JP5864314B2 - Fiber reinforced elastomer molded product - Google Patents

Fiber reinforced elastomer molded product Download PDF

Info

Publication number
JP5864314B2
JP5864314B2 JP2012057322A JP2012057322A JP5864314B2 JP 5864314 B2 JP5864314 B2 JP 5864314B2 JP 2012057322 A JP2012057322 A JP 2012057322A JP 2012057322 A JP2012057322 A JP 2012057322A JP 5864314 B2 JP5864314 B2 JP 5864314B2
Authority
JP
Japan
Prior art keywords
island
fiber
sea
component
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012057322A
Other languages
Japanese (ja)
Other versions
JP2012207220A (en
Inventor
久美子 津田
久美子 津田
森島 一博
一博 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2012057322A priority Critical patent/JP5864314B2/en
Publication of JP2012207220A publication Critical patent/JP2012207220A/en
Application granted granted Critical
Publication of JP5864314B2 publication Critical patent/JP5864314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Multicomponent Fibers (AREA)

Description

本発明は、外観に優れ、剛性や衝撃強度などの機械的強度や寸法安定性に優れた繊維強化エラストマー成形品に関するものである。   The present invention relates to a fiber-reinforced elastomer molded article having excellent appearance and excellent mechanical strength such as rigidity and impact strength and dimensional stability.

プラスチック材料の機械的強度、剛性、耐衝撃強度等の向上のために、炭素繊維や金属繊維、アラミド繊維、ガラス繊維等を分散した繊維強化プラスチック(通常FRPと呼ばれる。)が知られている。ところが、近年の環境への配慮が高まるにつれ、リサイクル性や廃棄性に問題のあるガラス繊維等の無機系繊維からポリエチレンテレフタレート(PETと略す。)、ビニロン、ナイロン等の有機系繊維へ置き換える検討がされている(例えば、特許文献1、特許文献2など参照。)。
さらに0.6dtex以下の細繊度の繊維を補強繊維とする場合、凝集し易く、マトリックス樹脂中への分散が悪いこと、それに伴い連続成型における定量供給性が不均一になりやすく、目標とする機械的強度や耐衝撃強度を劣化させる傾向があった。
In order to improve the mechanical strength, rigidity, impact strength, etc. of plastic materials, fiber reinforced plastics (usually called FRP) in which carbon fibers, metal fibers, aramid fibers, glass fibers, etc. are dispersed are known. However, as environmental considerations in recent years have increased, studies are underway to replace inorganic fibers such as glass fibers that have problems with recyclability and disposal with organic fibers such as polyethylene terephthalate (abbreviated as PET), vinylon, and nylon. (See, for example, Patent Document 1 and Patent Document 2).
Further, when the fine fiber having a fineness of 0.6 dtex or less is used as the reinforcing fiber, the target machine is likely to agglomerate and poorly dispersed in the matrix resin. There was a tendency to deteriorate the mechanical strength and impact strength.

特許文献1、特許文献2共に、芯部を構成する樹脂の融点がマトリックス樹脂の成型温度より十分高く、鞘部を構成する樹脂の融点より20℃以上高い複合紡糸繊維であることを特徴とする有機繊維系強化材をマトリックス樹脂中に溶融混練成形することで、芯成分からなる強化繊維の分散性を向上させる繊維強化プラスチックの製法方法が提示されている。但し、このような芯鞘複合繊維は、細繊度化が難しく、芯成分からなる強化繊維の繊度が1.0dtexより小さくすることが困難であること、また芯比率を小さくすることにより芯繊度を小さくすることは、曳糸性が悪くなる方向で必ずしも紡糸ドラフトを上げて細繊度化できることには繋がらず、また、周囲の鞘樹脂成分の比率が多くなることで、強化繊維の密度や添加量を多くできないので十分な物性向上に繋がらないデメリットがあった。   Both Patent Document 1 and Patent Document 2 are composite spun fibers in which the melting point of the resin constituting the core part is sufficiently higher than the molding temperature of the matrix resin and 20 ° C. higher than the melting point of the resin constituting the sheath part. There has been proposed a method for producing a fiber-reinforced plastic that improves the dispersibility of a reinforcing fiber composed of a core component by melt-kneading and molding an organic fiber-based reinforcing material in a matrix resin. However, such a core-sheath composite fiber is difficult to reduce in fineness, it is difficult to make the fineness of the reinforcing fiber composed of the core component smaller than 1.0 dtex, and the core fineness is reduced by reducing the core ratio. Decreasing the size does not necessarily increase the spinning draft in the direction that the spinnability deteriorates, and the fineness can be reduced, and the ratio of the surrounding sheath resin component increases, so that the density and added amount of reinforcing fibers There is a demerit that does not lead to a sufficient improvement in physical properties.

特許文献3は、海島状の断面を有する短繊維をマトリックス樹脂中に添加することで、0.6dtex以下の極細有機系繊維を強化用繊維として、高濃度で、分散性良く、かつ界面剥離による物性低下の少ない繊維強化プラスチックが提示されている。但し、海成分がマトリックス樹脂と同種類の樹脂を主成分としているため、補強繊維となる島成分の紡糸時の溶融温度以下の耐熱性である、あるいは溶融紡糸困難であるマトリックス樹脂では困難である。例えば、天然ゴム、スチレンブタジエンゴム、エチレンプロピレンゴム等のゴム材料が挙げられる。   Patent Document 3 discloses that by adding a short fiber having a sea-island-shaped cross section to a matrix resin, an ultrafine organic fiber of 0.6 dtex or less is used as a reinforcing fiber at a high concentration, good dispersibility, and due to interfacial peeling. Fiber reinforced plastics with reduced physical properties have been proposed. However, since the sea component is mainly composed of the same type of resin as the matrix resin, it is difficult to use a matrix resin that has a heat resistance equal to or lower than the melting temperature at the time of spinning of the island component that is the reinforcing fiber, or is difficult to melt-spin. . Examples thereof include rubber materials such as natural rubber, styrene butadiene rubber, and ethylene propylene rubber.

特開平8−151483号公報JP-A-8-151383 特開2003−96622号公報JP 2003-96622 A 特開2006−249233号公報JP 2006-249233 A

本発明は、上記従来技術を背景になされたもので、その目的は、10〜5000nmの有機系極細繊維を強化繊維として均一に分散させ、かつ理論上からの強度特定劣化の少ない繊維強化エラストマー成型品を提供することにある。また、マトリックスとしては溶融紡糸可能な樹脂に限定されない、繊維強化エラストマー成型品を提供することにある。   The present invention has been made against the background of the above-described prior art, and its purpose is to uniformly disperse organic ultrafine fibers of 10 to 5000 nm as reinforcing fibers, and fiber reinforced elastomer molding with less theoretically specific deterioration in strength. Is to provide goods. Another object of the present invention is to provide a fiber-reinforced elastomer molded product that is not limited to a resin that can be melt-spun as a matrix.

本発明者等は、上記課題を解決するために検討を重ねた結果、本発明に到達した。   The inventors of the present invention have reached the present invention as a result of repeated studies to solve the above-mentioned problems.

即ち、本発明は、
海島型複合短繊維をマトリックスに添加し、海成分を溶融させて該島成分を補強繊維とする、下記要件a)〜d)を同時に満足することを特徴とする繊維強化エラストマー成型品である。
a)海島型複合繊維の海成分の溶解度パラメーター値(SP(s))、島成分の溶解度パラメーター値(SP(i))、マトリックス樹脂の溶解度パラメーター(SP(m))が下記式(1)、(2)で表される関係にあること。(SP値の単位は(cal/cm1/2
0≦|SP(s)−SP(m)|<|SP(i)−SP(m)|<5 (1)
0≦|SP(s)−SP(m)|<|SP(i)−SP(s)|<5 (2)
b)島成分の融点Tm(i)とマトリックスの成型温度(℃)との関係が、Tm(i)成形温度≧20℃であること。
c)海成分と島成分の溶融粘度比(海/島)が0.2〜5であること。
d)島成分径が10〜5000nmであること。
That is, the present invention
A fiber-reinforced elastomer molded article characterized in that the following requirements a) to d) are simultaneously satisfied by adding sea-island type composite short fibers to a matrix and melting the sea component to make the island component a reinforcing fiber.
a) The solubility parameter value (SP (s)) of the sea component of the sea-island type composite fiber, the solubility parameter value (SP (i)) of the island component, and the solubility parameter (SP (m)) of the matrix resin are represented by the following formula (1). , (2). (The unit of SP value is (cal / cm 3 ) 1/2 )
0 ≦ | SP (s) −SP (m) | <| SP (i) −SP (m) | <5 (1)
0 ≦ | SP (s) −SP (m) | <| SP (i) −SP (s) | <5 (2)
b) the relationship of the island component of a melting point Tm (i) and the matrix of the molding temperature (℃) is, Tm (i) - it is the molding temperature ≧ 20 ° C..
c) The melt viscosity ratio (sea / island) of the sea component and the island component is 0.2-5.
d) The island component diameter is 10 to 5000 nm.

本発明によれば、極細有機繊維を強化用繊維として、高濃度で、分散性が良い繊維強化エラストマー成型品を提供することを可能とする。   According to the present invention, it is possible to provide a fiber-reinforced elastomer molded article having a high concentration and good dispersibility using ultrafine organic fibers as reinforcing fibers.

以下本発明の実施形態について詳細に説明する。本発明の繊維強化エラストマー成型品はマトリックスと海島状の断面を有する短繊維からなる。
海島型複合繊維を構成する海成分、島成分、及びマトリックスとなる樹脂については、各成分の溶解度パラメーター(SP値、単位(cal/cm1/2)、海島型複合繊維の海成分の溶解度パラメーター値(SP(s))、島成分の溶解度パラメーター値(SP(i))、マトリックスの溶解度パラメーター(SP(m))が下記式(1)、(2)で表される関係にあることが必要である。
0≦|SP(s)−SP(m)|<|SP(i)−SP(m)|<5 (1)
0≦|SP(s)−SP(m)|<|SP(i)−SP(s)|<5 (2)
Hereinafter, embodiments of the present invention will be described in detail. The fiber-reinforced elastomer molded article of the present invention comprises a matrix and short fibers having a sea-island cross section.
Regarding the sea component, island component, and matrix resin constituting the sea-island composite fiber, the solubility parameter (SP value, unit (cal / cm 3 ) 1/2 ) of each component, the sea component of the sea-island composite fiber The solubility parameter value (SP (s)), the solubility parameter value of the island component (SP (i)), and the solubility parameter value of the matrix (SP (m)) are represented by the following formulas (1) and (2). It is necessary.
0 ≦ | SP (s) −SP (m) | <| SP (i) −SP (m) | <5 (1)
0 ≦ | SP (s) −SP (m) | <| SP (i) −SP (s) | <5 (2)

島成分とマトリックスとのSP値差が5を越えると、成型品での分散性が悪くなり、内部にボイドが出来やすくなる。また、島成分と海成分とのSP値差が5を越えると、ポリマーの相溶性が悪いため、紡糸時にセクション不良となり、島の繊径が不均一となる。また、海成分とマトリックスとのSP値差は、島成分とマトリックスとのSP値差および島成分と海成分とのSP値差未満であることが必要であり、島成分とマトリックスとのSP値差および島成分と海成分とのSP値差以上になると、海成分とマトリックスとの相溶性が悪いため、島成分が均一に分散されず、成型品での分散性が悪くなる。   When the SP value difference between the island component and the matrix exceeds 5, the dispersibility in the molded product is deteriorated and voids are easily formed inside. On the other hand, if the SP value difference between the island component and the sea component exceeds 5, the compatibility of the polymer is poor, resulting in a section failure at the time of spinning, and the island diameter becomes uneven. Further, the SP value difference between the sea component and the matrix must be less than the SP value difference between the island component and the matrix and the SP value difference between the island component and the sea component. When the difference and the SP value difference between the island component and the sea component are greater than or equal to each other, the compatibility between the sea component and the matrix is poor, so that the island component is not uniformly dispersed and the dispersibility in the molded product is deteriorated.

また、島成分として用いられる樹脂は、その融点Tm(i)とマトリックスの成形温度(℃)との関係が、Tm(i)―成形温度≧20℃を満足させるものである必要がある。補強繊維となる島成分の融点Tm(i)がマトリックスの成型温度と同等であったり、それより低いと、マトリックスを溶融させ、そこに強化繊維を充填する際に強化繊維となる島成分も溶融してしまい、所望の繊維強化エラストマー成型品を得ることが出来ない。また、強化繊維の強度や熱安定性の点からも、島成分の融点Tm(i)とマトリックス樹脂の成型温度の関係は極めて重要であり、前述したTm(i)―成形温度≧20℃の関係を有することが必要である。   In addition, the resin used as the island component needs to satisfy the relationship between the melting point Tm (i) and the molding temperature (° C.) of the matrix: Tm (i) −molding temperature ≧ 20 ° C. If the melting point Tm (i) of the island component that becomes the reinforcing fiber is equal to or lower than the molding temperature of the matrix, the island component that becomes the reinforcing fiber when melting the matrix and filling the reinforcing fiber therewith also melts Therefore, a desired fiber-reinforced elastomer molded product cannot be obtained. In addition, the relationship between the melting point Tm (i) of the island component and the molding temperature of the matrix resin is extremely important from the viewpoint of the strength and thermal stability of the reinforcing fiber, and Tm (i) −molding temperature ≧ 20 ° C. described above. It is necessary to have a relationship.

さらに、島成分として用いられる樹脂は、その融点Tm(i))と海成分の融点Tm(s)との関係が、Tm(i)−Tm(s)≧20℃を満足させるものであることが好ましい。島成分の融点Tm(i)が海成分の融点Tm(s)と同等であったり、それより低いと、海島繊維製造時に強化繊維となる極細繊維の強度を出すことが困難であり、また成型時に海成分より低温で島成分が熱により変形してしまい、所望の繊維強化エラストマー成型品を得ることが出来ない。また、強化繊維の強度や寸法安定性の点からも、島成分の融点Tm(i)と海成分の融点Tm(s)との関係は極めて重要であり、前述したTm(i)−Tm(s)≧20℃の関係を有することが好ましい。
島成分、海成分、マトリックスに用いられる成分としては、前述の条件を満たす場合は特に限定されないが、従来より使用されている成型用樹脂等を用いることができる。
Furthermore, the resin used as the island component satisfies that the relationship between the melting point Tm (i)) and the melting point Tm (s) of the sea component satisfies Tm (i) −Tm (s) ≧ 20 ° C. Is preferred. If the melting point Tm (i) of the island component is equal to or lower than the melting point Tm (s) of the sea component, it is difficult to obtain the strength of the ultrafine fiber that becomes the reinforcing fiber when the sea island fiber is manufactured. Sometimes the island component is deformed by heat at a temperature lower than the sea component, and a desired fiber-reinforced elastomer molded product cannot be obtained. In addition, the relationship between the melting point Tm (i) of the island component and the melting point Tm (s) of the sea component is extremely important from the viewpoint of the strength and dimensional stability of the reinforcing fiber, and Tm (i) −Tm ( s) It is preferable to have a relationship of ≧ 20 ° C.
Although it does not specifically limit as a component used for an island component, a sea component, and a matrix, when satisfy | filling the above-mentioned conditions, The resin for molding currently used conventionally can be used.

島成分に用いられる樹脂成分としては、例えば、ポリエステル系、ポリアミド系、ポリオレフィン系などがあげられるが、これらの樹脂成分は単一もしくは混合されて用いることもできる。なかでも、ポリエステル系の場合、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートなどが好ましく、ポリアミド系の場合は、ナイロン6、ナイロン66が好ましい。また、ポリオレフィン系の場合は、高密度ポリエチレン、中密度ポリエチレン、高圧法低密度ポリエチレン、直鎖状低密度ポリエチレン、アイソタクティックポリプロピレン、エチレンプロピレン共重合体、無水マレイン酸などのビニルモノマーのエチレン共重合体等を好ましい例としてあげることができる。他にはポリスルフォン、ポリイミド、ポリケトン類、ポリアリレートなどを挙げることができる。
該島成分の融点は、200℃以上であることが好ましい。200℃未満であると、成形時に島成分が軟化あるいは溶解し、強化繊維の強度が低下し、また成型品内部への均一な分散が難しく、マトリックスとなる成分の適用の範囲が狭くなる。
Examples of the resin component used for the island component include polyesters, polyamides, and polyolefins. These resin components can be used singly or in combination. Among them, polyethylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate, polybutylene terephthalate and the like are preferable in the case of polyester, and nylon 6 and nylon 66 are preferable in the case of polyamide. In the case of polyolefins, ethylene copolymers of vinyl monomers such as high density polyethylene, medium density polyethylene, high pressure low density polyethylene, linear low density polyethylene, isotactic polypropylene, ethylene propylene copolymer, maleic anhydride, etc. A polymer etc. can be mentioned as a preferable example. Other examples include polysulfone, polyimide, polyketones, polyarylate and the like.
The melting point of the island component is preferably 200 ° C. or higher. When the temperature is lower than 200 ° C., the island component is softened or dissolved during molding, the strength of the reinforcing fiber is lowered, and uniform dispersion inside the molded product is difficult, and the application range of the component serving as a matrix is narrowed.

一方、海成分に用いられる樹脂成分としては、例えば、ポリエステル系、脂肪族ポリアミド系、ポリエチレン系、ポリプロピレン系、ポリスチレン系、ポリアクリル系などがあげられ、これらの樹脂成分は単一もしくは混合されて用いることもできる。なかでも、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ブテン共重合体等のポリオレフィン類が好ましい。
繊維化や海島断面形成性、製品の成形性、製品物性等の観点から、マトリックス成分と海成分樹脂のメルトフローレイト(MFR)が異なっていても特に問題にはならない。また、界面剥離を抑制するための相溶化剤や溶融粘度調整のための減粘剤、又は第3成分の樹脂が目的に応じて含まれていてもよい。
On the other hand, examples of the resin component used for the sea component include polyester-based, aliphatic polyamide-based, polyethylene-based, polypropylene-based, polystyrene-based, polyacryl-based, and the like, and these resin components are single or mixed. It can also be used. Of these, polyolefins such as polyethylene, polypropylene, and ethylene-propylene-butene copolymers are preferable.
From the viewpoints of fiberization, sea-island cross-sectional formability, product moldability, product physical properties, etc., there is no particular problem even if the melt flow rate (MFR) of the matrix component and the sea component resin is different. Further, a compatibilizing agent for suppressing interfacial peeling, a thinning agent for adjusting melt viscosity, or a third component resin may be contained depending on the purpose.

マトリックスに用いられる成分としては、前述の条件を満たす場合は特に限定されないが、エラストマー成分として具体的には、シリコンゴム、クロロプレンゴム、天然ゴム、イソプレンゴム、ニトリルゴム、スチレン・ブタジエンゴム、ブタジエンゴム、エチレン−α−オレフィンエラストマー、エチレン・プロピレンゴム、クロロスルホン化ポリエチレンゴム、アクリルゴム、ウレタンゴム、水素添加アクリロニトリルゴム等やシリコーンゲル、アクリルゲル、ウレタンゲル等の高分子ゲルを挙げることができる。なかでも、エチレン・プロピレンゴム、エチレン−α−オレフィンエラストマー、スチレン・ブタジエンゴムが好ましい。これらは、単独で用いてもよく、2種以上を併用してもよい。   The components used in the matrix are not particularly limited as long as the above-mentioned conditions are satisfied. Specifically, the elastomer components include silicon rubber, chloroprene rubber, natural rubber, isoprene rubber, nitrile rubber, styrene / butadiene rubber, butadiene rubber. And ethylene-α-olefin elastomer, ethylene / propylene rubber, chlorosulfonated polyethylene rubber, acrylic rubber, urethane rubber, hydrogenated acrylonitrile rubber and the like, and polymer gels such as silicone gel, acrylic gel and urethane gel. Of these, ethylene / propylene rubber, ethylene-α-olefin elastomer, and styrene / butadiene rubber are preferable. These may be used alone or in combination of two or more.

上記エチレン−α−オレフィンエラストマーとしては、例えば、エチレンを除くα−オレフィンとエチレンとジエン(非共役ジエン)との共重合体からなるゴム、エチレンを除くα−オレフィンとエチレンとの共重合体からなるゴム、それらの一部ハロゲン置換物等を挙げることができる。上記エチレンを除くα−オレフィンとしては、好ましくはプロピレン、ブテン、ヘキセン、オクテンである。上記ジエンとしては、通常、1,4−ヘキサジエン、ジシクロペンタジエン又はエチリデンノルボルネン等の非共役ジエンが適宜に用いられる。   Examples of the ethylene-α-olefin elastomer include a rubber made of a copolymer of an α-olefin excluding ethylene and ethylene and a diene (non-conjugated diene), and a copolymer of an α-olefin excluding ethylene and ethylene. Rubber, partially halogenated products thereof, and the like. The α-olefin excluding ethylene is preferably propylene, butene, hexene or octene. As the diene, a non-conjugated diene such as 1,4-hexadiene, dicyclopentadiene or ethylidene norbornene is usually used as appropriate.

上記エチレン−α−オレフィンエラストマーとして、具体的には、エチレン−プロピレン−ジエン系ゴム(EPDM)、エチレン−プロピレンコポリマー(EPM)、エチレン−ブテンコポリマー(EBM)、エチレン−オクテンコポリマー(EOM)、これらのハロゲン置換物等を挙げることができる。   Specific examples of the ethylene-α-olefin elastomer include ethylene-propylene-diene rubber (EPDM), ethylene-propylene copolymer (EPM), ethylene-butene copolymer (EBM), ethylene-octene copolymer (EOM), and the like. And the like.

海成分と島成分の溶融粘度比(海/島)は、0.2〜5.0であることが必要であり、好ましくは1.0〜2.5、最も好ましくは1.3〜1.5の範囲内であることが好ましい。この比が0.5倍未満の場合には、溶融紡糸時に中心付近の島成分が互に接合しやすくなり、一方それが5.0倍を越える場合には、粘度差が大きすぎるために、外層付近の島成分が互いに接合しやすくなり、島成分の形状、繊径が不均一となり、さらに紡糸工程の安定性が低下しやすい。   The melt viscosity ratio (sea / island) of the sea component and the island component needs to be 0.2 to 5.0, preferably 1.0 to 2.5, and most preferably 1.3 to 1. It is preferable to be within the range of 5. When this ratio is less than 0.5 times, island components near the center are easily joined to each other during melt spinning, whereas when it exceeds 5.0 times, the viscosity difference is too large. The island components in the vicinity of the outer layer are likely to be joined to each other, the shape of the island components and the fine diameter are not uniform, and the stability of the spinning process is likely to be reduced.

本発明で使用する海島型複合繊維は、上記の海成分、島成分を公知の海島型複合繊維製造装置を用いて繊維化することにより得られる。
本発明に使用する海島型複合繊維の溶融紡糸に用いられる紡糸口金としては、島成分を形成するための中空ピン群や微細孔群を有するものなど適宜のものを用いることができる。例えば、WO2005/095686の図1および2に示されているような、中空ピンや微細孔より押し出された島成分と、その間を埋めるように設計された流路から供給された海成分流とを合流し、この合流体流を次第に細くしながら吐出口より押出して、海島型複合繊維を形成できる限り、いかなる紡糸口金でもよい。
The sea-island type composite fiber used in the present invention is obtained by fiberizing the sea component and the island component using a known sea-island type composite fiber manufacturing apparatus.
As the spinneret used for melt spinning of the sea-island type composite fiber used in the present invention, a suitable one such as a hollow pin group or a fine hole group for forming an island component can be used. For example, as shown in FIGS. 1 and 2 of WO2005 / 095686, an island component pushed out from a hollow pin or a fine hole, and a sea component flow supplied from a channel designed to fill the gap between the island component Any spinneret may be used as long as it can form a sea-island type composite fiber by forming a sea-island type composite fiber by extruding from the discharge port while gradually converging the combined fluid flow.

海島複合繊維における島成分数は、多いほど島成分である極細繊維を製造する場合の生産性が高くなり、しかも得られる極細繊維も顕著に細くなって、超極細繊維特有の柔らかさ、滑らかさ、光沢感などを発現することができるので、島成分数は100以上であることが好ましく、より好ましくは500以上である。ここで島成分数が100未満の場合には、島成分である極細単繊維からなるハイマルチフィラメント糸を得ることができない。なお、島成分数があまりに多くなりすぎると、紡糸口金の製造コストが高くなるだけでなく、紡糸口金の加工精度自体も低下しやすくなるので、島成分数を1000以下とすることが好ましい。   The greater the number of island components in the sea-island composite fiber, the higher the productivity when producing the ultrafine fibers that are island components, and the resulting ultrafine fibers are also significantly thinner, and the softness and smoothness unique to ultrafine fibers Since the glossiness can be exhibited, the number of island components is preferably 100 or more, more preferably 500 or more. Here, when the number of island components is less than 100, it is not possible to obtain a high multifilament yarn composed of ultrafine single fibers that are island components. If the number of island components is too large, not only the manufacturing cost of the spinneret increases, but also the processing accuracy of the spinneret itself tends to decrease. Therefore, the number of island components is preferably 1000 or less.

さらに、本発明に使用する海島型複合繊維は、その海島複合質量比率(海:島)は、95:5〜5:95の範囲内にあることが好ましく、より30:70〜10:90の範囲内にある。上記範囲内にあれば、島成分間の海成分の厚さを薄くすることができ、海成分の溶解が容易となり、島成分の微細繊維への転換が容易になる。ここで海成分の割合が5%未満の場合には、海成分の量が少なくなりすぎて、島間に相互接合が発生しやすくなる。   Furthermore, the sea-island composite fiber used in the present invention preferably has a sea-island composite mass ratio (sea: island) in the range of 95: 5 to 5:95, more preferably 30:70 to 10:90. Is in range. If it exists in the said range, the thickness of the sea component between island components can be made thin, the melt | dissolution of a sea component will become easy, and the conversion to the fine fiber of an island component will become easy. Here, when the proportion of the sea component is less than 5%, the amount of the sea component is too small, and mutual joining is likely to occur between the islands.

吐出された海島型断面複合繊維は、冷却風によって固化され、好ましくは400〜6000m/分の速度で巻き取られ、より好ましくは1000〜3500m/分である。紡糸速度が400m/分以下では生産性が不十分であり、また、6000m/分以上では紡糸安定性が不良になる。   The discharged sea-island type cross-section composite fiber is solidified by cooling air, and is preferably wound at a speed of 400 to 6000 m / min, more preferably 1000 to 3500 m / min. When the spinning speed is 400 m / min or less, the productivity is insufficient, and when it is 6000 m / min or more, the spinning stability becomes poor.

得られた未延伸繊維は、別途延伸工程を通して所望の引張り強さ、切断伸び率及び熱収縮特性を有する延伸複合繊維とするか、あるいは、一旦巻き取ることなく一定速度でローラーに引き取り、引き続いて延伸工程をとおした後に巻き取る方法のいずれでも構わない。具体的には60〜190℃、好ましくは75℃〜180℃の予熱ローラー上で予熱し、延伸倍率1.2〜6.0倍、好ましくは2.0〜5.0倍で延伸し、セットローラー100〜220℃、好ましくは120〜200℃で熱セットを実施することが好ましい。予熱温度不足の場合には、目的とする高倍率延伸を達成することができなくなる。セット温度が低すぎると、得られる延伸繊維の収縮率が高すぎるため好ましくない。また、セット温度が高すぎると、得られる延伸繊維の物性が著しく低下するため好ましくない。   The obtained unstretched fiber is a stretched composite fiber having a desired tensile strength, cutting elongation and heat shrinkage property through a separate stretching process, or is taken up by a roller at a constant speed without being wound once, and subsequently Any of the methods of winding after the stretching step may be used. Specifically, it is preheated on a preheating roller of 60 to 190 ° C., preferably 75 ° C. to 180 ° C., stretched at a draw ratio of 1.2 to 6.0 times, preferably 2.0 to 5.0 times, and set. It is preferable to perform heat setting at a roller of 100 to 220 ° C, preferably 120 to 200 ° C. In the case where the preheating temperature is insufficient, the desired high-magnification stretching cannot be achieved. If the set temperature is too low, the shrinkage rate of the obtained drawn fiber is too high, which is not preferable. On the other hand, if the set temperature is too high, the physical properties of the obtained drawn fiber are remarkably lowered.

また、海島型複合繊維の島成分の径は、10〜5000nmであることが必要であり、好ましくは100〜1000nmである。島成分の径が10nm未満の場合には、繊維構造自身が不安定で、物性及び繊維形態を不安定になるので好ましくなく、一方5000nmを越える場合には、成形後の複合体の表面特性が劣るため、好ましくない。   Moreover, the diameter of the island component of the sea-island type composite fiber is required to be 10 to 5000 nm, and preferably 100 to 1000 nm. When the diameter of the island component is less than 10 nm, the fiber structure itself is unstable, and the physical properties and fiber form become unstable, which is not preferable. On the other hand, when the diameter exceeds 5000 nm, the surface characteristics of the composite after molding are not good. Since it is inferior, it is not preferable.

また、複合繊維断面内の各島成分は、その径が均一であるほど成型後強化繊維となる極細繊維の品位及び耐久性が向上するため、強化繊維となる極細繊維の平均単糸繊維径CV%は、0〜25%が好ましい。CV%が25%を超えると、直径ばらつきが大きくなる。より好ましくは0〜20%、さらに好ましくは0〜15%である。本発明で用いる海島型複合繊維は、島成分の平均単糸繊維径CV%が小さく直径のばらつきが少ないことから、表面特性に優れ、アスペクト比が高い極細繊維を強化繊維として均一に分散させることが可能となり、少量で補強効果の得られる。CV値がこの範囲を外れる場合は、得られる成型品の機械的強度が低下し好ましくない。   In addition, each island component in the cross section of the composite fiber improves the quality and durability of the ultrafine fiber that becomes the reinforcing fiber after molding as the diameter is uniform, so the average single fiber diameter CV of the ultrafine fiber that becomes the reinforcing fiber % Is preferably 0 to 25%. When CV% exceeds 25%, the diameter variation becomes large. More preferably, it is 0-20%, More preferably, it is 0-15%. The sea-island type composite fiber used in the present invention has a small average single yarn fiber diameter CV% of the island component and a small variation in diameter, so that ultrafine fibers having excellent surface characteristics and a high aspect ratio are uniformly dispersed as reinforcing fibers. The reinforcement effect can be obtained with a small amount. When the CV value is out of this range, the mechanical strength of the obtained molded product is lowered, which is not preferable.

本発明の繊維強化エラストマー成型品を得るには、海島型複合繊維をカットし、成形用マトリックス樹脂に添加し、射出成形によって成形することが好ましい。カット長としては、0.5〜10mmが好ましい。0.5mm未満では生産効率が悪くなり、10mm以上では成型時の混練の際に、海成分が溶融し、島成分が分散する前に、海島繊維が互いに絡み合い、分散性が悪化するため好ましくない。   In order to obtain the fiber-reinforced elastomer molded article of the present invention, it is preferable to cut the sea-island type composite fiber, add it to the molding matrix resin, and mold by injection molding. The cut length is preferably 0.5 to 10 mm. If it is less than 0.5 mm, the production efficiency is poor, and if it is 10 mm or more, the sea components melt before the island components are dispersed during kneading at the time of molding, and the sea island fibers are entangled with each other and the dispersibility deteriorates. .

本発明の繊維強化エラストマー成型品は、海島複合繊維の海成分を溶解して島成分からなる極細繊維(束)、タルクを含有する。そして、マトリックス成分100重量部に対する割合として、極細繊維の割合は、0.1〜100重量部、好ましくは0.1〜50重量部、さらに好ましくは0.1〜20重量部である。本発明の補強繊維となる極細繊維は、ポリエステル極細繊維の割合が0.1重量%未満の場合は、補強効果が不十分となる傾向にあり、100重量部を超える場合は、成形が困難になり成型品外観も悪くなる傾向にある。   The fiber-reinforced elastomer molded article of the present invention contains talc, an ultrafine fiber (bundle) made of island components by dissolving sea components of sea-island composite fibers. And as a ratio with respect to 100 weight part of matrix components, the ratio of an ultrafine fiber is 0.1-100 weight part, Preferably it is 0.1-50 weight part, More preferably, it is 0.1-20 weight part. When the proportion of the polyester ultrafine fiber is less than 0.1% by weight, the ultrafine fiber to be used as the reinforcing fiber of the present invention tends to have an insufficient reinforcing effect, and when it exceeds 100 parts by weight, molding becomes difficult. Therefore, the appearance of the molded product tends to deteriorate.

本発明を下記実施例によりさらに説明する。
下記実施例及び比較例において、下記の測定及び評価を行った。
(1)溶融粘度
供試ポリマーを乾燥し、溶融紡糸用押出機の溶融温度に設定されたオリフィス中にセットし、3分間溶融状態に保持したのち、所定水準の荷重下に、押出し、このときの剪断速度と溶融粘度とをプロットした。上記操作を、複数水準の荷重下において繰り返した。
上記データに基いて、剪断速度一溶融粘度関係曲線を作成した。この曲線上において、剪断速度が1000秒−1のときの溶融粘度を見積る。
(2)溶解度パラメーター(SP値)
溶解度パラメーター(SP値)は、文献に記載された値または計算式に基づいて求められた値である。単位は(cal/cm1/2
(3)融点測定
示差走査型熱量計(DSC)を用いて、30℃から300℃まで20℃/minの速度で測定を行い、結晶融解ピーク温度を融点とした。
(4)海島断面形成性
光学顕微鏡を用いて海島状態を観察した。
(5)平均単糸繊維径
海成分溶解除去後の極細繊維の30000倍のTEM観察により、繊維径を求めた。ここで繊維径は膠着していない単糸の繊維径を測定した。ランダムに選択した100本の微細繊維の繊維径データにおいて、平均単糸繊維径rを算出した。
(6)強伸度
海島型複合繊維について、引張試験機により、試料長20cm、速度20cm/分の条件で破断時の強力、および伸度を測定した。測定数は10とし、強力の平均値を平均単糸繊維径から求めた繊度を用いて算出し、強度(cN/dtex)とした。
(7)極細単繊維の分散状態
成型後の繊維強化エラストマー成型品の断面について、走査型電子顕微鏡(SEM)を用いて観察した。
(8)外観
成形により得られた平板の表面を目視にて観察した。
The invention is further illustrated by the following examples.
In the following examples and comparative examples, the following measurements and evaluations were performed.
(1) Melt viscosity The test polymer is dried, set in an orifice set to the melt temperature of an extruder for melt spinning, held in a molten state for 3 minutes, and then extruded under a predetermined level of load. The shear rate and melt viscosity were plotted. The above operation was repeated under multiple levels of load.
Based on the above data, a shear rate-melt viscosity relationship curve was prepared. On this curve, the melt viscosity when the shear rate is 1000 sec- 1 is estimated.
(2) Solubility parameter (SP value)
The solubility parameter (SP value) is a value obtained based on a value described in literature or a calculation formula. The unit is (cal / cm 3 ) 1/2 .
(3) Melting point measurement Using a differential scanning calorimeter (DSC), measurement was carried out at a rate of 20 ° C./min from 30 ° C. to 300 ° C., and the crystal melting peak temperature was taken as the melting point.
(4) Sea-island cross-section formation The sea-island state was observed using an optical microscope.
(5) Average single yarn fiber diameter The fiber diameter was calculated | required by TEM observation 30000 times the ultrafine fiber after sea component dissolution removal. Here, the fiber diameter of the single yarn that was not glued was measured. In the fiber diameter data of 100 randomly selected fine fibers, the average single yarn fiber diameter r was calculated.
(6) Strong elongation The strength and elongation at break of the sea-island type composite fiber were measured with a tensile tester under the conditions of a sample length of 20 cm and a speed of 20 cm / min. The number of measurements was 10, and the average value of the strength was calculated using the fineness obtained from the average single yarn fiber diameter, and was defined as the strength (cN / dtex).
(7) Dispersion state of ultrafine single fibers The cross section of the fiber-reinforced elastomer molded product after molding was observed using a scanning electron microscope (SEM).
(8) Appearance The surface of the flat plate obtained by molding was visually observed.

[実施例1]
海成分として、融点132℃、280℃1000sec−1における溶融粘度が1000poise、SP値8.4(cal/cm1/2である高密度ポリエチレン〔日本ポリエチレン(株)製「ノバテックHD HE495」、メルトフローレート20g/10分〕を用い、島成分として融点254℃、280℃1700sec−1における溶融粘度が900poise、SP値10.7(cal/cm1/2であるPETを用い、島成分数900、ホール数10の海島型複合用口金を用いて、複合紡糸機にて複合比率を海:島=30:70、紡糸温度280℃、引き取り速度1000m/分で巻き取った。
続いて、得られた未延伸糸を延伸機を用いて、延伸温度80℃、熱セット温度150℃で延伸糸の伸度が25%となるように延伸倍率を合わせて延伸を行い、マルチフィラメント延伸糸(複合繊維)を得た。
複合繊維の直径は28μm、物性は強度4.8cN/dtex、伸度23%、島成分の単糸径は840nm、CV%は12%であった。断面形成性、紡糸性および延伸性は非常に良好であった。
得られた複合繊維を1mmにカットし、島成分である極細繊維のアスペクト比が約1200のカットファイバーを作成した。マトリックス成分として、エチレン−プロピレン−ジエン系エラストマー(EPDM、SP値8.0(cal/cm1/2)に繊維濃度10wt%となるよう複合繊維を14.3wt%添加し、成型温度140℃で混練し、加硫剤を添加して再度混練成形した後に、加硫することで繊維強化エラストマー成型品が得られた。成型品中の極細単繊維の分散状態を観察した結果、およそ900nmのPET繊維が均一に分散され、成型品の表面を観察すると繊維は完全に開繊していて表面は平滑であった。
[Example 1]
As a sea component, high-melting polyethylene having a melting viscosity of 132 ° C., 280 ° C. and 1000 sec −1 of 1000 poise and an SP value of 8.4 (cal / cm 3 ) 1/2 [Novatech HD HE495, manufactured by Nippon Polyethylene Co., Ltd.] , Melt flow rate 20 g / 10 min], using PET having a melt viscosity of 900 poise and an SP value of 10.7 (cal / cm 3 ) 1/2 at a melting point of 254 ° C. and 280 ° C. of 1700 sec −1 as an island component, Using a sea-island type composite base having 900 island components and 10 holes, the composite spinning machine wound the composite at sea: island = 30: 70, spinning temperature of 280 ° C., take-up speed of 1000 m / min.
Subsequently, the obtained undrawn yarn was drawn using a drawing machine at a drawing temperature of 80 ° C. and a heat setting temperature of 150 ° C. while adjusting the draw ratio so that the elongation of the drawn yarn was 25%. A drawn yarn (composite fiber) was obtained.
The diameter of the composite fiber was 28 μm, the physical properties were 4.8 cN / dtex in strength, the elongation was 23%, the single yarn diameter of the island component was 840 nm, and CV% was 12%. The cross-sectional formability, spinnability and stretchability were very good.
The obtained composite fiber was cut into 1 mm, and a cut fiber having an aspect ratio of about 1200 of ultrafine fibers that are island components was prepared. As a matrix component, 14.3 wt% of composite fiber was added to ethylene-propylene-diene elastomer (EPDM, SP value 8.0 (cal / cm 3 ) 1/2 ) so as to have a fiber concentration of 10 wt%. A fiber reinforced elastomer molded product was obtained by kneading at 0 ° C., adding a vulcanizing agent and kneading and molding again, followed by vulcanization. As a result of observing the dispersion state of the ultrafine fibers in the molded product, the PET fibers of about 900 nm were uniformly dispersed. When the surface of the molded product was observed, the fibers were completely opened and the surface was smooth.

[実施例2]
海成分として、融点132℃、270℃1000sec−1における溶融粘度が1100poise、SP値8.4(cal/cm1/2である高密度ポリエチレン〔日本ポリエチレン(株)製「ノバテックHD HE495」、メルトフローレート20g/10分〕を用い、島成分として融点223℃、270℃1000sec−1における溶融粘度が1200poise、SP値11.0(cal/cm1/2であるNy6を用い、実施例1と同様の方法で、紡糸温度を270℃に変更して、マルチフィラメント延伸糸(複合繊維)を得た。
複合繊維の直径は28μm、物性は強度4.3cN/dtex、伸度35%、島成分の単糸径は800nmであった。断面形成性、紡糸性および延伸性は非常に良好であった。
得られた複合繊維を1mmにカットし、島成分である極細繊維のアスペクト比が約1200のカットファイバーを作成した。マトリックス成分として、スチレン−ブタジエンゴム(SBR、SP値8.6(cal/cm1/2)に繊維濃度1wt%となるよう複合繊維を1.4wt%添加し、成型温度100℃で混練し、加硫剤を添加して再度混練成形した後に、加硫することで繊維強化エラストマー成型品が得られた。成型品中の極細単繊維の分散状態を観察した結果、およそ900nmのNy繊維が均一に分散され、成型品により得られた平板の表面を観察すると繊維は完全に開繊していて表面は平滑であった。
[Example 2]
As a sea component, high-melting polyethylene having a melting viscosity of 1100 poise at a melting point of 132 ° C., 270 ° C. and 1000 sec −1 and an SP value of 8.4 (cal / cm 3 ) 1/2 [Novatec HD HE495 manufactured by Nippon Polyethylene Co., Ltd.] , Melt flow rate 20 g / 10 min], and Ny6 having a melting point of 1200 poise and an SP value of 11.0 (cal / cm 3 ) 1/2 at a melting point of 223 ° C. and 270 ° C. of 1000 sec −1 as an island component, In the same manner as in Example 1, the spinning temperature was changed to 270 ° C. to obtain a multifilament drawn yarn (composite fiber).
The diameter of the composite fiber was 28 μm, the physical properties were 4.3 cN / dtex in strength, the elongation was 35%, and the single yarn diameter of the island component was 800 nm. The cross-sectional formability, spinnability and stretchability were very good.
The obtained composite fiber was cut into 1 mm, and a cut fiber having an aspect ratio of about 1200 of ultrafine fibers that are island components was prepared. As a matrix component, 1.4 wt% of composite fiber is added to styrene-butadiene rubber (SBR, SP value 8.6 (cal / cm 3 ) 1/2 ) so that the fiber concentration becomes 1 wt%, and kneading is performed at a molding temperature of 100 ° C. Then, after adding a vulcanizing agent and kneading and molding again, a fiber reinforced elastomer molded product was obtained by vulcanization. As a result of observing the dispersion state of ultrafine single fibers in the molded product, Ny fibers of about 900 nm are uniformly dispersed. When the surface of the flat plate obtained by the molded product is observed, the fibers are completely opened and the surface is smooth. Met.

[実施例3]
海成分として、融点132℃、280℃1000sec−1における溶融粘度が1000poise、SP値8.4(cal/cm1/2である高密度ポリエチレン〔日本ポリエチレン(株)製「ノバテックHD HE495」、メルトフローレート20g/10分〕を用い、島成分として融点275℃、290℃1000sec−1における溶融粘度が900poise、SP値10.7(cal/cm1/2であるPETを用い、島成分数900、ホール数10の海島型複合用口金を用いて、複合紡糸機にて複合比率を海:島=30:70、紡糸温度290℃、引き取り速度1000m/分で巻き取った。
続いて、得られた未延伸糸を延伸機を用いて、延伸温度80℃、熱セット温度150℃で延伸糸の伸度が25%となるように延伸倍率を合わせて延伸を行い、マルチフィラメント延伸糸(複合繊維)を得た。
複合繊維の直径は28μm、物性は強度4.8cN/dtex、伸度23%、島成分の単糸径は840nmであった。断面形成性、紡糸性および延伸性は非常に良好であった。
得られた複合繊維を1mmにカットし、アスペクト比1190のカットファイバーを作成した。マトリックス成分として、エチレン−プロピレン−ジエン系エラストマー(EPDM、SP値8.0(cal/cm1/2)に繊維濃度10wt%となるよう複合繊維を14.3wt%添加し、140℃で混練し、加硫剤を添加して再度混練成形した後に、加硫することで繊維強化複合エラストマー成形品が得られた。成形品中の極細単繊維の分散状態を観察した結果、およそ900nmのPET繊維が均一に分散され、成形により得られた平板の表面を観察すると繊維は完全に開繊していて表面は平滑であった。
[Example 3]
As a sea component, high-melting polyethylene having a melting viscosity of 132 ° C., 280 ° C. and 1000 sec −1 of 1000 poise and an SP value of 8.4 (cal / cm 3 ) 1/2 [Novatech HD HE495, manufactured by Nippon Polyethylene Co., Ltd.] , Melt flow rate 20 g / 10 min], using PET having a melt viscosity of 900 poise and an SP value of 10.7 (cal / cm 3 ) 1/2 at melting point 275 ° C., 290 ° C. 1000 sec −1 as an island component, Using a sea-island type compound base with 900 island components and 10 holes, the composite spinning machine wound the composite at sea: island = 30: 70, spinning temperature of 290 ° C., take-up speed of 1000 m / min.
Subsequently, the obtained undrawn yarn was drawn using a drawing machine at a drawing temperature of 80 ° C. and a heat setting temperature of 150 ° C. while adjusting the draw ratio so that the elongation of the drawn yarn was 25%. A drawn yarn (composite fiber) was obtained.
The diameter of the composite fiber was 28 μm, the physical properties were strength 4.8 cN / dtex, elongation 23%, and the single yarn diameter of the island component was 840 nm. The cross-sectional formability, spinnability and stretchability were very good.
The obtained composite fiber was cut to 1 mm to produce a cut fiber having an aspect ratio of 1190. As a matrix component, 14.3 wt% of composite fiber was added to an ethylene-propylene-diene elastomer (EPDM, SP value 8.0 (cal / cm 3 ) 1/2 ) so that the fiber concentration would be 10 wt%, and 140 ° C. After kneading, adding a vulcanizing agent, kneading and molding again, and vulcanizing, a fiber-reinforced composite elastomer molded product was obtained. As a result of observing the dispersion state of the ultrafine single fibers in the molded product, the PET fibers of about 900 nm are uniformly dispersed. When the surface of the flat plate obtained by molding is observed, the fibers are completely opened and the surface is smooth. there were.

[実施例4]
海成分として、融点124℃、280℃1000sec−1における溶融粘度が1700poiseである直鎖状低密度ポリエチレン〔住友化学(株)製「スミカセンL GA801」、メルトフローレート20g/10分、SP値8.4(cal/cm1/2〕を用い、島成分として融点275℃、280℃1000sec−1における溶融粘度が900poiseであるPET〔SP値10.7(cal/cm1/2〕を用い、実施例1と同様の方法で、マルチフィラメント延伸糸(複合繊維)を得た。
複合繊維の直径は28μm、物性は強度4.9cN/dtex、伸度25%、島成分の単糸径は840nmであった。断面形成性、紡糸性および延伸性は非常に良好であった。
得られた複合繊維を1mmにカットし、アスペクト比1190のカットファイバーを作成した。マトリックス成分として、エチレン−プロピレン−ジエン系エラストマー(EPDM、SP値8.0(cal/cm1/2)に繊維濃度10wt%となるよう複合繊維を14.3wt%添加し、140℃で混練し、加硫剤を添加して再度混練成形した後に、加硫することで繊維強化複合エラストマー成形品が得られた。成形品中の極細単繊維の分散状態を観察した結果、およそ900nmのPET繊維が均一に分散され、成形により得られた平板の表面を観察すると繊維は完全に開繊していて表面は平滑であった。
[Example 4]
As a sea component, a linear low density polyethylene having a melting viscosity of 1700 poise at a melting point of 124 ° C., 280 ° C., 1000 sec −1 [Sumikasen L GA801, manufactured by Sumitomo Chemical Co., Ltd., melt flow rate 20 g / 10 min, SP value 8 .4 (cal / cm 3 ) 1/2 ] and PET having a melting viscosity of 900 poise at an melting point of 275 ° C. and 280 ° C. of 1000 sec −1 as an island component [SP value 10.7 (cal / cm 3 ) 1/2 In the same manner as in Example 1, a multifilament drawn yarn (composite fiber) was obtained.
The diameter of the composite fiber was 28 μm, the physical properties were 4.9 cN / dtex in strength, the elongation was 25%, and the single yarn diameter of the island component was 840 nm. The cross-sectional formability, spinnability and stretchability were very good.
The obtained composite fiber was cut to 1 mm to produce a cut fiber having an aspect ratio of 1190. As a matrix component, 14.3 wt% of composite fiber was added to an ethylene-propylene-diene elastomer (EPDM, SP value 8.0 (cal / cm 3 ) 1/2 ) so that the fiber concentration would be 10 wt%, and 140 ° C. After kneading, adding a vulcanizing agent, kneading and molding again, and vulcanizing, a fiber-reinforced composite elastomer molded product was obtained. As a result of observing the dispersion state of the ultrafine single fibers in the molded product, the PET fibers of about 900 nm are uniformly dispersed. When the surface of the flat plate obtained by molding is observed, the fibers are completely opened and the surface is smooth. there were.

[比較例1]
海成分として、融点223℃、270℃1000sec−1における溶融粘度が1200poise、SP値11.0(cal/cm1/2であるNy6を用い、島成分として融点132℃、270℃1000sec−1における溶融粘度が1100poise、SP値8.4(cal/cm1/2である高密度ポリエチレン〔日本ポリエチレン(株)製「ノバテックHD HE495」、メルトフローレート20g/10分〕を用い、実施例1と同様の方法で、紡糸温度を270℃に変更して、マルチフィラメント延伸糸(複合繊維)を得た。
複合繊維の直径は28μm、物性は強度4.5cN/dtex、伸度20%、島成分の単糸径は800nmであった。断面形成性、紡糸性および延伸性は良好であった。
得られた複合繊維を1mmにカットし、島成分である極細繊維のアスペクト比が約1200のカットファイバーを作成した。マトリックス成分として、エチレン−プロピレン−ジエン系エラストマー(EPDM、SP値8.0(cal/cm1/2)に繊維濃度10wt%となるよう複合繊維を14.3wt%添加し、成型温度120℃で混練し、加硫剤を添加して再度混練成形した後に、加硫することで繊維強化エラストマー成型品が得られた。SP値の関係は、前述の関係式を満たさず、島成分の融点が海成分の融点より低く、成型温度に近いことから、混練時に熱によって変形し、極細繊維が均一に分散された成型品を得ることは出来なかった。
[Comparative Example 1]
Ny6 having a melt viscosity of 1200 poise and an SP value of 11.0 (cal / cm 3 ) 1/2 at a melting point of 223 ° C. and 270 ° C. 1000 sec −1 is used as the sea component, and a melting point of 132 ° C. and 270 ° C. 1000 sec as the island component. melt viscosity at 1 using 1100Poise, SP values 8.4 (cal / cm 3) 1/2 a is high-density polyethylene [Japan polyethylene Corp. "Novatec HD HE495", melt flow rate 20 g / 10 min] and In the same manner as in Example 1, the spinning temperature was changed to 270 ° C. to obtain a multifilament drawn yarn (composite fiber).
The diameter of the composite fiber was 28 μm, the physical properties were strength 4.5 cN / dtex, elongation 20%, and the single yarn diameter of the island component was 800 nm. The cross-sectional formability, spinnability and stretchability were good.
The obtained composite fiber was cut into 1 mm, and a cut fiber having an aspect ratio of about 1200 of ultrafine fibers that are island components was prepared. As a matrix component, 14.3 wt% of composite fiber was added to ethylene-propylene-diene elastomer (EPDM, SP value 8.0 (cal / cm 3 ) 1/2 ) so as to have a fiber concentration of 10 wt%. A fiber reinforced elastomer molded product was obtained by kneading at 0 ° C., adding a vulcanizing agent and kneading and molding again, followed by vulcanization. The SP value relationship does not satisfy the above-mentioned relational expression, and the melting point of the island component is lower than the melting point of the sea component and close to the molding temperature. Therefore, the molded product is deformed by heat during kneading and the ultrafine fibers are uniformly dispersed. I could not get.

[比較例2]
海成分として、融点106℃、280℃1000sec−1における溶融粘度が1300poiseである低密度ポリエチレン〔住友化学(株)製「スミカセン G801」、メルトフローレート20g/10分、SP値8.4(cal/cm1/2〕を用い、島成分として融点275℃、280℃1000sec−1における溶融粘度が900poiseであるPET〔SP値10.7(cal/cm1/2〕を用い、実施例1と同様の方法で、マルチフィラメント延伸糸(複合繊維)を得ようとしたが、海島複合繊維の紡糸工程で単糸同士が融着し、サンプルを採取することが出来なかった。
[Comparative Example 2]
As a sea component, a low-density polyethylene having a melting viscosity of 1300 poise at a melting point of 106 ° C., 280 ° C. and 1000 sec −1 [“Sumikasen G801” manufactured by Sumitomo Chemical Co., Ltd., melt flow rate 20 g / 10 min, SP value 8.4 (cal / Cm 3 ) 1/2 ], and using PET [SP value 10.7 (cal / cm 3 ) 1/2 ] having a melt viscosity of 900 poise at a melting point of 275 ° C., 280 ° C. and 1000 sec −1 as an island component, In the same manner as in Example 1, an attempt was made to obtain a multifilament drawn yarn (composite fiber). However, the single yarn was fused in the spinning process of the sea-island composite fiber, and a sample could not be collected.

[比較例3]
実施例1において海島型複合繊維の代わりに、PET長繊維〔帝人ファイバー(株)製「P903AL BHT1670T250」、平均繊維径24μm、強度7.2cN/dtex、伸度26%〕を5mmにカットしたものを用い添加量を10wt%とした以外は同様に行った。成形品中の繊維の分散状態を断面にて観察した結果、PET成分の直径は10〜80μmと不均一に分散して存在していた。成形時に、開繊が不十分なため、融着や分割等により繊維径にばらつきがあった。成形品の表面を観察した結果、開繊していない繊維の束が多数見られ、平板表面が荒れていた。
[Comparative Example 3]
In Example 1, instead of the sea-island type composite fiber, PET long fiber (“P903AL BHT1670T250” manufactured by Teijin Fibers Ltd., average fiber diameter 24 μm, strength 7.2 cN / dtex, elongation 26%) was cut to 5 mm. The same procedure was performed except that the addition amount was changed to 10 wt%. As a result of observing the dispersion state of the fibers in the molded product in a cross section, the diameter of the PET component was 10 to 80 μm and dispersed in a non-uniform manner. Since the fiber opening was insufficient at the time of molding, the fiber diameter varied due to fusion or division. As a result of observing the surface of the molded product, many bundles of unopened fibers were seen, and the flat plate surface was rough.

本発明の繊維強化エラストマー成型品は、極細有機繊維を強化繊維とした高濃度で、分散性が良い繊維強化エラストマー成型品であり、自動車、電気電子部品の軽量化に有用である。   The fiber-reinforced elastomer molded product of the present invention is a fiber-reinforced elastomer molded product having a high concentration and excellent dispersibility using ultrafine organic fibers as reinforcing fibers, and is useful for reducing the weight of automobiles and electric / electronic parts.

Claims (2)

海島型複合短繊維をマトリックスに添加し、海成分を溶融させて該島成分を補強繊維とする、下記要件a)〜d)を同時に満足することを特徴とする繊維強化エラストマー成型品。
a)海島型複合繊維の海成分の溶解度パラメーター値(SP(s))、島成分の溶解度パラメーター値(SP(i))、マトリックス樹脂の溶解度パラメーター(SP(m))が下記式(1)、(2)で表される関係にあること。(SP値の単位は(cal/cm1/2
0≦|SP(s)−SP(m)|<|SP(i)−SP(m)|<5 (1)
0≦|SP(s)−SP(m)|<|SP(i)−SP(s)|<5 (2)
b)島成分の融点Tm(i)とマトリックスの成型温度(℃)との関係が、Tm(i)成形温度≧20℃であること。
c)海成分と島成分の溶融粘度比(海/島)が0.2〜5であること。
d)島成分径が10〜5000nmであること。
A fiber-reinforced elastomer molded article characterized by simultaneously adding the following requirements a) to d), wherein sea island-type composite short fibers are added to a matrix, and the sea components are melted to use the island components as reinforcing fibers.
a) The solubility parameter value (SP (s)) of the sea component of the sea-island type composite fiber, the solubility parameter value (SP (i)) of the island component, and the solubility parameter (SP (m)) of the matrix resin are represented by the following formula (1). , (2). (The unit of SP value is (cal / cm 3 ) 1/2 )
0 ≦ | SP (s) −SP (m) | <| SP (i) −SP (m) | <5 (1)
0 ≦ | SP (s) −SP (m) | <| SP (i) −SP (s) | <5 (2)
b) the relationship of the island component of a melting point Tm (i) and the matrix of the molding temperature (℃) is, Tm (i) - it is the molding temperature ≧ 20 ° C..
c) The melt viscosity ratio (sea / island) of the sea component and the island component is 0.2-5.
d) The island component diameter is 10 to 5000 nm.
海島型複合短繊維を構成する島成分の融点Tm(i)と海成分の融点Tm(s)との関
係係が、Tm()−Tm()≧20 ℃である請求項1記載の繊維強化エラストマー
成型品。
The relationship between the melting point Tm (i) of the island component constituting the sea-island composite short fiber and the melting point Tm (s) of the sea component is Tm ( i ) -Tm ( s ) ≥20 ° C. Fiber reinforced elastomer molded product.
JP2012057322A 2011-03-17 2012-03-14 Fiber reinforced elastomer molded product Active JP5864314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012057322A JP5864314B2 (en) 2011-03-17 2012-03-14 Fiber reinforced elastomer molded product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011059124 2011-03-17
JP2011059124 2011-03-17
JP2012057322A JP5864314B2 (en) 2011-03-17 2012-03-14 Fiber reinforced elastomer molded product

Publications (2)

Publication Number Publication Date
JP2012207220A JP2012207220A (en) 2012-10-25
JP5864314B2 true JP5864314B2 (en) 2016-02-17

Family

ID=47187229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012057322A Active JP5864314B2 (en) 2011-03-17 2012-03-14 Fiber reinforced elastomer molded product

Country Status (1)

Country Link
JP (1) JP5864314B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098108A (en) * 2012-11-15 2014-05-29 Teijin Ltd Fiber-reinforced resin and fiber-reinforced resin molded product
CN105579741B (en) * 2013-09-26 2018-11-13 阪东化学株式会社 V-type band and its manufacturing method
KR20160064176A (en) 2013-09-30 2016-06-07 반도 카가쿠 가부시키가이샤 Flat belt and production method therefor
CA3131673C (en) * 2018-12-17 2024-02-20 Nippon Steel Corporation Laminated core, method of manufacturing same, and electric motor
EP4279644A1 (en) * 2021-01-15 2023-11-22 Kuraray Trading Co., Ltd. Sea-island type composite multifilament, ultrafine multifilament, and ultrafine fiber structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459831A (en) * 1990-06-29 1992-02-26 Teijin Ltd Material for rubber reinforcement
JPH107811A (en) * 1996-06-21 1998-01-13 Kuraray Co Ltd Staple fiber for reinforcing rubber
JPH10195208A (en) * 1997-01-07 1998-07-28 Kuraray Co Ltd Rubber-reinforcing fiber and production of rubber-molded product using the same
JPH10212670A (en) * 1997-01-28 1998-08-11 Kuraray Co Ltd Fiber for rubber reinforcement
JPH1121767A (en) * 1997-07-08 1999-01-26 Kuraray Co Ltd Fiber for reinforcing rubber
JP2000233616A (en) * 1999-02-18 2000-08-29 Yokohama Rubber Co Ltd:The Tire antiskid device and its manufacture
JP2002052902A (en) * 2000-08-11 2002-02-19 Bridgestone Corp Pneumatic tire
JP2011178061A (en) * 2010-03-02 2011-09-15 Teijin Fibers Ltd Fiber reinforced resin molded article

Also Published As

Publication number Publication date
JP2012207220A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5864314B2 (en) Fiber reinforced elastomer molded product
JP4476420B2 (en) Fiber reinforced thermoplastic resin pellets and process for producing the same
US8034876B2 (en) Organic fiber-reinforced composite resin composition and organic fiber-reinforced composite resin molded article
JP4327956B2 (en) Fiber reinforced polypropylene composite
JP5560034B2 (en) Lightweight automotive interior parts
WO2007112665A1 (en) A process of producing sea-island composite industrial filaments
US20100304066A1 (en) Polylactic acid filament nonwoven fabric and production method thereof
JP4337539B2 (en) Polyester fiber production method and spinneret for melt spinning
JP2018001493A (en) Manufacturing method of skin material coating foam molded body
WO2002050350A1 (en) Method for manufacturing polyester mixed fiber yarn
KR101439582B1 (en) Sheath-core structure filaments and Method for manufacturing the same, Spun bond nonwoven fabric and Method for manufacturing the same
JP4330258B2 (en) Fiber reinforced thermoplastic resin pellets and process for producing the same
JP5301806B2 (en) Fiber products
JP4705386B2 (en) Manufacturing method of fiber reinforced plastic and fiber material for reinforcement
JP5565971B2 (en) Polymer alloy comprising polylactic acid resin and polyethylene terephthalate resin and method for producing the same
JP2011178061A (en) Fiber reinforced resin molded article
MXPA05004599A (en) Polyolefin resin composition and processes for the production thereof.
JP3418692B2 (en) Manufacturing method of ultra high molecular weight polyolefin filament
JP5661027B2 (en) Manufacturing method of core-sheath fiber
JP7407840B2 (en) Sea-island composite fiber
JP2003285323A (en) Fiber reinforced thermoplastic resin pellets, plastication method for pellets and manufacturing method for molded object
JP5238938B2 (en) Long fiber reinforced composite resin composition and molded product
JP2842243B2 (en) Melt spinning equipment
JPWO2011152439A1 (en) Polyolefin resin composition pellets and molded article obtained therefrom
JP5818553B2 (en) Resin reinforcing fiber

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151224

R150 Certificate of patent or registration of utility model

Ref document number: 5864314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250