JP5867954B2 - Antarctic basidiomycetous yeast having milk fat resolving ability and method of use thereof - Google Patents

Antarctic basidiomycetous yeast having milk fat resolving ability and method of use thereof Download PDF

Info

Publication number
JP5867954B2
JP5867954B2 JP2011167225A JP2011167225A JP5867954B2 JP 5867954 B2 JP5867954 B2 JP 5867954B2 JP 2011167225 A JP2011167225 A JP 2011167225A JP 2011167225 A JP2011167225 A JP 2011167225A JP 5867954 B2 JP5867954 B2 JP 5867954B2
Authority
JP
Japan
Prior art keywords
strain
lipase
murakia
brolopis
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011167225A
Other languages
Japanese (ja)
Other versions
JP2013027374A (en
Inventor
星野 保
保 星野
横田 祐司
祐司 横田
雅晴 辻
雅晴 辻
湯本 勳
勳 湯本
栄 工藤
栄 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Inter University Research Institute Corp Research Organization of Information and Systems
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Inter University Research Institute Corp Research Organization of Information and Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Inter University Research Institute Corp Research Organization of Information and Systems filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011167225A priority Critical patent/JP5867954B2/en
Publication of JP2013027374A publication Critical patent/JP2013027374A/en
Application granted granted Critical
Publication of JP5867954B2 publication Critical patent/JP5867954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、南極産担子菌酵母およびこの微生物が生産するリパーゼによる乳脂肪含有排水処理法に関する。   The present invention relates to an Antarctic basidiomycetous yeast and a method for treating wastewater containing milk fat with a lipase produced by the microorganism.

現在、農畜産物生産現場で生じる産業排水は、浸透・希釈・放流などの不十分な処理しかしておらず、地下水や河川などの汚染源となっている。特に、酪農業から生じるパーラー排水(搾乳牛舎排水)は、搾乳ライン洗浄水・廃棄乳・洗剤・糞尿・殺菌剤等が主成分であり、周辺環境に与える影響は多大であり、北海道では鮭・鱒の遡上にも悪影響を及ぼすなど深刻な環境や漁業問題となっている。   Currently, industrial wastewater generated at agricultural and livestock product production sites has been subjected to inadequate treatment such as infiltration, dilution, and discharge, and is a source of contamination of groundwater and rivers. In particular, parlor drainage (milking cowshed drainage) generated from dairy farming is mainly composed of milking line washing water, waste milk, detergent, manure, disinfectant, etc., and has a significant impact on the surrounding environment. It has become a serious environment and fishery problem, such as having an adverse effect on the ascent of the salmon.

北海道では平成19年において約8,310戸の酪農家があり、34,400トン/日のパーラー排水が排出されている(農林水産省「畜産統計調査」)。パーラー排水の処理法として今までに開発されたものは微生物利用法と膜分離法あるいはオゾン酸化分解法などがある。しかし、膜分離法は膜の洗浄や交換のためのランニングコストが高い。また、オゾン酸化分解法はオゾン発生装置を必要とするためイニシャルコストおよびランニングコストが高いなどの欠点がある。その他、植物を利用した浄化方法も開発されているが、広大な敷地が必要であり、かつ処理に時間がかかるため実用性には乏しい。従って、処理システムを安価にできる微生物処理法が最も有力と言える。パーラー排水のBOD(生物化学的酸素要求量)は通常2,000〜4,000 mg/lと高濃度であり、しかも、乳脂肪分などの難分解性物質も多く含まれており、活性汚泥法などの生物学的処理法を適用するとしても決して容易ではなく、また、北海道のような寒冷地において冬期間の水温低下による微生物処理の効率の低下がさらに問題となっている。   In Hokkaido, there were approximately 8,310 dairy farmers in 2007, and 34,400 tons / day of parlor drainage was discharged (Ministry of Agriculture, Forestry and Fisheries “Statistics on Livestock”). The treatment methods for parlor wastewater that have been developed so far include microbe utilization method and membrane separation method or ozone oxidation decomposition method. However, the membrane separation method has a high running cost for cleaning and replacing the membrane. In addition, the ozone oxidative decomposition method requires an ozone generator and thus has disadvantages such as high initial cost and running cost. In addition, a purification method using plants has been developed, but it requires a very large site and takes time to process, so it is not practical. Therefore, it can be said that the microbial treatment method that can make the treatment system inexpensive is the most effective. The BOD (biochemical oxygen demand) of parlor wastewater is usually as high as 2,000 to 4,000 mg / l, and it contains a lot of persistent substances such as milk fat. Even if the biological treatment method is applied, it is never easy, and in a cold region such as Hokkaido, a decrease in the efficiency of microbial treatment due to a decrease in the water temperature during the winter period is a further problem.

このような低温環境での排水処理として極地微生物の利用が検討されており、廃水中の全リン,リン酸,硝酸態窒素,全炭素の減少が報告されている。しかし、低温によって固化し、微生物分解を受けにくくなる脂肪の処理に関する研究は、ほとんど無い。   The use of polar microorganisms has been studied as a wastewater treatment in such a low temperature environment, and a reduction in total phosphorus, phosphoric acid, nitrate nitrogen, and total carbon in wastewater has been reported. However, there is little research on the treatment of fat that solidifies at low temperatures and is less susceptible to microbial degradation.

佐藤義和ら:膜分離活性汚泥法によるパーラー・パドック排水の浄化処理 流入汚水の性質,活性汚泥の状態と処理水質。農業施設学会大会講演要旨,134-135, 2002Yoshikazu Sato et al: Purification treatment of parlor and paddock wastewater by membrane-separated activated sludge method. Abstracts of Annual Meeting of the Agricultural Facility Society, 134-135, 2002 加藤邦彦ら:国内情報 酪農パーラー排水処理のための伏流式ヨシ濾床人工湿地システム。畜産技術 (649), 32-37, 2009Kunihiko Kato et al .: Domestic information Underground flow reed filter artificial wetland system for dairy parlor wastewater treatment. Livestock technology (649), 32-37, 2009 平山けい子ら:南極産低温醗酵性酵母による有機性廃水の処理。水処理技術,38, 1-4,1997Keiko Hirayama et al .: Treatment of organic wastewater with Antarctic low temperature fermentative yeast. Water treatment technology, 38, 1-4, 1997 E.P. Tangら:Polar cyanobacteriaversus algae for tertiary waste-water treatment in cool climates. Journal of Applied Phycology, 9, 371-381, 1997E.P.Tang et al: Polar cyanobacteriaversus algae for tertiary waste-water treatment in cool climates. Journal of Applied Phycology, 9, 371-381, 1997 K. Katayama-Hirayamaら:Nitrate removal by Antarctic psychrophilic yeast cells under high salt conditions. Proceedings of NIPR Symposium. Polar Biolology, 11, 92-97, 1998K. Katayama-Hirayama et al .: Nitrate removal by Antarctic psychrophilic yeast cells under high salt conditions. Proceedings of NIPR Symposium. Polar Biolology, 11, 92-97, 1998 P. Chevalierら:Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. Journal of Applied Phycology, 12, 105-112, 2000P. Chevalier et al: Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. Journal of Applied Phycology, 12, 105-112, 2000 K. Katayama-Hirayamaら:Removal of nitrogen by Antarctic yeast cells at low temperature. Polar Bioscience, 16, 43-48, 2003K. Katayama-Hirayama et al .: Removal of nitrogen by Antarctic yeast cells at low temperature. Polar Bioscience, 16, 43-48, 2003 S. Brizzioら:Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Canadian Journal of Microbiology, 53, 519-525, 2007S. Brizzio et al: Extracellular functional activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Canadian Journal of Microbiology, 53, 519-525, 2007 V. de Garciaら: Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiological Ecology, 59, 331-341, 2008V. de Garcia et al: Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiological Ecology, 59, 331-341, 2008 B. Turchettiら:Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiological Ecology, 63, 73-83, 2008B. Turchetti et al .: Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiological Ecology, 63, 73-83, 2008 A.A.K. Pathanら: Diversity of yeasts from puddles in the vicinity of Midre LovenbreenGlacier, Arctic and bioprospecting for enzymes and fatty acids. Current Microbiology, 60, 307-314, 2010A.A.K.Pathan et al: Diversity of yeasts from puddles in the vicinity of Midre LovenbreenGlacier, Arctic and bioprospecting for enzymes and fatty acids. Current Microbiology, 60, 307-314, 2010 N.R. Kamini, T. Fujii, T. Kurosu, H. Iefuji (2000) Production, purification and characterization of an extracellular lipase from the yeast, Cryptococcus sp. S-2. Process Biochemistry 36, 317-324N.R.Kamini, T. Fujii, T. Kurosu, H. Iefuji (2000) Production, purification and characterization of an extracellular lipase from the yeast, Cryptococcus sp. S-2.Process Biochemistry 36, 317-324

本発明の課題は、低水温下においてパーラー排水中の乳脂肪分等の脂肪を分解できる微生物又は微生物由来の低温で脂肪分解することができる酵素を提供することである。   An object of the present invention is to provide a microorganism capable of decomposing fat such as milk fat in parlor drainage at a low water temperature or an enzyme capable of decomposing at a low temperature derived from a microorganism.

本発明者らは、前記課題を達成すべく鋭意研究を重ねた結果、南極産ムラキア・ブロロピス(Mrakia blollopis)等の担子菌酵母が低水温下で乳脂肪を分解することを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors found that basidiomycetous yeasts such as Antarctic Murakia blollopis decompose milk milk at low water temperature. It came to be completed.

即ち、本発明は以下の発明を包含する。
(1)乳脂肪分解性の高いムラキア・ブロロピス又はムラキア・フリディダに属する微生物。
(2)乳脂肪分解性の高いムラキア・ブロロピスがムラキア・ブロロピスSK-4株(FERM AP-22126)である(1)記載の微生物。
(3)乳脂肪分解性の高いムラキア・フリディダがムラキア・フリディダSK-2株(FERM AP-22153)である(1)記載の微生物。
(4)(1)〜(3)のいずれかに記載の微生物を用いた脂肪含有排水の処理方法。
(5)0℃〜15℃で活性汚泥処理を行う(4)記載の脂肪含有排水の処理方法。
(6)脂肪含有排水がパーラー排水である(4)又は(5)記載の処理方法。
(7)ムラキア属に属する微生物の生産する下記の理化学性質
(イ)作用:炭素鎖長4から18の飽和脂肪酸を含む脂質を加水分解し、脂肪酸を生成する、
(ロ)至適温度:60〜65℃
(ハ)熱安定性:50mM Tris-HCl緩衝液(pH8.5)中で30分間保温した場合、65℃まで安定である、
(ニ)至適pH:7.5〜9
(ホ)安定pH範囲:4〜10
(ヘ)分子量:約60,000
を有するリパーゼ。
(8)ムラキア属に属する微生物がムラキア・ブロロピスである(7)に記載のリパーゼ。
(9)ムラキア属に属し、(7)又は(8)に記載のリパーゼを生産する能力を有する菌株を培養し、培養物から当該リパーゼを採取することを特徴とするリパーゼの製造方法。
That is, the present invention includes the following inventions.
(1) Microorganisms belonging to Mulakia broropis or Mulakia fridida that have high milk lipolytic properties.
(2) The microorganism according to (1), wherein the Mirakia brolopis having high milk lipolytic property is Murakia brolopis SK-4 strain (FERM AP-22126).
(3) The microorganism according to (1), wherein the Mirakia freedida having a high milk lipolytic property is Mrakia Freedida SK-2 strain (FERM AP-22153).
(4) A method for treating fat-containing wastewater using the microorganism according to any one of (1) to (3).
(5) The method for treating fat-containing wastewater according to (4), wherein activated sludge treatment is performed at 0 ° C to 15 ° C.
(6) The processing method according to (4) or (5), wherein the fat-containing wastewater is parlor wastewater.
(7) The following physicochemical properties produced by microorganisms belonging to the genus Murachia (i) Action: Hydrolyzes lipids containing saturated fatty acids having carbon chain lengths of 4 to 18 to produce fatty acids.
(B) Optimal temperature: 60-65 ° C
(C) Thermal stability: When kept warm in 50 mM Tris-HCl buffer (pH 8.5) for 30 minutes, it is stable up to 65 ° C.
(D) Optimal pH: 7.5-9
(E) Stable pH range: 4-10
(F) Molecular weight: Approximately 60,000
A lipase.
(8) The lipase according to (7), wherein the microorganism belonging to the genus Murakia is Murakia broropis.
(9) A method for producing a lipase, comprising culturing a strain belonging to the genus Murakia and having the ability to produce the lipase according to (7) or (8), and collecting the lipase from the culture.

本発明により、低水温下においてパーラー排水中の乳脂肪分を分解できるリパーゼを生産する微生物を提供することが可能となる。   According to the present invention, it is possible to provide a microorganism that produces a lipase capable of decomposing milk fat content in parlor drainage at a low water temperature.

本発明のムラキア・ブロロピスSK-4株、ムラキア・フリディダSK-2株および他のムラキア菌株の系統樹を示す。図中の数値はブーツストラップ値を示す。The phylogenetic tree of the Murakia brolopis SK-4 strain, the Murakia freedida SK-2 strain and other Murachia strains of the present invention is shown. The numerical value in the figure indicates the bootstrap value. (A)本発明のリパーゼ生産菌ムラキア・ブロロピスSK-4株、(B)北海道内のパーラー排水処理施設中の活性汚泥から分離した乳脂肪分解細菌ジャニバクター・アノフェリスAC-16株、及び(C)シュウドモナス・アルカリゲネスSB3-4株の培養温度10℃における乳脂肪分解を示す図である。コロニー周辺のハロー(乳脂肪分が分解されて培地が半透明となる状態)より乳脂肪分解を評価した。(A) lipase-producing bacterium Murachia broropis SK-4 strain of the present invention, (B) milk lipolytic bacterium Janibacter anoferis AC-16 strain isolated from activated sludge in a parlor wastewater treatment facility in Hokkaido, and (C FIG. 4 is a diagram showing milk lipolysis at a culture temperature of 10 ° C. for Pseudomonas alkalines SB3-4. Milk fat degradation was evaluated from a halo around the colony (in which the milk fat content was degraded and the medium became translucent). 本発明のリパーゼ生産菌ムラキア・ブロロピスSK-4株(○で示す)および北海道内のパーラー排水処理施設中の活性汚泥から分離した乳脂肪分解細菌ジャニバクター・アノフェリスAC-16株(●で示す)の乳脂肪分解の際の酸素消費量を示す図である。The lipase-producing bacterium Murachia brolopis SK-4 strain (indicated by a circle) of the present invention and the milk lipolytic bacterium Janibacter anoferis AC-16 strain (indicated by a circle) isolated from activated sludge in a parlor wastewater treatment facility in Hokkaido It is a figure which shows the amount of oxygen consumption in the case of milk lipolysis. 精製したムラキア・ブロロピスSK-4株由来リパーゼ(本発明のリパーゼ)をドテシル硫酸ポリアクリルアミド電気泳動の後、クマシーブリリアントグリーン染色した結果である。本発明のリパーゼの分子量は60kDaと測定された。It is the result of Coomassie brilliant green staining of purified Murakia brolopis SK-4 strain lipase (lipase of the present invention) after dodecyl sulfate polyacrylamide electrophoresis. The molecular weight of the lipase of the present invention was determined to be 60 kDa. 本発明リパーゼの基質特異性を示す図である。脂肪酸p−ニトロフエェニル誘導体を基質に用い、1mM基質を含む50mM リン酸緩衝液pH 7.0に酵素を加え、30℃にて30分間酵素反応を行った。It is a figure which shows the substrate specificity of this invention lipase. A fatty acid p-nitrophenyl derivative was used as a substrate, an enzyme was added to 50 mM phosphate buffer pH 7.0 containing 1 mM substrate, and an enzyme reaction was performed at 30 ° C. for 30 minutes. 本発明リパーゼの至適温度を示す図である。1mMパルミチン酸p−ニトロフエェニルを含む50mM リン酸緩衝液pH 7.0に酵素を加え、各温度にて30分間酵素反応を行った。It is a figure which shows the optimal temperature of this invention lipase. The enzyme was added to 50 mM phosphate buffer pH 7.0 containing 1 mM p-nitrophenyl palmitate, and the enzyme reaction was carried out at each temperature for 30 minutes. 本発明リパーゼの温度安定性を示す図である。酵素液を各温度で30分間加温の後、1mMパルミチン酸p−ニトロフエェニルを含むTris-HCl緩衝液pH8.5を加え、65℃にて30分間酵素反応を行った。It is a figure which shows the temperature stability of this invention lipase. The enzyme solution was heated at each temperature for 30 minutes, Tris-HCl buffer pH 8.5 containing 1 mM p-nitrophenyl palmitate was added, and the enzyme reaction was performed at 65 ° C. for 30 minutes. 本発明リパーゼの至適pHを示す図である。1mMパルミチン酸p−ニトロフエェニルを含む50mM緩衝液に酵素を加え、30℃にて30分間酵素反応を行った。It is a figure which shows the optimum pH of this invention lipase. The enzyme was added to a 50 mM buffer containing 1 mM p-nitrophenyl palmitate, and the enzyme reaction was performed at 30 ° C. for 30 minutes. 本発明リパーゼのpH安定性を示す図である。酵素液に25mM各種緩衝液を加え30℃、15時間加温の後、pHを8.5に調整し、1mMパルミチン酸p−ニトロフエェニルを加え、65℃にて30分間酵素反応を行った。It is a figure which shows pH stability of this invention lipase. 25 mM various buffer solutions were added to the enzyme solution, heated at 30 ° C. for 15 hours, pH was adjusted to 8.5, 1 mM p-nitrophenyl palmitate was added, and the enzyme reaction was carried out at 65 ° C. for 30 minutes.

本明細書においてリパーゼとは、当技術分野における通常の意味のとおり、脂質を基質とし、加水分解する酵素を意味する。   In the present specification, lipase means an enzyme that hydrolyzes using lipid as a substrate, as usual meaning in the art.

1.ムラキア属に属する微生物
本発明は、低温下での乳脂肪分解能を有するムラキア属に属する微生物、当該微生物による低温下での乳脂肪分解方法、これに関わるリパーゼ、及びムラキア属に属する微生物の培養物を包含する。
1. The present invention relates to a microorganism belonging to the genus Murchia having a milk fat resolving ability at low temperatures, a method for decomposing milk fat under the low temperature by the microorganism, a lipase related thereto, and a culture of the microorganism belonging to the genus Murcia. Is included.

本発明に用いるムラキア属微生物は低温下で乳脂肪を分解する菌株であれば、いずれの菌株でもよいが、10℃以下の低温で生育可能な菌株が好ましい。このような菌株として、具体的には担子菌門ハラタケ亜門シロキクラゲ菌綱シストフィロバシディウム目シストフィロバシディウム科ムラキア属の菌類、例えばムラキア・ブロロピス(Mrakia blollopis)、及びムラキア・フリディダ(Mrakia frigida)等が挙げられる。ムラキア・ブロロピスSK-4株(FERM P−22126株)及びムラキア・フリディダSK-2株(FERM AP−22153)が最も好ましい。   The microorganism belonging to the genus Murachia used in the present invention may be any strain as long as it can degrade milk fat at low temperatures, but is preferably a strain capable of growing at a low temperature of 10 ° C or lower. Specific examples of such strains include the fungi of the genus Basidiomycota agaricus Amanita shiroki jellyfish cystofilobasidium cystofirobasididae Murchia, such as Murakia blollopis, and Murachia fridida ( Mrakia frigida). Murakia brolopis SK-4 strain (FERM P-22126 strain) and Murakia freedida SK-2 strain (FERM AP-22153) are most preferred.

また、本願発明は、低温下で乳脂肪分解性の高いムラキア・ブロロピス又はムラキア・フリディダに属する微生物を包含する。乳脂肪分解性の高いとは、乳脂肪を含む固体培地中で培養した際にコロニー周辺に速やかなハロー形成を意味する。より具体的には、生クリームを含む寒天培地、培養温度10℃、7日間培養した際にコロニー周辺に5mm以上のハロー形成が認められるものを意味する。より具体的には、ムラキア・ブロロピスSK-4株(FERM P−22126株)及びムラキア・フリディダSK-2株(FERM AP−22153株)が挙げられるが、これに限らない。   In addition, the present invention includes microorganisms belonging to Murachia brolopis or Murachia fridida, which are highly milk-decomposable at low temperatures. High milk lipolytic property means rapid halo formation around colonies when cultured in a solid medium containing milk fat. More specifically, it means an agar medium containing fresh cream, a culture temperature of 10 ° C., and a culture in which halo formation of 5 mm or more is observed around the colony when cultured for 7 days. More specifically, examples include, but are not limited to, Murakia brolopis SK-4 strain (FERM P-22126 strain) and Murakia Fridida SK-2 strain (FERM AP-22153 strain).

また、本願発明は、低温での乳脂肪分解性の高いムラキア・ブロロピスに属する微生物としては、例えばムラキア・ブロロピスSK-4株(FERM P−22126株)及びムラキア・フリディダSK-2株(FERM AP−22153株)が挙げられる。ここで低温とは、0℃から20℃、より好適には、4℃から10℃のことを意味する。   In the present invention, as microorganisms belonging to Mulakia brolopis having high milk lipolytic property at low temperatures, for example, Mulakia brolopis SK-4 strain (FERM P-22126 strain) and Mulakia Fridida SK-2 strain (FERM AP) -22153 strain). Here, low temperature means 0 ° C. to 20 ° C., more preferably 4 ° C. to 10 ° C.

ムラキア・ブロロピスSK-4株は、自然界より新たに分離した菌株であり、下記のような微生物学的性質を示す。   Murakia brolopis SK-4 strain is a newly isolated strain from nature and exhibits the following microbiological properties.

ポテト・デキストロース寒天培地にて培養温度10℃にて培養した場合、帯白色の酵母状菌叢の周囲に白色の菌糸がみられる。培養菌株より常法によりDNAを調製し、菌類系統解析に用いられている代表的PCRプライマーITS1F及びITS4を用いてPCR反応を行い、得られたPCR産物の遺伝子配列を決定した(配列表参照)ところ、本菌株のITS配列はデータベースのムラキア・ブロロピスのITS配列と99%以上の相同性を有していることから、ムラキア・ブロロピスと見なした。尚、本菌株は「Mrakia blollopisSK-4株」として、平成23年6月13日付で、独立行政法人産業技術総合研究所特許微生物寄託センター,日本国茨城県つくば市東一丁目一番地一号(郵便番号305-8566)に受託番号FERM P−22126として寄託されている。   When cultivated on a potato-dextrose agar medium at a culture temperature of 10 ° C., white mycelia are seen around the white yeast flora. DNA was prepared from the cultured strain by a conventional method, PCR reaction was performed using typical PCR primers ITS1F and ITS4 used for fungal lineage analysis, and the gene sequence of the obtained PCR product was determined (see Sequence Listing). However, since the ITS sequence of this strain has 99% or more homology with the ITS sequence of Murachia brolopis in the database, it was considered Murachia brolopis. This strain is “Mrakia blollopis SK-4 strain”, dated June 13, 2011, National Institute of Advanced Industrial Science and Technology, Patent Microorganism Deposit Center, East 1-chome, Tsukuba City, Ibaraki, Japan (postal mail) No. 305-8566) is deposited under the accession number FERM P-22126.

また、ムラキア・フリディダSK-2株は、自然界より新たに分離した菌株であり、下記のような微生物学的性質を示す。   In addition, Murakia Fridida SK-2 strain is a newly isolated strain from the natural world and exhibits the following microbiological properties.

ポテト・デキストロース寒天培地にて培養温度10℃にて培養した場合、帯白色の酵母状菌叢の周囲に白色の菌糸がみられる。培養菌株より常法によりDNAを調製し、菌類系統解析に用いられている代表的PCRプライマーITS1F及びITS4を用いてPCR反応を行い、得られたPCR産物の遺伝子配列を決定した(配列表参照)ところ、本菌株のITS配列はデータベースのムラキア・ストッケシのITS配列と99%以上の相同性を有していた。Index Fungorum (http://www.indexfungorum.org/)による現時点の分類体系において、ムラキア・ストッケシはムラキア・フリディダのシノニムとすることから、本菌株をムラキア・フリディダと見なした。   When cultivated on a potato-dextrose agar medium at a culture temperature of 10 ° C., white mycelia are seen around the white yeast flora. DNA was prepared from the cultured strain by a conventional method, PCR reaction was performed using typical PCR primers ITS1F and ITS4 used for fungal lineage analysis, and the gene sequence of the obtained PCR product was determined (see Sequence Listing). However, the ITS sequence of this strain had a homology of 99% or more with the ITS sequence of Murachia Stokeshi in the database. In the current classification system by Index Fungorum (http://www.indexfungorum.org/), Murakia Stokesi was considered a Mirakia freedida synonym, and therefore this strain was regarded as a Murchia freedida.

尚、本菌株は「Mrakia frigida SK-2株」として、平成23年7月20日付で、独立行政法人産業技術総合研究所特許微生物寄託センター,日本国茨城県つくば市東一丁目一番地一号(郵便番号305-8566)に受託番号FERM AP−22153として寄託されている。   This strain is called “Mrakia frigida SK-2 strain”, which was dated July 20, 2011, the National Institute of Advanced Industrial Science and Technology Patent Microbiology Deposit Center, Higashi 1-chome, Tsukuba City, Ibaraki, Japan ( Deposited under the postal code 305-8566) under the accession number FERM AP-22153.

上記ムラキア・ブロロピスSK-4株及びムラキア・フリディダSK-2株は、本願出願前には本発明者らの管理下にあり、一切分譲はされておらず、また分譲要求があったとしても、本願出願後までは分譲する意図は全くない。   The above-mentioned Murakia Broropis SK-4 strain and Murakia Fridida SK-2 strain are under the control of the present inventors before filing this application, and are not distributed at all. There is no intention to sell until after filing this application.

2.ムラキア属に属する微生物の菌体及びリパーゼ並びのその製造
2−1.ムラキア属に属する微生物の菌体及びリパーゼの製造
本発明の菌体及びリパーゼは、ムラキア属に属する微生物、好ましくはムラキア・ブロロピス、特に好ましくはムラキア・ブロロピスSK-4株を培地にて低温下で培養し、該培養液から菌体及びリパーゼを回収することにより製造することができる。本発明の微生物の培養に使用する培地としては、菌類が資化し得るのに必要な炭素源,窒素源,無機物,その他必要な栄養素を適量含有するものであれば特に制限されず、天然培地、合成培地のいずれも使用できる。具体的な培地としては、例えば菌類培養に一般に使用されるポテト・デキストロース培地,コーンミール培地,麦芽煎汁培地等が挙げられる。合成培地の炭素源としては、例えば、生クリーム,オリーブ油,ツィーン80等が使用される。窒素源としては、例えば、ペプトン類,酵母エキス,肉エキス等の窒素含有天然物,及び硝酸ナトリウム,塩化アンモニウム等の無機窒素含有化合物が使用される。無機物としては、例えば、リン酸カリウム,リン酸ナトリウム,硫酸マグネシウム,塩化カルシウム,塩化第二鉄等が使用される。培養方法は特に制限されないが、通常、振とう培養,通気撹拌培養又は置地培養で行う。培養温度は、特に制限されないが、低温下、例えば、-1〜15℃の範囲が好ましく、10℃以下がさらに好ましい。また、菌体を至適増殖温度にて十分に増殖させた後、新たな培地に移し10℃以下で培養することもできる。培養期間は通常2週間程である。
2. 2. Production of microbial cells and lipases of microorganisms belonging to the genus Murakia 2-1. Production of microbial cells and lipases of microorganisms belonging to the genus Murakia It can be produced by culturing and recovering bacterial cells and lipase from the culture solution. The medium used for culturing the microorganism of the present invention is not particularly limited as long as it contains an appropriate amount of carbon source, nitrogen source, inorganic substance, and other necessary nutrients necessary for fungi to assimilate. Any synthetic medium can be used. Specific examples of the medium include a potato / dextrose medium, corn meal medium, and malt broth medium commonly used for fungal culture. As the carbon source of the synthetic medium, for example, fresh cream, olive oil, Tween 80 and the like are used. As the nitrogen source, for example, nitrogen-containing natural products such as peptones, yeast extract and meat extract, and inorganic nitrogen-containing compounds such as sodium nitrate and ammonium chloride are used. As the inorganic substance, for example, potassium phosphate, sodium phosphate, magnesium sulfate, calcium chloride, ferric chloride and the like are used. Although the culture method is not particularly limited, it is usually carried out by shaking culture, aeration stirring culture or stationary culture. The culture temperature is not particularly limited, but is preferably at a low temperature, for example, in the range of -1 to 15 ° C, more preferably 10 ° C or less. Alternatively, the cells can be sufficiently grown at the optimum growth temperature, then transferred to a new medium and cultured at 10 ° C. or lower. The culture period is usually about 2 weeks.

本発明のリパーゼの精製には、当技術分野において一般に使用される精製法を用いることができる。菌体の分離には、例えば、遠心分離、濾過、限外濾過等を用いることができる。菌体の分離後に得られる培養上清液に含まれるリパーゼは硫酸アンモニウムや硫酸ナトリウム等による塩析法,アセトンやエタノールによる有機溶媒沈殿法,陽イオン交換体(例えば、CM,S,SP)又は陰イオン交換体(例えば、DEAE,Q,QAE)等を用いたカラムクロマトグラフィー法,アガロース誘導体等を用いたゲル濾過法等により単離・精製することができる。   For purification of the lipase of the present invention, purification methods generally used in the art can be used. For example, centrifugation, filtration, ultrafiltration, or the like can be used for separating the cells. The lipase contained in the culture supernatant obtained after separation of the bacterial cells can be salted out with ammonium sulfate or sodium sulfate, organic solvent precipitation with acetone or ethanol, cation exchanger (eg, CM, S, SP) or anion. It can be isolated and purified by column chromatography using an ion exchanger (for example, DEAE, Q, QAE) or the like, gel filtration using an agarose derivative or the like.

これらの方法で得られた粗精製リパーゼ及び精製リパーゼはグリセロール,シュークロース,エチレングリコール等の安定化剤を添加して液状で使用することができ、又は、スプレードライや凍結乾燥等の乾燥法を用いて粉末として使用することもできる。   The crude lipase and purified lipase obtained by these methods can be used in liquid form with the addition of a stabilizer such as glycerol, sucrose, ethylene glycol, or a drying method such as spray drying or freeze drying. It can also be used as a powder.

上記のように、本発明の菌体及びリパーゼは、ムラキア属に属する微生物、好ましくはムラキア・ブロロピスを培養し、培養液から回収することにより製造できる。本菌類は安価な培地を用いて容易に大量培養が可能なことから、安価にかつ大量に本発明のリパーゼおよびリパーゼ生産能力を有する酵母細胞を得ることができる。   As described above, the cells and lipase of the present invention can be produced by culturing a microorganism belonging to the genus Murachia, preferably Murakia brolopis, and collecting it from the culture solution. Since the present fungi can be easily cultured in large quantities using an inexpensive medium, the lipase and lipase producing ability of the present invention can be obtained in a large amount at a low cost.

2−2.本願発明のリパーゼ
本願発明は、ムラキア属に属する微生物の生産するリパーゼを包含する。本願発明のリパーゼは、次のような理化学的性質を備えている。(1)作用として、炭素鎖長4から18の飽和脂肪酸を含む脂質を加水分解し、脂肪酸を生成する。(2)至適温度は60〜65℃である。(3)低温での脂質分解能を有する。(4)熱安定性としては、50mM Tris-HCl緩衝液(pH8.5)中で30分間保温した場合、65℃まで安定である。(5)至適pHは7.5〜9である。(6)安定pH範囲は4〜10である。(7)分子量は約60,000である。
2-2. The lipase of the present invention The present invention includes a lipase produced by a microorganism belonging to the genus Murchia. The lipase of the present invention has the following physicochemical properties. (1) As an action, lipids containing saturated fatty acids having a carbon chain length of 4 to 18 are hydrolyzed to produce fatty acids. (2) The optimum temperature is 60 to 65 ° C. (3) It has lipid resolution at low temperature. (4) The thermal stability is stable up to 65 ° C. when kept in a 50 mM Tris-HCl buffer (pH 8.5) for 30 minutes. (5) The optimum pH is 7.5-9. (6) The stable pH range is 4-10. (7) The molecular weight is about 60,000.

3.ムラキアに属する微生物を用いる排水の処理方法
ムラキア属微生物 例えば、ムラキア・ブロロピス又はムラキア・フリディダに属する微生物は、活性汚泥に含めることができる。このように本願発明の微生物を活性汚泥に含めることで、乳脂肪を高濃度で含有する排水を、低温でも効率的に処理することができる。
3. Wastewater treatment method using microorganisms belonging to Murakia Murachia microorganisms For example, microorganisms belonging to Murakia broropis or Murakia freedida can be included in the activated sludge. Thus, by including the microorganisms of the present invention in activated sludge, wastewater containing milk fat at a high concentration can be efficiently treated even at low temperatures.

本願発明には、上記ムラキア ブロロピス又はムラキア・フリディダに属する微生物を活性汚泥に含む、活水汚泥法による排水の処理方法が包含される。好適には、上記ムラキア ブロロピス又はムラキア・フリディダに属する微生物を、乳脂肪を高濃度に含有する排水を活水汚泥法で処理に用いることができる。より具体的には、前記ムラキア ブロロピスに属する微生物を用いる活性汚泥を用いて、0−15℃、例えば10℃程度の低温下で、パーラー排水などの乳脂肪を高濃度に含有する排水を処理することができる。   The present invention includes a wastewater treatment method by an active water sludge method, wherein the activated sludge contains the microorganisms belonging to the above-mentioned Murakia brolopis or Murachia fridida. Preferably, microorganisms belonging to the above-mentioned Murachia brolopis or Murachia fridida can be used for treatment of wastewater containing milk fat at a high concentration by an active water sludge method. More specifically, wastewater containing milk fat such as parlor wastewater at a high concentration is treated at a low temperature of 0 to 15 ° C., for example, about 10 ° C., using activated sludge using microorganisms belonging to the Murachia brolopis. be able to.

活性汚泥法は、曝気槽において、微生物を含む活性汚泥により、排水など汚染物を分解することを中心とするが、本願発明のムラキア ブロロピスに属する微生物は、この曝気槽の活性汚泥に添加することができる。   The activated sludge method mainly focuses on decomposing pollutants such as wastewater with activated sludge containing microorganisms in the aeration tank, but the microorganisms belonging to Murakia Brolopis of the present invention should be added to the activated sludge in this aeration tank. Can do.

活性汚泥法としては、通常用いられているいずれの方法、又は工程を採用することができる。例えば、本願発明で利用できる活性汚泥法としては、回分式活性汚泥法、連続式活性汚泥法など、種々の方法があり、曝気槽における活性汚泥処理の前に、種々の、分離工程や沈殿工程などの前処理工程を設けたり、曝気槽活性汚泥処理の後に、活性汚泥の沈殿工程、あるいは消毒工程などの後処理工程を設けることもできる。   As the activated sludge method, any commonly used method or process can be adopted. For example, as the activated sludge method that can be used in the present invention, there are various methods such as a batch activated sludge method, a continuous activated sludge method, and various separation steps and precipitation steps before the activated sludge treatment in the aeration tank. It is also possible to provide a pretreatment process such as an activated sludge after the aeration tank, or to provide a posttreatment process such as an activated sludge precipitation process or a disinfection process.

より具体的には活性汚泥法以外にこの変法である接触安定化法,長時間曝気法,ステップエアレーション法,高濃度酸素活性汚泥法,膜分離活性汚泥法に利用可能である。また、活性汚泥法以外の代表的な好気的生物処理法として生物膜法がある。本発明の本法への利用も可能である。本法はプラスチック片,プラスチック網,貝殻,砂利などを担体として利用し、その表面上に膜状に付着した微生物により通気を行いながら排水浄化を行うことができる。   More specifically, in addition to the activated sludge method, this modified method can be used for the contact stabilization method, the long-time aeration method, the step aeration method, the high concentration oxygen activated sludge method, and the membrane separation activated sludge method. As a typical aerobic biological treatment method other than the activated sludge method, there is a biofilm method. The present invention can also be used in the present method. This method uses plastic pieces, plastic nets, shells, gravel, etc. as a carrier, and can purify wastewater while ventilating with microorganisms adhering to the surface of the membrane.

以下に、本発明を実施例により具体的に説明するが、本発明の範囲はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the scope of the present invention is not limited to these examples.

[実施例1]乳脂肪分解能の比較(南極産担子菌酵母との比較)
2007年1月宗谷海岸スカルブスネスの湖沼にて採集した堆積物を同年4月に50μg/mlのクロラムフェニコールを含むポテトデキストロース寒天培地に直接接種し、培養温度10℃にて培養し、得られた酵母を以後用いた。分離菌株の同定は、分子生物学的手法を用いた。すなわち分子マーカーとして菌類系統解析に広く用いられているITS領域(Internal Transcribed Spacer region ; 18S rDNAから25S rDNAまでの転写領域のうち5.8S rDNAと非転写領域であるITS1・ITS2を含む配列)を用いた。培地より菌体を掻き取り、市販DNA抽出キットを用いてDNAを抽出した。このDNAを鋳型とし、菌類用プライマーであるITS-1F(5’-TCCGTAGGTGAACCTGCGG-3’, GardesとBruns,1993)およびITS4(5’-TCCTCCGCTTATTGATATGC-3’, White ら,1990)を用いてWhiteら (1990)の条件に準じてITS領域の増幅を行った。アニーリング温度は50〜55℃の範囲で行った。PCR産物を精製した後、ITS1Fをプローブとしてダイレクトシークエンスを行い、ITS領域の塩基配列を得た。これをデータベース上の既知の配列との相同性比較を行い、最近縁種を検索した。上記同定の結果、表1に示されるように、単離した酵母は、ムラキア・ブロロピス、クリプトコッカス・アクアティクス(Cryptococcus aqaticus),クリプトコッカスsp.,ディオスゲギア・フリスティンゲンシス(Dioszegia fristingensis),ロドトルーラ・グラシアリス(Rhodotorula glaciallis),及びロドトルーラsp.と相同性の高い6群に大別された。これら菌株間の乳脂肪の分解能を生クリーム含有寒天培地にて培養し、培地上に形成するハローの大きさにて評価した(表1)。
[Example 1] Comparison of milk fat resolution (Comparison with Antarctic basidiomycetous yeast)
In January 2007, the sediment collected from the lake of Sukarubunesu Soya Coast was directly inoculated into potato dextrose agar medium containing 50 μg / ml chloramphenicol in April of the same year, and cultured at a temperature of 10 ° C. The yeast was used thereafter. Molecular biological techniques were used to identify the isolates. In other words, the ITS region (Internal Transcribed Spacer region; a sequence containing 5.8S rDNA and ITS1 and ITS2 non-transcribed regions among the transcription regions from 18S rDNA to 25S rDNA) is used as a molecular marker. It was. The bacterial cells were scraped from the medium, and DNA was extracted using a commercially available DNA extraction kit. Using this DNA as a template, White et al. Using fungal primers ITS-1F (5'-TCCGTAGGTGAACCTGCGG-3 ', Gardes and Bruns, 1993) and ITS4 (5'-TCCTCCGCTTATTGATATGC-3', White et al., 1990) The ITS region was amplified according to the conditions of (1990). The annealing temperature was 50 to 55 ° C. After the PCR product was purified, direct sequencing was performed using ITS1F as a probe to obtain the base sequence of the ITS region. This was compared with homologous sequences in the database to search for related species. As a result of the above identification, as shown in Table 1, the isolated yeast was found to be isolated from Murachia brolopis, Cryptococcus aqaticus, Cryptococcus sp. , Dioszegia fristingensis, Rhodotorula glaciallis, and Rhodotorula sp. It was roughly divided into 6 groups with high homology. The resolution of milk fat between these strains was cultured on an agar medium containing fresh cream and evaluated by the size of halo formed on the medium (Table 1).

Figure 0005867954
Figure 0005867954

ムラキア・ブロロピスDBVPG4974株と相同性の高い菌株であるムラキア・ブロロピスSK-4株が最も大きなハローを形成したことから、ムラキア属の菌株に高い乳脂肪分解能を持つことを確認した。このため分離したムラキア属の菌株全ての乳脂肪分解能の検討を行った(表2)。   The Mulakia brolopis strain SK-4, which is highly homologous to the Mulakia brolopis strain DBVPG4974, formed the largest halo, confirming that the Mulakia strain has high milk fat resolution. Therefore, the milk fat resolving power of all isolates of the genus Murachia was examined (Table 2).

乳脂肪分解能は供試菌株によって大きく異なった。10℃、10日間培養を行った結果、75菌株全てが生クリーム寒天培地上で生育したが、19菌株はハローを形成しなかった。56菌株は同条件で明確なハローを形成し、このうち30菌株は幅1cm以上のハローを形成した。   Milk fat resolution was greatly different depending on the test strain. As a result of culturing at 10 ° C. for 10 days, all 75 strains grew on the fresh cream agar medium, but 19 strains did not form halos. 56 strains formed clear halos under the same conditions, 30 of which formed halos with a width of 1 cm or more.

Figure 0005867954
Figure 0005867954
Figure 0005867954
Figure 0005867954
Figure 0005867954
Figure 0005867954

上記75株のうち、23株について、得られたITS領域の配列を配列表に示した。分離菌株およびデータベース上に登録されたムラキア属菌株のITS領域を用いて、近隣接合法による系統図を作成した(図1)。外群としてムラキア属に近縁なムラキアラ属に属するムラキアラ・クライオコニティ(Mrakialla cryoconiti) DBVPG5180株を外群として用いた。系統樹作成を1000回の繰り返しブーツストラップ値を得た。本発明のSK-4株を始め乳脂肪分解能の高い(生クリームを含む寒天培地、培養温度10℃、7日間培養した際にコロニー周辺に5mm以上のハローを形成する)菌株,あげは池7株,あげは池9株及びとっくり池6株はいずれもムラキア・ブロロピスと同一のクレードを形成した(図1)。これ以外に乳脂肪分解能の高い菌株はムラキア・フリディダのクレードに含まれる孫鉢池2株(ムラキア・フリディダSK-2株)のみである。   Of the above 75 strains, the sequences of the obtained ITS regions for 23 strains are shown in the Sequence Listing. Using the isolated strain and the ITS region of the genus Murachia strain registered in the database, a system diagram was created by the neighborhood joining method (Fig. 1). As an outer group, the Murakialla cryoconiti DBVPG5180 strain belonging to the genus Murakiara, which is closely related to the genus Murakia, was used as the outer group. The phylogenetic tree creation was repeated 1000 times to obtain the bootstrap value. The strain SK-4 of the present invention has high milk fat resolution (agar medium containing fresh cream, culture temperature 10 ° C., and when cultivated for 7 days, a halo of 5 mm or more is formed around the colony). Nine ponds and six ponds formed the same clade as Murakia broropis (Fig. 1). The only other strains with high milk fat resolving power are 2 Sonohachi Ponds (Murakia Fridida SK-2 strain) contained in the Murachia Fridida clade.

従来から、ムラキア・フリディダ,ムラキアsp.(ムラキア・フリディダに対して98%の相同性を有する菌株),ムラキア sp. YSAR9株(ムラキア・サイクロフィラに対して99.6%の相同性を有する菌株)は、細胞外のTween80又はトリブチリンを分解する活性が報告されている(非特許文献8−11)。一方、ムラキアsp. YSAR11株(ムラキア・フリディダに対して99.3%の相同性を有する菌株)およびムラキアsp. YSAR12株(ムラキア・フリディダに対して100%の相同性を有する菌株)は、細胞外リパーゼ活性が無いとされる(非特許文献11)。これらの報告は、ムラキア属の生産する細胞外リパーゼの生産量あるいは生産条件が、種レベルで大きく異なる可能性を示唆している。ITS配列により種同定を行った23菌株中、ムラキア・ブロロピスでは14株中4株が、ムラキア・フリディダでは6株中1株が、ムラキア・ロベルティでは2株中0株が高い乳脂肪分解能を示した.本発明では、系統的にムラキア・ブロロピス又はムラキア・フリディダに属する菌株の乳脂肪分解能が高いことを初めて明らかにした。   Conventionally, Murakia Fridida, Murakia sp. (A strain having 98% homology to Murakia Fridida), and Murakia sp. YSAR9 strain (a strain having 99.6% homology to Murakia cyclophila) have been The activity of degrading extracellular Tween80 or tributyrin has been reported (Non-patent Documents 8-11). On the other hand, Murakia sp. YSAR11 strain (a strain having 99.3% homology to Murakia fridida) and Murakia sp. YSAR12 strain (a strain having 100% homology to Murakia fridida) are extracellular lipases. It is said that there is no activity (Non-patent Document 11). These reports suggest that the production amount or production conditions of extracellular lipase produced by Murachia may vary greatly at the species level. Of the 23 strains identified by ITS sequence, 4 out of 14 strains in Mr. brolopis, 1 out of 6 strains in Mr. frida, and 0 out of 2 strains in Mr. It was. In the present invention, it has been clarified for the first time that milk fat resolving power of strains belonging to Murachia brolopis or Murakia Fridida is systematically high.

[実施例2]乳脂肪分解能の比較(パーラー排水施設中の細菌との比較)
本発明のムラキア・ブロロピスSK-4株及び北海道上士幌町の牧場にてパーラー排水を活性汚泥処理している曝気槽から得た乳脂肪分解細菌ジャニバクター・アノフェリス(Janibacter anophelis) AC-16株,シュウドモナス・アルカリゲネス(Pseudomonas alcaligenes) SB3-4株を生クリーム寒天培地にて接種し、培養温度10℃にて乳脂肪分解を観察した(図2)。ムラキア・ブロロピスSK-4株の周囲には明確なハローが確認されたが、ジャニバクター・アノフェリスAC-16株は細胞増殖は確認されたが、培養期間中のハロー形成は確認できなかった。また、シュウドモナス・アルカリゲネスSB3-4株は、上記培養条件において細胞成長を目視にて確認できなかった。
[Example 2] Comparison of milk fat resolution (comparison with bacteria in parlor drainage facility)
Mulakia broropis SK-4 strain of the present invention and milk lipolytic bacterium Janibacter anophelis AC-16 strain, Shudomonas obtained from an aeration tank treating activated sludge of parlor drainage at a farm in Kamishihoro, Hokkaido -Alkagenes (Pseudomonas alcaligenes) SB3-4 strain was inoculated on a fresh cream agar medium, and milk lipolysis was observed at a culture temperature of 10 ° C. (FIG. 2). Although a clear halo was confirmed around the Mulakia brolopis SK-4 strain, cell growth was confirmed in the Janibacter anoferis AC-16 strain, but halo formation during the culture period could not be confirmed. In addition, the cell growth of Pseudomonas alkaligenes SB3-4 could not be visually confirmed under the above culture conditions.

さらにムラキア・ブロロピスSK-4株およびジャニバクター・アノフェリスAC-16株を用い、乳脂肪の微生物分解能を酸素消費量にて評価した。供試菌株として測定対象とする各検体は次のように調製した。すなわち、容量500mlの培養びんに生クリームを蒸留水で1,000倍希釈した水溶液100mlに無機栄養塩、菌体および水道水を加えて全量を200ml調整し、測定温度は10℃にて自動記録式好気性微生物呼吸計(北開試式クーロメーター, 大倉電気(株)製)を用いて酸素消費量を測定した。無機栄養塩は1l当りリン酸二水素カリウム1.9g,リン酸一水素二ナトリウム2.6g,塩化アンモニウム0.19g,塩化カルシュウム・二水0.037g,硫酸マグネシウム・七水0.1g塩化第一鉄0.015gとした。   Furthermore, the microbial degradability of milk fat was evaluated by oxygen consumption using Mulakia brolopis SK-4 strain and Janibacter anopheris strain AC-16. Each specimen to be measured as a test strain was prepared as follows. In other words, add 500 ml of inorganic nutrient salt, bacterial cells and tap water to 100 ml of a 500 ml culture bottle diluted with fresh cream 1,000 times with distilled water to adjust the total volume to 200 ml. Oxygen consumption was measured using an aerobic microbial respirometer (Kitakai trial coulometer, manufactured by Okura Electric Co., Ltd.). Inorganic nutrient salt is 1.9g potassium dihydrogen phosphate, 2.6g disodium monohydrogen phosphate, 0.19g ammonium chloride, 0.037g calcium chloride, 0.03g dibasic water, 0.1g magnesium sulfate and seven water, and 0.015g ferrous chloride per liter. did.

ムラキア・ブロロピスSK-4株は酸素消費が始まるまでの遅滞時間は約15時間であり、その後は急激な酸素消費を示した(図3)。一方、ジャニバクター・アノフェリスAC-16株の遅滞時間は約45時間であり、その後の酸素消費速度はムラキア・ブロロピスSK-4株と比較して遅かった。以上のことからも低水温下においてムラキア・ブロロピスSK-4株の乳脂肪分解能力の高いことが証明された。   Murakia brolopis SK-4 strain had a delay time of about 15 hours until the start of oxygen consumption, and then showed rapid oxygen consumption (Fig. 3). On the other hand, the delay time of the Janibacter anoferris AC-16 strain was about 45 hours, and the subsequent oxygen consumption rate was slower than that of the Murakia brolopis SK-4 strain. From the above, it was proved that Mulakia brolopis SK-4 strain has high milk lipolysis ability at low water temperature.

[実施例3]パーラー排水の微生物処理
パーラー排水のモデル排水として牛乳希釈液を用いて本発明のムラキア・ブロロピスSK-4株を添加した活性汚泥による処理を行った。供試した活性汚泥は、北海道上士幌町の牧場で実際にパーラー排水を活性汚泥処理している曝気槽から得た。これを2.5Lの曝気槽で牛乳を基質とし、無機栄養塩類も少量添加しながら室温(20〜23℃)で約1ヶ月間馴養した。
[Example 3] Microbial treatment of parlor drainage Using a diluted milk solution as a model drainage of parlor drainage, treatment with activated sludge added with Murakia brolopis SK-4 strain of the present invention was performed. The activated sludge used in the experiment was obtained from an aeration tank in which the parlor wastewater was actually treated with activated sludge at a farm in Kamishihoro, Hokkaido. This was acclimatized for about one month at room temperature (20-23 ° C.) using milk as a substrate in a 2.5 L aeration tank and adding a small amount of inorganic nutrient salts.

10℃でポテト・デキストロース液体培地を用いて培養したムラキア・ブロロピスSK-4株(乾燥重量約1g)を室温で馴養した活性汚泥(MLSS:約3,000mg/l,Mixed Liquor Suspended Solid混合液浮遊物質濃度)700mlに加え10℃にて培養を行った。培養7日目までは、1日1回曝気を止め汚泥を沈降させた後、上澄み液を除去した。沈殿した汚泥に、新たに市販牛乳(BOD:約14,000mg/l)2.8mlおよび水道水を添加するfill and draw法で低温に馴養させた。培養7日目および12日目に再度MLSSを約3,000mg/lに調整した後、牛乳原液5.6mlおよび8.4mlをそれぞれ添加し、24時間後のBODを測定した。8〜11日間の培養は培養7日目までと同様に行った。また、ムラキア・ブロロピスSK-4株を添加していない室温で馴養した活性汚泥を用いて同様の処理を行い、結果を比較した。   Activated sludge (MLSS: approx. 3,000 mg / l, Mixed Liquor Suspended Solid mixture suspended matter) acclimatized at room temperature to Murachia brolopis SK-4 strain (dry weight approx. 1 g) cultured in potato-dextrose liquid medium at 10 ° C Concentration) was added to 700 ml and cultured at 10 ° C. Up to the 7th day of culture, aeration was stopped once a day and sludge was allowed to settle, and then the supernatant was removed. The precipitated sludge was acclimated to a low temperature by a fill and draw method in which 2.8 ml of commercially available milk (BOD: about 14,000 mg / l) and tap water were added. On the 7th and 12th days of culture, MLSS was adjusted again to about 3,000 mg / l, 5.6 ml and 8.4 ml of milk stock solutions were added, and BOD after 24 hours was measured. The culture for 8 to 11 days was carried out in the same manner as the 7th day of culture. Moreover, the same process was performed using the activated sludge acclimatized at room temperature to which no Murakia brolopis SK-4 strain was added, and the results were compared.

ムラキア・ブロロピスSK-4株を添加した活性汚泥のBOD除去率は、添加していない活性汚泥に比べて向上した(表3)。一般的な排水処理におけるBOD汚泥負荷(kg-BOD/kg-MLSS/d,MLSSkg当たりのBOD処理量)は0.2〜0.4,BOD容積負荷(kg-BOD/m3/d,曝気槽1m3当たりのBOD処理量)は0.4〜0.8とされている。培養7日後および12日後に牛乳原液5.6mlおよび8.4mlをそれぞれ添加した活性汚泥のBOD汚泥負荷は約0.35と0.52,BOD容積負荷は1.0と1.5であった。これらの結果から、本発明のリパーゼを生産するムラキア・ブロロピスSK-4株を活性汚泥に添加することにより比較的負荷の高い排水のBOD除去率が向上することを確認した。 The BOD removal rate of activated sludge added with Murakia brolopis SK-4 strain was improved compared to activated sludge not added (Table 3). BOD sludge load (kg-BOD / kg-MLSS / d, BOD treatment amount per MLSSkg) in general wastewater treatment is 0.2 to 0.4, BOD volumetric load (kg-BOD / m 3 / d, per 1m3 aeration tank BOD processing amount) is 0.4 to 0.8. The activated sludge to which 5.6 ml and 8.4 ml of milk stock solution were added after 7 days and 12 days of culture, respectively, had a BOD sludge load of about 0.35 and 0.52, and a BOD volume load of 1.0 and 1.5. From these results, it was confirmed that the addition of Murakia broropis SK-4 strain producing the lipase of the present invention to activated sludge improves the BOD removal rate of wastewater with relatively high load.

Figure 0005867954
Figure 0005867954

以上の結果から、本発明の菌株をパーラー排水処理に利用することにより、低水温下でも乳脂肪を含むパーラー排水の処理効率の向上が明らかとなった。   From the above results, it was revealed that the treatment efficiency of parlor wastewater containing milk fat was improved even at low water temperature by using the strain of the present invention for parlor wastewater treatment.

[実施例4]ムラキア・ブロロピス由来リパーゼの製造
本発明のムラキア・ブロロピスSK-4株が示す低温下での高い乳脂肪分解活性は、脂質分解に関わる酵素に原因があると考え、細胞外リパーゼの精製を行った。1%ツィーン80,0.5%酵母エキス,0.2%リン酸二水素カリウム,0.29%リン酸二ナトリウム,0.02%塩化アンモニウム,0.04%塩化カルシュウム,0.001塩化第二鉄を含む液体培地1lを3l容三角フラスコに移し、121℃にて20分間オートクレーブ滅菌を行った。種菌としてムラキア・ブロロピスSK-4株(FERM P−22126)を接種し、10℃で2週間培養し、培養液を得た。該培養液を遠心分離し、得られた上清液を限外濾過により濃縮した後、分画分子量1万〜8千の透析膜を用いて10mM Tris-HCl緩衝液pH 8.5にて透析した。同緩衝液にて平衡化したブチルトヨパール-650Mカラムクロマトグラフィーで分画し、ドデシル硫酸ナトリウム−ポリアクリルアミド電気泳動法により単一バンドになることを確認した。得られたタンパク質は下記の性質を有していた。
[Example 4] Manufacture of lipase derived from Mulachia brolopis The high milk lipolytic activity at low temperature exhibited by Mulakia bloropis SK-4 strain of the present invention is considered to be caused by an enzyme involved in lipolysis, and an extracellular lipase Was purified. 3 liter Erlenmeyer flask containing 1 liter of liquid medium containing 1% Tween 80, 0.5% yeast extract, 0.2% potassium dihydrogen phosphate, 0.29% disodium phosphate, 0.02% ammonium chloride, 0.04% calcium chloride, 0.001 ferric chloride And autoclaved at 121 ° C. for 20 minutes. Murachia brolopis SK-4 strain (FERM P-22126) was inoculated as an inoculum and cultured at 10 ° C. for 2 weeks to obtain a culture solution. The culture broth was centrifuged, and the resulting supernatant was concentrated by ultrafiltration, and then dialyzed against 10 mM Tris-HCl buffer pH 8.5 using a dialysis membrane having a molecular weight cut off of 10,000 to 8,000. Fractionation was performed with butyl Toyopearl-650M column chromatography equilibrated with the same buffer, and it was confirmed that a single band was obtained by sodium dodecyl sulfate-polyacrylamide electrophoresis. The obtained protein had the following properties.

タンパク質の分子量は、ドテシル硫酸ナトリウム−ポリアクリルアミド電気泳動法で測定したところ、それぞれ約60kDa(図4)であった。   The molecular weight of the protein was about 60 kDa (FIG. 4) as measured by sodium dodecyl sulfate-polyacrylamide electrophoresis.

[実施例5]脂質分解活性の測定
1.基質特異性:炭素鎖長4,5,8,10,14,16,18の脂肪酸p−ニトロフエェニル誘導体を基質に用い、1mM基質を含む50mM リン酸緩衝液pH 7.0に酵素を加え、30℃にて30分間酵素反応を行った。南極産担子菌酵母ムラキア・ブロロピスSK-4株由来リパーゼ(以下、本発明のリパーゼと称する)は炭素鎖長の異なる全ての基質の加水分解が確認された(図5)。この性質は乳脂肪に含まれる多様な脂肪酸の効率的分解が可能となると思われる。
[Example 5] Measurement of lipolytic activity Substrate specificity: Using fatty acid p-nitrophenyl derivatives with carbon chain lengths of 4, 5, 8, 10, 14, 16, and 18 as substrates, add enzyme to 50 mM phosphate buffer pH 7.0 containing 1 mM substrate, and bring the temperature to 30 ° C. The enzyme reaction was performed for 30 minutes. The lipase derived from the Antarctic basidiomycetous yeast Murachia brolopis SK-4 strain (hereinafter referred to as the lipase of the present invention) was confirmed to hydrolyze all substrates with different carbon chain lengths (FIG. 5). This property seems to enable efficient degradation of various fatty acids contained in milk fat.

2.温度の影響:本発明のリパーゼの各温度における酵素活性を測定した(図6)。至適温度は60〜65℃に存在した。また、低温域での比活性は0℃で0.8%,10℃で2.8%,20℃で11.5%であった。本発明のリパーゼは65℃,30分の熱処理で残存活性がほとんど変わらなかった(図7)。同様の用途が検討されているクリプトコッカス・sp.2株由来のリパーゼでは、至適温度40℃付近であり、反応温度60℃での比活性が60%以下であることと比較すると(非特許文献12)、これらの結果から本発明のリパーゼが熱に対する高い安定性を有しながら、低温下で活性を示す酵素であることが確認された。   2. Effect of temperature: Enzyme activity at each temperature of the lipase of the present invention was measured (FIG. 6). The optimum temperature was at 60-65 ° C. The specific activity at low temperature was 0.8% at 0 ℃, 2.8% at 10 ℃, and 11.5% at 20 ℃. The residual activity of the lipase of the present invention hardly changed after heat treatment at 65 ° C. for 30 minutes (FIG. 7). Cryptococcus sp., Which has been studied for similar uses. In the lipase derived from the two strains, the optimum temperature is around 40 ° C. and the specific activity at a reaction temperature of 60 ° C. is 60% or less (Non-patent Document 12). From these results, the lipase of the present invention is It was confirmed that the enzyme shows activity at low temperatures while having high stability to heat.

3.pHの影響:本発明のリパーゼの各pHの酵素活性を測定した。pH3〜pH5までをクエン酸緩衝液,pH6〜pH8までをリン酸緩衝液,pH9はグリシン-水酸化ナトリウム緩衝液,pH10は炭酸緩衝液を用いた。至適pHは7.5〜9であり(図8),4〜10までの幅広いpH域で高い安定性を示した(図9)。   3. Effect of pH: The enzyme activity at each pH of the lipase of the present invention was measured. A citrate buffer solution was used from pH 3 to pH 5, a phosphate buffer solution was used from pH 6 to pH 8, a glycine-sodium hydroxide buffer solution was used for pH 9, and a carbonate buffer solution was used for pH 10. The optimum pH was 7.5 to 9 (Fig. 8), and high stability was exhibited in a wide pH range from 4 to 10 (Fig. 9).

4.金属塩の影響:本発明のリパーゼに対する金属塩の影響を表1に示す。本発明のリパーゼは金属塩によって活性が失われることは無かった。   4). Effect of metal salt: Table 1 shows the effect of metal salt on the lipase of the present invention. The activity of the lipase of the present invention was not lost by the metal salt.

Figure 0005867954
Figure 0005867954

以上の結果から、本発明のリパーゼは幅広い基質特異性を有し、従来の低温環境に適応した菌類が生産する酵素に比較して安定性が高く、広範囲な環境で機能することが示された。   From the above results, it was shown that the lipase of the present invention has a wide range of substrate specificities, is more stable than enzymes produced by conventional fungi adapted to low-temperature environments, and functions in a wide range of environments. .

南極産担子菌酵母ムラキア・ブロロピスは、多様な環境で安定性の高いリパーゼを生産することにより、従来の低温性微生物よりも高い乳脂肪分解効果を示す。また、ムラキア属に属する微生物の持つ生物学的特性から、前記微生物の培養により大量のリパーゼおよびリパーゼ生産能を有する菌体を安価に調製することができる。さらに、試験した菌株は人体に対する毒性が報告されていないことから、安全性も高いと考えられる。従って、本発明は、例えば、寒冷地におけるパーラー排水に代表される脂質を高濃度に含んだ排水の生物学的処理等において、極めて実用的かつ有効な技術である。   The Antarctic basidiomycetous yeast Murachia brolopis produces a highly stable lipase in a variety of environments, thereby exhibiting a higher milk lipolysis effect than conventional psychrophilic microorganisms. In addition, due to the biological characteristics of microorganisms belonging to the genus Murchia, a large amount of lipase and lipase producing ability can be prepared at low cost by culturing the microorganisms. Furthermore, since the tested strain has not been reported to be toxic to the human body, it is considered highly safe. Therefore, the present invention is a very practical and effective technique in, for example, biological treatment of wastewater containing lipids typified by parlor wastewater in cold regions.

FERM P-22126
FERM AP-22153
FERM P-22126
FERM AP-22153

Claims (6)

ムラキア・ブロロピスに属する微生物であって、下記の理化学的性質を有するリパーゼを生産する能力を有するムラキア・ブロロピスSK-4株(FERM P-22126)。
(1)作用:炭素鎖長4から18の飽和脂肪酸を含む脂質を加水分解し、脂肪酸を生成する
(2)至適温度:60〜65℃
(3)熱安定性:50mM Tris-HCl緩衝液(pH8.5)中で30分間保温した場合、65℃まで安定
である
(4)至適pH:7.5〜9
(5)安定pH範囲:4〜10、及び
(6)分子量:約60,000(ドテシル硫酸ナトリウム−ポリアクリルアミド電気泳動法で測
定)
Mulakia brolopis SK-4 strain (FERM P-22126) which is a microorganism belonging to Mulakia brolopis and has the ability to produce a lipase having the following physicochemical properties .
(1) Action: Hydrolyzes lipids containing saturated fatty acids with carbon chain lengths of 4 to 18 to produce fatty acids
(2) Optimal temperature: 60-65 ° C
(3) Thermal stability: stable to 65 ° C when incubated for 30 minutes in 50 mM Tris-HCl buffer (pH 8.5)
Is
(4) Optimum pH: 7.5-9
(5) Stable pH range: 4-10, and
(6) Molecular weight: Approximately 60,000 (measured by sodium dodecyl sulfate-polyacrylamide electrophoresis)
Fixed)
請求項に記載の微生物を用いた脂肪含有排水の処理方法。 The processing method of the fat containing waste water using the microorganisms of Claim 1 . 0℃〜15℃で活性汚泥処理を行う請求項記載の脂肪含有排水の処理方法。 The processing method of the fat containing waste water of Claim 2 which performs an activated sludge process at 0 degreeC-15 degreeC. 脂肪含有排水がパーラー排水である請求項2又は3記載の処理方法。 The processing method according to claim 2 or 3 , wherein the fat-containing wastewater is parlor wastewater. 請求項1に記載のムラキア属に属する微生物の生産する下記の理化学性質を有するリパーゼ。
(1)作用:炭素鎖長4から18の飽和脂肪酸を含む脂質を加水分解し、脂肪酸を生成する
(2)至適温度:60〜65℃
(3)熱安定性:50mM Tris-HCl緩衝液(pH8.5)中で30分間保温した場合、65℃まで安定
である
(4)至適pH:7.5〜9
(5)安定pH範囲:4〜10、及び
(6)分子量:約60,000(ドテシル硫酸ナトリウム−ポリアクリルアミド電気泳動法で測
定)
Lipases having the following physicochemical properties producing microorganism belonging to Murakia genus of claim 1.
(1) Action: Hydrolyzes lipids containing saturated fatty acids with carbon chain lengths of 4 to 18 to produce fatty acids (2) Optimal temperature: 60-65 ° C
(3) Thermal stability: stable to 65 ° C when incubated for 30 minutes in 50 mM Tris-HCl buffer (pH 8.5) (4) Optimum pH: 7.5-9
(5) Stable pH range: 4 to 10, and (6) Molecular weight: about 60,000 (measured by sodium dodecyl sulfate-polyacrylamide electrophoresis)
Fixed)
ムラキア属に属し、請求項記載のリパーゼを生産する能力を有する菌株を培養し、培養物から当該リパーゼを採取することを特徴とするリパーゼの製造方法。 A method for producing a lipase, comprising culturing a strain belonging to the genus Murakia and capable of producing the lipase according to claim 1 , and collecting the lipase from the culture.
JP2011167225A 2011-07-29 2011-07-29 Antarctic basidiomycetous yeast having milk fat resolving ability and method of use thereof Active JP5867954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011167225A JP5867954B2 (en) 2011-07-29 2011-07-29 Antarctic basidiomycetous yeast having milk fat resolving ability and method of use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011167225A JP5867954B2 (en) 2011-07-29 2011-07-29 Antarctic basidiomycetous yeast having milk fat resolving ability and method of use thereof

Publications (2)

Publication Number Publication Date
JP2013027374A JP2013027374A (en) 2013-02-07
JP5867954B2 true JP5867954B2 (en) 2016-02-24

Family

ID=47785100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011167225A Active JP5867954B2 (en) 2011-07-29 2011-07-29 Antarctic basidiomycetous yeast having milk fat resolving ability and method of use thereof

Country Status (1)

Country Link
JP (1) JP5867954B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201099B2 (en) * 2013-03-26 2017-09-27 国立研究開発法人産業技術総合研究所 Ethanol production method at low temperature with Antarctic yeast
TWI662131B (en) * 2018-11-27 2019-06-11 台灣中油股份有限公司 Method for preparing rice bran lipase
JP7305610B2 (en) * 2020-12-25 2023-07-10 株式会社クボタ Organic wastewater treatment method
CN113373077B (en) * 2021-02-07 2023-02-07 南宁海关技术中心 High-efficiency chloramphenicol degrading bacterium, high-efficiency degrading microbial inoculum and application thereof
CN114804373A (en) * 2022-04-30 2022-07-29 北京赛富威环境工程技术有限公司 Microbial treatment method for ultralow-temperature wastewater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392024B1 (en) * 1997-06-26 2002-05-21 Queen's University At Kingston Tenebrio antifreeze proteins
JP3507860B2 (en) * 2000-03-13 2004-03-15 独立行政法人酒類総合研究所 New yeast-derived lipase CS2

Also Published As

Publication number Publication date
JP2013027374A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP5867954B2 (en) Antarctic basidiomycetous yeast having milk fat resolving ability and method of use thereof
CN109385388A (en) Thermophilic salt denitrifying bacterium YL5-2 and its application
Theerachat et al. The culture or co-culture of Candida rugosa and Yarrowia lipolytica strain rM-4A, or incubation with their crude extracellular lipase and laccase preparations, for the biodegradation of palm oil mill wastewater
Zeng et al. Efficient phosphorus removal by a novel halotolerant fungus Aureobasidium sp. MSP8 and the application potential in saline industrial wastewater treatment
Doma et al. Potential of using high rate algal pond for algal biofuel production and wastewater treatment
KR20140119856A (en) A novel microorganism Rhodococcus pyridinovorans EDB2 degrading aromatic compounds
RU2430021C1 (en) Method of removing hydrocarbon pollutants from environment
Ayuningrum et al. Screening of actinobacteria-producing amylolytic enzyme in sediment from Litopenaeus vannamei (Boone, 1931) ponds in Rembang District, Central Java, Indonesia
Liu et al. Isolation, identification of algicidal bacteria and contrastive study on algicidal properties against Microcystis aeruginosa
Zhu et al. Weak magnetic field intervention on outdoor production of oil-rich filamentous microalgae: Influence of seasonal changes
Zin et al. Purification and characterization of a carboxymethyl cellulase from Artemia salina
Fahmy et al. Optimization, partial purification, and characterization of a novel high molecular weight alkaline protease produced by Halobacillus sp. HAL1 using fish wastes as a substrate
CN109439602A (en) Halophilic vibrio YL5-2 and its microbial inoculum are degraded the application in conversion pollutant under high salt conditions
Namwong et al. Identification of Staphylococcus strain CH1-8 and its oil-degradation
KR102055544B1 (en) A novel Geobacillus sp. strain and use thereof
KR101475589B1 (en) A novel microorganism Rhodococcus pyridinovorans EDB2 degrading aromatic compounds
KR101631591B1 (en) Treatment method of swine wastewater by microalgae, Chlorella sorokiniana
CN106929448A (en) One plant of acinetobacter calcoaceticus CZ1701 bacterial strain and application thereof of degraded different shape nitrogen
Fitriyanto et al. Isolation and characterization of Alcaligenes sp. LS2T from poultry farm at Yogyakarta city and the growth ability in animal’s urine medium
TWI756538B (en) oil-decomposing microorganisms
KR101898660B1 (en) Bacillus licheniformis strain SN1 and environmentally sustainable food waste processing microbial agent
KR20100134343A (en) Alage lysing bacteria rhodococcus sp. kbr-5
KR101035714B1 (en) Identification of Microcystis-lysing ability of Rhodococcus erythropolis KWB-RH2
CN112723560A (en) Treatment method for water quality of northern overwintering pond
Salunke et al. S K. Alkaline phosphatase production by Enterobacter hormaechei isolated from bird’s fecal waste and its optimization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160104

R150 Certificate of patent or registration of utility model

Ref document number: 5867954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250