 subjected to the initial activation treatment in this way was irradiated with hydrogen plasma under the following conditions to perform hydrogenation. That is, the temperature was set to 300 ° C. No DC voltage was applied. The reason is that, when a DC voltage is applied, the hydrogen injection rate increases, but the temperature of the hydrogen storage metal 16 also increases, so that the hydrogen absorption amount may decrease due to the release. And the hydrogen absorption amount (the number of hydrogen atoms) with respect to the hydrogen gas exposure time (minute) by hydrogen plasma was measured by the following method.

すなわち、水素化終了後に水素ガスの導入を中止し、真空チャンバー11内を再び10−5Pa台まで排気した後、ヒータにより水素貯蔵金属16を約600℃まで加熱して水素を放出させ、そのときの真空チャンバー11内の圧力を圧力計18で測定した。そして、ターボ分子ポンプ12の排気速度カタログ値(150L/秒)から、次の数式(1)を用いて全放出量Q、つまり全吸収量を求めた。 That is, after the hydrogenation is completed, the introduction of hydrogen gas is stopped, the inside of the vacuum chamber 11 is again evacuated to the 10 −5 Pa level, the hydrogen storage metal 16 is heated to about 600 ° C. with a heater, and hydrogen is released. The pressure inside the vacuum chamber 11 was measured with a pressure gauge 18. Then, from the exhaust velocity catalog value (150 L / sec) of the turbo molecular pump 12, the total discharge amount Q, that is, the total absorption amount was obtained using the following formula (1).

Figure 0005870325
ここで、P1(t)は時間t(例えばt1)における水素の分圧、Pはバックグラウンド水素分圧及びSはポンプの排気速度を表す。
Figure 0005870325
Here, P1 (t) represents the partial pressure of hydrogen at time t (eg, t1), P 0 represents the background hydrogen partial pressure, and S represents the pumping speed of the pump.

このようにして得られた水素ガス曝露時間(分)と水素吸収量(水素原子個数)との関係を図2に示した。この図2に示すように、実施例1及び2においては、鉄チタン合金又は純チタンについてヘリウムプラズマを用いて初期活性化を行った後、水素プラズマにより水素化を行ったため、プラズマ本来の非平衡性により水素吸収量は飽和状態に到ることなく、水素ガス曝露時間に比例して増加する結果が得られた。
(比較例1及び2)
比較例1では、水素貯蔵金属16として、鉄90原子%、チタン10原子%の鉄チタン合金を用い、比較例2では、水素貯蔵金属16として純チタンを用いた。水素貯蔵金属16の形状は、比較例1及び2とも実施例1と同じ形状に設定した。そして、プラズマを用いることなく、従来の水素ガスを加圧する方法により、次の条件で水素貯蔵金属16の水素化を行った。すなわち、温度を600℃に設定した。水素化終了後に、実施例1と同様にして水素ガス曝露時間(分)と水素吸収量(水素原子個数)との関係を求め、図2に示した。
FIG. 2 shows the relationship between the hydrogen gas exposure time (minutes) and the hydrogen absorption amount (number of hydrogen atoms) thus obtained. As shown in FIG. 2, in Examples 1 and 2, the initial activation of iron-titanium alloy or pure titanium using helium plasma followed by hydrogenation using hydrogen plasma resulted in the original non-equilibrium of the plasma. As a result, the hydrogen absorption did not reach saturation and the result increased in proportion to the hydrogen gas exposure time.
(Comparative Examples 1 and 2)
In Comparative Example 1, an iron-titanium alloy of 90 atomic% iron and 10 atomic% of titanium was used as the hydrogen storage metal 16, and pure titanium was used as the hydrogen storage metal 16 in Comparative Example 2. The shape of the hydrogen storage metal 16 was set to the same shape as in Example 1 in both Comparative Examples 1 and 2. Then, the hydrogen storage metal 16 was hydrogenated under the following conditions by a conventional method of pressurizing hydrogen gas without using plasma. That is, the temperature was set to 600 ° C. After the hydrogenation was completed, the relationship between the hydrogen gas exposure time (minutes) and the amount of absorbed hydrogen (number of hydrogen atoms) was determined in the same manner as in Example 1, and is shown in FIG.

その結果、比較例1及び2では、鉄チタン合金又は純チタンについて、水素プラズマを照射せず、水素ガスの曝露のみによって水素注入を行うと100〜150分後には熱力学的な平衡状態に到り、水素吸収量が飽和してそれ以上増加しなくなった。
(実施例3)
実施例3では、希ガスとしてアルゴンガスを用い、アルゴンプラズマを形成した以外は、実施例1と同様にして水素貯蔵金属16の初期活性化及び水素化を実施した。なお、アルゴンプラズマはヘリウムプラズマと同様の密度、照射粒子束等の特性をもつものである。得られた水素プラズマ照射時間(分)と水素吸収量(水素原子個数)との関係を図2に示した。この図2に示すように、この実施例3の場合においては、比較例1の場合に比べて水素吸収量が増加する結果が得られた。
As a result, in Comparative Examples 1 and 2, when an iron-titanium alloy or pure titanium is not irradiated with hydrogen plasma and hydrogen is injected only by exposure to hydrogen gas, a thermodynamic equilibrium state is reached after 100 to 150 minutes. As a result, the amount of absorbed hydrogen was saturated and no longer increased.
(Example 3)
In Example 3, initial activation and hydrogenation of the hydrogen storage metal 16 were performed in the same manner as in Example 1 except that argon plasma was used as a rare gas and argon plasma was formed. Argon plasma has the same density and irradiated particle flux characteristics as helium plasma. The relationship between the obtained hydrogen plasma irradiation time (minutes) and the amount of absorbed hydrogen (number of hydrogen atoms) is shown in FIG. As shown in FIG. 2, in the case of Example 3, a result that the hydrogen absorption amount was increased as compared with the case of Comparative Example 1 was obtained.

なお、前記実施形態を次のように変更して具体化することも可能である。
・ 水素貯蔵金属16の初期活性化において、希ガスプラズマの密度を1016/mより一層高く、希ガスプラズマの照射粒子束を1016ions/sec.m2以上より格段に高く、プラズマ照射時における電子温度を3eV以上より十分に高く設定し、初期化時間の短縮を図るように構成することができる。
It should be noted that the embodiment described above can be modified and embodied as follows.
In the initial activation of the hydrogen storage metal 16, the density of the rare gas plasma is higher than 10 16 / m 3 , the irradiation particle flux of the rare gas plasma is much higher than 10 16 ions / sec.m 2 or more, and the plasma irradiation The electron temperature at the time can be set sufficiently higher than 3 eV or more to shorten the initialization time.

次に、前記実施形態から把握できる技術的思想について以下に記載する。
・ 前記希ガスのプラズマに50〜300Vの直流電圧を印加することを特徴とする請求項1又は請求項2に記載の水素貯蔵金属又は合金の初期活性化方法。この方法によれば、請求項1又は請求項2に係る発明の効果に加えて、初期活性化の効率を高めることができる。
Next, the technical idea that can be grasped from the embodiment will be described below.
The method for initial activation of a hydrogen storage metal or alloy according to claim 1 or 2, wherein a DC voltage of 50 to 300 V is applied to the rare gas plasma. According to this method, in addition to the effect of the invention according to claim 1 or 2, the efficiency of initial activation can be increased.

・ 前記水素貯蔵金属又は合金は、塊状であることを特徴とする請求項1又は請求項2に記載の水素貯蔵金属又は合金の初期活性化方法。この方法によれば、塊状をなす水素貯蔵金属又は合金の表面について、請求項1又は請求項2に係る発明の効果を発揮させることができる。   The method for initial activation of the hydrogen storage metal or alloy according to claim 1 or 2, wherein the hydrogen storage metal or alloy is in a lump shape. According to this method, the effect of the invention according to claim 1 or claim 2 can be exerted on the surface of the hydrogen storage metal or alloy forming a lump.

水素貯蔵金属の初期活性化及び水素化に用いられる装置を示す概略説明図。Schematic explanatory drawing which shows the apparatus used for the initial activation and hydrogenation of a hydrogen storage metal. 実施例1〜3及び比較例1、2における水素ガス曝露時間(分)と水素吸収量(水素原子個数)との関係を示すグラフ。The graph which shows the relationship between the hydrogen gas exposure time (minutes) and hydrogen absorption amount (number of hydrogen atoms) in Examples 1-3 and Comparative Examples 1 and 2. FIG.

符号の説明Explanation of symbols

16…水素貯蔵金属、24…プラズマ柱。   16 ... Hydrogen storage metal, 24 ... Plasma column.

Claims (4)

水素プラズマを照射して水素注入を行うことを前提に水素貯蔵金属又は合金に水素を含まない希ガスのプラズマを照射し、その表面の酸化膜を除去し活性化する水素貯蔵金属又は合金の初期活性化方法であって、
前記プラズマの密度が1016/m〜1018/mであり、
前記水素貯蔵金属又は合金は、鉄−チタン合金、純チタン、チタン−ニッケル合金、及びマグネシウム−チタン合金から選ばれる少なくとも一種であることを特徴とする水素貯蔵金属又は合金の初期活性化方法。
The initial stage of the hydrogen storage metal or alloy that is activated by irradiating the hydrogen storage metal or alloy with a rare gas plasma that does not contain hydrogen on the assumption that hydrogen injection is performed by irradiating the hydrogen plasma and removing the oxide film on the surface. An activation method comprising:
The plasma has a density of 10 16 / m 3 to 10 18 / m 3 ;
The method for initial activation of a hydrogen storage metal or alloy, wherein the hydrogen storage metal or alloy is at least one selected from iron-titanium alloy, pure titanium, titanium-nickel alloy, and magnesium-titanium alloy.
前記プラズマ照射時における電子温度が3eV〜10eVであることを特徴とする請求項1に記載の水素貯蔵金属又は合金の初期活性化方法。 The method for initial activation of a hydrogen storage metal or alloy according to claim 1, wherein an electron temperature at the time of plasma irradiation is 3 eV to 10 eV. 請求項1又は請求項2に記載の水素貯蔵金属又は合金の初期活性化方法を実施した後、水素貯蔵金属又は合金に水素プラズマを照射して水素注入を行うことを特徴とする水素貯蔵金属又は合金の水素化方法。 A hydrogen storage metal or a hydrogen storage metal or alloy characterized by performing hydrogen injection by irradiating the hydrogen storage metal or alloy with hydrogen plasma after performing the initial activation method of the hydrogen storage metal or alloy according to claim 1 or 2. Alloy hydrogenation method. 前記水素プラズマの照射は、水素貯蔵金属又は合金の温度が100〜300℃の条件下で行われることを特徴とする請求項3に記載の水素貯蔵金属又は合金の水素化方法。 The method of hydrogenating a hydrogen storage metal or alloy according to claim 3, wherein the irradiation of the hydrogen plasma is performed under the condition that the temperature of the hydrogen storage metal or alloy is 100 to 300 ° C.
JP2006036658A 2006-02-14 2006-02-14 Initial activation method and hydrogenation method of hydrogen storage metal or alloy Active JP5870325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036658A JP5870325B2 (en) 2006-02-14 2006-02-14 Initial activation method and hydrogenation method of hydrogen storage metal or alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006036658A JP5870325B2 (en) 2006-02-14 2006-02-14 Initial activation method and hydrogenation method of hydrogen storage metal or alloy

Publications (2)

Publication Number Publication Date
JP2007216095A JP2007216095A (en) 2007-08-30
JP5870325B2 true JP5870325B2 (en) 2016-02-24

Family

ID=38493913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036658A Active JP5870325B2 (en) 2006-02-14 2006-02-14 Initial activation method and hydrogenation method of hydrogen storage metal or alloy

Country Status (1)

Country Link
JP (1) JP5870325B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8651268B2 (en) * 2007-09-18 2014-02-18 Paul H. Smith, Jr. Hydrogen energy systems
GB2472458B (en) 2009-08-07 2011-08-03 Ilika Technologies Ltd Hydrogen storage materials
LT5789B (en) 2009-12-22 2011-11-25 Lietuvos Energetikos Institutas, , Method of hydrogenation of metals and their alloys
WO2021006248A1 (en) * 2019-07-05 2021-01-14 学校法人東京理科大学 Noble gas hydride, fuel, and method for producing noble gas hydride

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933521B2 (en) * 1979-09-18 1984-08-16 インターナシヨナルビジネス マシーンズ コーポレーシヨン hydrogen storage medium
JPS5822302A (en) * 1981-07-30 1983-02-09 Nippon Steel Corp Method of activating treatment of hydrogen-occluded metal
JPS5950001A (en) * 1982-09-16 1984-03-22 Meidensha Electric Mfg Co Ltd Hydrogen occluding substance and its manufacture
JPS60171201A (en) * 1984-02-15 1985-09-04 Sharp Corp Method for activating hydrogen storing alloy
JPH04175201A (en) * 1990-11-08 1992-06-23 Anelva Corp Apparatus for generating atomic hydrogen
JP3383692B2 (en) * 1993-02-22 2003-03-04 マツダ株式会社 Composite hydrogen storage metal member and method of manufacturing the same
JPH0794692A (en) * 1993-09-22 1995-04-07 Sony Corp Fabrication of solid state image sensor
JP3079890B2 (en) * 1994-04-27 2000-08-21 住友金属工業株式会社 Hydrogen storage alloy powder and nickel-hydrogen battery
JPH08330243A (en) * 1995-05-30 1996-12-13 Anelva Corp Plasma cleaning method, and area protector for arrangement
JP2001126724A (en) * 1999-10-25 2001-05-11 Shin Etsu Chem Co Ltd Method for manufacturing hydrogen-occlusion alloy powder
JP4475720B2 (en) * 2000-02-10 2010-06-09 パナソニック株式会社 Method for producing hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2002030401A (en) * 2000-07-17 2002-01-31 Toyota Motor Corp Surface activation treating method for hydrogen occluding metal
EP1178134A1 (en) * 2000-08-04 2002-02-06 Cold Plasma Applications C.P.A. Process and apparatus for the continuous plasma treatment of metallic substrates

Also Published As

Publication number Publication date
JP2007216095A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
Baldwin et al. Deuterium retention in liquid lithium
Causey et al. The use of tungsten in fusion reactors: a review of the hydrogen retention and migration properties
JP5530589B2 (en) Nanoparticle generation and deposition methods
JP5870325B2 (en) Initial activation method and hydrogenation method of hydrogen storage metal or alloy
Schur et al. Niobium as a construction material for a hydrogen energy system
Choi et al. Fabrication of sintered tungsten by spark plasma sintering and investigation of thermal stability
Bauer et al. Helium and hydrogen re-emission during implantation of molybdenum, vanadium and stainless steel
JP2006249548A (en) Method for producing metal powder and method for producing target material
Daniels Correlation of Hydrogen Evolution with Surface Blistering in Proton‐Irradiated Aluminum
Kajita et al. Visualized blow-off from helium irradiated tungsten in response to ELM-like heat load
Zhang et al. Combined effect of laser thermal shock and helium ion irradiation on W-Y2O3 composites
Batra et al. Hydride embrittlement and oxidation resistance of some Zr–Nb–Y alloys
Behrisch Boundary conditions for a fusion plasma
KR100841083B1 (en) A surface treatment method for reactor structure materials
Causey et al. Status and future of the tritium plasma experiment
Chernov et al. Influence of hydrogen on the properties of Zr-1% Nb alloy modified by a pulsed electron beam
Liu et al. Embrittlement of RAFM EUROFER97 by implanted hydrogen
CN114323909A (en) Method for improving pre-hydrogen filling speed of metal sample in hydrogen embrittlement test
Khera et al. The influence of stress on the early stages of void formation in a model stainless steel
JP2010218894A (en) Emitter tip acumination method and device of field ionization type gas ion source
JP3750767B2 (en) Ion pump
Nishi et al. Improved response time of a thin film hydrogen storage alloy unimorph structure after platinum surface treatment
Xu et al. Electrical resistivity measurement of Fe-0.6% Cu alloy irradiated by neutrons at 14–19 K
Kaita et al. Surface treatment of a lithium limiter for spherical torus plasma experiments
Ryabtsev et al. Influence of Preliminary Irradiation by a High Heat Flux on the Re-emission and Thermal Desorption of Deuterium Implanted from Reduced Activation Steels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20141219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151029

R150 Certificate of patent or registration of utility model

Ref document number: 5870325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150