JP5865617B2 - Plasma generation method and apparatus therefor - Google Patents

Plasma generation method and apparatus therefor Download PDF

Info

Publication number
JP5865617B2
JP5865617B2 JP2011156221A JP2011156221A JP5865617B2 JP 5865617 B2 JP5865617 B2 JP 5865617B2 JP 2011156221 A JP2011156221 A JP 2011156221A JP 2011156221 A JP2011156221 A JP 2011156221A JP 5865617 B2 JP5865617 B2 JP 5865617B2
Authority
JP
Japan
Prior art keywords
electrode
substrate
plasma
treated
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011156221A
Other languages
Japanese (ja)
Other versions
JP2012038723A (en
Inventor
邦彦 澁澤
邦彦 澁澤
佐藤 剛
剛 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO YUDEN CHEMICAL TECHNOLOGY CO., LTD.
Original Assignee
TAIYO YUDEN CHEMICAL TECHNOLOGY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO YUDEN CHEMICAL TECHNOLOGY CO., LTD. filed Critical TAIYO YUDEN CHEMICAL TECHNOLOGY CO., LTD.
Priority to JP2011156221A priority Critical patent/JP5865617B2/en
Publication of JP2012038723A publication Critical patent/JP2012038723A/en
Application granted granted Critical
Publication of JP5865617B2 publication Critical patent/JP5865617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、プラズマCVD法による成膜又は表面改質に用いられるプラズマ発生方法及びそのための装置に関し、特に、被処理基材が、プラスチックやゴムなどの絶縁性で、かつ耐熱性の低いものであっても、短時間で効率的に成膜又は表面改質が可能なプラズマ発生方法及びそのための装置に関する。   The present invention relates to a plasma generation method used for film formation or surface modification by a plasma CVD method and an apparatus therefor, and particularly, a substrate to be processed is an insulating material such as plastic or rubber and has low heat resistance. Even if it exists, it is related with the plasma generation method and apparatus for it which can perform film-forming or surface modification efficiently in a short time.

例えば、ダイヤモンド様炭素膜(以下、「DLC膜」ということもある。)等の非晶質炭素膜は、耐摩耗性、耐凝着性などを有し、かつ低摩擦係数を有する膜であるため、切削工具、金型等の治工具、各種デバイスの保護膜や、物理的、化学的、機械的に優れた機能を付加する基材改質等、従来、金属系基材改質の様々な分野で用いられている。
昨今は、基材自体の軽量化や、プレス、射出成形など大量生産性、加工性などを考慮し、樹脂やゴムなどを基材とする治工具、デバイス等が開発されており、これらにも、金属系基材のものと同様に非晶質炭素膜の成膜が要望されてきている。
また、非晶質炭素膜は、水蒸気や酸素の透過を防止する性質も有し、各種樹脂フィルムや有機高分子からなる立体形状容器等の表面に数十nmと薄く成膜することにより、ガスバリア性など高付加価値を付与することが可能となる。
For example, an amorphous carbon film such as a diamond-like carbon film (hereinafter sometimes referred to as “DLC film”) is a film having wear resistance, adhesion resistance, and the like and having a low friction coefficient. Therefore, various conventional metal base material modifications such as cutting tools, tooling tools such as molds, protective films for various devices, and base material modifications that add excellent physical, chemical and mechanical functions. Used in various fields.
In recent years, jigs and devices based on resin or rubber have been developed in consideration of weight reduction of the base material itself, mass productivity such as press and injection molding, and workability. There has been a demand for the formation of an amorphous carbon film as in the case of a metal-based substrate.
Amorphous carbon film also has the property of preventing the permeation of water vapor and oxygen, and by forming a thin film of several tens of nanometers on the surface of various resin films and three-dimensional containers made of organic polymers, the gas barrier It becomes possible to give high added value such as property.

この非晶質炭素膜は、プラズマCVD法、イオンプレーティング法、スパッタリング法等により形成できるが、中でも、プラズマプロセスを利用したプラズマCVD法は、反応ガスにより成膜するものであり、また、成膜装置の構造も比較的単純であって、安価であるため、好ましく用いられており、その装置には各種各様の方式が開発されている。
また、このプラズマを利用した装置は、被処理物(以下、「非処理基材」あるいは「ワーク」ということもある。)への成膜以外にも、被処理基材表面に存在する異物のプラズマによるクリーニング、被処理基材表面上に形成された他の膜の剥離、被処理基材表面の密着性の改善等、被処理基材の表面改質にも多く用いられている。
This amorphous carbon film can be formed by a plasma CVD method, an ion plating method, a sputtering method, etc. Among them, the plasma CVD method utilizing a plasma process is formed by a reactive gas, and is formed by a process. Since the structure of the membrane device is relatively simple and inexpensive, it is preferably used, and various methods have been developed for the device.
In addition to the film formation on the object to be processed (hereinafter, also referred to as “non-processed substrate” or “work”), the apparatus using the plasma can remove foreign substances existing on the surface of the substrate to be processed. It is also frequently used for surface modification of a substrate to be treated, such as cleaning with plasma, peeling of another film formed on the surface of the substrate to be treated, and improving the adhesion of the surface of the substrate to be treated.

プラズマ発生装置を用いた成膜或いは表面改質においては、被処理基材の表面形状にかかわらず、均一な成膜や表面改質が行われることが必要とされている。
例えば、特許文献1では、被処理物の形状にかかわらず均一な膜厚で薄膜が形成可能な装置として、特定の形状を有する電極を用いた装置が提案されている。
前記特許文献1に記載されたプラズマCVD装置では、反応容器内に、被処理基材を収容可能な大きさのプラズマ発生領域を内部に形成する螺旋形状の線材からなる第1電極と、前記第1電極とは同電位でない第2電極と、前記被処理物を前記プラズマ発生領域内に支持し前記第2電極と電気的に接続する支持部材とを備え、前記第1電極に高周波電圧を印加可能に構成した装置である。
そして、前記装置によれば、カソード電極と被処理物の相対的な位置調整が狂うと均一な膜が形成されないという従来の課題を解消し、被処理基材の形状にかかわらず均一な膜厚で薄膜が形成できるとしているが、被処理基材導電性を有する物が前提となっている。
In film formation or surface modification using a plasma generator, uniform film formation or surface modification is required regardless of the surface shape of the substrate to be treated.
For example, Patent Document 1 proposes an apparatus using an electrode having a specific shape as an apparatus capable of forming a thin film with a uniform film thickness regardless of the shape of an object to be processed.
In the plasma CVD apparatus described in Patent Document 1, a first electrode made of a helical wire that forms a plasma generation region having a size capable of accommodating a substrate to be processed in a reaction container, and the first electrode A second electrode that is not at the same potential as one electrode; and a support member that supports the object to be processed in the plasma generation region and is electrically connected to the second electrode, and applies a high-frequency voltage to the first electrode. This is a device that can be configured.
And according to the said apparatus, the conventional subject that a uniform film | membrane will not be formed if the relative position adjustment of a cathode electrode and a to-be-processed object goes wrong is solved, and a uniform film thickness irrespective of the shape of a to-be-processed base material Although it is said that a thin film can be formed, the thing which has to-be-processed base-material conductivity is a premise.

しかしながら、ワークが樹脂製部品やゴム製品等、通常は電気絶縁性を有するものの場合、ワークが導電性であることが前提となっている特許文献1に記載された装置を使用することはできない。
すなわち、ワークが絶縁性である場合は、ワーク自体を一方の電極、ひいてはプラズマ発生源とし、ワークの周囲に均一にプラズマを発生させる方法が適用できないため、プラズマ発生に必要な別の電極をワークの周囲に所定の間隔で配置し、ワークと前記別の電極の間に原料ガスを供給する機構を備えるように設計された当該ワーク専用設計のプラズマCVD装置が要求される。
However, in the case where the workpiece is usually electrically insulating, such as a resin part or rubber product, the device described in Patent Document 1 on the assumption that the workpiece is conductive cannot be used.
In other words, when the work is insulative, it is not possible to apply a method in which the work itself is used as one electrode, and thus a plasma generation source, and plasma is generated uniformly around the work. A plasma CVD apparatus specifically designed for the workpiece, which is designed to have a mechanism for supplying a raw material gas between the workpiece and the another electrode, is required.

例えば、特許文献2には、容器の外側面を囲むように外周電極を配置し、前記容器の外表面に出発原料を供給しながらプラズマCVD法により前記容器の外表面に成膜する装置が記載されている。
また、特許文献3では、プラズマ源が装置内の特定の方向、場所に配置された装置において、プラズマ源に対して、ワークが自公転する回転機構を当該真空装置内に設け、それに被処理基材を搭載し、前記被処理基材の被処理面をプラズマ源に対して均等に回転させながら露出させ、処理するような機構も提案されている。
For example, Patent Document 2 describes an apparatus in which an outer peripheral electrode is disposed so as to surround an outer surface of a container, and a film is formed on the outer surface of the container by a plasma CVD method while supplying a starting material to the outer surface of the container. Has been.
Further, in Patent Document 3, in a device in which a plasma source is arranged in a specific direction and place in the device, a rotation mechanism for revolving the workpiece with respect to the plasma source is provided in the vacuum device, and a substrate to be processed is provided. There has also been proposed a mechanism in which a material is mounted, the surface to be processed of the substrate to be processed is exposed while being uniformly rotated with respect to the plasma source, and processing is performed.

特開2000−80478号公報JP 2000-80478 A 特開2006−176865号公報JP 2006-176865 A 特開平11−131241号公報JP-A-11-131241

しかしながら、ワークが樹脂などの耐熱性の低い基材からなる場合においては、発熱による基材の熱変形対策として、以下のような対策も必要となる。
(1)プラズマや、ワークの支持体に流れる電流による発熱で、ワーク自身が変形・損傷しないようにする為、ワークに接触させてワークを冷却する為の冷却機構を導入する。
(2)ワークの処理中、プラズマCVD装置の電源を一定時間間隔で停止させ、ワークの急激な昇温を防止する。
(3)プラズマ発生源をワークから遠く離れた場所に設置し、失活プラズマでの成膜も前提としてより低温で成膜を行う。
However, when the work is made of a base material having low heat resistance such as a resin, the following measures are also required as a measure against heat deformation of the base material due to heat generation.
(1) In order to prevent the workpiece itself from being deformed or damaged by the heat generated by the plasma or current flowing through the workpiece support, a cooling mechanism is introduced for cooling the workpiece in contact with the workpiece.
(2) During processing of the workpiece, the power source of the plasma CVD apparatus is stopped at regular time intervals to prevent the workpiece from being rapidly heated.
(3) A plasma generation source is installed at a location far away from the workpiece, and film formation is performed at a lower temperature on the premise of film formation using deactivated plasma.

特に、特許文献2、3に記載された装置では、ワークの周囲にプラズマを発生させる方法として、高周波(RF)電源によるCVD方法(高周波プラズマCVD法)が採用されているが、高周波プラズマCVD法や、さらに直流プラズマCVD法は、電流が間断なく流れるため、プラズマ温度の上昇が早く、成膜開始後、短時間に少なくとも成膜温度が200℃前後以上となる。
そこで、従来の高周波プラズマCVD法では、ワーク温度が上昇することを防ぐために、成膜を間欠的に繰り返し行う方法が採用されており、例えば、高周波を所定時間入力して成膜を行った後、所定時間出力を停止し、これを人為的に必要回数繰り返すなど煩雑な操作を繰り返すことにより、必要な膜厚のDLC膜を成膜している。
In particular, in the apparatuses described in Patent Documents 2 and 3, a CVD method (high frequency plasma CVD method) using a high frequency (RF) power source is adopted as a method for generating plasma around the workpiece. In addition, in the direct current plasma CVD method, since the current flows without interruption, the plasma temperature rises quickly, and at least the film formation temperature becomes about 200 ° C. or more in a short time after the film formation is started.
Therefore, in the conventional high-frequency plasma CVD method, in order to prevent the workpiece temperature from rising, a method of intermittently repeating film formation is employed. For example, after film formation is performed by inputting a high frequency for a predetermined time. The DLC film having a required film thickness is formed by repeating the complicated operation such as stopping the output for a predetermined time and manually repeating this for the required number of times.

また、ワークが、絶縁性で、かつ低温で変形する基材(以下、「絶縁性低温変形基材」ということもある。)からなる薄い板状のものである場合、薄板状のワークに冷却装置を面接触させて冷却しながら成膜を行うことは不可能ではないが、高価で複雑な冷却機構が必要となり、さらに、立体的なワークの場合、その3次元的な全表面を隈なく冷却しながら成膜を行うことは著しく困難である。   Further, when the work is a thin plate made of a base material that is insulating and deforms at a low temperature (hereinafter sometimes referred to as “insulating low temperature deformation base material”), the work is cooled to a thin plate-like work. Although it is not impossible to form a film while cooling it by bringing the device into surface contact, an expensive and complicated cooling mechanism is required. Furthermore, in the case of a three-dimensional workpiece, the entire three-dimensional surface is reduced. It is extremely difficult to form a film while cooling.

そこで、本発明者等は、近年実用化されてきている直流パルス電源を用いるプラズマCVD装置を用いて、絶縁性低温変形基材への適用を試みたところ、通常の直流プラズマCVD方法や、高周波プラズマCVD法に比べ、パルス状の直流(パルスDC)電源によるプラズマCVD方法を採用した場合、通電のデューティー比を1〜2%程度までに抑えることが可能で、温度上昇カーブを制御可能であることが判明した。
しかしながら、該装置に於いても、電気を通さない絶縁基材を電極としてその周囲にプラズマを発生させることは、他の装置同様不可能であり、前述のように、ワークの立体成膜面形状に適合させた専用のプラズマ発生電極を作成し、ワークの周囲に配置し、ワークと当該電極との間に原料ガスを供給するか、ワークから離れた場所にプラズマ発生用の電極を配置し、ワークを自公転させる機構を導入する必要がある。
Therefore, the present inventors tried to apply to an insulating low-temperature deformable substrate using a plasma CVD apparatus using a DC pulse power supply that has been put into practical use in recent years. Compared with the plasma CVD method, when the plasma CVD method using a pulsed direct current (pulse DC) power source is adopted, the duty ratio of energization can be suppressed to about 1 to 2%, and the temperature rise curve can be controlled. It has been found.
However, even in this apparatus, it is impossible to generate plasma around an insulating base material that does not conduct electricity as in the case of other apparatuses. A dedicated plasma generating electrode adapted to the above is created and placed around the workpiece, and a source gas is supplied between the workpiece and the electrode, or an electrode for plasma generation is placed at a location away from the workpiece, It is necessary to introduce a mechanism that revolves the workpiece.

また、従来の実務上、パルスDC電源によるプラズマCVD装置に於いても、樹脂など絶縁性低温変形基材を処理する場合には、以下の(1)、(2)等の対応が必要になってくる。
(1)例えば、薄板状の絶縁性低温変形基材がワークである場合、前記ワークを、通電可能な金属基板上に載せて、前記金属基板を通電して前記ワークの周囲に電界を形成させ、プラズマを前記ワーク表面に発生させることでプラズマ処理を行うことは可能であるが、この場合、印加(通電)電圧を下げ、大電流が前記金属基板に流れて前記金属基板が昇温するのを防止する必要がある。
(2)1パルス入力における通電時間を短くし、電源のデューティー比を下げる必要がある。
Further, in the conventional practice, even in a plasma CVD apparatus using a pulsed DC power supply, the following measures (1) and (2) are required when processing an insulating low-temperature deformable substrate such as a resin. Come.
(1) For example, when the thin plate-like insulating low-temperature deformable base material is a workpiece, the workpiece is placed on a metal substrate that can be energized, and the metal substrate is energized to form an electric field around the workpiece. It is possible to perform plasma treatment by generating plasma on the surface of the workpiece. In this case, however, the applied (energization) voltage is lowered, and a large current flows through the metal substrate to raise the temperature of the metal substrate. Need to prevent.
(2) It is necessary to shorten the energization time in one pulse input and lower the duty ratio of the power source.

しかし、(1)の方法で対応する場合、通常金属基材の成膜では−4kV以上の電圧を印加するのに対し、変形温度が100℃前後に存在する絶縁性低温変形基材である樹脂基材を成膜するためには、−2kV程度に印加電圧を落とさなければならない。
通常金属基材での成膜に使われる−4kV以上の印加電圧というのは、被成膜基材へのイオン注入加速度を上げることで、基材と非晶質炭素膜の密着や、当該膜の硬さなどの制御を行うために必要な電圧である。
ところが前記−2kV程度の印加電圧では、形成された非晶質炭素膜は前記樹脂基材との密着が悪く、最悪の場合、市販のセロハンテープなどを貼付して引き剥がすと非晶質炭素膜が前記樹脂基材から膜が剥がれてしまうケースもある。
また、(2)の方法で対応する場合、例えば、パルス周波数10kHz、パルス幅を通常10μsとするところを、パルス幅を1μs、または、2μs程度まで引き下げることになり、通電している時間が短いため、成膜に要する時間が10μs時の3〜4倍以上(成膜レートの著しい低下)を要することになる。
このように、上記(1)、(2)のいずれの方法で対応する場合も、樹脂等の絶縁性低温変形性基材への成膜は効率が悪く、出来上がった物の品質も要求水準と比較すると不十分なものであった。
However, when the method of (1) is used, a resin that is an insulating low-temperature deformable substrate having a deformation temperature of around 100 ° C., whereas a voltage of −4 kV or higher is usually applied in the formation of a metal substrate. In order to form a substrate, the applied voltage must be reduced to about -2 kV.
An applied voltage of −4 kV or higher, which is usually used for film formation on a metal substrate, means that adhesion between the substrate and the amorphous carbon film is increased by increasing the ion implantation acceleration to the film formation substrate. This voltage is necessary for controlling the hardness of the steel.
However, at an applied voltage of about −2 kV, the formed amorphous carbon film has poor adhesion to the resin base material, and in the worst case, when a commercially available cellophane tape or the like is applied and peeled off, the amorphous carbon film However, there are cases where the film is peeled off from the resin substrate.
When the method (2) is used, for example, when the pulse frequency is 10 kHz and the pulse width is normally 10 μs, the pulse width is reduced to about 1 μs or 2 μs, and the energization time is short. Therefore, the time required for the film formation is 3 to 4 times or more (a remarkable decrease in the film formation rate) compared to 10 μs.
As described above, in any of the above methods (1) and (2), the film formation on the insulating low-temperature deformable base material such as resin is inefficient, and the quality of the finished product is the required level. The comparison was insufficient.

以上のように、自公転等の回転機構、並びに基材冷却装置を使用せず、絶縁物(通電しにくい基材含む)、特に、より低温で変形する樹脂やゴム等の基材の全面、ならびに選択された任意の面をプラズマ処理可能にする装置がないのが現状である。
本発明は、こうした従来技術における課題を解決するものであって、自公転等の回転機構、並びに基材冷却装置を使用せず、多用な形状の絶縁物、特に耐熱性の低い絶縁物に、短時間で効率的にプラズマ成膜、及び改質処理可能な方法及びそのための装置を提供することを目的とするものである。
As described above, without using a rotation mechanism such as self-revolution, and a substrate cooling device, insulators (including substrates that are difficult to energize), in particular, the entire surface of a substrate such as resin or rubber that deforms at a lower temperature, In addition, there is currently no apparatus that enables plasma processing of any selected surface.
The present invention solves such a problem in the prior art, and does not use a rotation mechanism such as self-revolution and a substrate cooling device, and is used for an insulator of various shapes, particularly an insulator with low heat resistance, An object of the present invention is to provide a method and an apparatus therefor that can efficiently perform plasma film formation and reforming treatment in a short time.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、被処理物が絶縁物である場合において、下記(1)〜(4)のプラズマ処理方法の組合せが有効に成立することを見出した。
(1)プラズマCVD装置の反応容器を他方電極とする。この反応容器内には被処理物が配置される。
(2)前記他方電極を兼ねる前記反応容器内に配置される前記被処理物の処理必要面に対して、前記被処理物の処理必要面に向けて発生させたプラズマが失活しない一定距離を置いて一方電極を設置する。
(3)前記一方電極は、金属メッシュ、金属スリット、金属コイル等の形状とする。
(4)プラズマ発生電圧の印加に於いては、高圧マイクロパルスDC電源を使用する。
この高圧マイクロパルスDC電源は
(a)通電間隔や、連続通電時間をμ秒単位で制御可能なものとする。
(電源のデューティー比の制御が可能)
(b)よって、前記一方電極や被処理物である基材処理必要面の昇温を
制御し易い。
(c)高電圧を瞬時パルス状に前記一方電極に印加可能で、被処理物の
処理必要面から一定距離だけ離れた場所からでも活性度の高い
プラズマを生成、供給が可能である。
という特徴を有する。
As a result of intensive studies to achieve the above object, the present inventors have found that the combination of the following plasma processing methods (1) to (4) is effectively established when the object to be processed is an insulator. I found.
(1) The reaction vessel of the plasma CVD apparatus is used as the other electrode. An object to be processed is placed in the reaction vessel.
(2) A fixed distance at which the plasma generated toward the treatment-needed surface of the object to be treated is not deactivated with respect to the treatment-needed surface of the object to be treated disposed in the reaction vessel also serving as the other electrode Place one electrode.
(3) The one electrode has a shape such as a metal mesh, a metal slit, or a metal coil.
(4) A high-voltage micropulse DC power supply is used for applying the plasma generation voltage.
This high-voltage micropulse DC power supply is capable of (a) controlling the energization interval and continuous energization time in units of microseconds.
(Power supply duty ratio can be controlled)
(B) Therefore, the temperature increase of the one-side electrode or the substrate processing required surface that is the object to be processed is performed.
Easy to control.
(C) A high voltage can be applied to the one electrode in the form of instantaneous pulses,
High activity even from a certain distance away from the treatment required surface
Plasma can be generated and supplied.
It has the characteristics.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]真空排気された反応容器内に原料ガスを導入し、
該反応容器内に設置された一方電極に電圧を印加することにより、前記原料ガスをプラズマ化すると共に、前記反応容器内に設置された被処理基材上で反応を起こさせる方法において、
前記一方電極の少なくとも一部を、原料ガスが透過可能な電極とするとともに、前記一方電極が被処理基材と直接接触しないように配置し、且つ、前記一方電極にパルス状のDC電圧を印加することを特徴とするプラズマ発生方法。
[2]前記原料ガスが透過可能な電極の形状が、メッシュ形状、螺旋形状、スリット形状、又は穴あき形状であることを特徴とする前記[1]のプラズマ発生方法。
[3]前記被処理基材が、半導体基材又は絶縁性基材であることを特徴とする前記[1]又は[2]のプラズマ発生方法。
[4]前記被処理基材が、低温で変形する基材であることを特徴とする前記[1]又は[2]のプラズマ発生方法。
[5]前記被処理基材が立体形状を有するものであって、前記原料ガスが透過可能な電極が、該被処理基材を囲むように配置されていることを特徴とする前記[1]〜[4]のいずれかのプラズマ発生方法。
[6]前記[1]〜[5]のいずれかのプラズマ発生方法を用いることを特徴とする成膜方法。
[7]被処理基材上に非晶質炭素膜を成膜することを特徴とする前記[6]の成膜方法。
[8]前記[1]〜[5]のいずれかのプラズマ発生方法を用いることを特徴とする表面改質方法。
[9]真空排気可能であり、かつ内部に被処理基材を収容可能な反応容器と、
前記反応容器内にプラズマ生成源となる原料ガスを導入する手段と、
前記反応容器内に設置された一方電極と、
前記一方電極に対向する他方電極と、
前記一方電極と前記他方電極との間に電圧を印加する手段と、
を備え、前記反応容器内に導入後の前記原料ガスを前記電圧印加手段により発生した電界によってプラズマ化させると共に、前記反応容器内に設置された前記被処理基材の表面と前記プラズマとの間で反応を起こさせる装置において、
前記一方電極の少なくとも一部が、前記原料ガスが透過可能な電極であり、且つ、前記一方電極と前記他方電極との両電極が前記被処理基材と直接接触しないようにそれぞれ所定距離で離間配置されており、
前記印加する電圧が、パルス状のDC電圧であることを特徴とするプラズマ発生装置。
[10]前記原料ガスが透過可能な電極の形状が、メッシュ形状、螺旋形状、スリット形状、又は穴あき形状であることを特徴とする前記[9]のプラズマ発生装置。
[11]前記被処理基材が、半導体基材又は絶縁性基材であることを特徴とする前記[9]又は[10]のプラズマ発生装置。
[12]前記被処理基材が、低温で変形する基材であることを特徴とする前記[9]又は[10]のプラズマ発生装置。
[13]前記被処理基材が立体形状を有するものであって、前記原料ガスが透過可能な電極が、該被処理基材を囲むように配置されていることを特徴とする前記[9]〜[12]のいずれかのプラズマ発生装置。
[14]前記[9]〜[13]のいずれかのプラズマ発生装置を用いること特徴とする成膜装置。
[15]被処理基材上に非晶質炭素膜を成膜する装置であることを特徴とする前記[14]の成膜装置。
[16]前記[9]〜[13]のいずれかのプラズマ発生装置を用いることを特徴とする表面改質装置。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] Introducing the raw material gas into the evacuated reaction vessel,
In the method of causing a reaction on the substrate to be treated installed in the reaction vessel, while applying the voltage to the one electrode installed in the reaction vessel to convert the source gas into plasma,
At least a part of the one electrode is an electrode through which a raw material gas can pass, and the one electrode is disposed so as not to be in direct contact with the substrate to be processed, and a pulsed DC voltage is applied to the one electrode. A method for generating plasma.
[2] The plasma generation method according to [1], wherein the electrode through which the source gas is permeable has a mesh shape, a spiral shape, a slit shape, or a perforated shape.
[3] The plasma generation method according to [1] or [2], wherein the substrate to be treated is a semiconductor substrate or an insulating substrate.
[4] The plasma generation method of [1] or [2], wherein the substrate to be treated is a substrate that deforms at a low temperature.
[5] The above-mentioned [1], wherein the substrate to be treated has a three-dimensional shape, and the electrode through which the raw material gas can pass is disposed so as to surround the substrate to be treated. The plasma generation method according to any one of [4].
[6] A film forming method using the plasma generation method according to any one of [1] to [5].
[7] The film forming method of [6], wherein an amorphous carbon film is formed on a substrate to be processed.
[8] A surface modification method using the plasma generation method according to any one of [1] to [5].
[9] a reaction vessel that can be evacuated and can accommodate a substrate to be treated;
Means for introducing a source gas serving as a plasma generation source into the reaction vessel;
One electrode installed in the reaction vessel;
The other electrode facing the one electrode;
Means for applying a voltage between the one electrode and the other electrode;
The raw material gas after being introduced into the reaction vessel is turned into plasma by the electric field generated by the voltage application means, and between the surface of the substrate to be treated installed in the reaction vessel and the plasma In a device that causes a reaction in
At least a part of the one electrode is an electrode through which the source gas can pass, and the one electrode and the other electrode are separated from each other by a predetermined distance so as not to directly contact the substrate to be processed. Has been placed,
The plasma generator is characterized in that the applied voltage is a pulsed DC voltage.
[10] The plasma generator according to [9], wherein the shape of the electrode through which the source gas can pass is a mesh shape, a spiral shape, a slit shape, or a perforated shape.
[11] The plasma generator according to [9] or [10], wherein the substrate to be treated is a semiconductor substrate or an insulating substrate.
[12] The plasma generator according to [9] or [10], wherein the substrate to be treated is a substrate that deforms at a low temperature.
[13] The above-mentioned [9], wherein the substrate to be treated has a three-dimensional shape, and an electrode through which the raw material gas can pass is disposed so as to surround the substrate to be treated. -The plasma generator in any one of [12].
[14] A film forming apparatus using the plasma generator of any one of [9] to [13].
[15] The film forming apparatus of [14], which is an apparatus for forming an amorphous carbon film on a substrate to be processed.
[16] A surface modification apparatus using the plasma generator of any one of [9] to [13].

本発明によれば、以下の(ア)〜(ウ)の効果を奏する。
(ア)絶縁物、又は導電性が低く、基材自体の周囲に自らプラズマを形成しにくい基材で、特に低温での成膜が必要な基材への処理を、真空装置内の回転機構、冷却機構無しで実現できる。
(イ)特に、印加電圧、パルスデューティー比などの条件が、従来の金属基材での処理の時と同条件でも被処理基材の温度が上昇せず、低温での処理が必要な絶縁性の基材の処理を早めることができ、装置の稼働率を上げることが可能になる。
(ウ)補助電極を任意の部分に配置することにより、プラズマによる選択的な部分成膜、改質が可能となる。
According to the present invention, the following effects (a) to (c) are exhibited.
(A) A rotating mechanism in a vacuum device for processing an insulating material or a substrate that has low electrical conductivity and does not easily form plasma around the substrate itself, and that requires film formation at a particularly low temperature. This can be realized without a cooling mechanism.
(B) Insulating properties that require a low-temperature treatment, especially when the conditions such as applied voltage and pulse duty ratio are the same as those for conventional metal substrates, and the temperature of the substrate to be treated does not increase. It is possible to speed up the processing of the substrate, and it is possible to increase the operating rate of the apparatus.
(C) By arranging the auxiliary electrode in an arbitrary portion, selective partial film formation and modification by plasma can be performed.

非晶質炭素膜の成膜装置の第1の実施形態を模式的に示す図The figure which shows typically 1st Embodiment of the film-forming apparatus of an amorphous carbon film 非晶質炭素膜の成膜装置の第2の実施形態を模式的に示す図The figure which shows typically 2nd Embodiment of the film-forming apparatus of an amorphous carbon film 非晶質炭素膜の成膜装置の第3の実施形態を模式的に示す図The figure which shows typically 3rd Embodiment of the film-forming apparatus of an amorphous carbon film 絶縁性低温変形基材からなる立体形状ワークへの成膜における、該ワークとメッシュ電極の配置を示す図The figure which shows arrangement | positioning of this work and a mesh electrode in the film-forming to the solid-shaped work which consists of an insulating low-temperature deformation base material 上左写真はPET底部外周部分とPPキャップ部分の成膜前の写真であり、上右写真は非晶質炭素膜成膜後のPET底部外周部分、下側写真は非晶質炭素膜成膜後のPPキャップ部分を撮影した写真の拡大画像である。The upper left photograph is a photograph before the PET bottom outer peripheral part and the PP cap part are formed, the upper right photograph is the PET bottom outer peripheral part after the amorphous carbon film is formed, and the lower photograph is the amorphous carbon film formed. It is an enlarged image of the photograph which image | photographed the later PP cap part. ワークのPET底部外周部分に配置した評価用ガラス小片上に形成された非晶質炭素膜のラマン分光スペクトル解析の結果を示す図The figure which shows the result of the Raman spectrum analysis of the amorphous carbon film formed on the glass piece for evaluation arrange | positioned at the PET bottom outer peripheral part of a workpiece | work ワークのPP製キャップ部分に配置した評価用ガラス小片上に形成された非晶質炭素膜のラマン分光スペクトル解析の結果を示す図The figure which shows the result of the Raman spectrum analysis of the amorphous carbon film formed on the glass piece for evaluation arrange | positioned at the PP cap part of a workpiece | work 絶縁性基材からなる立体物のプラズマ表面改質における、ワークとメッシュ電極の配置を示す図The figure which shows arrangement of a work and a mesh electrode in plasma surface modification of a solid thing which consists of an insulating substrate

本発明の方法は、真空排気された反応容器内に原料ガスを導入し、該反応容器内に設置された一方電極に電圧を印加することにより、前記原料ガスをプラズマ化すると共に、前記反応容器内に設置された被処理基材上で反応を起こさせる方法において、 前記一方電極の少なくとも一部を、原料ガスが透過可能な電極とするとともに、前記一方電極が被処理基材と直接接触しないように配置し、且つ、前記一方電極にパルス状のDC電圧を印加することを特徴とする。   In the method of the present invention, the raw material gas is introduced into a vacuum evacuated reaction vessel, and a voltage is applied to one electrode installed in the reaction vessel, thereby converting the raw material gas into plasma, and the reaction vessel In the method of causing a reaction to occur on the substrate to be treated installed therein, at least a part of the one electrode is an electrode through which a raw material gas can pass, and the one electrode is not in direct contact with the substrate to be treated. And a pulsed DC voltage is applied to the one electrode.

また、本発明の装置は、真空排気可能であり、かつ内部に被処理基材を収容可能な反応容器と、前記反応容器内にプラズマ生成源となる原料ガスを導入する手段と、前記反応容器内に設置された一方電極と、前記一方電極に対向する他方電極と、前記一方電極に電圧を印加する手段と、を備え、前記反応容器内に導入後の前記原料ガスを前記電圧印加手段により発生した電界によってプラズマ化させると共に、前記反応容器内に設置された前記被処理基材の表面と前記プラズマとの間で反応を起こさせる装置において、前記一方電極の少なくとも一部が、前記原料ガスが透過可能な電極であり、且つ、前記一方電極と前記他方電極との両電極が前記被処理基材と直接接触しないようにそれぞれ所定距離で離間配置されており、前記印加する電圧が、パルス状のDC電圧であることを特徴とする。
本発明の一実施形態において、一方電極の少なくとも一部が、前記原料ガスが透過可能な、メッシュ状などの「空間」を伴う電極とすることにより、プラズマ発生時にプラズマ原料ガスの供給確保と同時に、プラズマの電子雪崩にて生成される余剰電子を効率良く排出させ、余剰電子の閉塞によるプラズマの高密度化、プラズマの局所的に濃い状態(ホロカソードの発生)を防止できる。
本発明の一実施形態におけるワークを低温変形絶縁物とした場合、電極等の発熱物がワークに直接接触しないため、また、真空装置内であり、発熱する電極等からの熱が対流によりワークへ伝播しにくい為、基材の冷却機構等を用いることが不要になる。
また、本発明の一実施形態に於いて、被処理基材が立体形状を有するものである場合、前記原料ガスが透過可能な電極を、該被処理基材を囲むように配置することにより、従来の高価で、保守コストの大きい煩雑な自公転機構、また、ワーク形状に対する互換性に乏しい特定のワーク専用の電極などを用いることなく、さまざまな立体形状を有する被処理基材への適用が可能なプラズマ発生方法及び装置が実現可能となる。
Further, the apparatus of the present invention includes a reaction vessel that can be evacuated and can accommodate a substrate to be processed therein, means for introducing a raw material gas serving as a plasma generation source into the reaction vessel, and the reaction vessel A first electrode disposed in the first electrode, a second electrode facing the first electrode, and a means for applying a voltage to the first electrode, and the source gas after being introduced into the reaction vessel by the voltage applying means. In the apparatus for generating plasma by the generated electric field and causing a reaction between the surface of the substrate to be processed and the plasma installed in the reaction vessel, at least a part of the one electrode is the source gas. , And the first electrode and the second electrode are spaced apart from each other by a predetermined distance so as not to directly contact the substrate to be treated. There, characterized in that the pulse-like DC voltage.
In one embodiment of the present invention, at least a part of the one electrode is an electrode with a “space” such as a mesh shape through which the source gas can permeate. Therefore, it is possible to efficiently discharge surplus electrons generated by the electron avalanche of the plasma, and to prevent the plasma from being densified due to the clogging of the surplus electrons, and the locally concentrated state of plasma (generation of the holocathode).
When the workpiece in one embodiment of the present invention is a low-temperature deformable insulator, since a heating material such as an electrode is not in direct contact with the workpiece, the heat from the heating electrode or the like is in the vacuum apparatus and is transferred to the workpiece by convection. Since it is difficult to propagate, it is not necessary to use a substrate cooling mechanism or the like.
Further, in one embodiment of the present invention, when the substrate to be processed has a three-dimensional shape, by disposing the electrode through which the raw material gas can pass so as to surround the substrate to be processed, It can be applied to a substrate to be processed having various three-dimensional shapes without using a complicated and expensive rotating / revolving mechanism with a high maintenance cost, and a dedicated electrode for specific workpieces with poor compatibility with workpiece shapes. A possible plasma generation method and apparatus can be realized.

上記の本発明のプラズマ発生方法及びプラズマ発生装置は、前記反応容器内に設置された前記被処理基材に対し、前記プラズマ、特にプラズマイオンやラジカルからの反応生成物を前記被処理基材表面上に堆積させる成膜方法又は成膜装置、あるいは、前記プラズマイオンや前記ラジカルを照射して前記被処理基材表面を浄化或いは改質する表面改質方法及び表面改質装置に用いられる。   The plasma generation method and the plasma generation apparatus of the present invention described above are directed to the surface of the substrate to be processed, with respect to the substrate to be processed installed in the reaction vessel, the reaction product from the plasma, particularly plasma ions and radicals. It is used for a film forming method or a film forming apparatus to be deposited thereon, or a surface modifying method and a surface modifying apparatus for purifying or modifying the surface of the substrate to be treated by irradiation with the plasma ions or the radicals.

以下、本発明のプラズマ発生方法及びプラズマ発生装置について、図面を用いて説明する。
図1は、本発明の方法及び装置を、非晶質炭素膜成膜方法に用いた装置の1つの実施形態を模式的に示す図である。
図中、1は、反応容器、2は、被処理基材(「ワーク」ということもある)、3は、一方電極、4は、該一方電極に接続された、原料ガス透過性電極(「補助電極」ということもある)、5は、高圧DCパルス電源、6は、反応容器底面に設けられた、被処理基材を支持又は載置するための絶縁性の支持手段、をそれぞれ示している。
図1に示す装置においては、高圧DCパルス電源5は、一方電極3(カソード電極)に電気的に接続されており、一方電極3の先端には、補助電極4が電気的に接続されている。一方、反応容器1は接地(アース)されて、一方電極3の対極(アノード電極)となっている。そして、補助電極4は、被処理基材2を覆うように配置されるともに、被処理基材と接触しないように配置されており、他方の対極である反応容器1も、絶縁性の支持手段6を介して、被処理基材2と接触しないように配置されている。
Hereinafter, a plasma generation method and a plasma generation apparatus of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically showing one embodiment of an apparatus in which the method and apparatus of the present invention are used in an amorphous carbon film forming method.
In the figure, 1 is a reaction vessel, 2 is a substrate to be treated (sometimes referred to as “work”), 3 is one electrode, and 4 is a raw material gas permeable electrode (“ 5 is a high-voltage DC pulse power source, and 6 is an insulating support means provided on the bottom surface of the reaction vessel for supporting or placing the substrate to be processed. Yes.
In the apparatus shown in FIG. 1, the high-voltage DC pulse power supply 5 is electrically connected to one electrode 3 (cathode electrode), and the auxiliary electrode 4 is electrically connected to the tip of the one electrode 3. . On the other hand, the reaction vessel 1 is grounded (grounded) and serves as a counter electrode (anode electrode) of the one electrode 3. The auxiliary electrode 4 is disposed so as to cover the substrate 2 to be treated and is disposed so as not to contact the substrate to be treated, and the reaction vessel 1 which is the other counter electrode is also provided with insulating support means. 6 is arranged so as not to contact the substrate 2 to be processed.

図2は、本発明の装置の他の実施形態を示すものであり、前記支持手段6が、一方電極3の端部に設けられており、支持手段6により被処理基材2を吊すように変更されたものであって、補助電極4は、被処理基材2を覆うように配置されるともに、両電極が被処理基材2と接触しないように配置されている点は同じである。
なお、補助電極4は、一方電極3から通電されるように配置される。
FIG. 2 shows another embodiment of the apparatus of the present invention, wherein the support means 6 is provided at the end of one electrode 3 so that the substrate 2 to be treated is suspended by the support means 6. The auxiliary electrode 4 is changed so as to cover the substrate 2 to be processed, and the two electrodes are arranged so as not to contact the substrate 2 to be processed.
The auxiliary electrode 4 is disposed so as to be energized from the one electrode 3.

また、図3は、本発明の装置のもう1つの他の実施形態を示すものであり、前記補助電極4が、被処理基材2の一部のみを覆うように変更されたものであって、該装置によれば、補助電極に覆われた所定部分にのみ成膜することができるものである。   FIG. 3 shows another embodiment of the apparatus of the present invention, in which the auxiliary electrode 4 is changed so as to cover only a part of the substrate 2 to be processed. According to the apparatus, a film can be formed only on a predetermined portion covered with the auxiliary electrode.

なお、図1〜3に示す実施形態においては、被処理基材2を囲むように配置された前記補助電極4を一方電極3に接続し、他方、反応容器1の内壁を他方電極として電気的に接地し、前記一方電極3にパルス状のDC電圧を印加するようにしているが、他方電極はこれらの実施形態に限定されることなく、例えば、反応装置内に必要に応じた位置、形状、素材にて追加して設けるようにしても良いことはいうまでもない。   In the embodiment shown in FIGS. 1 to 3, the auxiliary electrode 4 disposed so as to surround the substrate 2 to be treated is connected to one electrode 3, and the inner wall of the reaction vessel 1 is electrically used as the other electrode. The pulsed DC voltage is applied to the one electrode 3, but the other electrode is not limited to these embodiments. For example, the position and shape of the reactor can be adjusted as required. Needless to say, the material may be additionally provided.

本発明において、原料ガスが透過可能な補助電極の形状としては、具体的には、メッシュ形状、螺旋形状、スリット形状、又は穴あき形状が挙げられ、特に、メッシュ電極である場合は、自由に変形することができるので、好適に用いられる。
材質は、導電性を有していれば特に限定されず、鉄や、タングステン鋼、ステンレス鋼などの合金、その他めっき処理やスパッタ、蒸着などの薄膜表面処理の為された導電物のみならず、炭素などの導電性材料も用いることができる。
また、メッシュ電極の場合、そのメッシュの開口率は、40%〜90%、好ましくは、60%〜90%である。また、メッシュを構成するワイヤの太さは直径10μm〜5mm、開口幅は10μm〜5cmであり、開口率がこれ以上小さいと補助電極の形状にもよるが、補助電極内でのホロカソードの発生や異常放電を誘発するとともに、原料ガスの供給効率が落ちる。また、大きすぎるとプラズマの発生密度が低下し、連続した面への処理や充分なワークへの成膜レートを確保することが困難となる。
In the present invention, specific examples of the shape of the auxiliary electrode through which the source gas can permeate include a mesh shape, a spiral shape, a slit shape, and a perforated shape. Since it can deform | transform, it is used suitably.
The material is not particularly limited as long as it has electrical conductivity, not only iron, alloys such as tungsten steel and stainless steel, other conductive materials subjected to thin film surface treatment such as plating, sputtering, and vapor deposition, Conductive materials such as carbon can also be used.
In the case of a mesh electrode, the mesh opening ratio is 40% to 90%, preferably 60% to 90%. In addition, the diameter of the wire constituting the mesh is 10 μm to 5 mm in diameter and the opening width is 10 μm to 5 cm. If the aperture ratio is smaller than this, depending on the shape of the auxiliary electrode, Abnormal discharge is induced and the supply efficiency of the raw material gas is reduced. On the other hand, if it is too large, the plasma generation density is lowered, and it becomes difficult to ensure a continuous surface treatment and a sufficient film formation rate on the workpiece.

図1に示す実施形態においては、原料ガスが透過可能な補助電極は、被処理基材と接触しないように、且つ、被処理基材の少なくとも一部を覆うように配置されている。例えば、被処理基材の形状が円筒であれば、補助電極も円筒状のものを用いるのが好ましいが、補助電極の形状は該実施形態に限定されない。   In the embodiment shown in FIG. 1, the auxiliary electrode through which the source gas can pass is disposed so as not to contact the substrate to be processed and to cover at least a part of the substrate to be processed. For example, if the shape of the substrate to be treated is a cylinder, it is preferable to use a cylindrical auxiliary electrode, but the shape of the auxiliary electrode is not limited to this embodiment.

また、被処理絶縁性低温変形基材との距離は、前記被処理基材の大きさ、形状にもよるが、成膜速度、原料ガスの供給効率、補助電極で発生したプラズマのワークに到達するまでの間の失活やクラスター発生防止、補助電極からの熱の真空中でのワークへの放射、距離が近すぎる場合の補助電極の影による不均一な膜厚の発生防止などの観点から0.5cm〜10cmが好ましい。   The distance to the insulating low temperature deformable substrate depends on the size and shape of the substrate to be processed, but it reaches the deposition rate, the supply efficiency of the source gas, and the plasma work generated by the auxiliary electrode. From the standpoints of preventing deactivation and cluster generation until aging, radiation of the heat from the auxiliary electrode to the workpiece in vacuum, and prevention of uneven film thickness due to the shadow of the auxiliary electrode when the distance is too close 0.5 cm to 10 cm is preferable.

本発明において印加するパルス状のDC電圧は、成膜目的、表面改質目的にもよるが、周波数:1kHz〜10kHz、パルス間隔:1μs〜10μs、印加電圧:−2kV〜−20kVであり、好ましくは、−3kV〜−15kVである。   Although the pulsed DC voltage applied in the present invention depends on the purpose of film formation and the purpose of surface modification, the frequency is 1 kHz to 10 kHz, the pulse interval is 1 μs to 10 μs, and the applied voltage is −2 kV to −20 kV, preferably Is -3 kV to -15 kV.

本発明の方法・装置により成膜される被処理基材としては、絶縁物(通電しにくい基材含む)、特により低温で変形するポリエチレン、ポリプロピレン、ポリスチレン等の樹脂やゴム、セルロースなど有機材料をはじめ、ガラス、シリコン、セラミックス等の無機系材料等、用途に応じてあらゆる材料を用いることができる。   Examples of the substrate to be processed formed by the method and apparatus of the present invention include insulators (including substrates that are difficult to energize), particularly organic materials such as resins, rubbers such as polyethylene, polypropylene, and polystyrene that are deformed at lower temperatures, and cellulose. In addition, any material such as glass, silicon, ceramics and other inorganic materials can be used depending on the application.

本発明の方法・装置を用いてこれらの基材上に非晶質炭素膜を成膜する際には、基材のクリーニング用のガスとしてアルゴンなどの不活性ガス、反応ガスとして、メタン、エチレン、アセチレン、ベンゼンなどの炭化水素系ガス、トリメチルシラン、テトラメチルシランなどシリコン等を含む炭化水素系のガスなど、プラズマ発生源となる多様なガスを用いることができる。また、キャリアガスとしては、アルゴンガス、水素ガスなどを用いることができる。   When an amorphous carbon film is formed on these substrates using the method and apparatus of the present invention, an inert gas such as argon is used as a cleaning gas for the substrate, and methane, ethylene is used as a reactive gas. Various gases serving as plasma generation sources can be used, such as hydrocarbon gases such as acetylene and benzene, and hydrocarbon gases containing silicon such as trimethylsilane and tetramethylsilane. Moreover, argon gas, hydrogen gas, etc. can be used as carrier gas.

成膜する際のガス濃度、基材の温度、圧力、成膜時間などの各種条件は、プラズマ処理
を行う基材、成膜する非晶質炭素質膜の膜組成、表面粗さ、膜厚等に応じて適宜設定される。
その他のプラズマ成膜、及び改質処理を行う場合の原料ガスは、プラズマ化できれば用途に応じて適宜選択可能である。
Various conditions such as gas concentration, base material temperature, pressure, and film formation time during film formation are as follows: base material for plasma treatment, film composition of amorphous carbonaceous film to be formed, surface roughness, film thickness It sets suitably according to etc.
The source gas for other plasma film formation and reforming treatment can be appropriately selected depending on the application as long as it can be converted into plasma.

以下、本発明の実施例及び参考例を用いて説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although demonstrated using the Example and reference example of this invention, this invention is not limited to these Examples.

(実施例1)
本実施例では、絶縁性低温変形基材からなる立体形状ワークへの全面成膜(但し、ワーク保持部分を除く)を行った。
市場で流通しているPETボトル(株式会社ニチレイフーズ アセロラシーライフ280ml、本体PET、キャップ部 PPと記載)の一部を切り出し、この切り出し片をワークとし、この立体形状になっているワークを所定範囲の距離だけ前記ワークから離したメッシュ電極で囲い、高圧パルスプラズマCVD装置の反応容器中に前述の図2の方法にて配置し、メッシュ電極に通電し前記ワーク表面に非晶質炭素膜を成膜した。
Example 1
In this example, the entire surface was formed on a three-dimensional workpiece made of an insulating low-temperature deformable substrate (however, the workpiece holding portion was excluded).
A part of a PET bottle (Nichirei Foods Acerola Sea Life 280ml, main body PET, cap part PP) distributed in the market is cut out, and this cut piece is used as a workpiece, and the workpiece in this three-dimensional shape is specified. Surrounded by a mesh electrode separated from the workpiece by a distance of a range, placed in the reaction vessel of the high-pressure pulse plasma CVD apparatus by the method shown in FIG. 2, and the mesh electrode is energized to form an amorphous carbon film on the workpiece surface. A film was formed.

〈成膜方法条件〉
(1)メッシュ電極:ステンレス鋼(SUS304)製メッシュ容器
金網線径:約230μm 、開口幅:約1.2mm
配置の概要を、図4に示す。
ワーク処理表面からメッシュ電極までの距離は、短い部分で10mm、長い部分で
32mmとなっている。
なお、図4では省略されているが、ワークを含むメッシュ電極は、高圧パルスプラ
ズマCVD装置の円筒形反応容器に収容されており、この反応容器がグランドとな
り他方電極となっている。
前記メッシュ電極の側面と前記高圧パルスプラズマCVD装置の円筒形反応容器の
側壁(グランドを兼ねている)との距離は、同心放射円状に概ね20cm、前記メ
ッシュ電極の底部と前記高圧パルスプラズマCVD装置の円筒形反応容器の底部と
の距離は概ね32cmになるよう配置した。
(2)プラズマ成膜方法
(i)高圧パルスプラズマCVD装置 真空排気後到達圧力:1×10−3Pa
(ii)印加電圧:−2.5kVから―4、5kVまで順次昇圧
パルス周波数10kHz、パルス幅10μs
通常、高圧パルスプラズマCVD装置で低温で変形するワークを成膜する場合、パ
ルス幅を短くし、時間をかけて急速な温度上昇を抑えながら成膜するが(電源のデ
ューティー比:1%〜2%)、本実施例では、比較的高温にて成膜可能なもの(金
属等)に成膜する場合のパルス幅10μs(電源のデューティー比:10%)を使
用した。
(iii)原料ガス:C 30SCCM ガス圧:2Pa
(3)成膜時間 3分間
<Film formation method conditions>
(1) Mesh electrode: Stainless steel (SUS304) mesh container Wire mesh wire diameter: about 230 μm, opening width: about 1.2 mm
An outline of the arrangement is shown in FIG.
The distance from the workpiece processing surface to the mesh electrode is 10 mm for the short part and 32 mm for the long part.
Although omitted in FIG. 4, the mesh electrode including the workpiece is accommodated in a cylindrical reaction vessel of a high-pressure pulse plasma CVD apparatus, and this reaction vessel serves as the ground and serves as the other electrode.
The distance between the side surface of the mesh electrode and the side wall (also serving as the ground) of the cylindrical reaction vessel of the high-pressure pulse plasma CVD apparatus is approximately 20 cm in a concentric radial shape, and the bottom of the mesh electrode and the high-pressure pulse plasma. The distance from the bottom of the cylindrical reaction vessel of the CVD apparatus was approximately 32 cm.
(2) Plasma film formation method (i) High-pressure pulse plasma CVD apparatus Ultimate pressure after evacuation: 1 × 10 −3 Pa
(Ii) Applied voltage: step-up from −2.5 kV to −4, 5 kV, pulse frequency 10 kHz, pulse width 10 μs
Normally, when depositing a workpiece that deforms at a low temperature using a high-pressure pulse plasma CVD system, the pulse width is shortened and deposition is performed while suppressing rapid temperature rise over time (duty ratio of power supply: 1% In this example, a pulse width of 10 μs (duty ratio of power supply: 10%) in the case where a film was formed at a relatively high temperature (such as metal) was used.
(Iii) Source gas: C 2 H 2 30SCCM Gas pressure: 2Pa
(3) Deposition time 3 minutes

〈サンプル〉
ワークのPET底部外周部分(メッシュ電極と成膜面との距離10mm部分)と、PPキャップ部分(円筒状のキャップ本体の円筒胴体曲面を有する面部分に於いて、メッシュ電極とPPキャップ成膜面との距離25mm部分)とに、絶縁物であるガラス小片を添付し、形成される非晶質炭素膜の評価サンプルとした。ガラス小片を評価サンプルに使用するのは、ワークと同様絶縁素材であり、薄膜の膜厚測定などに平滑な表面を持つサンプルが必要なためである。
評価サンプルのガラス小片は、サイズは5mm×5mm、厚さ1mmとし、膜厚測定用と、ラマン分光スペクトル解析用の計2個を、ワークのPET底部外周部分と、PPキャップ部分(図示しない)にそれぞれ2個づつ両面テープで貼り付けた。また、温度計測用のサーモラベルのPET底部外周部分への貼り付け位置、及びメッシュ電極の配置等については、図4を参照されたい。
<sample>
The outer peripheral part of the PET bottom part of the workpiece (distance of 10 mm between the mesh electrode and the film forming surface) and the PP cap part (the surface part having the cylindrical body curved surface of the cylindrical cap body). A small piece of glass as an insulator was attached to a distance of 25 mm) and used as an evaluation sample of the formed amorphous carbon film. The reason why the glass piece is used for the evaluation sample is that it is an insulating material like the workpiece, and a sample having a smooth surface is required for measuring the thickness of the thin film.
The glass piece of the evaluation sample has a size of 5 mm × 5 mm and a thickness of 1 mm. Two pieces for film thickness measurement and for Raman spectrum analysis are used, a PET bottom outer peripheral part of the workpiece, and a PP cap part (not shown). Two pieces of each were attached with double-sided tape. Refer to FIG. 4 for the position where the thermolabel for temperature measurement is attached to the outer peripheral portion of the PET bottom, the arrangement of the mesh electrode, and the like.

〈結果〉
(1)図5上左側の写真は、非晶質炭素膜成膜前のPET底部外周部分とPPキャップ部分を撮影したものであり、図5上右側の写真は、非晶質炭素膜成膜後のPETボトル底部(メッシュ電極との距離13mm〜32mm部)の成型模様の部分拡大写真であり、図5下側の写真は、非晶質炭素膜成膜後のPETボトルのキャップ部分(PP製)の部分拡大写真である。
本実施例では、所定の印加電圧−4、5kVまで、異常放電も発生せず、ワークの表面の細かい3次元的な凹凸を含む曲面に奇麗な連続性のある非晶質炭素膜が成膜できた。
さらに、メッシュ電極の金網模様は転写されていないことも確認できた。
該メッシュ電極が、ワークに接触していると、非晶質炭素膜が不連続となり、ガスバリア性等、所望の効果が発現できなくなることになり、さらには、通電して過熱したメッシュ電極によりワークが熱変形する等の損傷を受ける場合がある。
(2)上記条件にて形成した非晶質炭素膜を、ワークであるPETボトル底部外周付近に添付したガラス小片による評価サンプル、及びワークのPP製キャップ部分に配置したガラス小片による評価サンプルにて評価した。
<result>
(1) The upper left photograph in FIG. 5 is a photograph of the outer peripheral portion of the PET bottom and the PP cap portion before the amorphous carbon film is formed, and the upper right photograph in FIG. 5 is the amorphous carbon film formed. FIG. 6 is a partially enlarged photograph of the molding pattern of the bottom of the rear PET bottle (distance from the mesh electrode of 13 mm to 32 mm), and the lower photograph in FIG. 5 shows the cap part (PP of the PET bottle after the amorphous carbon film formation) It is a partially enlarged photograph of manufactured.
In this embodiment, an abnormal discharge is not generated up to a predetermined applied voltage of −4, 5 kV, and an amorphous carbon film having a clean continuity is formed on a curved surface including fine three-dimensional irregularities on the surface of the workpiece. did it.
Furthermore, it was also confirmed that the metal mesh pattern of the mesh electrode was not transferred.
If the mesh electrode is in contact with the workpiece, the amorphous carbon film becomes discontinuous, and the desired effects such as gas barrier properties cannot be expressed. May be damaged by heat deformation.
(2) An amorphous carbon film formed under the above conditions is an evaluation sample using a glass piece attached to the vicinity of the outer periphery of the bottom of the PET bottle as a work, and an evaluation sample using a glass piece placed on the PP cap portion of the work. evaluated.

(i)成膜された炭素膜の厚さ
測定機器に、VEECO社製 触針式表面形状測定器 「DEKTAK150 スタイラス プロファイラ」を用いて測定した結果、PETボトル底部外周付近に添付した評価用ガラスサンプルの任意3点の平均非晶質炭素膜厚は32nm(成膜レート:10.6nm/min)であり、ワークのPP製キャップ部分に配置した評価用ガラスサンプルの任意3点の平均非晶質炭素膜厚は46nm(成膜レート:15.4nm/min)であった。
ワークのPP製キャップ部分等のレートは、導電性ワーク自体に電圧を印加し、プラズマを発生させ成膜する場合の成膜レート概ね18nm/minに迫る成膜レートであり、本件実施例に於いて、成膜レートを著しく損なうことなく、非晶質炭素膜が形成可能であることが確認できた。
(ii)ラマン分光スペクトル解析
図6、図7に、ラマン分光スペクトル解析の結果を示す。なお、解析装置は日本分光製NRS-3300を使用した。図6がワークのPET底部外周部分に配置したガラスサンプル上に形成された非晶質炭素膜のラマン分光スペクトル、図7が、ワークのPP製キャップ部分に配置したガラスサンプル上に形成された非晶質炭素膜のラマン分光スペクトルである。
この図6、図7から、双方とも非晶質炭素膜が形成されていることが確認できた。
一般的な非晶質炭素膜のラマン分光スペクトルは1540cm-1付近に主ピークと1390cm-1付近にショルダーバンドを持つが、図6、図7双方とも2つのピークがフィッティングで確認されており、形成された膜が非晶質炭素膜の構造を持っていると考えられる。
(iii)耐熱性
上記PETボトル底部外周付近に添付したサーモラベルは、60℃に達したことを示す色に変色していないことが確認できた。従って、PETの耐熱変形温度より十分低い温度にてPET表面に非晶質炭素膜を成膜できたと判断される。
なお、円筒状の金属メッシュ電極の外部側(収容部の外側)で、PETボトル底部外周付近に貼り付けた評価用ガラスサンプルと対向する位置にサーモラベルを添付し、成膜終了後の温度を併せて確認した。
この位置は前述のようにメッシュ電極で作られた収容部の外側に位置するため、前記評価用ガラスサンプルへの非晶質炭素膜形成に影響を与えない。
その結果、前記金属メッシュ電極上に直接貼り付けたサーモラベルは、PETやPPの耐熱変形温度をはるかに超える160℃に達したことを示す色の変色が確認された。
(I) Thickness of the deposited carbon film As a result of measurement using a stylus-type surface shape measuring instrument “DEKTAK150 stylus profiler” manufactured by VEECO as a measuring instrument, a glass sample for evaluation attached to the outer periphery of the bottom of the PET bottle The average amorphous carbon film thickness at any three points of 32 nm is 32 nm (deposition rate: 10.6 nm / min), and the average amorphous carbon value at any three points of the glass sample for evaluation placed on the PP cap portion of the workpiece The carbon film thickness was 46 nm (film formation rate: 15.4 nm / min).
The rate of the PP cap part of the work is a film formation rate approaching approximately 18 nm / min when a voltage is applied to the conductive work itself to generate plasma and the film is formed. Thus, it was confirmed that an amorphous carbon film can be formed without significantly deteriorating the film formation rate.
(Ii) Raman spectrum analysis FIG. 6 and FIG. 7 show the results of Raman spectrum analysis. The analyzer used was NRS-3300 manufactured by JASCO. FIG. 6 shows the Raman spectrum of the amorphous carbon film formed on the glass sample placed on the outer periphery of the PET bottom of the workpiece, and FIG. 7 shows the non-crystal formed on the glass sample placed on the PP cap portion of the workpiece. It is a Raman spectrum of a crystalline carbon film.
From FIG. 6 and FIG. 7, it was confirmed that an amorphous carbon film was formed on both.
Raman spectrum of a typical amorphous carbon film is having a shoulder band around the main peak and 1390 cm -1 in the vicinity of 1540 cm -1, 6, two peaks with 7 both have been identified in the fitting, The formed film is considered to have an amorphous carbon film structure.
(Iii) Heat resistance It was confirmed that the thermolabel attached to the vicinity of the outer periphery of the bottom of the PET bottle did not change to a color indicating that the temperature reached 60 ° C. Therefore, it is judged that the amorphous carbon film could be formed on the PET surface at a temperature sufficiently lower than the heat resistant deformation temperature of PET.
A thermolabel is attached to the outside of the cylindrical metal mesh electrode (outside of the housing portion) at a position facing the glass sample for evaluation attached near the outer periphery of the bottom of the PET bottle, and the temperature after film formation is adjusted. Also confirmed.
Since this position is located outside the accommodating portion made of the mesh electrode as described above, it does not affect the formation of the amorphous carbon film on the glass sample for evaluation.
As a result, it was confirmed that the thermolabel attached directly on the metal mesh electrode showed a color change indicating that the temperature reached 160 ° C. far exceeding the heat-resistant deformation temperature of PET or PP.

本実施例により、上記メッシュ電極で形成された空間中に絶縁物を配置した場合に於いて、被成膜ワークの温度を上昇させず、原料ガスの供給を確保しつつ、ホロカソードなど異常放電の発生を抑制し、非晶質炭素膜の成膜に必要な高電圧を印加することができ、その結果良質な非晶質炭素膜の成膜が可能であることを確認できた。   According to this embodiment, when an insulator is arranged in the space formed by the mesh electrode, the temperature of the work to be deposited is not increased, the supply of the source gas is ensured, and abnormal discharge such as a holo cathode is performed. Generation | occurrence | production was suppressed and the high voltage required for film-forming of an amorphous carbon film was able to be applied, and as a result, it has confirmed that film-forming of a quality amorphous carbon film was possible.

(参考例)導電性ワークへの成膜
実施例1と同じメッシュ電極を使用し、内容物をアルミ箔で作成した同形状ワークとし、実施例1と同様に配置して非晶質炭素膜を成膜した。導電物の内容物に通電させるため、キャップ部の保持用碍子は、ワークが同じ位置に配置できるように固定した。
〈プラズマ成膜方法〉
(1)高圧パルスプラズマCVD装置 真空排気後到達圧力:1×10−3Pa
パルス周波数10kHz、パルス幅:10μs
(2)原料ガス:アセチレン ガス流量:30SCCM
ガス圧2Paにて、印加電圧−2kVから成膜を開始したところ、メッシュ電極の底部(キャップ付近)に激しい異常放電が発生し、成膜の継続が即不能となり、印加電圧を−1.5kVまで引き下げたが、異常放電は終息せず成膜を中止した。
(Reference Example) Film Formation on Conductive Workpiece The same mesh electrode as in Example 1 was used, the contents were made of the same shape work made of aluminum foil, and the amorphous carbon film was placed in the same manner as in Example 1 A film was formed. In order to energize the contents of the conductive material, the holding insulator of the cap portion was fixed so that the workpiece could be placed at the same position.
<Plasma deposition method>
(1) High-pressure pulse plasma CVD apparatus Ultimate pressure after evacuation: 1 × 10 −3 Pa
Pulse frequency 10 kHz, pulse width: 10 μs
(2) Source gas: Acetylene Gas flow rate: 30 SCCM
When film formation was started at an applied voltage of −2 kV at a gas pressure of 2 Pa, severe abnormal discharge occurred at the bottom of the mesh electrode (near the cap), and the continuation of film formation immediately became impossible, and the applied voltage was reduced to −1.5 kV. However, the abnormal discharge did not end and the film formation was stopped.

(実施例2)
本実施例では、絶縁性基材からなる立体物へのプラズマ表面改質を行った。
下記のメッシュ電極中に非晶質炭素膜の付着した直径約5cmの円筒状の碍子を投入し、下記の条件にて、アルゴンプラズマによるスパッタリングにて表面改質(碍子表面に予め付着していた非晶質炭素膜の剥離)を行った。
1.メッシュ電極
ステンレス鋼(SUS304)製メッシュ容器 金網線径:約230μm、開口幅:約1.2mmを使用した。ワーク、電極の配置の概要を、図8に示す。
なお、碍子は、耐熱性を有するため、碍子を置いた底部にも同様のステンレス鋼(SUS304)製金網を用いた。
2.アルゴンプラズマスパッタリング条件
(1)高圧パルスプラズマCVD装置 真空排気後到達圧力:1×10−3Pa
(2)印加電圧:−4kV(10分間)、−4、5kV(15分間)、−4kV(10
分間)で3回に分けて繰り返し、計35分間
パルス周波数10kHz、パルス幅10μs
(3)原料ガス:アルゴンガス ガス流量:30SCCM ガス圧:2Pa
(Example 2)
In this example, plasma surface modification to a three-dimensional object made of an insulating base material was performed.
A cylindrical insulator having a diameter of about 5 cm with an amorphous carbon film attached was placed in the mesh electrode below, and surface modification was performed by sputtering with argon plasma under the following conditions (previously attached to the insulator surface) Stripping of the amorphous carbon film was performed.
1. Mesh electrode Stainless steel (SUS304) mesh container Wire mesh wire diameter: about 230 μm, opening width: about 1.2 mm was used. An outline of the work and electrode arrangement is shown in FIG.
In addition, since the insulator has heat resistance, the same stainless steel (SUS304) wire mesh was also used at the bottom where the insulator was placed.
2. Argon plasma sputtering conditions (1) High-pressure pulse plasma CVD apparatus Ultimate pressure after evacuation: 1 × 10 −3 Pa
(2) Applied voltage: -4 kV (10 minutes), -4, 5 kV (15 minutes), -4 kV (10
Repeat for 3 minutes) for a total of 35 minutes Pulse frequency 10 kHz, Pulse width 10 μs
(3) Source gas: Argon gas Gas flow rate: 30 SCCM Gas pressure: 2 Pa

〈測定方法〉
炭素膜がスパッタリングにて剥離される非晶質炭素膜の厚さ量は、投入した碍子の上部に配置した非晶質炭素膜成膜済、炭素膜厚測定済のSi(100)のサンプル片上の非晶質炭素膜表層の一部を市販の油性マーカー(「マジックインキ」(登録商標))で部分被覆し、アルゴンガスプラズマを照射、油性マーカー被覆部分とアルゴンガスプラズマに暴露された部分の段差を測定する方法にて実施した。
段差測定装置は、VEECO社製 触針式表面形状測定器 「DEKTAK150 スタイラス プロファイラ」を用いた。
<Measuring method>
The thickness of the amorphous carbon film from which the carbon film is peeled off by sputtering is the same as that of the Si (100) sample piece that has been deposited on the top of the charged insulator and has been measured. A part of the surface layer of the amorphous carbon film is partially coated with a commercially available oily marker (“Magic Ink” (registered trademark)), irradiated with argon gas plasma, the oily marker coated part and the part exposed to the argon gas plasma The method was performed by measuring the step.
As the level difference measuring device, a stylus type surface shape measuring device “DEKTAK150 stylus profiler” manufactured by VEECO was used.

〈結果〉
段差を測定した結果、326nmの段差が確認でき、非晶質炭素膜がアルゴンガスプラズマにてエッチィングされたことが確認できた。
<result>
As a result of measuring the step, a step of 326 nm was confirmed, and it was confirmed that the amorphous carbon film was etched with argon gas plasma.

1:反応容器
2:被処理基材(ワーク)
3:一方電極
4:原料ガス透過性電極(メッシュ電極、補助電極)
5:高圧DCパルス電源
6:絶縁性の支持手段
1: Reaction vessel 2: Substrate to be treated (workpiece)
3: One electrode 4: Raw material gas permeable electrode (mesh electrode, auxiliary electrode)
5: High voltage DC pulse power supply 6: Insulating support means

Claims (16)

真空排気された反応容器内に原料ガスを導入し、
該反応容器内に設置された一方電極に電圧を印加することにより、前記原料ガスをプラズマ化すると共に、前記反応容器内に設置された、絶縁性の有機材料からなる被処理基材上で反応を起こさせる方法において、
前記一方電極の少なくとも一部を、開口率が40%〜90%、開口幅が10μm〜5cmの開口を有する原料ガスが透過可能な電極とし、該一方電極が前記被処理基材と直接しないように配置するとともに、前記原料ガスが透過可能な電極を、前記被処理基材と0.5〜10cmの距離を置いて前記被処理基材の少なくとも1部を覆うように配置し、
前記反応容器を他方電極とし、前記被処理基材を、絶縁性の支持手段により支持又は絶縁性の支持手段上に載置することにより前記反応容器と直接接触しないように配置し、且つ、
前記一方電極にパルス状のDC電圧を印加することを特徴とするプラズマ発生方法。
Introducing the raw material gas into the evacuated reaction vessel,
By applying a voltage to the one electrode installed in the reaction vessel, the raw material gas is turned into plasma and reacted on a substrate to be treated made of an insulating organic material installed in the reaction vessel. In the method of causing
At least a portion of the one electrode, the aperture ratio is 40% to 90%, opening width as a raw material gas capable transmissive electrode having an opening 10Myuemu~5cm, the one electrode is not the direct and the object to be treated substrate And arranging the electrode through which the source gas is permeable so as to cover at least a part of the substrate to be treated with a distance of 0.5 to 10 cm from the substrate to be treated ,
The reaction vessel is used as the other electrode, and the substrate to be treated is supported by an insulating support means or placed on an insulating support means so as not to be in direct contact with the reaction container, and
A plasma generation method, wherein a pulsed DC voltage is applied to the one electrode.
前記一方電極に対向する他方電極を設け、該他方電極が前記被処理基材と直接接触しないように配置することを特徴とする請求項1に記載のプラズマ発生方法。The plasma generation method according to claim 1, wherein the other electrode facing the one electrode is provided so that the other electrode does not directly contact the substrate to be processed. 前記原料ガスが透過可能な電極の形状が、メッシュ形状、螺旋形状、スリット形状、又は穴あき形状であることを特徴とする請求項1又は2に記載のプラズマ発生方法。 The plasma generation method according to claim 1 or 2 , wherein the shape of the electrode through which the source gas can pass is a mesh shape, a spiral shape, a slit shape, or a perforated shape. 前記パルス状のDC電圧は、周波数が1kHz〜10kHz、パルス間隔が1μs〜10μs、印加電圧が−2kV〜−20kVであることを特徴とする請求項1〜3のいずれか1項に記載のプラズマ発生方法。4. The plasma according to claim 1, wherein the pulsed DC voltage has a frequency of 1 kHz to 10 kHz, a pulse interval of 1 μs to 10 μs, and an applied voltage of −2 kV to −20 kV. 5. How it occurs. 前記被処理基材が立体形状を有するものであって、前記原料ガスが透過可能な電極が、該被処理基材を囲むように配置されていることを特徴とする請求項1〜のいずれか1項に記載のプラズマ発生方法。 The treated substrate be one having a three-dimensional shape, the material gas is permeable electrode, any of claim 1 to 5, characterized in that it is arranged to surround the該被treated substrate The plasma generation method according to claim 1. 前記請求項1〜5のいずれか1項に記載のプラズマ発生方法を用いることを特徴とする成膜方法。   A film forming method using the plasma generation method according to claim 1. 被処理基材上に非晶質炭素膜を成膜することを特徴とする請求項6に記載の成膜方法。   The film forming method according to claim 6, wherein an amorphous carbon film is formed on the substrate to be processed. 前記請求項1〜5のいずれか1項に記載のプラズマ発生方法を用いることを特徴とする表面改質方法。   A surface modification method using the plasma generation method according to claim 1. 真空排気可能反応容器と、
該反応容器内に収納された、絶縁性の有機材料からなる被処理基材と、
前記反応容器内にプラズマ生成源となる原料ガスを導入する手段と、
前記反応容器内に設置された一方電極と、
前記一方電極に電圧を印加する手段と、
を備え、前記反応容器内に導入後の前記原料ガスを前記電圧印加手段により発生した電界によってプラズマ化させると共に、前記反応容器内に設置された前記被処理基材の表面と前記プラズマとの間で反応を起こさせる装置において、
前記一方電極の少なくとも一部が、開口率が40%〜90%、開口幅が10μm〜5cmの開口を有する原料ガスが透過可能な電極であり、該一方電極前記処理基材と直接接触しないように配置されるとともに、前記原料ガスが透過可能な電極が、前記被処理基材と0.5〜10cmの距離を置いて前記被処理基材の少なくとも一部を覆うように配置されており、
前記反応容器を他方電極とするとともに、前記被処理基材を支持又は載置する絶縁性の支持手段を設けて、前記被処理基材が前記反応容器と直接接触しないように配置されており、
前記印加する電圧が、パルス状のDC電圧であることを特徴とするプラズマ発生装置。
A reaction vessel that can be evacuated;
A substrate to be treated made of an insulating organic material, housed in the reaction vessel;
Means for introducing a source gas serving as a plasma generation source into the reaction vessel;
One electrode installed in the reaction vessel;
It means for applying a voltage to the one electrode,
The raw material gas after being introduced into the reaction vessel is turned into plasma by the electric field generated by the voltage application means, and between the surface of the substrate to be treated installed in the reaction vessel and the plasma In a device that causes a reaction in
At least a part of the one electrode is an electrode through which a raw material gas having an opening ratio of 40% to 90% and an opening width of 10 μm to 5 cm is permeable , and the one electrode does not directly contact the processing substrate. Rutotomoni is placed as the raw material gas is permeable electrode, wherein disposed to cover at least a portion of the treated substrate and 0.5~10cm the treated substrate at a distance of And
The reaction vessel is used as the other electrode, and an insulating support means for supporting or placing the substrate to be treated is provided, and the substrate to be treated is arranged so as not to come into direct contact with the reaction vessel,
The plasma generator is characterized in that the applied voltage is a pulsed DC voltage.
前記一方電極に対向する他方電極を有し、該他方電極及び前記一方電極の両電極が被処理基材と直接接触しないように配置されていることを特徴とする請求項9に記載のプラズマ発生装置。10. The plasma generation according to claim 9, further comprising: the other electrode facing the one electrode, wherein the other electrode and the one electrode are disposed so as not to be in direct contact with the substrate to be processed. apparatus. 前記原料ガスが透過可能な電極の形状が、メッシュ形状、螺旋形状、スリット形状、又は穴あき形状であることを特徴とする請求項9又は10に記載のプラズマ発生装置The plasma generating apparatus according to claim 9 or 10, wherein the shape of the electrode through which the source gas is permeable is a mesh shape, a spiral shape, a slit shape, or a perforated shape. 前記パルス状のDC電圧は、周波数が1kHz〜10kHz、パルス間隔が1μs〜10μs、印加電圧が−2kV〜−20kVであることを特徴とする請求項9〜11のいずれか1項に記載のプラズマ発生装置。12. The plasma according to claim 9, wherein the pulsed DC voltage has a frequency of 1 kHz to 10 kHz, a pulse interval of 1 μs to 10 μs, and an applied voltage of −2 kV to −20 kV. Generator. 前記被処理基材が立体形状を有するものであって、前記原料ガスが透過可能な電極が、該被処理基材を囲むように配置されていることを特徴とする請求項9〜12のいずれか1項に記載のプラズマ発生装置。   The said to-be-processed base material has a three-dimensional shape, Comprising: The electrode which can permeate | transmit the said source gas is arrange | positioned so that this to-be-processed base material may be enclosed. 2. The plasma generator according to claim 1. 前記請求項9〜13のいずれか1項に記載のプラズマ発生装置を用いることを特徴とする成膜装置。   A film forming apparatus using the plasma generator according to any one of claims 9 to 13. 被処理基材上に非晶質炭素膜を成膜する装置であることを特徴とする請求項14に記載の成膜装置。   The film forming apparatus according to claim 14, which is an apparatus for forming an amorphous carbon film on a substrate to be processed. 前記請求項9〜13のいずれか1項に記載のプラズマ発生装置を用いることを特徴とする表面改質装置。   A surface modification apparatus using the plasma generator according to any one of claims 9 to 13.
JP2011156221A 2010-07-15 2011-07-15 Plasma generation method and apparatus therefor Active JP5865617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011156221A JP5865617B2 (en) 2010-07-15 2011-07-15 Plasma generation method and apparatus therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010160254 2010-07-15
JP2010160254 2010-07-15
JP2011156221A JP5865617B2 (en) 2010-07-15 2011-07-15 Plasma generation method and apparatus therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015254529A Division JP6329935B2 (en) 2010-07-15 2015-12-25 Plasma generation method and apparatus therefor

Publications (2)

Publication Number Publication Date
JP2012038723A JP2012038723A (en) 2012-02-23
JP5865617B2 true JP5865617B2 (en) 2016-02-17

Family

ID=45850463

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011156221A Active JP5865617B2 (en) 2010-07-15 2011-07-15 Plasma generation method and apparatus therefor
JP2015254529A Active JP6329935B2 (en) 2010-07-15 2015-12-25 Plasma generation method and apparatus therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015254529A Active JP6329935B2 (en) 2010-07-15 2015-12-25 Plasma generation method and apparatus therefor

Country Status (1)

Country Link
JP (2) JP5865617B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446375B2 (en) 2017-03-14 2019-10-15 Panasonic Intellectual Property Management Co., Ltd. Liquid processing apparatus including container, first and second electrodes, insulator surrounding at least part of side face of the first electrode, gas supply device, metallic member surrounding part of side face of the first electrode, and power source

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57208125A (en) * 1981-06-17 1982-12-21 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing thin film
JPS59193265A (en) * 1983-03-14 1984-11-01 Stanley Electric Co Ltd Plasma cvd apparatus
JP3022229B2 (en) * 1994-12-26 2000-03-15 東洋製罐株式会社 Method for forming silicon oxide film of uniform thickness on three-dimensional container made of plastics material
JP2000080478A (en) * 1998-09-01 2000-03-21 Osaka Gas Co Ltd Thin film forming device
JP4089066B2 (en) * 1999-02-10 2008-05-21 凸版印刷株式会社 Film forming apparatus and film forming method
JP3716262B2 (en) * 2000-02-24 2005-11-16 三菱重工業株式会社 Plasma processing apparatus and method for producing carbon coating-formed plastic container
JP2003073814A (en) * 2001-08-30 2003-03-12 Mitsubishi Heavy Ind Ltd Film forming apparatus
JP2004064019A (en) * 2002-07-31 2004-02-26 Mitsubishi Heavy Ind Ltd Manufacturing apparatus for plasma cvd thin film
JP2004076069A (en) * 2002-08-13 2004-03-11 Mitsubishi Heavy Ind Ltd Surface treatment apparatus
JP2004211123A (en) * 2002-12-27 2004-07-29 Shibuya Kogyo Co Ltd Device for irradiating charged particle
JP4050648B2 (en) * 2003-04-04 2008-02-20 麒麟麦酒株式会社 Carbon film coated beverage bottle
JP4494824B2 (en) * 2004-02-24 2010-06-30 株式会社クラレ Method for producing film for display device
JP3590955B2 (en) * 2004-05-26 2004-11-17 村田 正義 Balanced transmission circuit, plasma surface treatment apparatus and plasma surface treatment method constituted by the balanced transmission circuit
JP4578412B2 (en) * 2006-01-20 2010-11-10 日本碍子株式会社 Discharge plasma generation method
JP2007257860A (en) * 2006-03-20 2007-10-04 Ngk Insulators Ltd Heater member
JP2007324318A (en) * 2006-05-31 2007-12-13 Tsukishima Kikai Co Ltd Substrate treating apparatus and substrate treatment method
US7914692B2 (en) * 2006-08-29 2011-03-29 Ngk Insulators, Ltd. Methods of generating plasma, of etching an organic material film, of generating minus ions, of oxidation and nitriding
JP5355860B2 (en) * 2007-03-16 2013-11-27 三菱重工食品包装機械株式会社 Barrier film forming apparatus, barrier film forming method, and barrier film coating container
WO2009102070A1 (en) * 2008-02-12 2009-08-20 Imott Inc. Diamond-like carbon film forming apparatus and method for forming diamond-like carbon film
JP2009280876A (en) * 2008-05-23 2009-12-03 Masayoshi Umeno Carbon film deposition method
JP5144393B2 (en) * 2008-06-23 2013-02-13 富士フイルム株式会社 Plasma CVD film forming method and plasma CVD apparatus

Also Published As

Publication number Publication date
JP6329935B2 (en) 2018-05-23
JP2012038723A (en) 2012-02-23
JP2016106359A (en) 2016-06-16

Similar Documents

Publication Publication Date Title
CN110391122B (en) Substrate processing apparatus and substrate processing method
EP2245647B1 (en) Method for treatment of a substrate with atmospheric pressure glow discharge electrode configuration
JP6190590B2 (en) Bearing component, bearing, machine, and coating method of bearing component
WO2006033268A1 (en) Transparent conductive film
CN104937136B (en) The method that diamond layer is made by CVD
US10519549B2 (en) Apparatus for plasma atomic layer deposition
KR20110115291A (en) Dlc coating apparatus
KR20140019018A (en) Method for removing hard carbon layers
JP2004244713A (en) Thin film deposition method and thin film deposition apparatus
JP2010174310A (en) Method of producing diamond-like carbon membrane
JPWO2010079756A1 (en) Plasma processing equipment
JP6329935B2 (en) Plasma generation method and apparatus therefor
EP2374915B1 (en) Catalyst chemical vapor deposition apparatus
JP2012517530A (en) Two-layer barrier on polymer substrate
JP2011162857A (en) Coating pretreatment method, diamond film coating method, and coating film removing method
TW462081B (en) Plasma CVD system and plasma CVD film deposition method
WO2014103318A1 (en) Method for forming protective film using plasma cvd method
TW201220400A (en) Silicon nitride film-forming device and method
JP2000328248A (en) Method for cleaning thin film forming apparatus and thin film forming apparatus
JP2009179870A (en) Deposited film formation method and device
KR20080105367A (en) Material coating thin film and method for coating thin film on material by plasma-enhanced chemical vapor deposition and physical vapor deposition
JP2006278459A (en) Thin film formation method and film deposition apparatus for field assisted catalytic chemical vapor growth
TW507020B (en) Method to plasma-supported reactive processing of working part
JP2014037340A (en) Graphene film production device and method for producing graphene film
JP2017218624A (en) Film deposition method of hard film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151228

R150 Certificate of patent or registration of utility model

Ref document number: 5865617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250