JP5865792B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5865792B2
JP5865792B2 JP2012150543A JP2012150543A JP5865792B2 JP 5865792 B2 JP5865792 B2 JP 5865792B2 JP 2012150543 A JP2012150543 A JP 2012150543A JP 2012150543 A JP2012150543 A JP 2012150543A JP 5865792 B2 JP5865792 B2 JP 5865792B2
Authority
JP
Japan
Prior art keywords
heat exchanger
defrosting
outdoor heat
outdoor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012150543A
Other languages
Japanese (ja)
Other versions
JP2014013108A (en
Inventor
康孝 吉田
康孝 吉田
中山 進
進 中山
横関 敦彦
敦彦 横関
松村 賢治
賢治 松村
内藤 宏治
宏治 内藤
遠藤 道子
道子 遠藤
健治 戸草
健治 戸草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012150543A priority Critical patent/JP5865792B2/en
Publication of JP2014013108A publication Critical patent/JP2014013108A/en
Application granted granted Critical
Publication of JP5865792B2 publication Critical patent/JP5865792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、除霜運転を行なう空気調和機に関する。   The present invention relates to an air conditioner that performs a defrosting operation.

近年、省エネルギ化の推進が一層要望されており、空気調和機においても省エネルギ化を実現するための様々な工夫が為されている。その中で、空気調和機の運転効率を低下させるものとして、暖房運転時における不要な除霜運転がある。除霜運転は、熱交換器に着いた霜や氷を融解させ、蒸発器としての機能を再生させるものであるが、除霜運転の前に、除霜を実施すべきかどうかを正確に判定する必要がある。その判定を誤ると、除霜が必要であるにも拘らず除霜を実施しなかったり、除霜が不要であるにも拘らず、除霜を実施してしまう。このような問題に対して、従来の空気調和機では、以下の特許文献1〜3に記載されているような解決策がとられている。   In recent years, further promotion of energy saving has been demanded, and various devices for realizing energy saving have been made in air conditioners. Among them, there is an unnecessary defrosting operation during heating operation as a means for reducing the operating efficiency of the air conditioner. In the defrosting operation, frost and ice that have arrived at the heat exchanger are melted and the function as an evaporator is regenerated. Before the defrosting operation, it is accurately determined whether or not defrosting should be performed. There is a need. If the determination is wrong, the defrosting is performed although the defrosting is not performed or the defrosting is unnecessary although the defrosting is necessary. In the conventional air conditioner, solutions as described in the following Patent Documents 1 to 3 are taken for such problems.

即ち、特許文献1(特開2007−155299号公報)に記載されているものでは、暖房運転時における室外熱交換器入口側温度と外気温との差、及び圧縮機吸入管温度と外気温の差を検知し、それらの差がそれぞれ所定値より大のとき、着霜と判定して除霜運転を行う。また、何れか一方の差が所定値より小のときには、着霜していないと判定して除霜運転を行なわないようにしている。これにより、配管の長短に関係なく、また圧縮機回転数にも関係なく、正確に着霜を判定し、暖房運転時における不要な除霜運転をなくすようにしている。   That is, in what is described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-155299), the difference between the outdoor heat exchanger inlet side temperature and the outside air temperature during heating operation, and the compressor suction pipe temperature and the outside air temperature When the difference is detected and the difference is larger than a predetermined value, it is determined that the frost is formed and the defrosting operation is performed. Further, when any one of the differences is smaller than a predetermined value, it is determined that frost is not formed and the defrosting operation is not performed. This makes it possible to accurately determine frost formation regardless of the length of the piping and regardless of the compressor rotation speed, thereby eliminating unnecessary defrosting operation during heating operation.

また、特許文献2(特開2008−215734号公報)のものでは、室内機が複数ある空気調和機において、室内機のうちの一つが暖房運転している状態であって、運転を停止している室内機のうち少なくとも一つが暖房運転を開始した場合、除霜運転を開始する室外熱交換器の温度を、一つの室内機が運転している場合の除霜運転を開始する温度よりも低下させることにより、空除霜運転を行なう可能性を低減するようにしている。   Moreover, in the thing of patent document 2 (Unexamined-Japanese-Patent No. 2008-215734), in the air conditioner with a plurality of indoor units, one of the indoor units is in a heating operation, and the operation is stopped. When at least one of the indoor units starts heating operation, the temperature of the outdoor heat exchanger that starts defrosting operation is lower than the temperature that starts defrosting operation when one indoor unit is operating By doing so, the possibility of performing the air defrosting operation is reduced.

更に、特許文献3(特開2010−71495号公報)のものでは、室外機に重量検出手段を設けることにより、熱交換器の重量変化から着霜状況を正確に読み取り、効果的な通常運転並びに除霜運転を行うようにしている。   Furthermore, in the thing of patent document 3 (Unexamined-Japanese-Patent No. 2010-71495), by providing a weight detection means in an outdoor unit, a frosting condition can be read correctly from the weight change of a heat exchanger, effective normal operation and The defrosting operation is performed.

特開2007−155299号公報JP 2007-155299 A 特開2008−215734号公報JP 2008-215734 A 特開2010−71495号公報JP 2010-71495 A

しかし、上記特許文献1のものでは、圧縮機吸入管温度と外気温との差を検知し、その差と所定値とを比較して着霜判定している。しかし、時々刻々と変化する圧縮機回転数に応じて圧縮機吸入管温度も変化するが、この時々刻々変化する温度に応じて判定条件を設定することは実際の使用では難しい。   However, in the thing of the said patent document 1, the difference of a compressor suction pipe temperature and external temperature is detected, The frost formation determination is performed by comparing the difference and predetermined value. However, although the compressor suction pipe temperature also changes according to the compressor rotation speed that changes from moment to moment, it is difficult to set the determination condition according to the temperature that changes from moment to moment in actual use.

また、上記特許文献2のものは、室内機が複数ある空気調和機での対応方法であるが、近年の空気調和機においては室内機の接続台数は数十台にも及ぶ。このため、一台運転から全台数運転まで変化する際、判定条件がどのように変わるかを予め用意しておかねばならず、室内機の種類、配管長や高低差、封入冷媒量の違い、外気温による違いを考慮して判定条件を予め用意することは、現実的には難しい。   Moreover, although the thing of the said patent document 2 is a correspondence method with the air conditioner with two or more indoor units, in the recent air conditioner, the number of indoor units connected reaches dozens. For this reason, when changing from single-unit operation to all-unit operation, it is necessary to prepare in advance how the judgment conditions change, the type of indoor unit, pipe length and height difference, difference in the amount of enclosed refrigerant, It is practically difficult to prepare the determination conditions in advance in consideration of the difference depending on the outside temperature.

上記特許文献3のものは、熱交換器の重量変化から着霜状況を直接検知するものであり、熱交換器全体としての着霜量を計測できるので、着霜の分布不均一が問題にならなければ有用である。しかし、重量計を付加しなければならないため、空気調和機のコストが高くなってしまう。   The thing of the said patent document 3 detects a frost formation directly from the weight change of a heat exchanger, and since the amount of frost formation as the whole heat exchanger can be measured, if distribution of frost formation is a problem, Otherwise it is useful. However, since a weight scale has to be added, the cost of the air conditioner increases.

以上説明したように、着霜判定(除霜開始判定)に対して、現在完全な方策が無い状況である。刻々と変わる空調負荷や冷凍サイクルの運転状態による誤判定を防止するため、現在一般に使用されている除霜開始判定は、外気温や室外熱交換器液温度を検知し、更に前回の除霜運転終了時からの暖房運転継続時間との兼ね合わせで判定するというシンプルな判定方法がとられることが多い。   As described above, there is currently no complete measure for the frost determination (defrosting start determination). In order to prevent misjudgment due to ever-changing air conditioning load and refrigeration cycle operation status, the defrosting start judgment currently used generally detects the outside air temperature and the outdoor heat exchanger liquid temperature, and then the previous defrosting operation A simple determination method is often used in which the determination is made in combination with the heating operation continuation time from the end.

しかし、特に低外気温時の空気調和機の運転に対しては、例えば外気温が−5℃以下の場合、空気中の水蒸気圧が非常に小さくなっている場合があり、その場合熱交換器には着霜していないことも多い。一方、低外気温となる寒冷地では、降雪する場合も多いので、除霜開始判定を間違えると、熱交換器への着霜が過多となり、熱交換器が雪だるまとなって、暖房運転を阻害するだけでなく、室外ファンを破損させたり、破損したファンにより熱交換器を破損させてしまうことがある。そのため、除霜開始判定は安全側に設計し、着霜かどうか疑わしい場合でも定期的に除霜運転を実施して、熱交換器への着霜を防止するようにしている。従って、着霜していないにも拘わらず除霜運転するという空除霜運転も多くなる。しかし、除霜運転中は、暖房運転が停止するため、快適性が損なわれ、空除霜運転により無駄な動力を消費するという課題があった。   However, particularly for operation of an air conditioner at low outside air temperature, for example, when the outside air temperature is −5 ° C. or lower, the water vapor pressure in the air may be very small, in which case the heat exchanger In many cases, frost is not formed. On the other hand, in cold regions where the outside air temperature is low, there are many cases where snow falls, so if the start of defrosting is mistaken, excessive frost formation on the heat exchanger will cause the heat exchanger to become a snowman, impeding heating operation. In addition, the outdoor fan may be damaged or the heat exchanger may be damaged by the damaged fan. Therefore, the defrosting start determination is designed on the safe side, and even if it is doubtful whether or not frost formation, the defrosting operation is periodically performed to prevent frost formation on the heat exchanger. Therefore, the air defrosting operation in which the defrosting operation is performed even though frost is not formed increases. However, since the heating operation is stopped during the defrosting operation, the comfort is impaired, and there is a problem that wasteful power is consumed by the empty defrosting operation.

本発明の目的は、外気温が低い場合でも、除霜開始判定の精度を高めることで、空除霜運転を低減し、空除霜運転による暖房運転の停止や無駄なエネルギ消費を防止することのできる空気調和機を得ることにある。   An object of the present invention is to reduce the air defrosting operation by increasing the accuracy of the defrosting start determination even when the outside air temperature is low, and to prevent the heating operation from being stopped and useless energy consumption by the air defrosting operation. It is to obtain an air conditioner that can be used.

上記目的を達成するために、本発明は、圧縮機、室外熱交換器、該室外熱交換器を流れる冷媒流量を調整する室外膨張弁及び前記室外熱交換器に送風する室外ファンを有する室外機と、室内熱交換器、該室内熱交換器を流れる冷媒流量を調節する室内膨張弁及び前記室内熱交換器に送風する室内ファンを有する室内機と、前記室外機と前記室内機とを配管接続し、封入された冷媒を循環させて冷凍サイクルを構成する空気調和機であって、前記室外熱交換器における室外熱交換器液温度と外気温と室外熱交換器液温度判定値に基づいて除霜開始判定を行なうようにした制御演算装置を備え、前記制御演算装置は、予め定めた時間毎に前記除霜開始判定を実施すると共に、今回実施した除霜運転時における室外熱交換器液温度の所定温度までの上昇時間を測定して、この上昇時間と予め設定した判定値とを比較し、今回実施した除霜運転が着霜除霜であったか空除霜であったかを判定し、この判定により今回の除霜運転が空除霜であったと判定した場合には、前記室外熱交換器液温度判定値を是正し、次回の除霜開始判定時には前記是正された室外熱交換器液温度判定値に基づいて除霜開始判定を実施するように構成し、更に前記制御演算装置は、今回実施した除霜運転が着霜除霜であったか空除霜であったかの判定に仮説検定を用いて判定すると共に、前記仮説検定において、前記室外熱交換器液温度の上昇時間の判定値は、全平均危険高を最小にするように決められることを特徴とする。 In order to achieve the above object, the present invention provides an outdoor unit having a compressor, an outdoor heat exchanger, an outdoor expansion valve that adjusts the flow rate of refrigerant flowing through the outdoor heat exchanger, and an outdoor fan that blows air to the outdoor heat exchanger. And an indoor unit having an indoor heat exchanger, an indoor expansion valve that adjusts the flow rate of the refrigerant flowing through the indoor heat exchanger, and an indoor fan that blows air to the indoor heat exchanger, and a pipe connection between the outdoor unit and the indoor unit An air conditioner that constitutes a refrigeration cycle by circulating the enclosed refrigerant, and that is removed based on the outdoor heat exchanger liquid temperature, the outdoor air temperature, and the outdoor heat exchanger liquid temperature determination value in the outdoor heat exchanger. The control arithmetic device is configured to make a frost start determination, and the control arithmetic device performs the defrost start determination every predetermined time, and the outdoor heat exchanger liquid temperature during the defrost operation performed this time Up to the prescribed temperature The rising time is measured, and the rising time is compared with a preset determination value to determine whether the defrosting operation performed this time is defrosting or empty defrosting. When it is determined that the operation is an empty defrost, the outdoor heat exchanger liquid temperature judgment value is corrected, and the next defrost start determination is performed based on the corrected outdoor heat exchanger liquid temperature judgment value. Further, the control arithmetic unit is configured to determine whether the defrosting operation performed this time is defrosting defrosting or empty defrosting using a hypothesis test, and the hypothesis In the test, the judgment value of the rise time of the outdoor heat exchanger liquid temperature is determined so as to minimize the total average danger level .

本発明の他の特徴は、圧縮機、室外熱交換器、該室外熱交換器を流れる冷媒流量を調整する室外膨張弁及び前記室外熱交換器に送風する室外ファンを有する室外機と、室内熱交換器、該室内熱交換器を流れる冷媒流量を調節する室内膨張弁及び前記室内熱交換器に送風する室内ファンを有する室内機と、前記室外機と前記室内機とを配管接続し、封入された冷媒を循環させて冷凍サイクルを構成する空気調和機であって、前記室外熱交換器における室外熱交換器液温度と外気温と室外熱交換器液温度判定値に基づいて除霜開始判定を行なうようにした制御演算装置を備え、前記制御演算装置は、予め定めた時間毎に前記除霜開始判定を実施すると共に、今回実施した除霜運転時における前記圧縮機の吐出側圧力の所定圧力までの上昇時間を測定して、この上昇時間と予め設定した判定値とを比較し、今回実施した除霜運転が着霜除霜であったか空除霜であったかを判定し、この判定により今回の除霜運転が空除霜であったと判定した場合には、前記室外熱交換器液温度判定値を是正し、次回の除霜開始判定時には前記是正された室外熱交換器液温度判定値に基づいて除霜開始判定を実施するように構成されていることにある。   Another feature of the present invention is that an outdoor unit having a compressor, an outdoor heat exchanger, an outdoor expansion valve that adjusts the flow rate of refrigerant flowing through the outdoor heat exchanger, and an outdoor fan that blows air to the outdoor heat exchanger; An indoor unit having an exchanger, an indoor expansion valve that adjusts the flow rate of refrigerant flowing through the indoor heat exchanger, and an indoor fan that blows air to the indoor heat exchanger, and the outdoor unit and the indoor unit are connected by piping. The refrigerant is circulated to form a refrigeration cycle, and the defrosting start determination is made based on the outdoor heat exchanger liquid temperature, the outdoor air temperature, and the outdoor heat exchanger liquid temperature determination value in the outdoor heat exchanger. A control arithmetic unit configured to perform the defrosting start determination every predetermined time, and the predetermined pressure of the discharge side pressure of the compressor during the defrosting operation performed this time Measure the rise time until Then, this rising time is compared with a preset determination value to determine whether the defrosting operation performed this time was defrosting defrosting or empty defrosting. When it is determined that it is frost, the outdoor heat exchanger liquid temperature determination value is corrected, and the next defrost start determination is performed, the defrost start determination is performed based on the corrected outdoor heat exchanger liquid temperature determination value. It is configured to be implemented.

本発明によれば、外気温が低い場合でも、除霜開始判定の精度を高めることができるので、空除霜運転を低減でき、この結果、空除霜運転による暖房運転の停止や無駄なエネルギ消費を防止可能な空気調和機を得ることができる効果がある。   According to the present invention, even when the outside air temperature is low, the accuracy of the defrosting start determination can be increased, so that the empty defrosting operation can be reduced. As a result, the heating operation is stopped by the empty defrosting operation and wasted energy. There exists an effect which can obtain the air conditioner which can prevent consumption.

本発明の空気調和機の実施例1を示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows Example 1 of the air conditioner of this invention. 暖房低温条件と暖房極低温条件での除霜運転時の室外熱交換器液温度の変化を説明する線図。The diagram explaining the change of the outdoor heat exchanger liquid temperature at the time of a defrost operation in heating low temperature conditions and heating cryogenic conditions. 本発明の実施例1における空除霜か着霜除霜かを説明する確率密度関数を示す線図。The diagram which shows the probability density function explaining whether it is empty defrost or defrost defrost in Example 1 of this invention. 一般的に使用されている、外気温に対する除霜開始判定のための室外熱交換器液温度を説明する線図。The diagram explaining the outdoor heat exchanger liquid temperature for the defrost start determination with respect to external temperature generally used. 本発明の実施例1における外気温に対する除霜開始判定のための室外熱交換器液温度を説明する線図。The diagram explaining the outdoor heat exchanger liquid temperature for the defrost start determination with respect to the external temperature in Example 1 of this invention. 本発明の空気調和機の実施例1における除霜運転の動作を説明するフローチャート。The flowchart explaining operation | movement of the defrost driving | operation in Example 1 of the air conditioner of this invention.

以下、本発明の空気調和機の具体的実施例を図面に基づいて説明する。   Hereinafter, specific embodiments of the air conditioner of the present invention will be described with reference to the drawings.

本発明の空気調和機の実施例1を図1〜図6により説明する。
図1は、本発明の空気調和機の実施例1を示す冷凍サイクル系統図である。この図1を用いて本実施例の空気調和機の全体構成を説明する。
A first embodiment of an air conditioner according to the present invention will be described with reference to FIGS.
FIG. 1 is a refrigeration cycle diagram showing a first embodiment of an air conditioner of the present invention. The whole structure of the air conditioner of a present Example is demonstrated using this FIG.

本実施例における空気調和機は、複数台の室外機11,1Nと、複数台の室内機411,41Mが、液側接続配管15とガス側接続配管16で接続されて閉回路を構成している。この閉回路の中には冷媒が封入されている。   In the air conditioner of the present embodiment, a plurality of outdoor units 11, 1N and a plurality of indoor units 411, 41M are connected by a liquid side connection pipe 15 and a gas side connection pipe 16 to form a closed circuit. Yes. A refrigerant is sealed in the closed circuit.

前記室外機11,1Nにはそれぞれ、インバータにより回転周波数を可変できる圧縮機21,2N、四方弁(可逆弁)61,6N、室外空気と熱交換を行なう室外熱交換器31,3N、該室外熱交換器31,3Nの冷媒流量を調整するために電子膨張弁などで構成された室外膨張弁81,8N、過冷却熱交換器101,10N、受液器71,7N、アキュムレータ51,5Nなどが配管接続されて設けられている。また、冷媒の一部を分岐させて前記過冷却熱交換器101,10Nを通過させた後、前記圧縮機21,2Nの吸込側に戻すためのバイパス回路が設けられており、このバイパス回路には室外パイパス膨張弁91,9Nが設けられている。   The outdoor units 11 and 1N include compressors 21 and 2N that can vary the rotation frequency by an inverter, four-way valves (reversible valves) 61 and 6N, outdoor heat exchangers 31 and 3N that perform heat exchange with outdoor air, and the outdoor units. Outdoor expansion valves 81 and 8N composed of electronic expansion valves and the like for adjusting the refrigerant flow rate of the heat exchangers 31 and 3N, supercooling heat exchangers 101 and 10N, liquid receivers 71 and 7N, accumulators 51 and 5N, etc. Is provided by pipe connection. Further, a bypass circuit is provided for branching a part of the refrigerant and allowing it to pass through the supercooling heat exchangers 101 and 10N and then returning to the suction side of the compressors 21 and 2N. Are provided with outdoor bypass expansion valves 91 and 9N.

41,4Nは前記室外熱交換器31,3Nに送風するための室外ファン、251,25Nは前記圧縮機の周波数を操作するインバータ圧縮機周波数操作器、261,26Nは前記室外ファンの送風能力を操作する室外ファン送風能力操作器、271,27Nは前記室外膨張弁の開度を操作する室外膨張弁開度操作器、281,28Nは室外バイパス膨張弁操作器、291,29Nは四方弁操作器である。   Reference numerals 41 and 4N denote outdoor fans for sending air to the outdoor heat exchangers 31 and 3N, reference numerals 251 and 25N denote inverter compressor frequency controllers that operate the frequency of the compressor, and reference numerals 261 and 26N denote blowing capacity of the outdoor fans. An outdoor fan blowing capacity operation device to be operated, 271 and 27N are outdoor expansion valve opening operation devices for operating the opening of the outdoor expansion valve, 281 and 28N are outdoor bypass expansion valve operation devices, and 291 and 29N are four-way valve operation devices. It is.

また、321,32Nは圧縮機吸入温度検知器、331,33Nは圧縮機吐出温度検知器、341,34Nは過冷却熱交換器出口温度検知器、351,35Nは室外熱交換器液温度検知器、361,36Nは室外温度(外気温)を検知する室外温度検知器、371,37Nは前記圧縮機への吸入圧力を検知する圧縮機吸入圧力検知器、381,38Nは前記圧縮機の吐出圧力を検知する圧縮機吐出圧力検知器である。   321 and 32N are compressor intake temperature detectors, 331 and 33N are compressor discharge temperature detectors, 341 and 34N are subcooling heat exchanger outlet temperature detectors, and 351 and 35N are outdoor heat exchanger liquid temperature detectors. 361, 36N are outdoor temperature detectors for detecting the outdoor temperature (outside air temperature), 371, 37N are compressor suction pressure detectors for detecting the suction pressure to the compressor, and 381, 38N are discharge pressures of the compressor. It is a compressor discharge pressure detector which detects this.

前記室内機211,21Mは空気調和の対象となる各利用部(各室内)421,42Mにそれぞれ設けられている。また、前記室内機211,21Mにはそれぞれ、室内空気と熱交換を行う室内熱交換器221,22M、該室内熱交換器の冷媒流量を調整するために電子膨張弁などで構成された室内膨張弁241,24Mが順次配管で接続されている。231,23Mは前記室内熱交換器221,22Mに送風するための室内ファン、301,30Mは前記室内ファンの送風能力を操作する室内ファン送風能力操作器、311,31Mは前記室内膨張弁の開度を操作する室内膨張弁開度操作器、391,39Mは室内(利用部)温度を検知する室内機吸込温度検知器、401,40Mは前記室内(利用部)への吹出空気温度を検知する前記室内機吹出温度検知器である。前記各利用部421,42Mには、それぞれの室内の温度設定値を記憶したり或いは好みの室温に設定するための利用部温度設定器(リモコン等)411,41Mが設けられている。   The indoor units 211 and 21M are provided in the respective use units (each room) 421 and 42M which are air conditioning targets. Each of the indoor units 211 and 21M includes indoor heat exchangers 221 and 22M that exchange heat with room air, and an indoor expansion unit that includes an electronic expansion valve or the like for adjusting the refrigerant flow rate of the indoor heat exchanger. The valves 241 and 24M are sequentially connected by piping. 231 and 23M are indoor fans for sending air to the indoor heat exchangers 221 and 22M, 301 and 30M are indoor fan air blowing capacity controllers for operating the air blowing capacity of the indoor fans, and 311 and 31M are openings of the indoor expansion valve. Indoor expansion valve opening operation device for operating the degree, 391, 39M are indoor unit suction temperature detectors for detecting the indoor (use part) temperature, and 401, 40M are for detecting the temperature of the air blown into the room (use part) It is the said indoor unit blowing temperature detector. Each of the utilization units 421 and 42M is provided with utilization unit temperature setting devices (such as a remote controller) 411 and 41M for storing the temperature setting values of the respective rooms or setting the desired room temperature.

前記各室外機11,1Nの液側配管111,11Nは室外機側液側分岐部13で合流されて前記液側接続配管15に接続され、ガス側配管121,12Nは室外機側ガス側分岐部14で合流されて前記ガス側接続配管16に接続されている。   The liquid side pipes 111 and 11N of the outdoor units 11 and 1N are joined at the outdoor unit side liquid side branching section 13 and connected to the liquid side connection pipe 15, and the gas side pipes 121 and 12N are connected to the outdoor unit side gas side branch. They are merged at the section 14 and connected to the gas side connection pipe 16.

一方、前記各室内機211,21Mの液側配管191,19Mは室内機側液側分岐部17で合流されて前記液側接続配管15に接続され、ガス側配管201,20Mは室内機側ガス側分岐部18で合流されて前記ガス側接続配管16に接続されている。   On the other hand, the liquid side pipes 191 and 19M of the indoor units 211 and 21M are joined at the indoor unit side liquid side branching section 17 and connected to the liquid side connection pipe 15, and the gas side pipes 201 and 20M are the indoor unit side gas. The gas is connected at the side branch portion 18 and connected to the gas side connection pipe 16.

このように前記各室外機11,11Nと前記各室内機211,21Mが配管接続されることにより閉回路が構成され、この閉回路中に封入された冷媒が循環することで冷凍サイクルが為される。なお、43は空気調和機全体を制御し、また除霜運転の制御や除霜開始判定なども実施するように構成されている制御演算装置である。   In this way, the outdoor units 11 and 11N and the indoor units 211 and 21M are connected by pipes to form a closed circuit, and the refrigerant enclosed in the closed circuit circulates to form a refrigeration cycle. The In addition, 43 is a control arithmetic unit configured to control the entire air conditioner and also to control the defrosting operation and determine the start of defrosting.

なお、図1に示した本実施例の空気調和機では、2台の室外機と2台の室内機を接続して構成されているが、これらの接続台数はそれぞれ2台に限られるものではなく、それぞれ1台でも、3台以上でも良い。また、前記室外機に設けられているアキュムレータ51,5N、受液器71,7N及び過冷却熱交換器101,10Nなどは必ずしも必要なものではなく、これらの機器を備えていないものでも本実施例は同様に実施できる。更に、本実施例では、前記圧縮機21,2Nとして回転周波数を制御可能なインバータ圧縮機を採用しているが、前記圧縮機は一定速圧縮機であっても良く、また各室外機に備えられる圧縮機は複数台でも良い。   The air conditioner of the present embodiment shown in FIG. 1 is configured by connecting two outdoor units and two indoor units. However, the number of connected units is not limited to two each. There may be one each or three or more. In addition, the accumulators 51 and 5N, the liquid receivers 71 and 7N, the supercooling heat exchangers 101 and 10N, and the like that are provided in the outdoor unit are not necessarily required, and the present invention is implemented even if these devices are not provided. Examples can be implemented as well. Furthermore, in this embodiment, an inverter compressor capable of controlling the rotation frequency is adopted as the compressors 21 and 2N. However, the compressor may be a constant speed compressor, and is provided in each outdoor unit. A plurality of compressors may be used.

次に、本実施例による空気調和機の動作について説明する。
空気調和機が暖房運転している状態を説明する。暖房運転時は、室外熱交換器31,3Nは蒸発器、室内熱交換器221,22Mは凝縮器として作動している。蒸発器は通常熱交換器温度が低下し、しかも室外に晒されているため、室外熱交換器は着霜し易い。室外熱交換器に着霜すると、室外空気との熱交換が阻害されるので、暖房能力が低下すると共に、着霜量が増加して行く。着霜量が増加すると、暖房能力不足となり、室温を適正な温度に保てなくなる。
Next, operation | movement of the air conditioner by a present Example is demonstrated.
A state where the air conditioner is in the heating operation will be described. During the heating operation, the outdoor heat exchangers 31 and 3N operate as an evaporator, and the indoor heat exchangers 221 and 22M operate as a condenser. Since the evaporator usually has a low heat exchanger temperature and is exposed to the outside, the outdoor heat exchanger tends to frost. When frost is formed on the outdoor heat exchanger, heat exchange with outdoor air is inhibited, so that the heating capacity is reduced and the frost amount is increased. When the amount of frost formation increases, the heating capacity becomes insufficient, and the room temperature cannot be maintained at an appropriate temperature.

そこで、定期的に除霜運転を実施して、室外熱交換器に着いた霜や氷を融解させる必要がある。ところが除霜運転のタイミングを誤り、着霜量が増え過ぎると、霜が氷状となって室外熱交換器に大きく貼り付いた状態となる。このため、室外ファンと室外熱交換器との間の寸法が小さい場合、前記室外熱交換器に貼り付いた氷と前記室外ファンが触れて、室外ファンが破損し、空気調和機自体が運転不可能に陥る場合がある。従って、室外熱交換器の着霜判定をする際、着霜しているかどうか明確でない場合でも除霜運転を実施するように安全サイドに設計されることが多かった。   Therefore, it is necessary to periodically perform a defrosting operation to melt frost and ice that have arrived at the outdoor heat exchanger. However, if the timing of the defrosting operation is mistaken and the amount of frost formation increases too much, the frost becomes icy and is largely stuck to the outdoor heat exchanger. For this reason, when the dimension between the outdoor fan and the outdoor heat exchanger is small, the ice stuck to the outdoor heat exchanger and the outdoor fan come into contact with each other, the outdoor fan is damaged, and the air conditioner itself cannot operate. It may be possible. Therefore, when determining the frost formation of the outdoor heat exchanger, it is often designed on the safe side so that the defrosting operation is performed even if it is not clear whether the frost is formed.

着霜しているかどうかを判定する着霜判定(除霜開始判定)の際、安全サイドに設計すると、室外熱交換器に着霜していない場合にも除霜運転を開始(空除霜)することがある。除霜運転の最も標準的な方法は、前記四方弁(可逆弁)61,6Nを操作して、圧縮機からの高温高圧のガス冷媒を室外熱交換器31,3Nの方向に流して除霜する逆サイクル方式である。この方式だと、圧縮機より吐出される高温高圧冷媒を直接室外熱交換器に流すので、除霜時間の短縮が図れる。しかし、この逆サイクル方式では、除霜運転中、前記室内熱交換器221,22Mは蒸発器となってしまうので、室内を暖房する能力は0(或いはマイナス)となり、温風が出ず、室温が使用者の設定温度よりも低下することが発生する。   When designed for the safe side during frost determination (defrost start determination) to determine whether or not frost has been formed, start defrost operation even when the outdoor heat exchanger is not frosted (empty defrost) There are things to do. The most standard method for the defrosting operation is to operate the four-way valves (reversible valves) 61 and 6N to flow the high-temperature and high-pressure gas refrigerant from the compressor toward the outdoor heat exchangers 31 and 3N. This is a reverse cycle method. With this method, the high-temperature and high-pressure refrigerant discharged from the compressor flows directly to the outdoor heat exchanger, so that the defrosting time can be shortened. However, in this reverse cycle method, during the defrosting operation, the indoor heat exchangers 221 and 22M become evaporators, so the ability to heat the room becomes 0 (or minus), no hot air is emitted, May fall below the user's set temperature.

従って、室外熱交換器に着霜していないにも拘らず除霜運転を行うと、室温が低下して不快になるだけでなく、暖房運転再開の際、再び室温を上昇をさせなければならないため無駄なエネルギを消費する。また、冷えた室内熱交換器を再度凝縮温度にまで上昇させ、温まった室外熱交換器を再度蒸発温度にまで低下させなければならないので、空調場と冷凍サイクル両方にとって不要なエネルギを消費することになる。   Therefore, when the defrosting operation is performed despite the fact that the outdoor heat exchanger is not frosted, the room temperature is lowered and uncomfortable, and the room temperature must be increased again when the heating operation is resumed. Therefore, useless energy is consumed. Also, the cold indoor heat exchanger must be raised again to the condensation temperature, and the warmed outdoor heat exchanger must be lowered again to the evaporation temperature, thus consuming unnecessary energy for both the air-conditioning station and the refrigeration cycle. become.

以上のことから、無駄な除霜運転はできるだけ回避したいが、着霜しているにも拘らず誤判定によって空気調和機の破損に至ることは避けなければならない。従って、着霜判定の精度を上げて、空除霜運転を低減し、着霜している場合には確実に除霜運転が行なわれるようにする必要がある。
着霜判定(即ち、除霜を開始するかどうかの除霜開始判定)は、室外熱交換器液温度、外気温(室外温度)及び前回の除霜運転終了時からの暖房運転継続時間を用いて判定する方法が現在一般に使用されている。しかし、この判定方法では、空気調和機の現地据付情報、つまり設置状態による冷凍サイクルの変化や外気温以外の気象条件については、通常除霜開始判定に考慮されていない。例えば、配管長に対する適切な冷媒量に対して、封入冷媒量が少ない場合、外気温に対する室外熱交換器液温度も低下するため、着霜し易くなる。また、同じ外気温でも、湿度が非常に低い場合と高い場合では着霜量が異なる。
From the above, it is desirable to avoid unnecessary defrosting operation as much as possible, but it must be avoided that the air conditioner is damaged due to erroneous determination despite frost formation. Therefore, it is necessary to improve the accuracy of frost formation determination to reduce the empty defrosting operation and to ensure that the defrosting operation is performed when frosting occurs.
Defrosting determination (that is, whether or not to start defrosting) uses the outdoor heat exchanger liquid temperature, the outside air temperature (outdoor temperature), and the heating operation continuation time from the end of the previous defrosting operation. This method is generally used today. However, in this determination method, the local installation information of the air conditioner, that is, the change in the refrigeration cycle depending on the installation state and the weather conditions other than the outside temperature are not considered in the normal defrosting start determination. For example, when the amount of the enclosed refrigerant is small with respect to an appropriate amount of refrigerant with respect to the pipe length, the outdoor heat exchanger liquid temperature with respect to the outside air temperature also decreases, so that frost formation is likely to occur. Moreover, even if the outside temperature is the same, the amount of frost formation differs between when the humidity is very low and when the humidity is high.

そう言った情報は、除霜開始判定には反映されていないので、除霜が必要との判定(除霜開始判定)が為された時点で、着霜し易い条件が整っている状態では、想定量よりも着霜量が多い状態となっている場合がある。逆に、着霜し難い条件が整っている状態では、着霜量が少ないことがある。特に、低外気温で空気中の水蒸気量が少ない場合、室外熱交換器には殆ど着霜しない。しかし、上述した現在の一般的な除霜開始判定では、同じ判定条件になってしまうので、何れの場合でも着霜と判断して除霜開始判定が為されてしまう。   Since the information that has been said is not reflected in the defrosting start determination, at the time when the determination that defrosting is necessary (defrosting start determination) has been made, There is a case where the amount of frost formation is larger than the assumed amount. Conversely, the amount of frost formation may be small in a state where conditions for preventing frost formation are in place. In particular, when the amount of water vapor in the air is low at a low outdoor temperature, the outdoor heat exchanger hardly frosts. However, in the current general defrosting start determination described above, the same determination condition is used, so in any case, it is determined that frost formation has occurred and the defrosting start determination is made.

そこで、本実施例では、前回の除霜運転開始時に、着霜が多い状態であった場合には、除霜時間が多く掛かり、一方、着霜が無い状態で除霜を実施した場合には、除霜時間が短くなることを利用し、前回の除霜運転の結果を用いて、次回の着霜判定の判断に利用する。これにより無駄な除霜運転(空除霜運転)を防止して、快適性の向上や無駄なエネルギ消費の抑制を図ると共に、着霜している場合には確実に除霜運転を実施して、室外ファンや熱交換器の破損を防止するものである。   Therefore, in this embodiment, when the frost formation is large at the start of the previous defrost operation, it takes a lot of defrost time. On the other hand, when the defrost is performed without the frost formation, The defrosting time is shortened, and the result of the previous defrosting operation is used to determine the next frost determination. This prevents wasteful defrosting operation (empty defrosting operation), improves comfort and suppresses wasteful energy consumption, and reliably performs defrosting operation when frosting occurs. This prevents the outdoor fan and heat exchanger from being damaged.

室外熱交換器に着霜が無い状態で除霜運転(空除霜運転)を実施した場合、融解すべき霜が無いために、室外熱交換器の温度上昇が速い。その速度は、供給する冷媒の熱量、室外熱交換器の熱容量や分配性能等に依存する。供給する冷媒の熱量の概算は、外気温毎の圧縮機回転数で代用し、室外熱交換器の熱容量や分配性能は機種別に固定して考えると、任意の機種毎に、圧縮機回転数を一定にすれば、空除霜の場合の室外熱交換器温度上昇速度が予め決まる。   When the defrosting operation (empty defrosting operation) is performed in a state where there is no frost in the outdoor heat exchanger, there is no frost to be melted, so the temperature rise of the outdoor heat exchanger is fast. The speed depends on the amount of heat of the refrigerant to be supplied, the heat capacity of the outdoor heat exchanger, the distribution performance, and the like. The approximate amount of heat of the refrigerant to be supplied is substituted with the compressor rotation speed for each outdoor temperature, and the heat capacity and distribution performance of the outdoor heat exchanger are fixed for each model. If fixed, the outdoor heat exchanger temperature rise rate in the case of air defrosting is determined in advance.

これにより、ある外気温で空除霜の場合の室外熱交換器温度上昇速度が分かるので、実際の除霜運転の際に、空除霜の場合と同じ室外熱交換器温度上昇速度だった場合には、そのときの除霜運転は空除霜運転だったことがわかる。即ち、無駄な除霜運転を実施したことがわかるので、この情報を次の除霜開始判定(着霜判定)に活かすことで、無駄な除霜運転(空除霜運転)を防止することが可能となる。   As a result, the outdoor heat exchanger temperature rise rate in the case of air defrost at a certain outside temperature can be understood, so when the actual outdoor defrost operation was the same outdoor heat exchanger temperature rise rate as in the case of air defrost It can be seen that the defrosting operation at that time was the empty defrosting operation. That is, since it is understood that a useless defrosting operation has been performed, it is possible to prevent a useless defrosting operation (empty defrosting operation) by utilizing this information for the next defrosting start determination (frosting determination). It becomes possible.

図2は、(a)に示す暖房低温条件と、(b)に示す暖房極低温条件での除霜運転時の室外熱交換器液温度の変化を説明する線図である。この図2(a)(b)において、横軸は時間の経過(時分)を示し、縦軸は、下の−25〜25が室外熱交換器液温度(℃)を、上の25〜125が電圧(V)を示している。また、51は暖房低温条件時四方弁運転信号を示す線、52は暖房低温条件時室外熱交換器液温度の線、53は暖房極低温条件時四方弁運転信号を示す線、54は暖房極低温条件時室外熱交換器液温度の線である。   FIG. 2 is a diagram illustrating changes in the outdoor heat exchanger liquid temperature during the defrosting operation under the heating low temperature condition shown in (a) and the heating cryogenic condition shown in (b). 2 (a) and 2 (b), the horizontal axis represents the passage of time (hours and minutes), and the vertical axis represents the outdoor heat exchanger liquid temperature (° C.) at the lower −25 to 25 and the upper 25 to 25. Reference numeral 125 denotes a voltage (V). In addition, 51 is a line indicating a four-way valve operation signal at a heating low temperature condition, 52 is a line of an outdoor heat exchanger liquid temperature at a heating low temperature condition, 53 is a line indicating a four-way valve operation signal at a heating extremely low temperature condition, and 54 is a heating electrode. It is a line | wire of the outdoor heat exchanger liquid temperature at the time of low temperature conditions.

図2の上の図(a)は、外気温が乾球2℃、湿球1℃の場合に除霜運転をした際の室外熱交換器液温度の上昇の様子を示している。この条件は、日本工業規格JIS−B8615で暖房低温条件と呼ばれる条件であり、除霜運転前には室外熱交換器は着霜している。この場合、除霜中の圧縮機回転数は90Hzで運転しており、室外熱交換器液温度は−20℃から+20℃に約8分掛けて上昇している。   The upper figure (a) of FIG. 2 shows the rise in the outdoor heat exchanger liquid temperature when the defrosting operation is performed when the outside air temperature is 2 ° C. dry bulb and 1 ° C. wet bulb. This condition is a condition called a heating low temperature condition in Japanese Industrial Standard JIS-B8615, and the outdoor heat exchanger is frosted before the defrosting operation. In this case, the compressor rotation speed during defrosting is operating at 90 Hz, and the outdoor heat exchanger liquid temperature rises from -20 ° C to + 20 ° C over about 8 minutes.

図2の下の図(b)は、外気温が乾球−20℃での除霜運転時の室外熱交換器液温度上昇の様子を示している。除霜運転中の圧縮機回転数は同じく90Hzであるが、室外熱交換器液温度は−20℃から+20℃まで、6分しか掛かっていない。理由は、−20℃での除霜運転前の室外熱交換器には着霜しておらず、除霜運転時には、霜や氷を融解する必要が無かったため、低外気であるにも拘わらず、室外熱交換器の温度上昇が速くなったためである。   The lower part (b) of FIG. 2 shows the state of the increase in the outdoor heat exchanger liquid temperature during the defrosting operation when the outside air temperature is dry bulb -20 ° C. The compressor rotation speed during the defrosting operation is also 90 Hz, but the outdoor heat exchanger liquid temperature takes only 6 minutes from -20 ° C to + 20 ° C. The reason is that the outdoor heat exchanger before the defrosting operation at −20 ° C. is not frosted, and it was not necessary to melt frost or ice during the defrosting operation. This is because the temperature rise of the outdoor heat exchanger has become faster.

以上のような情報を次回の除霜開始判定に取り込むことにより、空除霜運転による無駄なエネルギ消費を防止することができる。この例では、室外熱交換器液温度の上昇(−20℃から+20℃まで)時間が、例えば8分未満であった場合、空除霜運転であったと判定することで、この空除霜運転の情報を次回の除霜開始判定に利用することができる。   By incorporating the above information into the next defrost start determination, it is possible to prevent wasteful energy consumption due to the empty defrost operation. In this example, when the temperature of the outdoor heat exchanger liquid temperature (from −20 ° C. to + 20 ° C.) is, for example, less than 8 minutes, the air defrosting operation is determined by determining that it is the air defrosting operation. This information can be used for the next defrost start determination.

但し、予め設定した空除霜運転時の室外熱交換器液温度の上昇時間は、空気調和機の配管長、室内機と室外機との高低差、封入冷媒量等の設置条件によって変わるので、現地の実使用状態での空除霜/着霜除霜の閾値(判定値)を機種毎に予め完全に把握することはできない。つまり、予見できる値は試験室での条件であり、かつ試験室では目視により着霜しているか着霜していないかを確認することが可能である。これに対し、空気調和機が実際に設置される現地では、着霜しているのかどうかを確認することはできない。従って、例えば室外熱交換器液温度の前記上昇時間が8分未満であったとしても、そのことにより空除霜運転だったかどうかを直接判断することはできない。そこで、空除霜運転であったか、着霜除霜運転だったかの判断の精度を高くするため、本実施例では、試験室の結果の統計値を利用して、空除霜運転だったかどうかを、仮説検定を用いて判定する。   However, the temperature rise time of the outdoor heat exchanger liquid temperature during the preset air defrosting operation varies depending on the installation conditions such as the pipe length of the air conditioner, the height difference between the indoor unit and the outdoor unit, the amount of enclosed refrigerant, The threshold value (determination value) of the air defrosting / frosting defrosting in the actual actual use state cannot be completely grasped in advance for each model. That is, the foreseeable value is the condition in the test room, and it is possible to confirm whether the test room is frosted or not. On the other hand, it cannot be confirmed whether or not frost is formed at the site where the air conditioner is actually installed. Therefore, for example, even if the rise time of the outdoor heat exchanger liquid temperature is less than 8 minutes, it is not possible to directly determine whether or not the defrosting operation has been performed. Therefore, in order to increase the accuracy of the determination of whether it was an empty defrosting operation or a defrosting defrosting operation, in this example, using the statistical value of the result of the test room, whether or not it was an empty defrosting operation, Determine using hypothesis testing.

仮説検定とは、ある基準を定めて検査し、合否を定めることであり、
(1)状態が二つ存在しており、
(2)そのどちらの状態にすべきか、という決定を下したいため、
(3)完全に正確な決定を下すことは不可能であることから、二つの状態の内、どちらの状態とすべきかを、何らかの方法で推測的に決定することである。
実際には、統計値を基にして、母集団に対するある仮説が正しい(或いは間違い)かどうかを判定する。
Hypothesis testing is to set a certain standard, test, and determine pass / fail,
(1) There are two states,
(2) Because we want to make a decision as to which state should be
(3) Since it is impossible to make a completely accurate determination, it is to speculatively determine which of the two states should be made by some method.
Actually, it is determined whether a certain hypothesis for the population is correct (or wrong) based on the statistical value.

ここでは、仮説を「空除霜である」と設定し、対立仮説として「着霜除霜(真の除霜)」と設定する。便宜上、空除霜(帰無仮説)をH0、着霜除霜(対立仮説)をH1と表記する。そして仮説検定の手順に沿って進めていけば、仮説検定を実施できる。   Here, the hypothesis is set as “empty defrost”, and the alternative hypothesis is set as “frost defrost (true defrost)”. For convenience, the defrosting (null hypothesis) is denoted as H0, and the defrosting (alternative hypothesis) is denoted as H1. If you follow the hypothesis testing procedure, you can test the hypothesis.

先ず仮説検定の手順を記すと、
「1.帰無仮説H0を立てる。「帰無仮説」とは、棄却したいために立てる仮説である。ここでは、「H0:空除霜である」とする。
2.データを抽出する。今回の場合、データとは「空除霜だった時の室外熱交換器液温度上昇時間」である。
3.帰無仮説を真とした時に、そのようなデータが出現する確率を調べる。確率の調べ方は試験を数多く実施する等、種々方法があるので、ここでは具体的には省略する。
4.その確率が、ある決まった値よりも小さい時には帰無仮説を棄却する。確率が小さいと言えない時は判定を保留する。」
となる。
First of all, the hypothesis testing procedure is described.
“1. Establish the null hypothesis H0. The“ null hypothesis ”is a hypothesis that is made to reject the hypothesis. Here, it is assumed that “H0: empty defrost”.
2. Extract data. In this case, the data is “outdoor heat exchanger liquid temperature rise time when air defrosting”.
3. When the null hypothesis is true, the probability that such data appears will be examined. Since there are various methods for checking the probability, such as conducting many tests, the description is omitted here.
4). When the probability is smaller than a certain value, the null hypothesis is rejected. When it cannot be said that the probability is small, the determination is suspended. "
It becomes.

先ずは上記手順1の帰無仮説H0を立てたので、次に上記2のデータを抽出する手順に入る。ここでデータとは、上記の通り「空除霜だった時の室外熱交換器液温度の温度上昇時間」であり、この温度上昇に必要な時間tに注目し、例えば先の例の通り、−20℃から+20℃に達するまでの時間を計測する。   First, since the null hypothesis H0 of the above procedure 1 is established, the procedure of extracting the above 2 data is started. Here, the data is “the temperature rise time of the outdoor heat exchanger liquid temperature at the time of air defrost” as described above, and paying attention to the time t required for this temperature rise, for example, as in the previous example, Measure the time from -20 ° C to + 20 ° C.

上記手順3では、この室外熱交換器液温度の上昇時間tのデータが空除霜であった場合に発生する確率を考える。確率は、サイコロの目など、不確定現象が生じる全ての要因やメカニズムが把握できるならば、場合の数として算出できるが、室外熱交換器の液温度上昇という現象の全ての要因は把握できないので、冷媒量や外気温、配管長等、主要な要素を変えた場合の予備試験を行って、空除霜の場合の室外熱交換器液温度の上昇時間を計測しておく。そうすると、前記計測された時間が、空除霜であった場合に発生する確率密度関数が得られるので、得られた時間データに対する空除霜である確率が求まる。   In the procedure 3, the probability of occurrence when the data of the rise time t of the outdoor heat exchanger liquid temperature is empty defrost is considered. The probability can be calculated as the number of cases if all factors and mechanisms that cause uncertain phenomena such as dice eyes can be grasped, but not all factors of the phenomenon of outdoor liquid temperature rise can be grasped. Preliminary tests are performed when major factors such as the refrigerant amount, outside air temperature, pipe length, etc. are changed, and the rise time of the outdoor heat exchanger liquid temperature in the case of air defrosting is measured. Then, since the probability density function generated when the measured time is empty defrost is obtained, the probability of being empty defrost with respect to the obtained time data is obtained.

その結果、上記手順4において、前記求められた確率が、ある決まった値よりも小さい時には、空除霜であるという上記帰無仮設H0は棄却されるので、通常の除霜(着霜除霜)であったと判定できる。   As a result, in the procedure 4, when the calculated probability is smaller than a predetermined value, the null temporary H0 that is empty defrosting is rejected, so that normal defrosting (frosting defrosting) is performed. ).

以上の内容、特に上記手順3以降を具体的に以下説明する。上記手順3では、空除霜に関する確率密度関数p(t)を算出する。確率密度関数を得る方法は、種々の手法があるので詳細は省略する。得られた確率密度関数はいくつかの形が考えられるが、ここでは以下の数1で示される正規分布とする。なお、本実施例では、予備試験を行って、着霜除霜の場合の室外熱交換器液温度の上昇時間を計測しておくことにより、対立仮説H1である「着霜除霜」の確率密度関数p(t)を得ることもできるので、その確率密度関数p(t)も以下の数2で示すように、空除霜の確率密度関数p(t)と同様に作成しておく。 The above contents, particularly the procedure 3 and subsequent steps will be specifically described below. In the procedure 3, the probability density function p 0 (t) related to the air defrosting is calculated. Since there are various methods for obtaining the probability density function, details are omitted. Although the obtained probability density function can take several forms, it is assumed here to be a normal distribution represented by the following equation (1). In this example, the probability of “frosting defrosting” which is the alternative hypothesis H1 is obtained by performing a preliminary test and measuring the rise time of the outdoor heat exchanger fluid temperature in the case of frosting defrosting. Since the density function p 1 (t) can also be obtained, the probability density function p 1 (t) is also generated in the same manner as the probability density function p 0 (t) of the air defrosting as shown in the following equation 2. Keep it.

Figure 0005865792
Figure 0005865792

Figure 0005865792
Figure 0005865792

ここで、σは確率の分散を表す値、tは空除霜時の室外熱交換器液温度の上昇時間の平均値、tは着霜除霜時の室外熱交換器液温度の上昇時間の平均値である。 Here, σ is a value representing the variance of the probability, t 0 is an average value of the rise time of the outdoor heat exchanger liquid temperature during the air defrosting, and t 1 is an increase in the outdoor heat exchanger liquid temperature during the defrosting defrosting. It is the average value of time.

図3に得られた確率密度関数を示す。図3の横軸は、ある外気温Tの際の室外熱交換器液温度が除霜終了温度まで上昇するのに要した時間t、縦軸はその時間tが出現する頻度を示す。また、この図3は、空除霜時の確率密度関数p(t)55と着霜除霜時の確率密度関数p(t)56を並べて表示しているものである。 FIG. 3 shows the obtained probability density function. The horizontal axis in FIG. 3 indicates the time t required for the outdoor heat exchanger liquid temperature to rise to the defrosting end temperature at a certain outside air temperature T 0 , and the vertical axis indicates the frequency at which the time t appears. Further, FIG. 3 shows the probability density function p 0 (t) 55 at the time of defrosting and the probability density function p 1 (t) 56 at the time of defrosting being displayed side by side.

空除霜時の室外熱交換器液温度の上昇時間tの平均値tは、着霜除霜時の室外熱交換器液温度の上昇時間tの平均値tよりも短いので、t<tとなっている。ここで室外熱交換器液温度の上昇時間の閾値(判定値)tを設定し、実際の除霜運転時に得られた前記上昇時間のデータtが図3の領域Rに入れば空除霜、前記得られたデータtが図3の領域Rに入れば着霜除霜と判断する。このtを設定する事が重要な問題となる。 Check defrost average value of the outdoor heat exchanger liquid temperature rise time t of the time t 0 is shorter than the average value t 1 of the rise time t of the outdoor heat exchanger liquid temperature during Chakushimojo frost, t 0 <has become a t 1. Here by setting a threshold (determination value) t s of the rise time of the outdoor heat exchanger liquid temperature, if placed in the actual defrosting data t of the rise times obtained during operation region R 0 of FIG air removal frost, the obtained data t is determined to frost defrosting when placed in the region R 1 of FIG. Setting this t s is an important problem.

次に、上記手順4に移る。この手順4では、得られた前記確率密度関数p(t),p(t)を基にして、除霜の際に得られたデータが空除霜か、着霜除霜であったかを検定する。但し、得られたデータを基に検定するには、その前に判断する材料が必要であるので、その方法を以下説明する。 Next, the procedure 4 is performed. In this procedure 4, based on the obtained probability density functions p 0 (t) and p 1 (t), it is determined whether the data obtained at the time of defrosting is empty defrosting or defrosting defrosting. Test. However, in order to test based on the obtained data, materials to be determined before that are necessary, and the method will be described below.

今、室外熱交換器液温度の上昇時間の得られた時間データがtであったとする。この時間データtは、図3に示すように、Rの領域にあるので、着霜除霜と判断する領域である。従って、図3の確率密度関数p(t)のEで表される面積は、即ち、空除霜H0であるにも拘らず着霜除霜H1と判断する確率を表す。言いかえると着霜除霜H1と判断したにも拘らず、実際は空除霜H0である場合の確率である。このように、正しい仮説(この場合は帰無仮説)を棄却してしまう過誤を第一種の過誤と呼ぶ。 Now, the obtained time data rise time of the outdoor heat exchanger liquid temperature is assumed to be a t a. The time data t a, as shown in FIG. 3, since the area of R 1, is an area for determining the frost defrosting. Therefore, the area represented by E 0 in the probability density function p 0 (t) in FIG. 3 represents the probability of determining the defrosting defrost H1 despite the empty defrosting H0. In other words, this is the probability when the defrosting defrost H1 is actually determined, but the actual defrosting H0. Thus, an error that rejects the correct hypothesis (in this case, the null hypothesis) is called a first type error.

次に、得られた前記時間データがtだったとすると、この時間データtは、図3に示すように、Rの領域にあるので、空除霜と判断する領域である。従って、図3の確率密度関数p(t)のEで表される面積は、即ち、着霜除霜H1であるにも拘らず空除霜H0と判断する確率を表す。言いかえると空除霜H0と判断したにも拘らず、実際は着霜除霜H1である場合の確率である。このように、誤った仮説(この場合は対立仮説)を採択してしまう過誤を第二種の過誤と呼ぶ。 Then, when the time data obtained is that it was t b, the time data t b, as shown in FIG. 3, since the area of R 0, is an area for determining the air defrosting. Therefore, the area represented by E 1 of the probability density function p 1 (t) in FIG. 3 represents the probability that it is determined as the empty defrost H0 despite the frost defrost H1. In other words, it is the probability that the actual defrosting defrost H1 despite the determination of the empty defrosting H0. Thus, an error that adopts an incorrect hypothesis (in this case, an alternative hypothesis) is called a second type error.

対立仮説H1の確率密度関数p(t)が得られない場合は、帰無仮説H0を棄却する領域Eを確率5%等と予め設定して、一つの確率密度関数p(t)で検定を行う。ただ本除霜の例のように、対立仮説H1の確率密度関数p(t)が得られる場合は、両者の兼合いによる採択方法を考えると便利である。例えば、第一種の過誤を犯した時に発生する不利益をC、第二種の過誤を犯した時に発生する不利益をCとすると、これを纏めた危険高Cは次式で表せる。 When the probability density function p 1 (t) of the alternative hypothesis H1 cannot be obtained, an area E 0 in which the null hypothesis H0 is rejected is set in advance as a probability 5% or the like, and one probability density function p 0 (t) is set. Test with. However, when the probability density function p 1 (t) of the alternative hypothesis H1 is obtained as in this example of defrosting, it is convenient to consider an adoption method based on a balance between the two. For example, if the disadvantage that occurs when the first type of error is committed is C 0 , and the disadvantage that occurs when the second type of error is committed is C 1 , the high risk C that summarizes this can be expressed by the following equation: .

Figure 0005865792
Figure 0005865792

これを全平均危険高と言う。ここで不利益C,Cとは、被る損失を表す。例えば、本実施例において、前記不利益Cは、空除霜であるのにも拘らず着霜除霜と判断し、除霜運転を頻繁に実施して快適性を損ねて顧客に不快な思いをさせてしまうため、今後購入してもらえない売上高損失等である。また、前記不利益Cは、空除霜と判断したが実際には着霜しており、室外熱交換器を氷結させて破壊に至らしめ、顧客に賠償をしなければならないコスト損失等である。 This is called the total average risk. Here, the disadvantages C 0 and C 1 represent losses to be incurred. For example, in this embodiment, the disadvantage C 0 is determined to be frost defrost despite the fact that it is empty defrost, and the defrost operation is frequently performed to reduce comfort and uncomfortable for the customer. This is a loss of sales that cannot be purchased in the future because it makes me think. The disadvantage C 1 is determined to be empty defrosting, but it is actually frosted, resulting in the cost loss, etc., in which the outdoor heat exchanger is frozen and destroyed, and the customer must be compensated. is there.

以上のことから、前記時間データtが得られた場合に、空除霜の仮説H0を採択するか、着霜除霜の仮説H1を採択するかを決める基準として、前記不利益CとCを両方考慮すると言う意味で、全平均危険高Cを定義したが、前記数3を最小化するような基準があれば便利である。そこで、次の数4を計算すると、前記全平均危険高Cを最小にする閾値(判定値)tが計算される。それは次の数5で示す関数の比Λで表される。 From the above, when the time data t is obtained, the disadvantages C 0 and C are used as criteria for deciding whether to adopt the empty defrost hypothesis H 0 or the defrost defrost hypothesis H 1. Although the total average danger level C is defined in the sense that both 1 are considered, it is convenient if there is a standard that minimizes the number 3 described above. Therefore, when calculating the next number 4, the total average risk High C to minimize threshold (determination value) t s is computed. It is expressed by a function ratio Λ shown in the following equation (5).

Figure 0005865792
Figure 0005865792

Figure 0005865792
Figure 0005865792

この時、頻度の正規分布である確率密度関数の前記数1、数2を用いて、前記数5から閾値(判定値)tの値を求めると、次式となる。 In this case, the number 1 of the probability density function is a normal distribution of frequency, using Equation 2, when obtaining the threshold value (determination value) t s from the number 5, the following equation.

Figure 0005865792
Figure 0005865792

従って、この得られたtを閾値(判定値)として用いると良いことが分かる。
以上より、今回実施された除霜が、空除霜であったか、着霜除霜であったかを判定する仮説検定の際には、得られた時間データtが上記閾値tより小さければ空除霜、大きければ着霜除霜だと判定すれば良いことが分かる。前記不利益CとCを決めるのが困難な場合は、これらは同じ値でも良い。これで統計的手段である仮説検定を用いた除霜開始判定(着霜判定)をすることができる。
Therefore, it can be seen that the resulting t s may be used as a threshold (determination value).
From the above, it now carried defrost, air defrosting and which was either frost removal during the frost in which was either hypothesis determining test, derived time data t is less if empty defrosting than the threshold t s If it is larger, it can be determined that it is defrosting defrosting. If it is difficult to determine the disadvantages C 0 and C 1 , these may be the same value. Thus, it is possible to make a defrosting start determination (frost determination) using a hypothesis test which is a statistical means.

以上が仮説検定の手順である。この仮説検定による除霜開始判定の前記閾値tを、外気温や配管長の条件を変えて整理し、マッピングすることで、より精度の高い除霜開始判定を行なうことができる。 The above is the hypothesis testing procedure. The threshold t s defrosting start determination according to the hypothesis test, organize by changing the ambient temperature and pipe length conditions, by mapping can be performed with higher accuracy defrosting start determination.

次に、着霜していないにも拘らず着霜と判断し、除霜(空除霜)を行った場合、どうすべきかについて述べる。
着霜していないにも拘らず除霜を行った訳であるから、快適性が損なわれ且つ消費エネルギも増大するため、改善を行った方が良い。今、外気温や室内温度等、運転環境が大きく変わらない場合には、前回の除霜運転時に実施した着霜判定が役立つはずである。
Next, what should be done when defrosting (empty defrosting) is performed when it is determined that the frost is formed even though frost is not formed.
Since defrosting is performed despite frost not being formed, comfort is impaired and energy consumption is increased. If the operating environment does not change greatly, such as the outside air temperature and the room temperature, the frost determination performed at the previous defrosting operation should be useful.

除霜開始判定(着霜判定)の判定方法を図4により説明する。一般に、この除霜開始判定は、外気温に対する室外熱交換器液温度で判定することが多い。即ち、図4に57で示す線が、外気温に対する除霜開始判定用室外熱交換器液温度の閾値の線である。この図4において、Rは非着霜とみなされる領域、Rは着霜とみなされる領域であり、除霜開始判定用室外熱交換器液温度の閾値の線57に対して上方の領域Rにある場合は着霜しておらず、下方の領域Rにある場合は着霜していると判断する。ここで、前記閾値の線57は外気温の関数であるので、外気温をT、室外熱交換器液温度をT、室外熱交換器液温度の閾値をTes1とするとTes1は、次の数7で表される。更に、次の数8の条件を満たす場合には除霜必要(着霜)と判定(除霜開始判定)し、除霜を開始する。 The determination method of defrosting start determination (frost formation determination) is demonstrated with reference to FIG. Generally, this defrosting start determination is often determined by the outdoor heat exchanger liquid temperature relative to the outside air temperature. That is, a line indicated by 57 in FIG. 4 is a threshold line of the defrosting start outdoor heat exchanger liquid temperature with respect to the outside air temperature. In FIG. 4, R N region is considered a non-frost, R F is an area that is regarded as frost, upper region with respect to defrosting start determination outdoor heat exchanger liquid line 57 of the threshold temperature when in R N is not frosted, when at the bottom of the region R F it is determined to be frosted. Since the line 57 of the threshold is a function of outside temperature, outside air temperature T 0, the outdoor heat exchanger liquid temperature T e, the threshold value of the outdoor heat exchanger liquid temperature When T es1 T es1 is It is expressed by the following formula 7. Furthermore, when the following equation 8 is satisfied, it is determined that defrosting is necessary (frost formation) (defrosting start determination), and defrosting is started.

Figure 0005865792
Figure 0005865792

Figure 0005865792
Figure 0005865792

なお、上記数8において、Tesは除霜開始判定用室外熱交換器液温度の閾値で、ここでは「Tes=Tes1」となる。
次に、上記数8に基づいて除霜を開始したにも拘らず、後の検定で空除霜運転をしてしまったと分かった場合の前記判定条件(除霜開始判定用室外熱交換器液温度の閾値の線57)の是正方法について以下説明する。
In Equation 8, T es is a threshold value of the defrosting start outdoor heat exchanger liquid temperature, and here, “T es = T es1 ”.
Next, the determination condition (outdoor heat exchanger liquid for defrosting start determination) when it is found that the empty defrosting operation has been carried out in a later test despite the fact that defrosting is started based on Equation 8 above. A method of correcting the temperature threshold line 57) will be described below.

なお、通常の除霜開始判定条件は、上記閾値の線57で示すような温度条件の他に、運転時間条件も併せて判定するのが一般的であるが、本実施例では、前記運転時間条件は、外気温に対する室外熱交換器液温度条件の判定開始の為のトリガとして使用し、前記運転時間条件はそのままにして、外気温に対する除霜開始判定用室外熱交換器液温度の閾値の線57を変更すれば良い。例えば、図5の閾値の線58に示すように、除霜開始判定用室外熱交換器液温度の判定条件を厳しくする(判定値をより低い温度に設定する)こと、即ち、非着霜領域Rを広くすることで、空除霜運転をする可能性をより低減し、除霜開始判定の誤判定を防止することができる。 Note that the normal defrosting start determination condition is generally determined in addition to the temperature condition as indicated by the threshold line 57 as well as the operation time condition. The condition is used as a trigger for starting the determination of the outdoor heat exchanger liquid temperature condition with respect to the outside air temperature, and the threshold of the outdoor heat exchanger liquid temperature for defrosting start determination with respect to the outside air temperature is left as it is. The line 57 may be changed. For example, as shown by the threshold line 58 in FIG. 5, the determination condition of the defrosting start outdoor heat exchanger liquid temperature is tightened (the determination value is set to a lower temperature), that is, the non-frosting region. by widening the R N, it is possible to further reduce the possibility of air defrosting operation, preventing erroneous determination of the defrosting start determination.

ここで、前記変更された除霜開始判定用室外熱交換器液温度の閾値の線58における室外熱交換器液温度の閾値Tes2を、次の数9と表記した場合、次の数10となるような関係にすれば良い。 Here, when the outdoor heat exchanger liquid temperature threshold value Tes2 in the changed defrosting start outdoor heat exchanger liquid temperature threshold value line 58 is expressed as the following formula 9, The relationship should be as follows.

Figure 0005865792
Figure 0005865792

Figure 0005865792
Figure 0005865792

除霜開始判定用室外熱交換器液温度の閾値の線の是正前の線57と是正後の線58で、上記数10の関係を守れば、除霜開始判定用室外熱交換器液温度の判定条件をどの程度厳しくするか(変更するか)は、予め設計段階で適切な値を決めておけば良い。   If the relationship 57 is satisfied between the line 57 before the correction of the defrosting start outdoor heat exchanger liquid temperature threshold line and the line 58 after the correction, the defrosting start outdoor heat exchanger liquid temperature To what extent the determination condition is to be strict (changed) may be determined in advance at an appropriate value in the design stage.

ところで、前回の除霜運転は着霜除霜であると判定した場合には、前回の判定条件の閾値は適切であると判定できるため、変更しなくても良い。しかし、場合によっては、前回の判定条件が甘い判定値、つまり十分着霜しているにも拘らず、速やかに除霜開始判定をしないために過剰着霜であった可能性もあるので、室外熱交換器液温度の上昇時間のデータtに基づいて、判定値を変えるようにしても良い。例えば、今回の除霜運転時に得られた前記温度上昇時間のデータtが所定値より大きい場合には過剰着霜であったと判断し、図5における除霜開始判定用室外熱交換器液温度の閾値の線を、例えば58から57に変更する。このように、除霜開始判定用室外熱交換器液温度の閾値の線(判定条件)を甘い方向に変更する、即ち、閾値となる温度を上げることで非着霜領域Rを狭め、過剰着霜となる危険性を低減することができる。 By the way, when it determines with the last defrost operation being frost defrost, since it can determine with the threshold value of the last determination conditions being appropriate, it does not need to change. However, in some cases, the previous judgment condition is a sweet judgment value, that is, although there is sufficient frost formation. The determination value may be changed based on the data t of the heat exchanger liquid temperature rise time. For example, if the temperature rise time data t obtained during the current defrosting operation is larger than a predetermined value, it is determined that excessive frosting has occurred, and the defrosting start outdoor heat exchanger liquid temperature in FIG. The threshold line is changed from 58 to 57, for example. In this way, the defrosting start outdoor heat exchanger liquid temperature threshold line (determination condition) is changed in a sweet direction, that is, the non-frosting region RN is narrowed by increasing the threshold temperature, and excess The risk of frost formation can be reduced.

また、一旦運転スイッチをOFFにしたり、長時間運転を行って、気象条件が変わったと考えられる場合は、それまでの情報はそのまま用いることができないと考えて、標準設定や初期値に戻すようにしても良い。   Also, if you turn off the operation switch or operate for a long time and think that the weather conditions have changed, consider that the previous information cannot be used as it is, and return it to the standard setting or initial value. May be.

以上、仮説検定を用いて空除霜を判定する手法と、その際の除霜開始判定の是正方法について説明したが、上記判定及び是正の手順を利用した本実施例の除霜運転の動作を図6に示すフローチャートにより説明する。   As described above, the method of determining the empty defrost using the hypothesis test and the correction method of the defrost start determination at that time have been described, but the operation of the defrosting operation of the present embodiment using the above determination and correction procedure is described. This will be described with reference to the flowchart shown in FIG.

先ず、ステップS1で、図1に示す空気調和機の暖房運転が開始され、暖房運転が継続されると、着霜しやすい条件では室外熱交換器31,3Nに着霜し出すので、室外熱交換器液温度が低下し始める。   First, in step S1, when the heating operation of the air conditioner shown in FIG. 1 is started and the heating operation is continued, the outdoor heat exchangers 31 and 3N start frosting under conditions where frosting easily occurs. The exchanger fluid temperature begins to drop.

予め定めた除霜開始判定(着霜判定)のための運転時間条件などの判定条件を満たすと、ステップS2に移り、除霜開始判定を開始する。最初は、初期状態なので、図5に57で示す除霜開始判定用室外熱交換器液温度の閾値の線に基づいて行う。即ち、室外熱交換器液温度検知器351,35Nで検知された室外熱交換器31,3Nの液温度Tが、前記閾値の線57で示す閾値となる温度Tesよりも低いか否かを判定し、低くなければ所定時間(運転時間条件)経過後、前記ステップS2の判定を繰り返す。 When conditions such as an operating time condition for a predetermined defrosting start determination (frosting determination) are satisfied, the process proceeds to step S2 and the defrosting start determination is started. Since the initial state is the initial state, it is performed based on the threshold line of the defrosting start outdoor heat exchanger liquid temperature indicated by 57 in FIG. That is, the liquid temperature T e of the sensed by the outdoor heat exchanger liquid temperature sensor 351,35N outdoor heat exchanger 31,3N is, whether less than the temperature T es as a threshold value indicated by the line 57 of the threshold If not lower, the determination in step S2 is repeated after a predetermined time (running time condition) has elapsed.

前記ステップS2で、検知された室外熱交換器液温度Tが前記閾値Tesよりも低い場合(除霜が必要と判定された場合)には、ステップS3に移り、除霜運転を開始する。
除霜運転が開始されると、ステップS4に移り、除霜運転時の室外熱交換器液温度の上昇時間(除霜開始から、例えば+20℃に到達するまでの時間)tを測定する。
In step S2, if the sensed outdoor heat exchanger liquid temperature T e is less than the threshold value T es (when it is determined that the required defrosting), the sequence proceeds to step S3, to start defrosting operation .
When the defrosting operation is started, the process proceeds to step S4, and the rise time of the outdoor heat exchanger liquid temperature during the defrosting operation (the time from the start of the defrosting until it reaches + 20 ° C., for example) t is measured.

ここで、確実に着霜している場合には、図2の(a)図(乾球2℃の図)の暖房低温条件時室外熱交換器液温度の線52に示すように、室外熱交換器液温度が比較的緩やかに上昇し、前記上昇時間tは長くなる。逆に、着霜しておらず、空除霜運転だった場合には、図2の(b)図(乾球−20℃の図)の暖房極低温条件時室外熱交換器液温度の線54に示すように、室外熱交換器液温度が比較的速く上昇するので、前記上昇時間tは短くなる。   Here, when the frost is surely formed, as shown in the line 52 of the outdoor heat exchanger liquid temperature at the time of the heating low temperature condition in FIG. The exchanger liquid temperature rises relatively slowly, and the rise time t becomes longer. On the contrary, when it is not frosting and it is an empty defrosting operation, the line of the outdoor heat exchanger liquid temperature at the heating cryogenic temperature condition in FIG. 2B (the figure of dry bulb −20 ° C.). As indicated at 54, the outdoor heat exchanger liquid temperature rises relatively quickly, so that the rise time t is shortened.

室外熱交換器液温度が除霜終了条件(例えば+20℃)まで上昇したら、除霜運転を終了し、ステップS5に移って、暖房運転を再開する。
暖房運転を開始した後、直ぐにステップS6に移り、今回行なった除霜開始判定が適切であったか否かを上述した仮説検定により行う。即ち、今回の除霜運転時の室外熱交換器液温度上昇時間tと前記式(数6)で求められた室外熱交換器液温度上昇時間の閾値tと比較し、今回の上昇時間tが前記閾値t以上であれば着霜除霜と判定(ステップS7)する。この着霜除霜と判定された場合には、上記ステップS2における除霜開始判定条件(前記閾値Tes)の是正は必要が無いので、そのまま暖房運転を継続し、所定時間経過(運転時間条件)後、再び前記ステップS2の判定を繰り返す。
When the outdoor heat exchanger liquid temperature rises to the defrost termination condition (for example, + 20 ° C.), the defrost operation is terminated, and the process proceeds to step S5 to restart the heating operation.
Immediately after starting the heating operation, the process proceeds to step S6, and whether or not the defrosting start determination performed this time is appropriate is performed by the above-described hypothesis test. That is, compared with the current defrosting operation when the outdoor heat exchanger liquid temperature rise time t a threshold t s of the formula (6) in the outdoor heat exchanger liquid temperature rise time obtained, this rise time t There is determined (step S7) and frost defrosting if the threshold value t s or more. If it is determined that the defrosting has been performed, it is not necessary to correct the defrosting start determination condition (the threshold value T es ) in step S2, so the heating operation is continued as it is, and a predetermined time has elapsed (operating time condition). After that, the determination in step S2 is repeated.

逆に、今回実施した除霜運転での室外熱交換器液温度上昇時間tが前記閾値tよりも短かった場合には、空除霜だったと判定する(ステップS8)。この空除霜と判定された場合には、今回の除霜開始判定条件(前記閾値Tes)が不適切であったと考え、ステップS9に移り、上記ステップS2における除霜開始判定条件(前記閾値Tes)の是正を行う。即ち、図5に示す除霜開始判定用室外熱交換器液温度の閾値の線57から是正後除霜開始判定用室外熱交換器液温度の閾値の線58に変更し、この閾値の線58で示す閾値Tesに、上記ステップS2における除霜開始判定条件となる閾値Tesを是正する。そして、暖房運転を継続し、所定時間(運転時間条件)経過後、上記是正された閾値Tesを用いて上記ステップS2の判定を実行する。以下、同様の動作を繰り返す。 Conversely, when the outdoor heat exchanger liquid temperature rise time t in the defrosting operation was performed this time is shorter than the threshold value t s, it is determined that the empty defrosting (step S8). If it is determined that this defrosting is empty, it is considered that the current defrosting start determination condition (the threshold value T es ) is inappropriate, the process proceeds to step S9, and the defrosting start determination condition (the threshold value in step S2) is determined. Correct T es ). That is, the defrost start determination outdoor heat exchanger liquid temperature threshold line 57 shown in FIG. 5 is changed to a defrost start determination outdoor heat exchanger liquid temperature threshold line 58 after correction, and this threshold line 58 is changed. threshold T es indicated by, correcting the threshold value T es as a defrosting start determination condition in step S2. Then, the heating operation is continued, and after a predetermined time (operation time condition) has elapsed, the determination in step S2 is executed using the corrected threshold value Tes . Thereafter, the same operation is repeated.

以上説明したように、本実施例によれば、暖房運転中に発生する着霜に対して、除霜運転を行い、その時の除霜運転が着霜除霜であったか空除霜であったかを判定し、この判定結果を次回の除霜開始判定条件に反映させるようにしているので、外気温が低い場合でも、除霜開始判定の精度を高めることができる。この結果、空除霜運転のために暖房運転を停止させることによる不快感を低減し、また無駄なエネルギ消費を防止できるので効率の良い運転が可能な空気調和機を得ることができる。
特に、除霜運転が着霜除霜であったか空除霜であったかの判定に仮説検定を用いることにより、より精度の高い除霜開始判定が可能となる。
As described above, according to the present embodiment, the defrosting operation is performed on the frost generated during the heating operation, and it is determined whether the defrosting operation at that time was the frost defrosting or the empty defrosting. In addition, since the determination result is reflected in the next defrost start determination condition, the accuracy of the defrost start determination can be improved even when the outside air temperature is low. As a result, an uncomfortable feeling caused by stopping the heating operation for the air defrosting operation can be reduced, and wasteful energy consumption can be prevented, so that an air conditioner capable of efficient operation can be obtained.
In particular, by using a hypothesis test for determining whether the defrosting operation is defrosting defrost or empty defrosting, it is possible to perform defrosting start determination with higher accuracy.

なお、本実施例では前記室外熱交換器液温度Tと前記閾値Tesとを比較して着霜判定(除霜開始判定)を実施しているが、前記室外熱交換器液温度は室外熱交換器の冷媒配管内を流れる液冷媒の温度を直接測定するものの他に、冷媒配管自体の温度や冷媒配管と接続されたフィンの温度を検知することで、間接的に前記液冷媒温度を測定するものも含まれることは言うまでもない。従って、前記室外熱交換器液温度とは、室外熱交換器の温度も含む概念で使用されている。 Incidentally, frost determination has been carried out (defrosting start determination), the outdoor heat exchanger liquid temperature is compared with the threshold value T es and the outdoor heat exchanger liquid temperature T e in this embodiment outdoor In addition to directly measuring the temperature of the liquid refrigerant flowing in the refrigerant pipe of the heat exchanger, the temperature of the liquid refrigerant is indirectly detected by detecting the temperature of the refrigerant pipe itself and the temperature of the fin connected to the refrigerant pipe. It goes without saying that what is measured is also included. Therefore, the outdoor heat exchanger liquid temperature is used in a concept including the temperature of the outdoor heat exchanger.

また、上述した実施例1では、図6に示したステップS4において、除霜時の室外熱交換器液温度上昇時間tを用いて、その時の除霜運転が着霜除霜であったか空除霜であったかを判定するようにしているが、前記除霜時の室外熱交換器液温度上昇時間tを用いる代わりに、冷凍サイクルにおける圧縮機21,2Nの吐出側圧力の上昇時間を用いても同様に、その時の除霜運転が着霜除霜であったか空除霜であったかを判定することができる。   Moreover, in Example 1 mentioned above, in step S4 shown in FIG. 6, using the outdoor heat exchanger liquid temperature rise time t at the time of defrosting, whether the defrosting operation at that time was frost defrosting or empty defrosting However, instead of using the outdoor heat exchanger liquid temperature rise time t at the time of defrosting, the same applies even if the discharge side pressure rise time of the compressors 21 and 2N in the refrigeration cycle is used. Moreover, it can be determined whether the defrosting operation at that time was defrosting defrost or empty defrosting.

即ち、圧縮機吐出圧力検知器381,38Nで検知される除霜運転時における前記圧縮機21,2Nの吐出側圧力は、室外熱交換器液温度検知器351,35Nで検知される室外熱交換器31,3Nにおける液温度、即ち凝縮温度と密接な関係がある。つまり、前記室外熱交換器における凝縮温度が決まれば凝縮圧力も決まり、これに伴って圧縮機の吐出側圧力も決まる。   That is, the discharge side pressure of the compressors 21 and 2N during the defrosting operation detected by the compressor discharge pressure detectors 381 and 38N is the outdoor heat exchange detected by the outdoor heat exchanger liquid temperature detectors 351 and 35N. There is a close relationship with the liquid temperature in the vessels 31 and 3N, that is, the condensation temperature. That is, if the condensation temperature in the outdoor heat exchanger is determined, the condensation pressure is also determined, and accordingly, the discharge side pressure of the compressor is also determined.

従って、圧縮機の吐出側圧力上昇時間を測定して判定値と比較し、その結果を用いて、その時の除霜運転が着霜除霜であったか空除霜であったかを判定し、この判定結果を次回の除霜開始判定条件に反映させることができ、これによっても上記実施例1と同様の効果を得ることができる。また、圧縮機の吐出側圧力上昇時間を用いた着霜判定(除霜開始判定)にも上述した仮説検定を用いることは同様に可能であり、仮説検定を用いることにより、より精度の高い判定も可能となる。   Therefore, the discharge side pressure rise time of the compressor is measured and compared with the determination value, and the result is used to determine whether the defrosting operation at that time was frost defrosting or empty defrosting, and this determination result Can be reflected in the next defrosting start determination condition, and the same effect as in the first embodiment can be obtained also by this. In addition, it is possible to use the above-described hypothesis test for frost formation determination (defrosting start determination) using the discharge side pressure rise time of the compressor as well, and by using the hypothesis test, determination with higher accuracy is possible. Is also possible.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。また、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。更に、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. The above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

また、前記制御演算装置43は、外部に設置されているものには限られず、室外機11,1Nや室内機211,21M、或いはリモコンなどの利用部温度設定器411,41Mなどに設けるようにしても良い。そして、各機能を実現するプログラム、各判定値(閾値)や各測定値、各設定時間等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。   Further, the control arithmetic unit 43 is not limited to the one installed outside, but is provided in the outdoor unit 11, 1N, the indoor unit 211, 21M, or the use part temperature setting unit 411, 41M such as a remote controller. May be. Information such as a program for realizing each function, each determination value (threshold value), each measurement value, and each set time is stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or an IC card, SD. It can be placed on a recording medium such as a card or DVD.

11,1N…室外機、21,2N…圧縮機、31,3N…室外熱交換器、
41,4N…室外ファン、51,5N…アキュムレータ、
61,6N…四方弁(可逆弁)、71,7N…受液器、
81,8N…室外膨張弁、91,9N…室外バイパス膨張弁、
101,10N…過冷却熱交換器、111,11N…液側配管、
121,12N…ガス側配管、
13…室外機側液側分岐部、14…室外機側ガス側分岐部、
15…液側接続配管、16…ガス側接続配管、
17…室内機側液側分岐部、18…室内機側ガス側分岐部、
191,19M…室内機側液側配管、201,20M…室内機側ガス側配管、
211,21M…室内機、221,22M…室内熱交換器、
231,23M…室内ファン、241,24M…室内膨張弁、
251,25N…インバータ圧縮機周波数操作器、
261,26N…室外ファン送風能力操作器、
271,27N…室外膨張弁開度操作器、
281,28N…室外バイパス膨張弁開度操作器、
291,29N…四方弁操作器、301,30M…室内ファン送風能力操作器、
311,31M…室内膨張弁開度操作器、
321,32N…圧縮機吸入温度検知器、
331,33N…圧縮機吐出温度検知器、
341,34N…過冷却熱交換器出口温度検知器、
351,35N…室外熱交換器液温度検知器、
361,36N…室外温度検知器、371、37N…圧縮機吸入圧力検知器、
381,38N…圧縮機吐出圧力検知器、
391,39M…室内機吸込温度検知器、
401,40M…室内機吹出温度検知器、
411,41M…利用部温度設定器、421,42M…利用部(室内)、
43…制御演算装置、
51…暖房低温条件時四方弁運転信号を示す線、
52…暖房低温条件時室外熱交換器液温度の線、
53…暖房極低温条件時四方弁運転信号を示す線、
54…暖房極低温条件時室外熱交換器液温度の線、
55…空除霜時確率密度関数、56…着霜除霜時確率密度関数、
57…除霜開始判定用室外熱交換器液温度の閾値の線、
58…是正後除霜開始判定用室外熱交換器液温度の閾値の線。
11, 1N: outdoor unit, 21, 2N: compressor, 31, 3N: outdoor heat exchanger,
41, 4N ... outdoor fan, 51, 5N ... accumulator,
61, 6N ... four-way valve (reversible valve), 71, 7N ... liquid receiver,
81, 8N: outdoor expansion valve, 91, 9N: outdoor bypass expansion valve,
101, 10N ... supercooling heat exchanger, 111, 11N ... liquid side piping,
121, 12N ... gas side piping,
13 ... Outdoor unit side liquid side branch, 14 ... Outdoor unit side gas side branch,
15 ... Liquid side connection piping, 16 ... Gas side connection piping,
17 ... Indoor unit side liquid side branch, 18 ... Indoor unit side gas side branch,
191, 19M ... Indoor unit side liquid side piping, 201, 20M ... Indoor unit side gas side piping,
211, 21M ... indoor units, 221, 22M ... indoor heat exchangers,
231, 23M ... indoor fan, 241, 24M ... indoor expansion valve,
251, 25N: inverter compressor frequency controller,
261, 26N: outdoor fan blowing capacity controller,
271, 27 N: outdoor expansion valve opening operation device,
281 and 28N: outdoor bypass expansion valve opening operation device,
291, 29N: Four-way valve operation device, 301, 30M: Indoor fan air blowing capacity operation device,
311, 31M ... Indoor expansion valve opening operation device,
321, 32N: Compressor intake temperature detector,
331, 33N: compressor discharge temperature detector,
341, 34N ... Supercooling heat exchanger outlet temperature detector,
351, 35N ... outdoor heat exchanger liquid temperature detector,
361, 36N: outdoor temperature detector, 371, 37N: compressor suction pressure detector,
381, 38N ... compressor discharge pressure detector,
391, 39M ... Indoor unit suction temperature detector,
401, 40M ... indoor unit outlet temperature detector,
411, 41M ... use part temperature setting device, 421,42M ... use part (indoor),
43. Control arithmetic unit,
51. A line indicating a four-way valve operation signal at a heating low temperature condition,
52 ... Outdoor heat exchanger liquid temperature line at low temperature heating condition,
53 ... A line indicating a four-way valve operation signal in a heating cryogenic condition,
54 ... Outdoor heat exchanger liquid temperature line during heating cryogenic conditions,
55 ... Probability density function during defrosting, 56 ... Probability density function during defrosting,
57 ... Outline heat exchanger liquid temperature threshold line for defrost start determination,
58 ... The line of the threshold value of the outdoor heat exchanger liquid temperature for determining the start of defrosting after correction.

Claims (8)

圧縮機、室外熱交換器、該室外熱交換器を流れる冷媒流量を調整する室外膨張弁及び前記室外熱交換器に送風する室外ファンを有する室外機と、
室内熱交換器、該室内熱交換器を流れる冷媒流量を調節する室内膨張弁及び前記室内熱交換器に送風する室内ファンを有する室内機と、
前記室外機と前記室内機とを配管接続し、封入された冷媒を循環させて冷凍サイクルを構成する空気調和機であって、
前記室外熱交換器における室外熱交換器液温度と外気温と室外熱交換器液温度判定値に基づいて除霜開始判定を行なうようにした制御演算装置を備え、
前記制御演算装置は、予め定めた時間毎に前記除霜開始判定を実施すると共に、今回実施した除霜運転時における室外熱交換器液温度の所定温度までの上昇時間を測定して、この上昇時間と予め設定した判定値とを比較し、今回実施した除霜運転が着霜除霜であったか空除霜であったかを判定し、この判定により今回の除霜運転が空除霜であったと判定した場合には、前記室外熱交換器液温度判定値を是正し、次回の除霜開始判定時には前記是正された室外熱交換器液温度判定値に基づいて除霜開始判定を実施するように構成し、
更に前記制御演算装置は、今回実施した除霜運転が着霜除霜であったか空除霜であったかの判定に仮説検定を用いて判定すると共に、前記仮説検定において、前記室外熱交換器液温度の上昇時間の判定値は、全平均危険高を最小にするように決められる
ことを特徴とする空気調和機。
An outdoor unit having a compressor, an outdoor heat exchanger, an outdoor expansion valve for adjusting a flow rate of refrigerant flowing through the outdoor heat exchanger, and an outdoor fan for blowing air to the outdoor heat exchanger;
An indoor unit having an indoor heat exchanger, an indoor expansion valve that adjusts the flow rate of refrigerant flowing through the indoor heat exchanger, and an indoor fan that blows air to the indoor heat exchanger;
An air conditioner that connects the outdoor unit and the indoor unit with a pipe and circulates an enclosed refrigerant to form a refrigeration cycle,
A control arithmetic unit configured to perform a defrosting start determination based on an outdoor heat exchanger liquid temperature and an outdoor temperature and an outdoor heat exchanger liquid temperature determination value in the outdoor heat exchanger;
The control arithmetic unit performs the defrosting start determination every predetermined time, and measures the rise time of the outdoor heat exchanger liquid temperature to a predetermined temperature during the defrosting operation performed this time. Comparing the time with a preset determination value, it is determined whether the defrosting operation performed this time was defrosting defrosting or empty defrosting, and this determination determined that the current defrosting operation was empty defrosting In such a case, the outdoor heat exchanger liquid temperature determination value is corrected, and at the next defrost start determination, the defrost start determination is performed based on the corrected outdoor heat exchanger liquid temperature determination value. And
Further, the control arithmetic unit determines whether the defrosting operation performed this time was defrosting defrost or empty defrosting using a hypothesis test, and in the hypothesis test, in the hypothesis test, the outdoor heat exchanger liquid temperature An air conditioner characterized in that the judgment value of the rising time is determined so as to minimize the total average danger level .
圧縮機、室外熱交換器、該室外熱交換器を流れる冷媒流量を調整する室外膨張弁及び前記室外熱交換器に送風する室外ファンを有する室外機と、
室内熱交換器、該室内熱交換器を流れる冷媒流量を調節する室内膨張弁及び前記室内熱交換器に送風する室内ファンを有する室内機と、
前記室外機と前記室内機とを配管接続し、封入された冷媒を循環させて冷凍サイクルを構成する空気調和機であって、
前記室外熱交換器における室外熱交換器液温度と外気温と室外熱交換器液温度判定値に基づいて除霜開始判定を行なうようにした制御演算装置を備え、
前記制御演算装置は、予め定めた時間毎に前記除霜開始判定を実施すると共に、今回実施した除霜運転時における前記圧縮機の吐出側圧力の所定圧力までの上昇時間を測定して、この上昇時間と予め設定した判定値とを比較し、今回実施した除霜運転が着霜除霜であったか空除霜であったかを判定し、
この判定により今回の除霜運転が空除霜であったと判定した場合には、前記室外熱交換器液温度判定値を是正し、次回の除霜開始判定時には前記是正された室外熱交換器液温度判定値に基づいて除霜開始判定を実施するように構成されている
ことを特徴とする空気調和機。
An outdoor unit having a compressor, an outdoor heat exchanger, an outdoor expansion valve for adjusting a flow rate of refrigerant flowing through the outdoor heat exchanger, and an outdoor fan for blowing air to the outdoor heat exchanger;
An indoor unit having an indoor heat exchanger, an indoor expansion valve that adjusts the flow rate of refrigerant flowing through the indoor heat exchanger, and an indoor fan that blows air to the indoor heat exchanger;
An air conditioner that connects the outdoor unit and the indoor unit with a pipe and circulates an enclosed refrigerant to form a refrigeration cycle,
A control arithmetic unit configured to perform a defrosting start determination based on an outdoor heat exchanger liquid temperature and an outdoor temperature and an outdoor heat exchanger liquid temperature determination value in the outdoor heat exchanger;
The control arithmetic unit performs the defrosting start determination every predetermined time, and measures the rise time to the predetermined pressure of the discharge side pressure of the compressor during the defrosting operation performed this time, Compare the rising time with a preset determination value, determine whether the defrosting operation performed this time was defrosting defrost or empty defrosting,
If it is determined by this determination that the current defrosting operation is empty defrosting, the outdoor heat exchanger liquid temperature determination value is corrected, and the corrected outdoor heat exchanger liquid is determined at the next defrost start determination. An air conditioner configured to perform defrosting start determination based on a temperature determination value.
請求項に記載の空気調和機において、前記制御演算装置は、今回実施した除霜運転が着霜除霜であったか空除霜であったかの判定に仮説検定を用いて判定することを特徴とする空気調和機。 The air conditioner according to claim 2 , wherein the control arithmetic device uses a hypothesis test to determine whether the defrosting operation performed this time is defrosting or empty defrosting. Air conditioner. 請求項3に記載の空気調和機において、前記仮説検定において、前記圧縮機吐出側圧力の上昇時間の判定値は、全平均危険高を最小にするように決められることを特徴とする空気調和機。 4. The air conditioner according to claim 3, wherein, in the hypothesis test, the determination value of the rise time of the compressor discharge side pressure is determined so as to minimize the total average danger level. . 請求項1または2に記載の空気調和機において、前記制御演算装置は、今回実施した除霜運転が空除霜であったと判定した場合には、前記室外熱交換器液温度判定値の値をより低い温度になる方向に是正することで、空除霜する可能性を低減するように構成していることを特徴とする空気調和機。   3. The air conditioner according to claim 1, wherein the control arithmetic unit determines the value of the outdoor heat exchanger liquid temperature determination value when it is determined that the defrosting operation performed this time is empty defrosting. An air conditioner configured to reduce the possibility of air defrosting by correcting in a direction of lower temperature. 請求項1または2に記載の空気調和機において、前記制御演算装置は、今回実施した除霜運転が着霜除霜であったと判定した場合には、更に前記室外熱交換器液温度の所定温度または前記圧縮機吐出側圧力の所定圧力までの上昇時間が、予め設定した所定値より大きい場合には過剰着霜であったと判断し、前記室外熱交換器液温度判定値の値をより高い温度になる方向に是正することで、過剰着霜になる可能性を低減するように構成していることを特徴とする空気調和機。   3. The air conditioner according to claim 1, wherein the control arithmetic unit further determines a predetermined temperature of the outdoor heat exchanger liquid temperature when it is determined that the defrosting operation performed this time is defrosting defrosting. Alternatively, if the rise time of the compressor discharge side pressure to a predetermined pressure is greater than a predetermined value set in advance, it is determined that excessive frosting has occurred, and the outdoor heat exchanger liquid temperature determination value is set to a higher temperature. An air conditioner configured to reduce the possibility of excessive frost formation by correcting in the direction of becoming. 請求項1または2に記載の空気調和機において、該空気調和機の運転スイッチがOFFされた場合や、長時間運転により気象条件が変化した場合には、前記室外熱交換器液温度判定値の値を標準設定或いは初期値に戻すように前記制御演算装置が構成されていることを特徴とする空気調和機。   In the air conditioner according to claim 1 or 2, when the operation switch of the air conditioner is turned off, or when the weather condition changes due to long-time operation, the outdoor heat exchanger liquid temperature judgment value An air conditioner characterized in that the control arithmetic unit is configured to return the value to a standard setting or an initial value. 請求項1に記載の空気調和機において、前記室外機及び室内機はそれぞれ複数台設けられ、前記室外機に設けられた圧縮機は周波数可変の圧縮機であり、前記室外膨張弁及び前記室内膨張弁はそれぞれ電子膨張弁で構成され、前記室外熱交換器液温度は前記室外熱交換器の液冷媒が通る冷媒配管に設けられた室外熱交換器液温度検知器により検知され、前記外気温は、前記室外熱交換器の吸込側に配置された室外温度検知器により検知されるように構成されていることを特徴とする空気調和機。   2. The air conditioner according to claim 1, wherein a plurality of the outdoor units and the plurality of indoor units are provided, the compressor provided in the outdoor unit is a variable frequency compressor, the outdoor expansion valve and the indoor expansion unit. Each of the valves is an electronic expansion valve, and the outdoor heat exchanger liquid temperature is detected by an outdoor heat exchanger liquid temperature detector provided in a refrigerant pipe through which the liquid refrigerant of the outdoor heat exchanger passes, and the outdoor temperature is An air conditioner configured to be detected by an outdoor temperature detector disposed on the suction side of the outdoor heat exchanger.
JP2012150543A 2012-07-04 2012-07-04 Air conditioner Active JP5865792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012150543A JP5865792B2 (en) 2012-07-04 2012-07-04 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012150543A JP5865792B2 (en) 2012-07-04 2012-07-04 Air conditioner

Publications (2)

Publication Number Publication Date
JP2014013108A JP2014013108A (en) 2014-01-23
JP5865792B2 true JP5865792B2 (en) 2016-02-17

Family

ID=50108881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012150543A Active JP5865792B2 (en) 2012-07-04 2012-07-04 Air conditioner

Country Status (1)

Country Link
JP (1) JP5865792B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105403424A (en) * 2015-12-14 2016-03-16 广东志高空调有限公司 Air conditioner ultralow-temperature environment simulation test box
CN111417827A (en) * 2017-12-06 2020-07-14 三菱电机株式会社 Refrigerator, heater driving device, heater driving method, and program

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106461253B (en) * 2014-04-22 2020-01-14 日立江森自控空调有限公司 Air conditioner and defrosting operation method thereof
CN105387560B (en) * 2015-10-30 2018-02-13 株洲麦格米特电气有限责任公司 A kind of DC frequency converting air-conditioner intelligent defrosting method
CN109780684B (en) * 2019-01-24 2022-06-24 青岛海尔空调电子有限公司 Air conditioner control method and device, air conditioner and storage medium
CN110017583B (en) * 2019-03-12 2021-12-21 青岛海尔空调电子有限公司 Air conditioner and defrosting control method thereof
CN110195914A (en) * 2019-06-03 2019-09-03 宁波奥克斯电气股份有限公司 A kind of control method delaying frosting, device and air conditioner
CN110594959B (en) * 2019-09-18 2021-04-16 宁波奥克斯电气股份有限公司 Air conditioner control method
CN112781287B (en) * 2020-07-28 2022-10-18 青岛海尔新能源电器有限公司 Defrosting method and water heater
CN114061029A (en) * 2020-08-03 2022-02-18 广东美的制冷设备有限公司 Air conditioning system control method, equipment, storage medium and device
CN113266922B (en) * 2021-05-28 2022-03-25 中山市爱美泰电器有限公司 Defrosting control method of heat pump
CN114440452B (en) * 2022-03-01 2024-01-16 北溪特(浙江)科技有限公司 Frosting judgment method for air energy water heater
CN114992779A (en) * 2022-07-05 2022-09-02 珠海格力电器股份有限公司 Defrosting control method and device for air conditioner
CN115076905B (en) * 2022-08-10 2023-07-18 宁波奥克斯电气股份有限公司 Defrosting control method and device and air conditioner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100364A (en) * 1982-12-01 1984-06-09 松下精工株式会社 Method of completing defrostation of air conditioner
JPS62123245A (en) * 1985-11-25 1987-06-04 Toshiba Corp Method of defrosting operation of air conditioner
JPH07117268B2 (en) * 1989-06-05 1995-12-18 ダイキン工業株式会社 Defrosting operation control device
JPH07139785A (en) * 1993-11-19 1995-05-30 Fujitsu General Ltd Defrost controller for air conditioner
JPH07218055A (en) * 1994-02-01 1995-08-18 Hitachi Ltd Defrosting control method for air conditioner
JPH09287856A (en) * 1996-04-18 1997-11-04 Matsushita Refrig Co Ltd Defrosting method for air-conditioner
JP2008215734A (en) * 2007-03-06 2008-09-18 Hitachi Appliances Inc Multiple air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105403424A (en) * 2015-12-14 2016-03-16 广东志高空调有限公司 Air conditioner ultralow-temperature environment simulation test box
CN111417827A (en) * 2017-12-06 2020-07-14 三菱电机株式会社 Refrigerator, heater driving device, heater driving method, and program
CN111417827B (en) * 2017-12-06 2021-09-28 三菱电机株式会社 Refrigerator, heater driving device, heater driving method, and recording medium

Also Published As

Publication number Publication date
JP2014013108A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP5865792B2 (en) Air conditioner
JP4503646B2 (en) Air conditioner
US9239180B2 (en) Refrigeration and air-conditioning apparatus
EP2320169B1 (en) Air conditioner and method for determining the amount of refrigerant therein
KR101917941B1 (en) Air conditioner and control method thereof
JP6514422B1 (en) Air conditioning management system, air conditioning management method, and program
EP2204621A2 (en) Air conditioner and method for detecting malfunction thereof
US20110308267A1 (en) Refrigerating cycle apparatus
JP2010210121A (en) Air conditioner
EP3859249B1 (en) Refrigerant leakage determination device, freezing device including this refrigerant leakage determination device, and refrigerant leakage determination method
US10139815B2 (en) Chiller control device, chiller, and chiller diagnostic method
CN107525211A (en) The fault detect of air-conditioning and its supercooling tube group and processing method
JP6297151B2 (en) Refrigeration cycle apparatus, refrigerant leak detection apparatus and refrigerant leak detection method
CN114992776A (en) Refrigerant leakage detection method and device for air conditioning system, air conditioner and storage medium
WO2007007576A1 (en) Air conditioner
CN107560100B (en) The control method of air conditioner coolant not foot protection
CN113739460A (en) Evaporator defrosting treatment method and device and heat pump equipment
JPWO2017094059A1 (en) Refrigerant amount management apparatus and refrigerant amount management system
CN112303825A (en) Defrosting control method for heat source tower
JP3584274B2 (en) Refrigerant amount adjustment method and refrigerant amount determination device
JP6595139B1 (en) Air conditioning management system, air conditioning management method, and program
WO2020003529A1 (en) Air conditioning system, air conditioning method, and program
JP2001133099A (en) Open showcase
US11994326B2 (en) Refrigerant leakage detection system
CN111609518B (en) Control method for air conditioner and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151228

R150 Certificate of patent or registration of utility model

Ref document number: 5865792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250