JP5867829B2 - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP5867829B2
JP5867829B2 JP2012152122A JP2012152122A JP5867829B2 JP 5867829 B2 JP5867829 B2 JP 5867829B2 JP 2012152122 A JP2012152122 A JP 2012152122A JP 2012152122 A JP2012152122 A JP 2012152122A JP 5867829 B2 JP5867829 B2 JP 5867829B2
Authority
JP
Japan
Prior art keywords
lens group
lens
focal length
conditional expression
asph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012152122A
Other languages
Japanese (ja)
Other versions
JP2014016400A (en
Inventor
安達 宣幸
宣幸 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamron Co Ltd
Original Assignee
Tamron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamron Co Ltd filed Critical Tamron Co Ltd
Priority to JP2012152122A priority Critical patent/JP5867829B2/en
Priority to PCT/JP2013/068602 priority patent/WO2014007394A1/en
Publication of JP2014016400A publication Critical patent/JP2014016400A/en
Application granted granted Critical
Publication of JP5867829B2 publication Critical patent/JP5867829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+

Description

本発明は、ズームレンズ、特に、高倍率でありながら高い結像性能を有するズームレンズにする。   The present invention provides a zoom lens, particularly a zoom lens having high imaging performance while having a high magnification.

従来の上述した高倍率のズームレンズとしては、物体側から順に、正の屈折力を有する第1レンズ群G1と負の屈折力を有する第2レンズ群G2と正の屈折力を有する第3レンズ群G3と負の屈折力を有する第4レンズ群G4と正の屈折力を有する第5レンズ群G5を少なくとも有し、広角端に対し望遠端においては、該第1レンズ群G1と該第2レンズ群G2との間の空気間隔が拡大し、該第2レンズ群G2と該第3レンズ群G3との間の空気間隔が縮小し、該第3レンズ群G3と該第4レンズ群G4との間の空気間隔が拡大し、該第4レンズ群G4と該第5レンズ群G5との間の空気間隔が縮小することによって変倍し、望遠端における該第1レンズ群G1と該第2レンズ群G2の間隔をD1Tとし、広角端における該第1レンズ群G1と該第2レンズ群G2の間隔をD1Wとし、広角端の全系の焦点距離をfw、前記第1レンズ群G1の焦点距離をf1、前記第2レンズ群G2の焦点距離をf2としたとき、
(1)2.3<(D1T−D1W)/fw<10
(2)6.6<f1/|f2|<15
を満足するズームレンズが提案されている(例えば、特許文献1参照)。
As the conventional high-power zoom lens described above, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. It has at least a fourth lens group G4 having a negative refractive power and a fifth lens group G5 having a positive refractive power at the telephoto end, and the first lens group G1 and the second lens group G3. The air gap between the lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens group G4 The distance between the first lens group G1 and the second lens group G1 at the telephoto end is changed by expanding the air distance between the fourth lens group G4 and the fifth lens group G5. The distance between the lens groups G2 is D1T, and the first lens group G1 at the wide-angle end is The interval between the second lens group G2 and D1W, the focal length of the entire system at the wide angle end fw, the focal length of the first lens group G1 f1, the focal length of the second lens group G2 and the f2,
(1) 2.3 <(D1T−D1W) / fw <10
(2) 6.6 <f1 / | f2 | <15
A zoom lens that satisfies the above has been proposed (for example, see Patent Document 1).

従来の他の高倍率のズームレンズとしては、物体側から順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群及び正の屈折力の第5レンズ群で構成され、広角端から望遠端への変倍に際し、前記第1レンズ群と第2レンズ群の間隔が増加、前記第2レンズ群と第3レンズ群の間隔が減少、前記第3レンズ群と第4レンズ群の間隔が増加、前記第4レンズ群と第5レンズ群の間隔が減少するように少なくとも前記第1レンズ群、第3レンズ群、第5レンズ群を物体側に移動させるズームレンズであって、前記第1レンズ群、第3レンズ群の焦点距離を各々f1,f3、広角端、望遠端における全系の焦点距離を各々fW,fT、(望遠端の近軸横倍率)/(広角端の近軸横倍率)で定義される前記第2レンズ群、第3レンズ群の変倍分担値を各々Z2,Z3とするとき、0.3<f1/fT<0.81.2<Z2/Z3<3.00.5<f3/fW<0.8なる条件式を満足する高変倍ズームレンズが提案されている(例えば、特許文献2参照)。   As another conventional high-power zoom lens, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative refraction. A fourth lens group having a positive refractive power and a fifth lens group having a positive refractive power, and the distance between the first lens group and the second lens group increases upon zooming from the wide-angle end to the telephoto end. At least the first lens group, so that the distance between the third lens group and the third lens group decreases, the distance between the third lens group and the fourth lens group increases, and the distance between the fourth lens group and the fifth lens group decreases. A zoom lens for moving the third lens group and the fifth lens group to the object side, wherein the focal lengths of the first lens group and the third lens group are f1, f3, and the focal points of the entire system at the wide-angle end and the telephoto end, respectively. The distance is determined by fW and fT, respectively (paraxial lateral magnification at the telephoto end) / (paraxial lateral magnification at the wide-angle end). When the variable magnification sharing values of the second lens group and the third lens group defined as Z2 and Z3, respectively, 0.3 <f1 / fT <0.81.2 <Z2 / Z3 <3.00.5 A high-magnification zoom lens that satisfies the conditional expression <f3 / fW <0.8 has been proposed (for example, see Patent Document 2).

従来のさらに高倍率のズームレンズとしては、物体側より順に、正屈折力の第1レンズ群、負屈折力の第2レンズ群、正屈折力の第3レンズ群、負屈折力の第4レンズ群、及び、正屈折力の第5レンズ群で構成され、広角端から望遠端への変倍時に、第1レンズ群と第2レンズ群の間隔、及び、第3レンズ群と第4レンズ群の間隔が大きくなり、第2レンズ群と第3レンズ群の間隔、及び、第4レンズ群と第5レンズ群の間隔が小さくなり、以下の条件式を満足することを特徴とするズームレンズ。
2.0<f1 /fW ≦4.8424 ・・・(1)
0.4<|f2 /fW |<1.0 ・・・・(2)
0.3<f3 /fT345≦0.8217 ・・(3)
0.6<|f4 |/fT345<5.0 ・・・(4)
0.9154≦f5 /fT345<4.0 ・・(5)
ただし、
fW は、広角端における全系の焦点距離
f1 は、第1レンズ群の焦点距離
f2 は、第2レンズ群の焦点距離
f3 は、第3レンズ群の焦点距離
f4 は、第4レンズ群の焦点距離
f5 は、第5レンズ群の焦点距離
fT345は、望遠端における第3レンズ群から第5レンズ群までの焦点距離
であるズームレンズが提案されている(例えば、特許文献3参照)。
As a conventional higher magnification zoom lens, in order from the object side, a first lens unit having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power. And a fifth lens group having positive refractive power, and at the time of zooming from the wide angle end to the telephoto end, the distance between the first lens group and the second lens group, and the third lens group and the fourth lens group. The zoom lens is characterized in that the distance between the second lens group and the third lens group and the distance between the fourth lens group and the fifth lens group are reduced, and the following conditional expression is satisfied.
2.0 <f1 / fW ≦ 4.8424 (1)
0.4 <| f2 / fW | <1.0 (2)
0.3 <f3 / fT345 ≦ 0.8217 (3)
0.6 <| f4 | / fT345 <5.0 (4)
0.9154 ≦ f5 / fT345 <4.0 (5)
However,
fW is the focal length f1 of the entire system at the wide angle end, the focal length f2 of the first lens group, the focal length f3 of the second lens group, and the focal length f4 of the third lens group is the focal point of the fourth lens group. A zoom lens has been proposed in which the distance f5 is the focal length fT345 of the fifth lens group, and the focal length is from the third lens group to the fifth lens group at the telephoto end (see Patent Document 3, for example).

特許第4051731号公報Japanese Patent No. 4051731 特許第3236037号公報Japanese Patent No. 3236037 特許第3807712号公報Japanese Patent No. 3807712

特許文献1等のズームレンズにおいては、本発明と同じレンズ群構成で、第1レンズ群と第2レンズ群との空気間隔を狭くし、さらに第1レンズ群と第2レンズ群の焦点距離を短くすることによりコンパクト化を実現したズームレンズ光学系を提案している。しかし、特許文献1のズームレンズにおいては、本発明が目的とするサイズに達しておらず、コンパクト化が不足している。さらに、特許文献1のレンズタイプでは、コンパクト化に伴う望遠端の球面収差及び軸上色収差の悪化の改善に限界がある。   In the zoom lens disclosed in Patent Document 1 or the like, with the same lens group configuration as the present invention, the air gap between the first lens group and the second lens group is narrowed, and the focal length of the first lens group and the second lens group is further reduced. We have proposed a zoom lens optical system that is made compact by shortening it. However, the zoom lens of Patent Document 1 does not reach the target size of the present invention, and is not compact enough. Furthermore, the lens type disclosed in Patent Document 1 has a limit in improving the deterioration of the spherical aberration and the longitudinal chromatic aberration at the telephoto end due to compactification.

特許文献2等のズームレンズにおいては、本発明と同じパワー配分の光学系を提案している。しかし、実施例を見る限り結像性能の優れた光学系となっていない。特に、望遠端の球面収差、軸上色収差の補正が不十分である。特許文献2等のズームレンズは、コンパクト化も不十分である。   The zoom lens disclosed in Patent Document 2 proposes an optical system with the same power distribution as that of the present invention. However, as far as the examples are concerned, the optical system is not excellent in imaging performance. In particular, correction of spherical aberration and axial chromatic aberration at the telephoto end is insufficient. The zoom lens disclosed in Patent Document 2 is not sufficiently compact.

特許文献3等のズームレンズにおいては、本発明と同じパワー配分の光学系を提案している。特許文献3の実施形態は小さい像高のフォーサーズ用のイメージサイズで最適化されたものであるため、それよりもイメージサイズが大きいフルサイズ用光学系とした場合、コンパクト化や高結像性能の要望を満足させることができない。   In the zoom lens disclosed in Patent Document 3, an optical system with the same power distribution as that of the present invention is proposed. Since the embodiment of Patent Document 3 is optimized with an image size for Four Thirds having a small image height, when a full-size optical system having a larger image size is used, compactness and high imaging performance are achieved. Can not satisfy the request.

(発明の目的)
本発明は、従来のズームレンズの上述した問題点に鑑みてなされたものであって、高倍率でありながら高い結像性能を得ることができるコンパクトなズームレンズを提供することを目的とする。
(Object of invention)
The present invention has been made in view of the above-described problems of conventional zoom lenses, and an object of the present invention is to provide a compact zoom lens that can obtain high imaging performance while having a high magnification.

本発明は、物体側から順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、及び正の屈折力の第5レンズ群から構成され、
広角端から望遠端への変倍において、前記第1レンズ群と第2レンズ群の間隔が増加し、前記第2レンズ群と第3レンズ群の間隔が減少し、前記第3レンズ群と第4レンズ群の間隔が変化し、前記第4レンズ群と第5レンズ群の間隔が減少するように、全てのレンズ群が物体側に移動するズームレンズであって、
前記第3レンズ群は物体側から順に正レンズ3枚と負レンズ1枚からなり、
前記第5レンズ群は、物体側から順に正の屈折力の第5Aレンズ群と、該第5Aレンズ群と空気間隔を空けて配置された負の屈折力の第5Bレンズ群とからなり、前記第5Aレンズ群は物体側から順に正レンズ、負レンズと正レンズとの接合レンズを含み、前記第5Bレンズ群は少なくとも負レンズ1枚を含み、以下の条件式を満足することを特徴とするズームレンズである。
(1)0.23<f1/ft<0.41
(2)0.03<|f2/ft|<0.06
(3)0.9<f345t/f3<1.5
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
f3:第3レンズ群の焦点距離
ft:望遠端の焦点距離
f345t:望遠端のにおける第3レンズ群から第5レンズ群までの合成焦点距離
The present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and Consists of a fifth lens group with positive refractive power,
In zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group is increased, the distance between the second lens group and the third lens group is decreased, and the third lens group and the second lens group are A zoom lens in which all the lens groups move to the object side so that the distance between the four lens groups changes and the distance between the fourth lens group and the fifth lens group decreases;
The third lens group includes three positive lenses and one negative lens in order from the object side.
The fifth lens group includes, in order from the object side, a 5A lens group having a positive refractive power, and a 5B lens group having a negative refractive power disposed at an air interval from the 5A lens group. The fifth A lens group includes, in order from the object side, a positive lens, a cemented lens of a negative lens and a positive lens, and the fifth B lens group includes at least one negative lens, and satisfies the following conditional expression: It is a zoom lens.
(1) 0.23 <f1 / ft <0.41
(2) 0.03 <| f2 / ft | <0.06
(3) 0.9 <f345t / f3 <1.5
f1: focal length of the first lens group f2: focal length of the second lens group f3: focal length of the third lens group ft: focal length of the telephoto end f345t: from the third lens group to the fifth lens group at the telephoto end Composite focal length

(本発明の実施形態1)
前記本発明において、以下の条件式を満足することを特徴とするズームレンズである。
(4)0.16<R/f5<0.42
(5)0.01<D/f5<0.20
(6)0.34<f5a/f5<0.74
R:第5Aレンズ群中の最も物体側にある接合レンズの接合面の曲率半径
f5:第5レンズ群の焦点距離
D:第5Aレンズ群と第5Bレンズ群との光軸上の空気間隔
f5a:第5Aレンズ群の焦点距離
(Embodiment 1 of the present invention)
The zoom lens according to the present invention satisfies the following conditional expression.
(4) 0.16 <R / f5 <0.42
(5) 0.01 <D / f5 <0.20
(6) 0.34 <f5a / f5 <0.74
R: radius of curvature of the cemented surface of the cemented lens closest to the object side in the 5A lens group
f5: Focal length of the fifth lens group
D: Air spacing on the optical axis between the 5A lens group and the 5B lens group
f5a: Focal length of the 5A lens group

(本発明の実施形態2)
前記本発明において、以下の条件式を満足することを特徴とするズームレンズである。
(7)1.28<Z3<2.03
Z3:(第3レンズ群以降の望遠端での近軸結像倍率)/(広角端の近軸結像倍率の比)
(Embodiment 2 of the present invention)
The zoom lens according to the present invention satisfies the following conditional expression.
(7) 1.28 <Z3 <2.03
Z3: (Paraxial imaging magnification at the telephoto end after the third lens group) / (Ratio of paraxial imaging magnification at the wide angle end)

(本発明の実施形態3)
前記本発明において、以下の条件式を満足することを特徴とするズームレンズである。
(8)6.2<|Z5|<28.2
Z:(望遠端のおける第5レンズ群の近軸結像倍率)/(広角端のおける第5レンズ群の近軸結像倍率)
(Embodiment 3 of the present invention)
The zoom lens according to the present invention satisfies the following conditional expression.
(8) 6.2 <| Z5 | <28.2
Z: (Paraxial imaging magnification of the fifth lens group at the telephoto end) / (Paraxial imaging magnification of the fifth lens group at the wide-angle end)

本発明のズームレンズによれば、第1レンズ群を4枚構成とし、高倍率でありながら高い結像性能を得るつつコンパクトなズームレンズを構成させることができる。
高倍率ズームレンズをコンパクト化にするためには、各レンズ群の焦点距離の最適化が必須である。例えば、第1レンズ群や第2レンズ群の焦点距離を短くする等があげられる。しかし、望遠端の結像性能、特に望遠端の軸上色収差や倍率色収差が劣化してその補正が難しくなるという問題が発生する。本発明によれば、これらの収差を良好に補正し、高い結像性能を実現させることができる。
According to the zoom lens of the present invention, the first lens group includes four lenses, and a compact zoom lens can be configured while obtaining high imaging performance while having a high magnification.
In order to make the high-power zoom lens compact, it is essential to optimize the focal length of each lens group. For example, the focal length of the first lens group and the second lens group can be shortened. However, there arises a problem that the imaging performance at the telephoto end, particularly the axial chromatic aberration and the lateral chromatic aberration at the telephoto end are deteriorated and correction thereof becomes difficult. According to the present invention, it is possible to satisfactorily correct these aberrations and realize high imaging performance.

(条件式(1)の説明)
条件式(1)は、第1レンズ群の焦点距離を短くし、レンズ全長、特に望遠端での全長を短くするためのものである。また、第2レンズ群から像側へ出射する光束径を適切にしかつ絞り径を小さくすることにより、絞りユニットの大型化を避けて鏡筒外径を小さくするための条件でもある。
条件式(1)の下限値を越えて第1レンズ群の焦点距離が短くなると、第1レンズ群で発生する望遠側での球面収差が著しく大きくなる。この大きくなった球面収差を第2レンズ群以降のレンズ群で補正することは、困難である。
条件式(1)の上限値を越えると、前述のコンパクト化の目的に反する。さらに、所望とする変倍比を得るためにはレンズ移動量を大きくしなければならない。その上、鏡筒をカム筒等で構成させた場合、筒の繋ぎ部の保持構造が大型化するなどコンパクト化に対する課題が大きくなり、設計が困難になる。
(Explanation of conditional expression (1))
Conditional expression (1) is for shortening the focal length of the first lens unit and shortening the total lens length, particularly the total length at the telephoto end. Further, it is also a condition for reducing the outer diameter of the lens barrel by avoiding an increase in size of the aperture unit by making the diameter of the light beam emitted from the second lens group to the image side appropriate and reducing the aperture diameter.
When the lower limit of conditional expression (1) is exceeded and the focal length of the first lens group becomes shorter, the spherical aberration on the telephoto side that occurs in the first lens group becomes significantly larger. It is difficult to correct this increased spherical aberration with the second lens unit and subsequent lens units.
Exceeding the upper limit value of conditional expression (1) is contrary to the above-mentioned purpose of downsizing. Further, in order to obtain a desired zoom ratio, the lens movement amount must be increased. In addition, when the lens barrel is composed of a cam cylinder or the like, the problem of downsizing becomes large, such as an increase in the holding structure of the connecting portion of the cylinder, and the design becomes difficult.

条件式(1)は、より好ましくは、0.25<f1/ft<0.37である。これにより、鏡筒サイズを小さくし、かつ特に望遠端の色収差を良好にすることができる。   Conditional expression (1) more preferably satisfies 0.25 <f1 / ft <0.37. This makes it possible to reduce the size of the lens barrel and to improve the chromatic aberration particularly at the telephoto end.

(条件式(2)の説明)
条件式(2)は、第2レンズ群の適切なパワー配置の範囲を規定する条件である。例えば、画角70°以上で、変倍比10倍以上のズームレンズを、小型化・小径化で達成しようとすると、第1レンズ群および第2レンズ群のパワーバランスが重要になる。特に本発明では、広角端において強いレトロフォーカスのパワー配置にしているため、良好な収差補正を達成するためには、条件式(1)と合わせ、第2レンズ群のパワーバランスを適切に設定することが必須である。
条件式(2)の下限を下回る場合、第2レンズ群の焦点距離の絶対値が比較的大きくなり、すなわち第2レンズ群のパワーを比較的緩い値で設定することになる。この場合、変倍時の第2レンズ群の移動量が増加するため、全系の大型化や全長変化の増大を招く。この場合、また、相対的に第1レンズ群のパワーが強くなるため、特に広角端の主光線の入射高が上昇し、結果的にフィルターサイズの増大を招き、好ましくない。
条件式(2)の上限を上回る場合、第2レンズ群の焦点距離が絶対値が比較的小さくなり、すなわち第2レンズ群のパワーを比較的強い値で設定することになる。この場合、広角側の歪曲の増大、ペッツバール和の悪化による非点収差の増大、下方コマ収差の変倍による変動、望遠側の球面収差の増大等を招き、好ましくない。
(Explanation of conditional expression (2))
Conditional expression (2) is a condition that defines an appropriate power arrangement range of the second lens group. For example, when trying to achieve a zoom lens having an angle of view of 70 ° or more and a zoom ratio of 10 times or more by downsizing and reducing the diameter, the power balance between the first lens group and the second lens group becomes important. In particular, in the present invention, since a strong retrofocus power arrangement is used at the wide-angle end, in order to achieve good aberration correction, the power balance of the second lens group is appropriately set in combination with the conditional expression (1). It is essential.
When the lower limit of conditional expression (2) is not reached, the absolute value of the focal length of the second lens group becomes relatively large, that is, the power of the second lens group is set at a relatively loose value. In this case, the amount of movement of the second lens group at the time of zooming increases, leading to an increase in size of the entire system and an increase in the total length. In this case, since the power of the first lens group is relatively strong, the incident height of the chief ray at the wide-angle end increases, resulting in an increase in filter size, which is not preferable.
If the upper limit of conditional expression (2) is exceeded, the focal length of the second lens group has a relatively small absolute value, that is, the power of the second lens group is set to a relatively strong value. In this case, the distortion on the wide-angle side increases, the astigmatism increases due to the deterioration of the Petzval sum, the fluctuation due to the zooming of the lower coma aberration, the increase of the spherical aberration on the telephoto side, etc., which is not preferable.

なお、条件式(2)の下限を0.04より大きく設定することにより、より確実にフィルターサイズの小径化が可能になり、更に条件式(2)の上限を0.05より小さく設定することによって、収差の良好な補正、高い結像性能という本発明の効果を最大限に得ることができる。   In addition, by setting the lower limit of conditional expression (2) to be larger than 0.04, the filter size can be more reliably reduced, and the upper limit of conditional expression (2) should be set to be smaller than 0.05. Thus, the effects of the present invention, such as good correction of aberrations and high imaging performance, can be obtained to the maximum.

(条件式(3)の説明)
条件式(3)は、第3レンズ群の焦点距離を規定するものである。全長の小型化には、第3レンズ群の焦点距離の短縮化が避けられない。しかし、コンパクトで高い結像性能の光学系を得ようとすると、第3レンズ群で発生する残存収差を適切に補正しなければならない。本発明では、第3レンズ群を、物体側から順に3枚の凸レンズと1枚の凹レンズより構成している。この構成は、特に広角端における軸外光線の下光線側のコマ収差の補正に好ましい。この構成は、さらに望遠側の球面収差補正も同時に補正できる。条件式(3)は、さらに、焦点距離を適正に与えて、収差の発生量と全長の良好なバランスを与える条件である。
条件式(3)の上限を越えて第3レンズ群の焦点距離を短くすると、第3レンズ群による収差発生を補正することが困難となる。
条件式(3)の下限を越えると、バックフォーカスが長くなりすぎ、全長のコンパクト化を図ることが困難となる。
(Explanation of conditional expression (3))
Conditional expression (3) defines the focal length of the third lens group. In order to reduce the overall length, it is inevitable to shorten the focal length of the third lens group. However, in order to obtain a compact and high optical performance optical system, it is necessary to appropriately correct the residual aberration generated in the third lens group. In the present invention, the third lens group includes three convex lenses and one concave lens in order from the object side. This configuration is particularly preferable for correcting the coma aberration on the lower ray side of the off-axis ray at the wide angle end. This configuration can also correct spherical aberration correction on the telephoto side. Conditional expression (3) is a condition that gives a good balance between the amount of aberration and the total length by further giving the focal length appropriately.
If the focal length of the third lens group is shortened beyond the upper limit of conditional expression (3), it will be difficult to correct the aberration caused by the third lens group.
If the lower limit of conditional expression (3) is exceeded, the back focus becomes too long, and it becomes difficult to make the entire length compact.

条件式(3)を満足させてコンパクトな光学系を得た上で、さらに望遠端の結像性能を向上させるには、球面収差性能を向上させる必要がある。それを実現するため、すなわち、鏡筒サイズを小さくしつかつワイドからテレにかけての球面収差コマ収差を良好にするため、
(3’) 0.99<f345t/f3<1.33
であることが好ましい。
In order to further improve the imaging performance at the telephoto end after satisfying the conditional expression (3) to obtain a compact optical system, it is necessary to improve the spherical aberration performance. In order to achieve that, that is, to reduce the barrel size and improve the spherical aberration coma from wide to tele,
(3 ') 0.99 <f345t / f3 <1.33
It is preferable that

(条件式(4)の説明)
条件式(4)は、第5Aレンズ群の構成中、ダブレットからなる凹凸構成のレンズの接合面が、望遠端での球面収差の補正に強く関与する面となることに鑑みた条件式である。
条件式(4)の下限を超え、曲率半径が小さくなり過ぎると、凸レンズのコバ厚を製造上問題ない程度の値に確保する際、中心肉厚を増加させなければならない。その結果、軸外の最周辺光線が上がり周辺光量の確保が困難となり、好ましくない。
条件式(4)の上限を超え、曲率半径が大きくなりすぎると、第5Aレンズ群の接合面での球面収差補正能力が減り、所望の結像性能を確保することが困難となり、好ましくない。
(Explanation of conditional expression (4))
Conditional expression (4) is a conditional expression in consideration of the fact that the cemented surface of the concavo-convex lens composed of a doublet becomes a surface that is strongly involved in the correction of spherical aberration at the telephoto end during the construction of the 5A lens group. .
If the lower limit of conditional expression (4) is exceeded and the radius of curvature becomes too small, the center thickness must be increased when securing the edge thickness of the convex lens to a value that does not cause problems in manufacturing. As a result, the outermost peripheral ray off-axis rises and it becomes difficult to secure the peripheral light amount, which is not preferable.
If the upper limit of conditional expression (4) is exceeded and the radius of curvature becomes too large, the ability to correct spherical aberration at the cemented surface of the 5A lens group will decrease, making it difficult to ensure the desired imaging performance, which is not preferable.

条件式(4)に関し、より好ましくは、
(4’) 0.21<R/f5<0.35
である。このように限定することにより、特に望遠端の倍率色収差を良好に補正することができる。
Regarding conditional expression (4), more preferably,
(4 ') 0.21 <R / f5 <0.35
It is. By limiting in this way, it is possible to satisfactorily correct particularly the lateral chromatic aberration at the telephoto end.

(条件式(5)の説明)
条件式(5)は、第5Aレンズ群と第5Bレンズ群の空気間隔Dと、第5Aレンズ群の焦点距離の関係を規定して、最終レンズのレンズ径を小さくするための条件式である。
条件式(5)の下限を超えて空気間隔Dが狭くなると、第5Aレンズ群から第5Bレンズ群にかけての周辺光線を下げる効果が薄れてしまい,第5Bレンズ群の有効径が大きくなり、鏡筒サイズが大きくなり,好ましくない。
条件式(5)の上限を超えて空気間隔Dを広くすることは、第5Bレンズ群の有効径を小さくするために好ましい。しかし、軸外主光線の撮像面への入射角度が大きくなり、撮像素子の受光角度と受光効率の関係に起因する周辺減光につながり、好ましくない。
(Explanation of conditional expression (5))
Conditional expression (5) is a conditional expression for reducing the lens diameter of the final lens by defining the relationship between the air gap D between the 5A lens group and the 5B lens group and the focal length of the 5A lens group. .
When the air distance D is reduced beyond the lower limit of the conditional expression (5), the effect of reducing the peripheral rays from the 5A lens group to the 5B lens group is diminished, and the effective diameter of the 5B lens group is increased, and the mirror The cylinder size is large, which is not preferable.
Increasing the air gap D beyond the upper limit of conditional expression (5) is preferable in order to reduce the effective diameter of the fifth lens group. However, the incident angle of the off-axis chief ray on the imaging surface increases, leading to peripheral light reduction due to the relationship between the light receiving angle of the image sensor and the light receiving efficiency, which is not preferable.

(条件式(6)の説明)
条件式(6)は、第5Aレンズ群の焦点距離と、第5レンズ群の焦点距離の関係を規定し、第5レンズ群すなわち最終レンズのレンズ径を小さくするための条件式である。
条件式(6)の下限を超えて第5Aレンズ群の焦点距離が短くなると、中間焦点距離での球面収差がアンダー側にふれ、補正が困難となり、好ましくない。
条件式(6)の上限を超えると、逆に中間焦点距離での球面収差がオーバー側に振れ、補正が困難となり、好ましくない。
(Explanation of conditional expression (6))
Conditional expression (6) defines the relationship between the focal length of the 5A lens group and the focal length of the fifth lens group, and is a conditional expression for reducing the lens diameter of the fifth lens group, that is, the final lens.
When the lower limit of conditional expression (6) is exceeded and the focal length of the 5A lens group becomes shorter, spherical aberration at the intermediate focal length touches the under side, making correction difficult, which is not preferable.
If the upper limit of conditional expression (6) is exceeded, conversely, the spherical aberration at the intermediate focal length shifts to the over side, making correction difficult, which is not preferable.

(条件式(7)の説明)
条件式(7)は、第1レンズ群の径を小さくし、さらに光学系をコンパクト化するための条件式である。
本発明のズームレンズにおいては、第1レンズ群の外径すなわち前玉径は、望遠端の最短撮影距離状態で決まる。第1レンズ群の最大光線高さを低くするには、広角端から望遠端にかけての第3レンズ群以降の変倍比を大きくすることが必要となる。
条件式(7)の上限を超えて変倍比を大きくすると、第1レンズ群の外径すなわち前玉径を小さくすることができるが、絞りから前の第2レンズ群の移動量を小さくしなくてはならない。このように絞りから前の第2レンズ群の移動量を小さくすることは、第2レンズ群の焦点距離の短縮化につながり、また広角端での像面湾曲がオーバーとなり、良好な結像性能が得られなくなり、好ましくない。
条件式(7)の下限を超えて変倍比が小さくなると、第2レンズ群で変倍比を稼がなければならず、望遠端で入射瞳位置が深くなり、第1レンズ群の有効径が大きくなるため望ましくない。
(Explanation of conditional expression (7))
Conditional expression (7) is a conditional expression for reducing the diameter of the first lens group and making the optical system more compact.
In the zoom lens of the present invention, the outer diameter of the first lens group, that is, the front lens diameter, is determined by the shortest shooting distance state at the telephoto end. In order to reduce the maximum light ray height of the first lens group, it is necessary to increase the zoom ratio after the third lens group from the wide-angle end to the telephoto end.
If the zoom ratio is increased beyond the upper limit of conditional expression (7), the outer diameter of the first lens group, that is, the front lens diameter can be reduced, but the amount of movement of the second lens group in front from the stop is reduced. Must-have. Reducing the amount of movement of the second lens unit in front of the aperture in this way leads to a shortening of the focal length of the second lens unit, and the field curvature at the wide-angle end is over, resulting in good imaging performance. Cannot be obtained, which is not preferable.
When the zoom ratio becomes smaller than the lower limit of conditional expression (7), the zoom ratio must be increased in the second lens group, the entrance pupil position becomes deeper at the telephoto end, and the effective diameter of the first lens group becomes larger. Undesirably large.

(条件式(8)の説明)
条件式(8)は、望遠端のおける第5レンズ群の倍率と広角端のおける第5レンズ群の倍率の比を規定している。
条件式(8)の上限を超えて望遠端における第5レンズ群の倍率が大きくなると、第5レンズ群の移動量を大きくしなければならず、カム等のメカ部品を構成することができなくなる。
条件式(8)の下限を超えて望遠端における第5レンズ群の倍率が小さくなると、所望する変倍比を確保することができなくなる。また、第1レンズ群の外径すなわち前玉径が大きくなり、好ましくない。
(Explanation of conditional expression (8))
Conditional expression (8) defines the ratio of the magnification of the fifth lens group at the telephoto end to the magnification of the fifth lens group at the wide-angle end.
If the magnification of the fifth lens unit at the telephoto end exceeds the upper limit of conditional expression (8), the amount of movement of the fifth lens unit must be increased, and mechanical parts such as cams cannot be constructed. .
When the lower limit of conditional expression (8) is exceeded and the magnification of the fifth lens group at the telephoto end is reduced, it becomes impossible to ensure the desired zoom ratio. Further, the outer diameter of the first lens group, that is, the front lens diameter is increased, which is not preferable.

本発明のズームレンズの第1実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view at the wide-angle end of the lens configuration according to the first embodiment of the zoom lens of the present invention. 本発明のズームレンズの第1実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 6 is a spherical aberration diagram, an astigmatism diagram, and a distortion diagram when the zoom lens according to the first embodiment of the present invention is in focus at infinity in the wide-angle end state. 本発明のズームレンズの第1実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 6 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the first embodiment of the zoom lens of the present invention. 本発明のズームレンズの第1実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 3 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the first embodiment of the present invention. 本発明のズームレンズの第2実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view at the wide angle end of a lens configuration concerning a 2nd embodiment of a zoom lens of the present invention. 本発明のズームレンズの第2実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 6 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide-angle end state of the lens according to the second embodiment of the zoom lens of the present invention. 本発明のズームレンズの第2実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 7 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the second embodiment of the zoom lens of the present invention. 本発明のズームレンズの第2実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 6 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the lens according to the second embodiment of the zoom lens of the present invention. 本発明のズームレンズの第3実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view in the wide angle end of a lens composition concerning a 3rd embodiment of a zoom lens of the present invention. 本発明のズームレンズの第3実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide-angle end state of the zoom lens according to the third embodiment of the present invention. 本発明のズームレンズの第3実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the third embodiment of the zoom lens of the present invention. 本発明のズームレンズの第3実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 10 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the third embodiment of the present invention. 本発明のズームレンズの第4実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view in the wide angle end of a lens composition concerning a 4th embodiment of a zoom lens of the present invention. 本発明のズームレンズの第4実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 10 is a spherical aberration diagram, an astigmatism diagram, and a distortion diagram when the zoom lens according to the fourth embodiment of the present invention is focused on infinity in the wide-angle end state. 本発明のズームレンズの第4実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 10 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the fourth embodiment of the zoom lens of the present invention. 本発明のズームレンズの第4実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the lens according to Embodiment 4 of the zoom lens of the present invention. 本発明のズームレンズの第5実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view in the wide angle end of a lens composition concerning a 5th embodiment of a zoom lens of the present invention. 本発明のズームレンズの第5実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide-angle end state of the zoom lens according to the fifth embodiment of the present invention. 本発明のズームレンズの第5実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the fifth embodiment of the zoom lens of the present invention. 本発明のズームレンズの第5実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the fifth embodiment of the present invention. 本発明のズームレンズの第6実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view at the wide-angle end of a lens configuration concerning a 6th embodiment of a zoom lens according to the present invention. 本発明のズームレンズの第6実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide-angle end state of the zoom lens according to the sixth embodiment of the present invention. 本発明のズームレンズの第6実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to Sixth Embodiment of the zoom lens of the present invention. 本発明のズームレンズの第6実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the sixth embodiment of the present invention. 本発明のズームレンズの第7実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view in the wide-angle end of a lens composition concerning a 7th embodiment of a zoom lens of the present invention. 本発明のズームレンズの第7実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide angle end state of the zoom lens according to the seventh embodiment of the present invention. 本発明のズームレンズの第7実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the seventh embodiment of the zoom lens of the present invention. 本発明のズームレンズの第7実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the seventh embodiment of the present invention.

以下に示す実施形態において、諸元光学データにおける面番号NSは物体側から数えたレンズ面の順番、Rはレンズ面の曲率半径(mm)、Dはレンズ面の光軸上の間隔(mm)、Ndはd線(波長λ=587.6nm)に対する屈折率、νdはd線(波長λ=587.6nm)に対するアッベ数をそれぞれ示している。また、面番号の後側にSTOPを付したものは、絞りを示す。面番号の後側にASPHを付したものは、非球面を示し、その曲率半径Rの欄には該非球面の近軸曲率半径(mm)を示している。   In the embodiment shown below, the surface number NS in the specification optical data is the order of the lens surface counted from the object side, R is the radius of curvature of the lens surface (mm), and D is the distance on the optical axis of the lens surface (mm). , Nd represents the refractive index for the d-line (wavelength λ = 587.6 nm), and νd represents the Abbe number for the d-line (wavelength λ = 587.6 nm). Also, the surface number with STOP attached to the rear side indicates a stop. The surface number with ASPH on the back side indicates an aspheric surface, and the column of the radius of curvature R indicates the paraxial radius of curvature (mm) of the aspheric surface.

(第1実施形態)
NS R D Nd ABV
1 144.4427 1.3000 1.84666 23.78
2 73.3303 7.0500 1.49700 81.61
3 -352.5295 0.1500
4 60.9991 4.5000 1.77250 49.62
5 170.9549 D( 5)
6 ASPH 69.0969 1.3000 1.85135 40.10
7 ASPH 15.4637 5.5500
8 -43.8865 0.7500 1.77250 49.60
9 33.1060 0.2025
10 28.3357 4.9000 1.84666 23.78
11 -31.9256 0.7500
12 ASPH -20.4452 1.1000 1.80139 45.45
13 ASPH -1951.6514 D(13)
14 STOP 0.0000 1.0000
15 30.1405 2.3500 1.72916 54.67
16 151.6594 0.1500
17 45.5256 3.2000 1.49700 81.54
18 -61.5132 1.4382
19 ASPH 44.8466 4.1000 1.62263 58.16
20 -29.9803 0.7000 1.92286 20.88
21 -112.2565 D(21)
22 ASPH -84.8951 0.8000 1.82080 42.71
23 19.3535 2.5000 1.80809 22.76
24 40.7818 1.0000
25 0.0000 D(25)
26 35.7535 2.6000 1.49700 81.61
27 336.3732 0.1500
28 34.5263 0.9000 1.80610 33.27
29 15.7916 10.3000 1.51742 52.43
30 -24.1113 0.6000
31 ASPH -24.4080 1.3000 1.80610 40.73
32 ASPH 109.5351 0.3246
33 109.0382 2.3000 1.84666 23.78
34 -109.0382 D(34)
(First embodiment)
NS RD Nd ABV
1 144.4427 1.3000 1.84666 23.78
2 73.3303 7.0500 1.49700 81.61
3 -352.5295 0.1500
4 60.9991 4.5000 1.77250 49.62
5 170.9549 D (5)
6 ASPH 69.0969 1.3000 1.85135 40.10
7 ASPH 15.4637 5.5500
8 -43.8865 0.7500 1.77250 49.60
9 33.1060 0.2025
10 28.3357 4.9000 1.84666 23.78
11 -31.9256 0.7500
12 ASPH -20.4452 1.1000 1.80139 45.45
13 ASPH -1951.6514 D (13)
14 STOP 0.0000 1.0000
15 30.1405 2.3500 1.72916 54.67
16 151.6594 0.1500
17 45.5256 3.2000 1.49700 81.54
18 -61.5132 1.4382
19 ASPH 44.8466 4.1000 1.62263 58.16
20 -29.9803 0.7000 1.92286 20.88
21 -112.2565 D (21)
22 ASPH -84.8951 0.8000 1.82080 42.71
23 19.3535 2.5000 1.80809 22.76
24 40.7818 1.0000
25 0.0000 D (25)
26 35.7535 2.6000 1.49700 81.61
27 336.3732 0.1500
28 34.5263 0.9000 1.80610 33.27
29 15.7916 10.3000 1.51742 52.43
30 -24.1113 0.6000
31 ASPH -24.4080 1.3000 1.80610 40.73
32 ASPH 109.5351 0.3246
33 109.0382 2.3000 1.84666 23.78
34 -109.0382 D (34)

上表において、面番号の後側にASPHを付した非球面は、次式で表わされる。
X(y)=(y2/R)/〔1+(1−ε・y2/R21/2〕+A4・y4+A6・y6+A8・y8+A10・y10
ここで、X(y)は光軸から垂直方向の高さyにおける各非球面の頂点から光軸方向に沿った距離(サグ量)、Rは基準球面の曲率半径(近軸曲率半径)、εは円錐係数、A4,A6,A8,A10は非球面係数である。
In the above table, an aspherical surface with ASPH on the back side of the surface number is represented by the following equation.
X (y) = (y 2 / R) / [1+ (1−ε · y 2 / R 2 ) 1/2 ] + A 4 · y 4 + A 6 · y 6 + A 8 · y 8 + A 10 · y 10
Here, X (y) is the distance (sag amount) along the optical axis direction from the apex of each aspheric surface at the height y in the vertical direction from the optical axis, R is the curvature radius (paraxial curvature radius) of the reference spherical surface, ε is a conical coefficient, and A4, A6, A8, and A10 are aspherical coefficients.

ASPH 0(EP) 4(B) 6(C) 8(D) 10(E)
6 1.0000 -1.02722e-005 9.47619e-008 2.23938e-010 -1.30201e-012
7 1.0000 -1.22226e-005 1.42570e-008 6.69588e-010 1.54928e-011
12 1.0000 1.92359e-007 1.76312e-008 1.41900e-009 -6.82224e-012
13 1.0000 -8.40889e-006 3.95017e-008 8.51233e-010 -6.25657e-012
19 1.0000 -1.73425e-005 3.54976e-009 -2.42064e-010 1.08660e-012
22 1.0000 1.01277e-005 -3.85915e-008 3.57802e-010 -2.10834e-012
31 1.0000 7.44476e-006 -1.04046e-007 1.60233e-010 1.03331e-012
32 1.0000 1.83255e-005 -1.23544e-007 3.84014e-010 -2.20579e-013
ASPH 0 (EP) 4 (B) 6 (C) 8 (D) 10 (E)
6 1.0000 -1.02722e-005 9.47619e-008 2.23938e-010 -1.30201e-012
7 1.0000 -1.22226e-005 1.42570e-008 6.69588e-010 1.54928e-011
12 1.0000 1.92359e-007 1.76312e-008 1.41900e-009 -6.82224e-012
13 1.0000 -8.40889e-006 3.95017e-008 8.51233e-010 -6.25657e-012
19 1.0000 -1.73425e-005 3.54976e-009 -2.42064e-010 1.08660e-012
22 1.0000 1.01277e-005 -3.85915e-008 3.57802e-010 -2.10834e-012
31 1.0000 7.44476e-006 -1.04046e-007 1.60233e-010 1.03331e-012
32 1.0000 1.83255e-005 -1.23544e-007 3.84014e-010 -2.20579e-013

以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.8374mm)、中間焦点距離状態(f=91.5081mm)、及び望遠端状態(f=291.2748mm)の面間隔を示す。
f 28.8374 91.5081 291.2748
D( 5) 1.7385 31.7224 55.2905
D(13) 20.1018 9.8747 1.2935
D(21) 1.1457 2.0532 1.3255
D(25) 9.4727 3.4243 0.2541
D(34) 41.7770 74.3796 97.5735
In the following, changes in the surface interval in zoom operation, that is, the surface interval in the wide-angle end state (f = 28.8374 mm), the intermediate focal length state (f = 91.5081 mm), and the telephoto end state (f = 291.2748 mm) are shown.
f 28.8374 91.5081 291.2748
D (5) 1.7385 31.7224 55.2905
D (13) 20.1018 9.8747 1.2935
D (21) 1.1457 2.0532 1.3255
D (25) 9.4727 3.4243 0.2541
D (34) 41.7770 74.3796 97.5735

(第2実施形態)
NS R D Nd ABV
1 165.4170 1.3000 1.84666 23.78
2 78.2825 7.0500 1.49700 81.61
3 -262.6869 0.1500
4 56.6866 4.5000 1.77250 49.62
5 137.2664 D( 5)
6 ASPH 51.6321 1.3000 1.85135 40.10
7 ASPH 16.8131 5.5500
8 -39.5877 0.7500 1.77250 49.60
9 26.8307 0.1503
10 22.4842 4.9000 1.84666 23.78
11 -35.6617 0.7500
12 ASPH -23.7495 1.1000 1.80139 45.45
13 ASPH 76.2738 D(13)
14 STOP 0.0000 1.0000
15 30.3675 2.3500 1.72916 54.67
16 134.2288 0.1500
17 77.5720 3.2000 1.49700 81.54
18 -35.1440 0.3806
19 ASPH 59.3262 4.1000 1.62263 58.16
20 -26.4811 0.7000 1.92286 20.88
21 -96.5604 D(21)
22 ASPH -29.4012 0.8000 1.82080 42.71
23 28.7696 2.5000 1.80809 22.76
24 668.4314 1.0000
25 0.0000 D(25)
26 40.7266 2.6000 1.49700 81.61
27 -358.6556 0.1500
28 40.0963 0.9000 1.80610 33.27
29 16.2080 10.3000 1.51742 52.43
30 -26.7047 8.0000
31 ASPH -19.3712 1.3000 1.80610 40.73
32 ASPH -130.5515 0.1500
33 114.4711 2.3000 1.84666 23.78
34 -114.4711 D(34)
(Second Embodiment)
NS RD Nd ABV
1 165.4170 1.3000 1.84666 23.78
2 78.2825 7.0500 1.49700 81.61
3 -262.6869 0.1500
4 56.6866 4.5000 1.77250 49.62
5 137.2664 D (5)
6 ASPH 51.6321 1.3000 1.85135 40.10
7 ASPH 16.8131 5.5500
8 -39.5877 0.7500 1.77250 49.60
9 26.8307 0.1503
10 22.4842 4.9000 1.84666 23.78
11 -35.6617 0.7500
12 ASPH -23.7495 1.1000 1.80139 45.45
13 ASPH 76.2738 D (13)
14 STOP 0.0000 1.0000
15 30.3675 2.3500 1.72916 54.67
16 134.2288 0.1500
17 77.5720 3.2000 1.49700 81.54
18 -35.1440 0.3806
19 ASPH 59.3262 4.1000 1.62263 58.16
20 -26.4811 0.7000 1.92286 20.88
21 -96.5604 D (21)
22 ASPH -29.4012 0.8000 1.82080 42.71
23 28.7696 2.5000 1.80809 22.76
24 668.4314 1.0000
25 0.0000 D (25)
26 40.7266 2.6000 1.49700 81.61
27 -358.6556 0.1500
28 40.0963 0.9000 1.80610 33.27
29 16.2080 10.3000 1.51742 52.43
30 -26.7047 8.0000
31 ASPH -19.3712 1.3000 1.80610 40.73
32 ASPH -130.5515 0.1500
33 114.4711 2.3000 1.84666 23.78
34 -114.4711 D (34)

ASPH 0(EP) 4(B) 6(C) 8(D) 10(E)
6 1.0000 -1.02898e-005 1.32806e-008 4.14964e-010 -1.14281e-012
7 1.0000 -4.54015e-006 -2.99873e-008 1.48509e-010 9.52196e-012
12 1.0000 -1.45590e-005 1.35493e-007 9.20300e-010 -6.38245e-012
13 1.0000 -2.09844e-005 2.10303e-007 9.95158e-011 -2.78425e-012
19 1.0000 -1.17129e-005 -1.28776e-008 -2.99834e-010 -2.62680e-013
22 1.0000 9.05935e-006 -7.04922e-009 1.61796e-010 3.31478e-013
31 1.0000 1.55089e-005 6.75931e-009 1.37274e-010 2.91828e-012
32 1.0000 2.01929e-005 -4.16583e-008 1.86903e-010 3.89638e-013
ASPH 0 (EP) 4 (B) 6 (C) 8 (D) 10 (E)
6 1.0000 -1.02898e-005 1.32806e-008 4.14964e-010 -1.14281e-012
7 1.0000 -4.54015e-006 -2.99873e-008 1.48509e-010 9.52196e-012
12 1.0000 -1.45590e-005 1.35493e-007 9.20300e-010 -6.38245e-012
13 1.0000 -2.09844e-005 2.10303e-007 9.95158e-011 -2.78425e-012
19 1.0000 -1.17129e-005 -1.28776e-008 -2.99834e-010 -2.62680e-013
22 1.0000 9.05935e-006 -7.04922e-009 1.61796e-010 3.31478e-013
31 1.0000 1.55089e-005 6.75931e-009 1.37274e-010 2.91828e-012
32 1.0000 2.01929e-005 -4.16583e-008 1.86903e-010 3.89638e-013

以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.8400mm)、中間焦点距離状態(f=91.4995mm)、及び望遠端状態(f=291.2891mm)の面間隔を示す。
f 28.8400 91.4995 291.2891
D( 5) 0.1500 28.3915 54.5232
D(13) 18.8349 9.4189 1.2935
D(21) 0.1500 1.8676 1.3054
D(25) 7.1371 3.2126 1.0345
D(34) 40.0000 73.2054 89.6133
In the following, changes in the surface interval in zoom operation, that is, the surface interval in the wide-angle end state (f = 28.8400 mm), the intermediate focal length state (f = 91.4995 mm), and the telephoto end state (f = 291.2891 mm) are shown.
f 28.8400 91.4995 291.2891
D (5) 0.1500 28.3915 54.5232
D (13) 18.8349 9.4189 1.2935
D (21) 0.1500 1.8676 1.3054
D (25) 7.1371 3.2126 1.0345
D (34) 40.0000 73.2054 89.6133

(第3実施形態)
NS R D Nd ABV
1 148.8687 1.2621 1.84666 23.78
2 73.2878 6.8447 1.49700 81.61
3 -298.5898 0.1456
4 59.0312 4.3689 1.77250 49.62
5 163.8576 D( 5)
6 ASPH 65.1612 1.2621 1.85135 40.10
7 ASPH 15.8363 5.3883
8 -37.5960 0.7282 1.77250 49.60
9 31.1965 0.1824
10 26.6117 4.7573 1.84666 23.78
11 -30.9717 0.7282
12 ASPH -20.4198 1.0680 1.80139 45.45
13 ASPH 503.3053 D(13)
14 STOP 0.0000 0.9709
15 28.9676 2.2816 1.72916 54.67
16 135.9423 0.1456
17 42.4624 3.1068 1.49700 81.54
18 -60.8572 1.1511
19 ASPH 45.8555 3.9806 1.62263 58.16
20 -28.3180 0.6796 1.92286 20.88
21 -104.5012 D(21)
22 ASPH -64.6501 0.7767 1.82080 42.71
23 19.6160 2.4272 1.80809 22.76
24 45.9508 0.9709
25 0.0000 D(25)
26 35.2419 2.5243 1.49700 81.61
27 454.3686 0.1456
28 35.4432 0.8738 1.80610 33.27
29 15.6085 10.0000 1.51742 52.43
30 -22.4842 1.9608
31 ASPH -20.0635 1.2621 1.80610 40.73
32 ASPH 451.5013 0.1764
33 106.4044 2.2330 1.84666 23.78
34 -106.4044 D(34)
(Third embodiment)
NS RD Nd ABV
1 148.8687 1.2621 1.84666 23.78
2 73.2878 6.8447 1.49700 81.61
3 -298.5898 0.1456
4 59.0312 4.3689 1.77250 49.62
5 163.8576 D (5)
6 ASPH 65.1612 1.2621 1.85135 40.10
7 ASPH 15.8363 5.3883
8 -37.5960 0.7282 1.77250 49.60
9 31.1965 0.1824
10 26.6117 4.7573 1.84666 23.78
11 -30.9717 0.7282
12 ASPH -20.4198 1.0680 1.80139 45.45
13 ASPH 503.3053 D (13)
14 STOP 0.0000 0.9709
15 28.9676 2.2816 1.72916 54.67
16 135.9423 0.1456
17 42.4624 3.1068 1.49700 81.54
18 -60.8572 1.1511
19 ASPH 45.8555 3.9806 1.62263 58.16
20 -28.3180 0.6796 1.92286 20.88
21 -104.5012 D (21)
22 ASPH -64.6501 0.7767 1.82080 42.71
23 19.6160 2.4272 1.80809 22.76
24 45.9508 0.9709
25 0.0000 D (25)
26 35.2419 2.5243 1.49700 81.61
27 454.3686 0.1456
28 35.4432 0.8738 1.80610 33.27
29 15.6085 10.0000 1.51742 52.43
30 -22.4842 1.9608
31 ASPH -20.0635 1.2621 1.80610 40.73
32 ASPH 451.5013 0.1764
33 106.4044 2.2330 1.84666 23.78
34 -106.4044 D (34)

ASPH 0(EP) 4(B) 6(C) 8(D) 10(E)
6 1.0000 -4.25000e-006 6.12207e-008 2.00143e-010 -1.09663e-012
7 1.0000 -1.96845e-006 2.42253e-008 7.54575e-010 1.25979e-011
12 1.0000 6.08530e-006 7.79170e-009 1.10120e-009 -5.24881e-012
13 1.0000 -2.38665e-006 1.18507e-008 7.51161e-010 -5.09462e-012
19 1.0000 -1.91242e-005 -3.31587e-009 -2.58489e-010 1.15764e-012
22 1.0000 1.28005e-005 -3.76476e-008 3.47794e-010 -2.15776e-012
31 1.0000 1.10228e-005 -1.15516e-007 3.47332e-010 9.08379e-013
32 1.0000 2.23434e-005 -1.33624e-007 5.13132e-010 -5.77227e-013
ASPH 0 (EP) 4 (B) 6 (C) 8 (D) 10 (E)
6 1.0000 -4.25000e-006 6.12207e-008 2.00143e-010 -1.09663e-012
7 1.0000 -1.96845e-006 2.42253e-008 7.54575e-010 1.25979e-011
12 1.0000 6.08530e-006 7.79170e-009 1.10120e-009 -5.24881e-012
13 1.0000 -2.38665e-006 1.18507e-008 7.51161e-010 -5.09462e-012
19 1.0000 -1.91242e-005 -3.31587e-009 -2.58489e-010 1.15764e-012
22 1.0000 1.28005e-005 -3.76476e-008 3.47794e-010 -2.15776e-012
31 1.0000 1.10228e-005 -1.15516e-007 3.47332e-010 9.08379e-013
32 1.0000 2.23434e-005 -1.33624e-007 5.13132e-010 -5.77227e-013

以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.4608mm)、中間焦点距離状態(f=91.4997mm)、及び望遠端状態(f=291.2621mm)の面間隔を示す。
f 28.4608 91.4997 291.2621
D( 5) 2.1627 30.8537 53.6308
D(13) 19.2177 9.5526 1.2559
D(21) 1.1475 1.9844 1.2675
D(25) 7.0100 2.4664 0.1505
D(34) 4.0000 72.1289 94.7195
In the following, changes in the surface interval during zoom operation, that is, the surface intervals in the wide-angle end state (f = 28.4608 mm), the intermediate focal length state (f = 91.4997 mm), and the telephoto end state (f = 291.2621 mm) are shown.
f 28.4608 91.4997 291.2621
D (5) 2.1627 30.8537 53.6308
D (13) 19.2177 9.5526 1.2559
D (21) 1.1475 1.9844 1.2675
D (25) 7.0 100 2.4664 0.1505
D (34) 4.0000 72.1289 94.7195

(第4実施形態)
NS R D Nd ABV
1 144.0456 1.2417 1.84666 23.78
2 71.4976 6.7338 1.49700 81.61
3 -304.1001 0.1433
4 57.5789 4.2982 1.77250 49.62
5 157.4440 D( 5)
6 ASPH 62.9101 1.2417 1.85135 40.10
7 ASPH 15.5650 5.3011
8 -37.1899 0.7164 1.77250 49.60
9 30.2912 0.1760
10 25.8401 4.6802 1.84666 23.78
11 -30.9511 0.7164
12 ASPH -20.3158 1.0507 1.80139 45.45
13 ASPH 397.0636 D(13)
14 STOP 0.0000 0.9552
15 28.4039 2.2446 1.72916 54.67
16 131.2451 0.1433
17 41.8389 3.0565 1.49700 81.54
18 -59.4610 1.1046
19 ASPH 45.3463 3.9161 1.62263 58.16
20 -27.7950 0.6686 1.92286 20.88
21 -102.6083 D(21)
22 ASPH -63.0663 0.7641 1.82080 42.71
23 19.2008 2.3879 1.80809 22.76
24 45.5163 0.9552
25 0.0000 D(25)
26 35.0864 2.4834 1.49700 81.61
27 542.4920 0.1433
28 34.9784 0.8596 1.80610 33.27
29 15.3631 9.8381 1.51742 52.43
30 -22.0503 1.9238
31 ASPH -19.4867 1.2417 1.80610 40.73
32 ASPH 589.8327 0.1655
33 104.7763 2.1969 1.84666 23.78
34 -104.7763 D(34)
(Fourth embodiment)
NS RD Nd ABV
1 144.0456 1.2417 1.84666 23.78
2 71.4976 6.7338 1.49700 81.61
3 -304.1001 0.1433
4 57.5789 4.2982 1.77250 49.62
5 157.4440 D (5)
6 ASPH 62.9101 1.2417 1.85135 40.10
7 ASPH 15.5650 5.3011
8 -37.1899 0.7164 1.77250 49.60
9 30.2912 0.1760
10 25.8401 4.6802 1.84666 23.78
11 -30.9511 0.7164
12 ASPH -20.3158 1.0507 1.80139 45.45
13 ASPH 397.0636 D (13)
14 STOP 0.0000 0.9552
15 28.4039 2.2446 1.72916 54.67
16 131.2451 0.1433
17 41.8389 3.0565 1.49700 81.54
18 -59.4610 1.1046
19 ASPH 45.3463 3.9161 1.62263 58.16
20 -27.7950 0.6686 1.92286 20.88
21 -102.6083 D (21)
22 ASPH -63.0663 0.7641 1.82080 42.71
23 19.2008 2.3879 1.80809 22.76
24 45.5163 0.9552
25 0.0000 D (25)
26 35.0864 2.4834 1.49700 81.61
27 542.4920 0.1433
28 34.9784 0.8596 1.80610 33.27
29 15.3631 9.8381 1.51742 52.43
30 -22.0503 1.9238
31 ASPH -19.4867 1.2417 1.80610 40.73
32 ASPH 589.8327 0.1655
33 104.7763 2.1969 1.84666 23.78
34 -104.7763 D (34)

ASPH 0(EP) 4(B) 6(C) 8(D) 10(E)
6 1.0000 -4.71321e-006 6.75461e-008 2.19801e-010 -1.23619e-012
7 1.0000 -2.73619e-006 2.42354e-008 8.25385e-010 1.46476e-011
12 1.0000 6.19271e-006 9.24196e-009 1.24312e-009 -6.32234e-012
13 1.0000 -2.13493e-006 1.79283e-008 7.99753e-010 -5.73645e-012
19 1.0000 -2.03322e-005 -1.07111e-009 -2.83099e-010 1.29922e-012
22 1.0000 1.39739e-005 -4.67861e-008 4.09191e-010 -2.55153e-012
31 1.0000 1.20828e-005 -1.15794e-007 3.50361e-010 9.96320e-013
32 1.0000 2.33229e-005 -1.40041e-007 5.39993e-010 -6.54135e-013
ASPH 0 (EP) 4 (B) 6 (C) 8 (D) 10 (E)
6 1.0000 -4.71321e-006 6.75461e-008 2.19801e-010 -1.23619e-012
7 1.0000 -2.73619e-006 2.42354e-008 8.25385e-010 1.46476e-011
12 1.0000 6.19271e-006 9.24196e-009 1.24312e-009 -6.32234e-012
13 1.0000 -2.13493e-006 1.79283e-008 7.99753e-010 -5.73645e-012
19 1.0000 -2.03322e-005 -1.07111e-009 -2.83099e-010 1.29922e-012
22 1.0000 1.39739e-005 -4.67861e-008 4.09191e-010 -2.55153e-012
31 1.0000 1.20828e-005 -1.15794e-007 3.50361e-010 9.96320e-013
32 1.0000 2.33229e-005 -1.40041e-007 5.39993e-010 -6.54135e-013

以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.3341mm)、中間焦点距離状態(f=91.4999mm)、及び望遠端状態(f=291.2621mm)の面間隔を示す。
f 28.3341 91.4999 291.2621
D( 5) 2.1655 30.6622 52.7543
D(13) 18.8885 9.4078 1.2355
D(21) 1.1159 2.0194 1.2848
D(25) 7.0260 2.5941 0.1511
D(34) 40.0001 71.5352 94.4367
In the following, changes in the surface interval during zoom operation, that is, the surface intervals in the wide-angle end state (f = 28.3341 mm), the intermediate focal length state (f = 91.4999 mm), and the telephoto end state (f = 291.2621 mm) are shown.
f 28.3341 91.4999 291.2621
D (5) 2.1655 30.6622 52.7543
D (13) 18.8885 9.4078 1.2355
D (21) 1.1159 2.0194 1.2848
D (25) 7.0260 2.5941 0.1511
D (34) 40.0001 71.5352 94.4367

(第5実施形態)
NS R D Nd ABV
1 135.2367 1.1832 1.84666 23.78
2 67.5946 6.4168 1.49700 81.61
3 -296.5204 0.1365
4 53.7506 4.0958 1.77250 49.62
5 140.4143 D( 5)
6 ASPH 58.2061 1.1832 1.85135 40.10
7 ASPH 14.5794 5.0515
8 -36.9896 0.6826 1.77250 49.60
9 29.0762 0.1500
10 25.4334 4.4599 1.84666 23.78
11 -28.7943 0.6826
12 ASPH -19.0942 1.0012 1.80139 45.45
13 ASPH 476.9185 D(13)
14 STOP 0.0000 0.9102
15 24.6484 2.1389 1.72916 54.67
16 85.4286 0.1365
17 40.6283 2.9126 1.49700 81.54
18 -54.5043 1.5751
19 ASPH 44.7348 3.7317 1.62263 58.16
20 -26.0388 0.6371 1.92286 20.88
21 -90.9568 D(21)
22 ASPH -50.4103 0.7281 1.82080 42.71
23 19.2613 2.2754 1.80809 22.76
24 50.0621 0.9102
25 0.0000 D(25)
26 33.1514 2.3665 1.49700 81.61
27 461.2981 0.1365
28 32.9097 0.8192 1.80610 33.27
29 14.5281 9.3748 1.51742 52.43
30 -21.0216 1.8326
31 ASPH -18.3479 1.1832 1.80610 40.73
32 ASPH 626.7437 0.4290
33 100.2556 2.0934 1.84666 23.78
34 -100.2556 D(34)
(Fifth embodiment)
NS RD Nd ABV
1 135.2367 1.1832 1.84666 23.78
2 67.5946 6.4168 1.49700 81.61
3 -296.5204 0.1365
4 53.7506 4.0958 1.77250 49.62
5 140.4143 D (5)
6 ASPH 58.2061 1.1832 1.85135 40.10
7 ASPH 14.5794 5.0515
8 -36.9896 0.6826 1.77250 49.60
9 29.0762 0.1500
10 25.4334 4.4599 1.84666 23.78
11 -28.7943 0.6826
12 ASPH -19.0942 1.0012 1.80139 45.45
13 ASPH 476.9185 D (13)
14 STOP 0.0000 0.9102
15 24.6484 2.1389 1.72916 54.67
16 85.4286 0.1365
17 40.6283 2.9126 1.49700 81.54
18 -54.5043 1.5751
19 ASPH 44.7348 3.7317 1.62263 58.16
20 -26.0388 0.6371 1.92286 20.88
21 -90.9568 D (21)
22 ASPH -50.4103 0.7281 1.82080 42.71
23 19.2613 2.2754 1.80809 22.76
24 50.0621 0.9102
25 0.0000 D (25)
26 33.1514 2.3665 1.49700 81.61
27 461.2981 0.1365
28 32.9097 0.8192 1.80610 33.27
29 14.5281 9.3748 1.51742 52.43
30 -21.0216 1.8326
31 ASPH -18.3479 1.1832 1.80610 40.73
32 ASPH 626.7437 0.4290
33 100.2556 2.0934 1.84666 23.78
34 -100.2556 D (34)

ASPH 0(EP) 4(B) 6(C) 8(D) 10(E)
6 1.0000 -8.45388e-006 6.71077e-008 1.34700e-010 -4.93174e-013
7 1.0000 -7.90111e-006 -6.34122e-008 1.36100e-009 5.77506e-012
12 1.0000 3.89869e-006 -5.75273e-008 1.38653e-009 -5.03017e-012
13 1.0000 -7.24227e-006 7.78011e-009 5.96736e-010 -3.09962e-012
19 1.0000 -2.78191e-005 1.31626e-009 -6.28568e-010 3.02239e-012
22 1.0000 1.74078e-005 -8.16214e-008 7.96106e-010 -4.87538e-012
31 1.0000 1.34536e-005 -8.50142e-008 -3.05958e-010 4.12992e-012
32 1.0000 2.64790e-005 -1.43678e-007 2.83104e-010 5.21657e-013
ASPH 0 (EP) 4 (B) 6 (C) 8 (D) 10 (E)
6 1.0000 -8.45388e-006 6.71077e-008 1.34700e-010 -4.93174e-013
7 1.0000 -7.90111e-006 -6.34122e-008 1.36100e-009 5.77506e-012
12 1.0000 3.89869e-006 -5.75273e-008 1.38653e-009 -5.03017e-012
13 1.0000 -7.24227e-006 7.78011e-009 5.96736e-010 -3.09962e-012
19 1.0000 -2.78191e-005 1.31626e-009 -6.28568e-010 3.02239e-012
22 1.0000 1.74078e-005 -8.16214e-008 7.96106e-010 -4.87538e-012
31 1.0000 1.34536e-005 -8.50142e-008 -3.05958e-010 4.12992e-012
32 1.0000 2.64790e-005 -1.43678e-007 2.83104e-010 5.21657e-013

以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.8400mm)、中間焦点距離状態(f=91.4991mm)、及び望遠端状態(f=291.2621mm)の面間隔を示す。
f 28.8400 91.4991 291.2621
D( 5) 2.3048 29.4936 50.0146
D(13) 17.3450 8.8424 1.1773
D(21) 0.9328 1.7077 1.2524
D(25) 6.5647 2.6304 0.1500
D(34) 40.5661 71.5859 96.6191
In the following, changes in the surface interval during zoom operation, that is, the surface interval in the wide-angle end state (f = 28.8400 mm), the intermediate focal length state (f = 91.4991 mm), and the telephoto end state (f = 291.2621 mm) are shown.
f 28.8400 91.4991 291.2621
D (5) 2.3048 29.4936 50.0146
D (13) 17.3450 8.8424 1.1773
D (21) 0.9328 1.7077 1.2524
D (25) 6.5647 2.6304 0.1500
D (34) 40.5661 71.5859 96.6191

(第6実施形態)
NS R D Nd ABV
1 180.5245 1.3974 1.84666 23.78
2 84.8578 7.5780 1.49700 81.61
3 -283.7439 0.1612
4 64.9439 4.8370 1.77250 49.62
5 180.2134 D( 5)
6 ASPH 71.1542 1.3974 1.85135 40.10
7 ASPH 18.5927 5.9657
8 -36.8014 0.8062 1.77250 49.60
9 34.2596 0.1987
10 29.0869 5.2670 1.84666 23.78
11 -34.2245 0.8062
12 ASPH -23.3101 1.1824 1.80139 45.45
13 ASPH 264.6824 D(13)
14 STOP 0.0000 1.0749
15 33.4690 2.5260 1.72916 54.67
16 191.3458 0.1612
17 41.6149 3.4397 1.49700 81.54
18 -84.3669 0.1500
19 ASPH 48.7507 4.4071 1.62263 58.16
20 -32.1542 0.7524 1.92286 20.88
21 -123.2658 D(21)
22 ASPH -129.1881 0.8599 1.82080 42.71
23 19.9206 2.6872 1.80809 22.76
24 38.4618 1.0749
25 0.0000 D(25)
26 37.3044 2.7947 1.49700 81.61
27 299.2039 0.1612
28 35.5370 0.9674 1.80610 33.27
29 16.5917 11.0714 1.51742 52.43
30 -26.8492 2.1836
31 ASPH -20.3309 1.3974 1.80610 40.73
32 ASPH -378.9677 0.1500
33 117.2889 2.4723 1.84666 23.78
34 -117.2889 D(34)
(Sixth embodiment)
NS RD Nd ABV
1 180.5245 1.3974 1.84666 23.78
2 84.8578 7.5780 1.49700 81.61
3 -283.7439 0.1612
4 64.9439 4.8370 1.77250 49.62
5 180.2134 D (5)
6 ASPH 71.1542 1.3974 1.85135 40.10
7 ASPH 18.5927 5.9657
8 -36.8014 0.8062 1.77250 49.60
9 34.2596 0.1987
10 29.0869 5.2670 1.84666 23.78
11 -34.2245 0.8062
12 ASPH -23.3101 1.1824 1.80139 45.45
13 ASPH 264.6824 D (13)
14 STOP 0.0000 1.0749
15 33.4690 2.5260 1.72916 54.67
16 191.3458 0.1612
17 41.6149 3.4397 1.49700 81.54
18 -84.3669 0.1500
19 ASPH 48.7507 4.4071 1.62263 58.16
20 -32.1542 0.7524 1.92286 20.88
21 -123.2658 D (21)
22 ASPH -129.1881 0.8599 1.82080 42.71
23 19.9206 2.6872 1.80809 22.76
24 38.4618 1.0749
25 0.0000 D (25)
26 37.3044 2.7947 1.49700 81.61
27 299.2039 0.1612
28 35.5370 0.9674 1.80610 33.27
29 16.5917 11.0714 1.51742 52.43
30 -26.8492 2.1836
31 ASPH -20.3309 1.3974 1.80610 40.73
32 ASPH -378.9677 0.1500
33 117.2889 2.4723 1.84666 23.78
34 -117.2889 D (34)

ASPH 0(EP) 4(B) 6(C) 8(D) 10(E)
6 1.0000 -2.31609e-006 3.75914e-008 1.64867e-010 -6.54325e-013
7 1.0000 1.32479e-006 3.68662e-008 3.84022e-010 6.27057e-012
12 1.0000 7.50894e-006 5.58858e-008 -1.54036e-010 -2.82676e-013
13 1.0000 2.53333e-006 1.87863e-008 3.11331e-010 -3.31776e-012
19 1.0000 -1.82742e-005 -1.19673e-008 -1.31733e-010 5.84520e-013
22 1.0000 1.78225e-005 -3.18052e-009 6.72553e-011 -4.79200e-013
31 1.0000 9.23608e-006 -4.80999e-008 -1.93088e-011 1.45950e-012
32 1.0000 1.89078e-005 -6.19715e-008 1.10485e-010 4.09573e-013
ASPH 0 (EP) 4 (B) 6 (C) 8 (D) 10 (E)
6 1.0000 -2.31609e-006 3.75914e-008 1.64867e-010 -6.54325e-013
7 1.0000 1.32479e-006 3.68662e-008 3.84022e-010 6.27057e-012
12 1.0000 7.50894e-006 5.58858e-008 -1.54036e-010 -2.82676e-013
13 1.0000 2.53333e-006 1.87863e-008 3.11331e-010 -3.31776e-012
19 1.0000 -1.82742e-005 -1.19673e-008 -1.31733e-010 5.84520e-013
22 1.0000 1.78225e-005 -3.18052e-009 6.72553e-011 -4.79200e-013
31 1.0000 9.23608e-006 -4.80999e-008 -1.93088e-011 1.45950e-012
32 1.0000 1.89078e-005 -6.19715e-008 1.10485e-010 4.09573e-013

以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.8400mm)、中間焦点距離状態(f=91.4999mm)、及び望遠端状態(f=291.2621mm)の面間隔を示す。
f 28.8400 91.4999 291.2621
D( 5) 0.1500 30.2085 59.6113
D(13) 21.5632 10.8259 1.3904
D(21) 1.6039 1.8678 1.6000
D(25) 5.6530 1.6260 0.1505
D(34) 40.0001 76.7029 87.6658
In the following, changes in the surface interval during zoom operation, that is, the surface intervals in the wide-angle end state (f = 28.8400 mm), the intermediate focal length state (f = 91.4999 mm), and the telephoto end state (f = 291.2621 mm) are shown.
f 28.8400 91.4999 291.2621
D (5) 0.1500 30.2085 59.6113
D (13) 21.5632 10.8259 1.3904
D (21) 1.6039 1.8678 1.6000
D (25) 5.6530 1.6260 0.1505
D (34) 40.0001 76.7029 87.6658

(第7実施形態)
NS R D Nd ABV
1 159.4660 1.3375 1.84666 23.78
2 78.1338 7.2531 1.49700 81.61
3 -310.4288 0.1543
4 62.9329 4.6297 1.77250 49.62
5 176.9525 D( 5)
6 ASPH 68.8336 1.3375 1.85135 40.10
7 ASPH 16.7242 5.7099
8 -39.4108 0.7716 1.77250 49.60
9 33.4809 0.1962
10 28.5590 5.0412 1.84666 23.78
11 -32.4969 0.7716
12 ASPH -21.3469 1.1317 1.80139 45.45
13 ASPH 953.7337 D(13)
14 STOP 0.0000 1.0288
15 30.7710 2.4177 1.72916 54.67
16 147.7204 0.1543
17 47.7286 3.2922 1.49700 81.54
18 -60.3341 0.8150
19 ASPH 47.4026 4.2181 1.62263 58.16
20 -30.4475 0.7202 1.92286 20.88
21 -113.9736 D(21)
22 ASPH -84.9381 0.8231 1.82080 42.71
23 19.9069 2.5720 1.80809 22.76
24 42.6720 1.0288
25 0.0000 D(25)
26 36.7684 2.6749 1.49700 81.61
27 379.3374 0.1543
28 36.0860 0.9259 1.80610 33.27
29 16.2846 10.5968 1.51742 52.43
30 -24.4760 2.1021
31 ASPH -23.0047 1.3375 1.80610 40.73
32 ASPH 180.6025 0.1509
33 112.6150 2.3663 1.84666 23.78
34 -112.6150 D(34)
(Seventh embodiment)
NS RD Nd ABV
1 159.4660 1.3375 1.84666 23.78
2 78.1338 7.2531 1.49700 81.61
3 -310.4288 0.1543
4 62.9329 4.6297 1.77250 49.62
5 176.9525 D (5)
6 ASPH 68.8336 1.3375 1.85135 40.10
7 ASPH 16.7242 5.7099
8 -39.4108 0.7716 1.77250 49.60
9 33.4809 0.1962
10 28.5590 5.0412 1.84666 23.78
11 -32.4969 0.7716
12 ASPH -21.3469 1.1317 1.80139 45.45
13 ASPH 953.7337 D (13)
14 STOP 0.0000 1.0288
15 30.7710 2.4177 1.72916 54.67
16 147.7204 0.1543
17 47.7286 3.2922 1.49700 81.54
18 -60.3341 0.8150
19 ASPH 47.4026 4.2181 1.62263 58.16
20 -30.4475 0.7202 1.92286 20.88
21 -113.9736 D (21)
22 ASPH -84.9381 0.8231 1.82080 42.71
23 19.9069 2.5720 1.80809 22.76
24 42.6720 1.0288
25 0.0000 D (25)
26 36.7684 2.6749 1.49700 81.61
27 379.3374 0.1543
28 36.0860 0.9259 1.80610 33.27
29 16.2846 10.5968 1.51742 52.43
30 -24.4760 2.1021
31 ASPH -23.0047 1.3375 1.80610 40.73
32 ASPH 180.6025 0.1509
33 112.6150 2.3663 1.84666 23.78
34 -112.6150 D (34)

ASPH 0(EP) 4(B) 6(C) 8(D) 10(E)
6 1.0000 -8.50953e-006 6.52873e-008 2.00003e-010 -8.82044e-013
7 1.0000 -7.90995e-006 2.50143e-008 2.90277e-010 1.04509e-011
12 1.0000 1.71995e-006 1.38490e-008 8.14630e-010 -3.28026e-012
13 1.0000 -5.10355e-006 2.29079e-008 6.10722e-010 -3.80168e-012
19 1.0000 -1.62110e-005 -4.26214e-009 -2.00100e-010 7.74691e-013
31 1.0000 7.00791e-006 -9.02400e-008 2.24929e-010 5.42984e-013
32 1.0000 1.65783e-005 -1.00230e-007 3.43177e-010 -3.47343e-013
ASPH 0 (EP) 4 (B) 6 (C) 8 (D) 10 (E)
6 1.0000 -8.50953e-006 6.52873e-008 2.00003e-010 -8.82044e-013
7 1.0000 -7.90995e-006 2.50143e-008 2.90277e-010 1.04509e-011
12 1.0000 1.71995e-006 1.38490e-008 8.14630e-010 -3.28026e-012
13 1.0000 -5.10355e-006 2.29079e-008 6.10722e-010 -3.80168e-012
19 1.0000 -1.62110e-005 -4.26214e-009 -2.00100e-010 7.74691e-013
31 1.0000 7.00791e-006 -9.02400e-008 2.24929e-010 5.42984e-013
32 1.0000 1.65783e-005 -1.00230e-007 3.43177e-010 -3.47343e-013

以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.6753mm)、中間焦点距離状態(f=91.4971mm)、及び望遠端状態(f=291.2621mm)の面間隔を示す。
f 28.6753 91.4971 291.2621
D( 5) 1.1299 30.7837 56.8477
D(13) 20.5338 10.0256 1.3308
D(21) 1.2574 2.1308 1.3318
D(25) 8.7640 2.8651 0.3620
D(34) 4.1019 74.4012 93.4081
In the following, changes in the surface interval during zoom operation, that is, the surface interval in the wide-angle end state (f = 28.6753 mm), the intermediate focal length state (f = 91.4971 mm), and the telephoto end state (f = 291.2621 mm) are shown.
f 28.6753 91.4971 291.2621
D (5) 1.1299 30.7837 56.8477
D (13) 20.5338 10.0256 1.3308
D (21) 1.2574 2.1308 1.3318
D (25) 8.7640 2.8651 0.3620
D (34) 4.1019 74.4012 93.4081

各実施形態の条件式の値は、以下に示す。

Figure 0005867829
The value of the conditional expression of each embodiment is shown below.
Figure 0005867829

STOP 絞り
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
STOP diaphragm G1 first lens group G2 second lens group G3 third lens group G4 fourth lens group G5 fifth lens group

Claims (4)

物体側から順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、及び正の屈折力の第5レンズ群から構成され、
広角端から望遠端への変倍において、前記第1レンズ群と第2レンズ群の間隔が増加し、前記第2レンズ群と第3レンズ群の間隔が減少し、前記第3レンズ群と第4レンズ群の間隔が変化し、前記第4レンズ群と第5レンズ群の間隔が減少するように、全てレンズ群が物体側に移動するズームレンズであって、
前記第3レンズ群は物体側から順に正レンズ3枚と負レンズ1枚からなり、
前記第5レンズ群は、物体側から順に正の屈折力の第5Aレンズ群と、該第5Aレンズ群と第5レンズ群中の最大空気間隔を空けて配置された負の屈折力の第5Bレンズ群とからなり、前記第5Aレンズ群は物体側から順に正レンズ、負レンズと正レンズとの接合レンズを含み、前記第5Bレンズ群は少なくとも負レンズ1枚を含み、以下の条件式を満足することを特徴とするズームレンズ。
(1)0.23<f1/ft<0.41
(2)0.03<|f2/ft|<0.06
(3)0.9<f345t/f3<1.5
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
f3:第3レンズ群の焦点距離
ft:望遠端の焦点距離
f345t:望遠端における第3レンズ群から第5レンズ群までの合成焦点距離
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive refractive power Of the fifth lens group,
In zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group is increased, the distance between the second lens group and the third lens group is decreased, and the third lens group and the second lens group are A zoom lens in which all the lens groups move to the object side so that the distance between the four lens groups changes and the distance between the fourth lens group and the fifth lens group decreases;
The third lens group includes three positive lenses and one negative lens in order from the object side.
The fifth lens group includes a 5A lens group having a positive refractive power in order from the object side, and a 5B lens having a negative refractive power disposed with a maximum air space between the 5A lens group and the fifth lens group . The 5A lens group includes, in order from the object side, a positive lens, a cemented lens of a negative lens and a positive lens, the 5B lens group includes at least one negative lens, and the following conditional expression: A zoom lens characterized by satisfaction.
(1) 0.23 <f1 / ft <0.41
(2) 0.03 <| f2 / ft | <0.06
(3) 0.9 <f345t / f3 <1.5
f1: Focal length of the first lens group f2: Focal length of the second lens group f3: Focal length of the third lens group ft: Focal length at the telephoto end f345t: From the third lens group to the fifth lens group at the telephoto end Composite focal length
以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ
(4)0.16<R/f5<0.42
(5)0.01<D/f5<0.20
(6)0.34<f5a/f5<0.74
R:第5Aレンズ群中の最も物体側にある接合レンズの接合面の曲率半径
f5:第5レンズ群の焦点距離
D:第5Aレンズ群と第5Bレンズ群との光軸上の空気間隔
f5a:第5Aレンズ群の焦点距離
The zoom lens (4) according to claim 1, wherein the following conditional expression is satisfied: 0.16 <R / f5 <0.42
(5) 0.01 <D / f5 <0.20
(6) 0.34 <f5a / f5 <0.74
R: radius of curvature of the cemented surface of the cemented lens closest to the object side in the 5A lens group
f5: Focal length of the fifth lens group
D: Air spacing on the optical axis between the 5A lens group and the 5B lens group
f5a: Focal length of the 5A lens group
以下の条件式を満足することを特徴とする請求項1記載のズームレンズ
(7)1.28<Z3<2.03
Z3:(第3レンズ群以降の望遠端での近軸結像倍率)/(広角端の近軸結像倍率)
The zoom lens (7) according to claim 1, wherein the following conditional expression is satisfied: 1.28 <Z3 <2.03
Z3: (Paraxial imaging magnification at the telephoto end after the third lens group) / (Paraxial imaging magnification at the wide angle end)
以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ
(8)6.2<|Z5|<28.2
Z:(望遠端のおける第5レンズ群の倍率)/(広角端のおける第5レンズ群の倍率)
2. The zoom lens (8) according to claim 1, wherein the following conditional expression is satisfied: 6.2 <| Z5 | <28.2
Z: (Magnification of the fifth lens unit at the telephoto end) / (Magnification of the fifth lens unit at the wide-angle end)
JP2012152122A 2012-07-06 2012-07-06 Zoom lens Active JP5867829B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012152122A JP5867829B2 (en) 2012-07-06 2012-07-06 Zoom lens
PCT/JP2013/068602 WO2014007394A1 (en) 2012-07-06 2013-07-08 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012152122A JP5867829B2 (en) 2012-07-06 2012-07-06 Zoom lens

Publications (2)

Publication Number Publication Date
JP2014016400A JP2014016400A (en) 2014-01-30
JP5867829B2 true JP5867829B2 (en) 2016-02-24

Family

ID=49882144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012152122A Active JP5867829B2 (en) 2012-07-06 2012-07-06 Zoom lens

Country Status (2)

Country Link
JP (1) JP5867829B2 (en)
WO (1) WO2014007394A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075943A1 (en) * 2013-11-22 2015-05-28 株式会社ニコン Zoom lens, optical device, and method for manufacturing zoom lens
JP6745430B2 (en) * 2015-12-22 2020-08-26 パナソニックIpマネジメント株式会社 Zoom lens system, imaging device
JP6830430B2 (en) 2017-12-20 2021-02-17 富士フイルム株式会社 Zoom lens and imaging device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3167069B2 (en) * 1993-11-30 2001-05-14 キヤノン株式会社 Zoom lens
JPH11258506A (en) * 1998-03-12 1999-09-24 Canon Inc Zoom lens
JP2011186162A (en) * 2010-03-08 2011-09-22 Nikon Corp Variable focal length lens, optical device, and method of adjusting the variable focal length lens
JP5609386B2 (en) * 2010-07-30 2014-10-22 株式会社ニコン Variable magnification optical system, optical device

Also Published As

Publication number Publication date
JP2014016400A (en) 2014-01-30
WO2014007394A1 (en) 2014-01-09

Similar Documents

Publication Publication Date Title
JP6534162B2 (en) Imaging lens
CN100371759C (en) Compact large aperture wide-angle lens and camera including compact large aperture wide-angle lens
WO2013183787A1 (en) Zoom lens
US7359125B2 (en) Two-lens-group zoom lens system
JP3200925B2 (en) Zoom lens with wide angle of view
JP6015333B2 (en) Large aperture telephoto lens system
CN110346926B (en) Zoom lens and image pickup apparatus
JP2011075975A5 (en)
JPH05157965A (en) Wide-angle lens
JPH0868941A (en) High-magnification zoom lens
JP5724640B2 (en) Zoom lens system and optical apparatus using the same
JPH04235514A (en) Super-wide angle zoom lens
JP4821237B2 (en) Zoom lens
JP2014235176A (en) Inner focus type lens
JP4096399B2 (en) Large aperture zoom lens
JP4325200B2 (en) Zoom lens
JP4217040B2 (en) Large aperture wide angle lens
JP5867829B2 (en) Zoom lens
JP2011028238A (en) Zoom lens system
JP3551520B2 (en) Zoom lens
JP2003057546A (en) Zoom lens system
JP6160254B2 (en) Zoom lens system
JP6758640B2 (en) Zoom lens
JP2006053437A (en) Zoom lens
JP6819094B2 (en) Secondary optics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151224

R150 Certificate of patent or registration of utility model

Ref document number: 5867829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250