JP5863480B2 - Method for storing contaminants caused by radioactive cesium, and container for storing contaminants caused by radioactive cesium - Google Patents

Method for storing contaminants caused by radioactive cesium, and container for storing contaminants caused by radioactive cesium Download PDF

Info

Publication number
JP5863480B2
JP5863480B2 JP2012015531A JP2012015531A JP5863480B2 JP 5863480 B2 JP5863480 B2 JP 5863480B2 JP 2012015531 A JP2012015531 A JP 2012015531A JP 2012015531 A JP2012015531 A JP 2012015531A JP 5863480 B2 JP5863480 B2 JP 5863480B2
Authority
JP
Japan
Prior art keywords
cesium
container
adsorbent
concrete
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012015531A
Other languages
Japanese (ja)
Other versions
JP2013101094A (en
Inventor
浩幸 坂本
浩幸 坂本
Original Assignee
株式会社太平洋コンサルタント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社太平洋コンサルタント filed Critical 株式会社太平洋コンサルタント
Priority to JP2012015531A priority Critical patent/JP5863480B2/en
Publication of JP2013101094A publication Critical patent/JP2013101094A/en
Application granted granted Critical
Publication of JP5863480B2 publication Critical patent/JP5863480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、放射性セシウムによる汚染物の収納方法、及び放射性セシウムによる汚染物の収納容器に関する。   The present invention relates to a method for storing contaminants by radioactive cesium and a container for storing contaminants by radioactive cesium.

いままで、原子力発電所及び原子燃料再処理施設等の放射性物質取扱施設から発生する濃縮廃液,使用済みイオン交換樹脂,放射性雑固体等のいわゆる低レベル放射性廃棄物の処理,処分の際,固化容器,固化材,埋め戻し材、及び処分場構造物等にセメント,コンクリート、及び水ガラス(ケイ酸ナトリウム)等の水硬性の無機固化材を用いている。 Until now, solidified containers for the treatment and disposal of so-called low-level radioactive waste such as concentrated waste liquid, spent ion exchange resin, radioactive solids, etc. generated from radioactive material handling facilities such as nuclear power plants and nuclear fuel reprocessing facilities , Cement, concrete, and hydraulic inorganic solidification materials such as water glass (sodium silicate) are used for solidification materials, backfill materials, and disposal site structures.

また、放射性核種を漏出することを遅延させるものとして、放射性廃棄物の固化容器に保護層を設け、かつ、この保護層にイオン交換性かつ吸着性を有する充填剤を包埋させるというものがある(特許文献2)。 Moreover, as a thing which delays leaking out of a radionuclide, there exists a thing which provides the protective layer in the solidification container of a radioactive waste, and embeds the filler which has ion exchange property and adsorption property in this protective layer. (Patent Document 2).

さらに、曲げ強度を増大でき、かつ耐衝撃性の向上及び放射能浸出率の低減を図れる放射
性廃棄物充填容器、及び放射性廃棄物の充填量を増加できる放射性廃棄物の固化材を提供するために、放射性核種を吸着する繊維状活性炭等の核種吸着補強材を含んでいることを特徴とするコンクリート製放射性廃棄物充填容器が、開発されている(特許文献1)。
Furthermore, in order to provide a radioactive waste filling container capable of increasing the bending strength and improving impact resistance and reducing the radioactive leach rate, and a radioactive waste solidifying material capable of increasing the filling amount of the radioactive waste. A concrete radioactive waste filling container characterized by including a nuclide adsorption reinforcing material such as fibrous activated carbon that adsorbs radionuclides has been developed (Patent Document 1).

これら、水硬性の無機固化材と固化容器は、比較的少量の、低レベル放射性廃棄物に対しては、固化操作が容易で、安価で、耐放射線性に優れている、と思われる。 These hydraulic inorganic solidification materials and solidification containers are considered to be easy to solidify, relatively inexpensive and excellent in radiation resistance for a relatively small amount of low-level radioactive waste.

しかし、例えば、原発事故によるセシウムの低レベル放射能を含む大量の瓦礫、汚染土等に対して、固化処理、固化容器への収納を行うには、大量の処理を安全且つ迅速に行うことが求められている。 However, for example, in order to solidify and store in a solidified container for a large amount of rubble and contaminated soil containing low-level radioactivity of cesium due to a nuclear accident, a large amount of processing must be performed safely and quickly. It has been demanded.

このため、可能ならば、工数の多い固化処理をしなくても、収納できる方法が望ましい。ところが、固化処理を省くと、被収納物は、水を含むので、収納容器内に、セシウム汚染水が生ずる。また、収納容器で、水を完全に密閉することは、通常のコンクリートでは、困難である。又、大量の収納容器を、建屋内でなく、雨水の影響ある場所に、長時間保管することも想定され、収納容器外部から水が浸透する懸念もある。従って、大量の低レベル放射性廃棄物の処理,処分のために、通常のコンクリート容器を用いたとき、また、保管場所を屋外とすると、水を介して、放射性核種が収納容器外へ漏出するおそれが想定される。 For this reason, if possible, it is desirable to have a method that can be stored without performing a solidification process with a large number of steps. However, if the solidification process is omitted, the object to be stored contains water, so that cesium-contaminated water is generated in the storage container. Further, it is difficult to completely seal water with a storage container with ordinary concrete. Also, it is assumed that a large amount of storage containers are stored for a long time not in the building but in a place affected by rainwater, and there is a concern that water may permeate from the outside of the storage container. Therefore, when ordinary concrete containers are used for processing and disposal of large amounts of low-level radioactive waste, and when the storage location is outdoors, radionuclides may leak out of the storage containers via water. Is assumed.

特開平10−153690号公報JP-A-10-153690 特開昭58−040000号公報JP-A-58-0400000

特許文献1は、繊維強化コンクリートを使用して、曲げ強度を増大でき、かつ耐衝撃性の向上及び放射能浸出率の低減を図れる放射性廃棄物充填容器を提供し、かつ放射性廃棄物の充填量を増加できる放射性廃棄物の固化材を提供できる。しかし、容器製造の工数が多く、これを大量に準備して、大量の汚染物を、より迅速に処理できるものとは言い難い。また、核種に応じた放射能封じ込め対策はなされていなかった。また、これらの大量の汚染廃棄物は水分を伴うのが通常であるが、水溶性の放射性核種に対する対策が十全とは言い難い。 Patent Document 1 provides a radioactive waste filling container that can increase bending strength, improve impact resistance, and reduce the rate of radioactive leaching using fiber reinforced concrete, and the amount of radioactive waste filled. It is possible to provide a solidified material for radioactive waste that can increase the amount of waste. However, there are many man-hours for container production, and it is difficult to say that a large amount of these can be prepared and a large amount of contaminants can be processed more quickly. Also, no radioactive containment measures were taken according to the nuclide. In addition, these large amounts of contaminated waste are usually accompanied by moisture, but it is difficult to say that measures against water-soluble radionuclides are sufficient.

そこで、水溶性である放射性セシウムで汚染された大量の土壌、稲藁、瓦礫、下水汚泥や焼却灰などを、固化処理をせずに、通常の肉厚コンクリートの容器に収納できれば、処理は、迅速に行われる。 Therefore, if a large amount of soil, rice straw, rubble, sewage sludge or incinerated ash contaminated with radioactive cesium, which is water soluble, can be stored in a normal thick concrete container without solidification, Done quickly.

しかし、コンクリート自体は、放射線の遮蔽性能は優れるが、完全な水密性を有しているとはいえない。また、放射性セシウムは、セメント系材料に対する執着性が比較的低く、セメント・コンクリート中の高いアルカリ性環境においても陽イオンとして存在するため、長年に亘り、コンクリートの間隙水の中で拡散して、コンクリート製の容器の外部に漏出することが懸念される。 However, concrete itself has excellent radiation shielding performance, but it cannot be said to have perfect watertightness. In addition, radioactive cesium has a relatively low adherence to cementitious materials and exists as a cation even in a highly alkaline environment in cement and concrete. Therefore, it diffuses in the pore water of concrete for many years. There is concern about leakage outside the container.

即ち、セシウムイオンは、コバルトイオン等のセメントの高アルカリ性環境下で溶解度が低い核種に比べて、セメント中での溶解度は高く、セメント(固相)への水(液相)からの吸着率が小さく固液間の分配係数が小さいので、水が存在する状態では、放射性セシウム自体の容器内封じ込めには、特別の配慮が必要である。コンクリート容器の場合、コンクリートの透水係数はゼロではないため、セシウム含有水の漏出の虞がある。 In other words, cesium ions are more soluble in cement and less adsorbed from water (liquid phase) to cement (solid phase) than nuclides that have low solubility in high alkaline environments such as cobalt ions. Since it is small and the partition coefficient between the solid and liquid is small, special consideration is necessary for the containment of radioactive cesium itself in the container in the presence of water. In the case of a concrete container, since the water permeability coefficient of concrete is not zero, there is a risk of leakage of cesium-containing water.

そこで、本発明は、比較的低レベルの放射性セシウムを含む大量の廃棄物を迅速に処理する汚染物の収納方法と、その収納した容器を提供して、建屋外の保管場所に、長期間保管する場合であっても、又は、地下水と接触する可能性ある環境であっても、そして、容器が、万一、ひび割れても、収納容器から漏出する放射性セシウムを極力低減することを目的とする。   Therefore, the present invention provides a storage method for pollutants for quickly processing a large amount of waste containing a relatively low level of radioactive cesium, and a container for storing the contaminants. The purpose is to reduce the radioactive cesium leaking from the storage container as much as possible even if it is an environment that may come into contact with groundwater or if the container is cracked. .

繊維状セピオライトの集合体であるセピオライト粉末及び/又はベントナイト粉末の層と、ゼオライト、フェロシアン化塩、マンガン化合物、ケイチタン酸塩から選ばれた1以上の吸着剤層を互いに密接させて、コンクリート製収納容器の少なくとも底部に敷き詰め、底面を覆うように配置し、その上に、セシウム汚染物を前記コンクリート製収納容器に収納することを特徴とする収納方法、を提供する。 A sepiolite powder and / or bentonite powder layer, which is an aggregate of fibrous sepiolite, and one or more adsorbent layers selected from zeolite, ferrocyanide salt, manganese compound, and silicotitanate are brought into close contact with each other, and made of concrete. Provided is a storage method characterized in that the storage container is spread over at least the bottom of the storage container and disposed so as to cover the bottom surface, and cesium contaminants are stored in the concrete storage container on the storage container.

前記セピオライト粉末及び/又はベントナイト粉末と、ゼオライト、フェロシアン化塩、マンガン化合物、ケイチタン酸塩から選ばれた1以上の吸着剤を混合して、コンクリート製収納容器の少なくとも底部に、底面を覆うように配置し、その上に、セシウム汚染物を前記コンクリート製収納容器に収納することを特徴とする収納方法、を提供する。 The sepiolite powder and / or bentonite powder and one or more adsorbents selected from zeolite, ferrocyanide salt, manganese compound, and silicotitanate are mixed to cover at least the bottom of the concrete container so that the bottom is covered. And a storage method for storing cesium contaminants in the concrete storage container.

ゼオライト、フェロシアン化塩、マンガン化合物、ケイチタン酸塩から選ばれた1以上の吸着剤のセシウムに対する固液分配係数を測定し、収納容器内の容積を勘案して、前記吸着剤量を決定して、前記セピオライト及び/又はベントナイトと前記吸着剤を、底面を覆うように設置した後、セシウム汚染物を収納容器内に収納することを特徴とするセシウム汚染物収納方法、を提供する。 Measure the solid-liquid distribution coefficient for cesium of one or more adsorbents selected from zeolite, ferrocyanide salt, manganese compound and silicotitanate, and determine the adsorbent amount in consideration of the volume in the storage container. Then, after the sepiolite and / or bentonite and the adsorbent are installed so as to cover the bottom surface, a cesium contaminant storage method is provided, wherein the cesium contaminant is stored in a storage container.

ゼオライト、フェロシアン化塩、マンガン化合物、ケイチタン酸塩から選ばれた1以上の吸着剤を、セシウムに対する固液分配係数Kdを式(1)にて、測定し、収納容器内の容積を勘案して、前記吸着剤の最低必要量mを式(2)から決定して、前記セピオライト及び/又はベントナイトと前記吸着剤を、底面を覆うように設置した後、セシウム汚染物を収納容器内に収納することを特徴とするコンクリート製セシウム汚染物収納方法、を提供する。式(1)及び式(2)は、後述する。 One or more adsorbents selected from zeolites, ferrocyanide salts, manganese compounds, and silicotitanates are measured for the solid-liquid distribution coefficient Kd for cesium using Equation (1), and the volume in the storage container is taken into account. Then, the minimum required amount m of the adsorbent is determined from the formula (2), and the sepiolite and / or bentonite and the adsorbent are installed so as to cover the bottom surface, and then cesium contaminants are stored in a storage container. A concrete cesium contaminant storage method is provided. Expressions (1) and (2) will be described later.

止水材(前記セピオライト、ベントナイト)又は吸着剤(ゼオライト、フェロシアン化塩、マンガン化合物、ケイチタン酸塩)を予めフレキシブルコンテナ内の底部に配置して、それらのフレキシブルコンテナをコンクリート製収納容器に格納することによって、コンクリート製収納容器底部の止水材又は吸着剤設置部分に止水材又は吸着剤を配置したことを特徴とする放射性セシウム汚染物収納方法、を提供する。 A water-stopping material (said sepiolite, bentonite) or adsorbent (zeolite, ferrocyanide salt, manganese compound, silicotitanate) is placed in the bottom of the flexible container in advance, and these flexible containers are stored in a concrete container. Thus, there is provided a radioactive cesium contaminant storage method characterized in that a water-stopping material or an adsorbent is disposed on a water-stopping material or an adsorbent-installing portion at the bottom of a concrete storage container.

前記セピオライト粉末及び/又はベントナイト粉末と、前記吸着剤を、前記の通り底部を覆うように配置し、セシウム汚染物を収納容器内に収納したことを特徴とするセシウム汚染物用コンクリート製容器、を提供する。 A concrete container for cesium contaminants, characterized in that the sepiolite powder and / or bentonite powder and the adsorbent are disposed so as to cover the bottom as described above, and cesium contaminants are stored in a storage container. provide.

(収納容器)
放射線の遮蔽性能は、密度2.3cm/gの15cm厚コンクリートで密閉して、γ線を1/10とすることができる。重量骨材を用いた重量コンクリートでは、密度の大きなことで、遮蔽性能を高めることができる。一方、道路整備状況が良好とはいえない農村や山間部においては、厚肉のコンクリート容器を取扱える重機を搬入することが困難な地域も存在すると考えられることから、放射線の遮蔽性能を犠牲にした軽量骨材を用いたコンクリート容器の適用も有効である。本願では、密度1.7cm/g以上の容器を用いる。好ましくは、密度2.3cm/g以上の容器を用いる。密度が1.7cm/g未満では、放射線の遮蔽性能が十分でない。収納容器の容積は、問わないが、移動、搬送等のハンドリングを考慮すると、1mから2m程度が好ましい。
(Storage container)
The radiation shielding performance can be reduced to 1/10 by sealing with 15 cm thick concrete having a density of 2.3 cm 3 / g. In heavy concrete using heavy aggregate, the shielding performance can be enhanced due to its high density. On the other hand, in rural areas and mountainous areas where road maintenance is not good, it may be difficult to carry heavy machinery that can handle thick concrete containers, so at the expense of radiation shielding performance. It is also effective to apply concrete containers using lightweight aggregates. In the present application, a container having a density of 1.7 cm 3 / g or more is used. Preferably, a container having a density of 2.3 cm 3 / g or more is used. When the density is less than 1.7 cm 3 / g, radiation shielding performance is not sufficient. Volume of the container is not limited, the movement, in consideration of the handling such as transportation, about 2m 3 of 1 m 3 is preferred.

本発明は、放射能遮蔽効果は、従前のものと同等であるが、密度1.7cm/g以上のコンクリートを用いて、セシウムイオンの外部漏えいを飛躍的に防ぐことができる。 Although the present invention has a radiation shielding effect equivalent to that of the conventional one, it is possible to dramatically prevent external leakage of cesium ions by using concrete having a density of 1.7 cm 3 / g or more.

具体的には、例えば、コンクリート製角型容器で、肉厚15cm程度、一辺1〜1.5m、内容積1〜2m、重量2t〜6tを用いることができる。重量2tのものは、軽量骨材を用いて搬送性を高めたもの、重量6tのものは、重量骨材を用いて、密度を高め遮蔽性能を高めたものである。 Specifically, for example, a concrete rectangular container having a thickness of about 15 cm, a side of 1 to 1.5 m, an internal volume of 1 to 2 m 3 , and a weight of 2 t to 6 t can be used. The one with a weight of 2t is one that has improved transportability using a lightweight aggregate, and the one with a weight of 6t uses a heavy aggregate to increase the density and enhance the shielding performance.

被汚染物は、収納容器に入る大きさに、サイズを調製して、そのセシウム放射線量を測定する。土壌、稲藁、小さな瓦礫(家屋・ビルなどの建物その他工作物などの撤去時に出るコンクリートや舗装補修工事で掘り起こされたアスファルトがらなどの廃棄物で屑状のもの)はコンテナバッグで、集合して収納容器に入るサイズで、セシウム放射線量を測定する。セシウム放射線量から、半減期を考慮して、セシウム全量を算出する。 The contaminated material is adjusted to a size that can be accommodated in the storage container, and the cesium radiation dose is measured. Soil, rice straw, and small debris (concrete waste generated from the removal of concrete and pavement repair work such as buildings and buildings such as houses and buildings) are collected in container bags. Measure the cesium radiation dose at a size that fits into the storage container. The total amount of cesium is calculated from the cesium radiation dose in consideration of the half-life.

(吸着剤)
次いで、セシウム吸着剤を準備する。ハンドリング性を高めるため、粉末を顆粒状にしたものももちいることができる。例えば、天然ゼオライトとして、クリノプチロライト、モルデナイトが用いられる。合成ゼオライト、シリカゲル、アルミノシリケート系化合物、活性アルミナ、活性炭、ケイチタン酸塩も好ましい。また、フェロシアン化塩として、フェロシアン化コバルト、フェロシアン化鉄、マンガン系吸着剤として、酸化マンガン、マンガン砂が好適に用いられる。これらに、必要に応じて、凝集剤や、担持体としての珪砂等も用いることができる。
(Adsorbent)
Next, a cesium adsorbent is prepared. In order to improve handling properties, it is also possible to use powdered granules. For example, clinoptilolite and mordenite are used as natural zeolite. Synthetic zeolite, silica gel, aluminosilicate compounds, activated alumina, activated carbon, and silicotitanate are also preferable. Further, as the ferrocyanide salt, cobalt ferrocyanide, ferrocyanide, and manganese-based adsorbent, manganese oxide and manganese sand are preferably used. If necessary, a flocculant, silica sand as a carrier, or the like can be used.

(計量と配置)
(Weighing and placement)

式(1)に、吸着剤の分配係数の計算式を示した。分配係数Kdは、水層から固層にセシウムイオンを吸着して移行させる実験により算出できる。その実験方法は、所定濃度Coのセシウムイオン水溶液の所定量(V)と吸着剤所定量(m)を混合、振盪して、吸着後のセシウムイオン濃度Cを測定して、Kdを算出する。即ち、Coは、模擬水のセシウムイオン濃度であり、蒸留水を用いて希釈する。収納容器の設置環境により、海水、模擬海水、模擬地下水等を適宜選択する。Cは、吸着剤で吸着後に測定した前記模擬水中のセシウム濃度である。mは実験に用いた吸着剤量である。ここで算出されたKdから、本発明で使用する吸着剤の使用量を求めることができる。このとき、セシウムは、放射性セシウムを含む全量である。 Formula (1) shows the formula for calculating the partition coefficient of the adsorbent. The distribution coefficient Kd can be calculated by an experiment in which cesium ions are adsorbed and transferred from the aqueous layer to the solid layer. In the experiment method, a predetermined amount (V) of a cesium ion aqueous solution having a predetermined concentration Co and a predetermined amount (m) of an adsorbent are mixed and shaken, and the cesium ion concentration C after adsorption is measured to calculate Kd. That is, Co is the cesium ion concentration of simulated water and is diluted with distilled water. Seawater, simulated seawater, simulated groundwater, etc. are appropriately selected according to the installation environment of the storage container. C is a cesium concentration in the simulated water measured after adsorption with an adsorbent. m is the amount of adsorbent used in the experiment. From the calculated Kd, the amount of adsorbent used in the present invention can be determined. At this time, cesium is the total amount including radioactive cesium.

式(2)は、測定した分配係数から、容器内に配置する吸着剤量を算出する式である。Vは、収納容器体積であり、Coは、当該容器の容積の水にセシウムが均等に溶解したと仮定したときのイオン濃度であり、Cは、吸着剤に吸着後に、当該容器が水で満たされたと仮定したときのセシウムイオン濃度となる。分配係数Kdが大きいと使用する吸着剤量は少なくて済む。これが、吸着剤の最低必要量となる。これに1以上の安全係数、例えば、1.5を乗じた吸着剤量を最低量として、設定することが好ましい。 Expression (2) is an expression for calculating the amount of adsorbent disposed in the container from the measured distribution coefficient. V is the storage container volume, Co is the ion concentration when it is assumed that cesium is uniformly dissolved in the water of the container volume, and C is filled with water after adsorption to the adsorbent. It is the cesium ion concentration when it is assumed. When the distribution coefficient Kd is large, the amount of adsorbent used is small. This is the minimum required amount of adsorbent. It is preferable to set the adsorbent amount obtained by multiplying this by one or more safety factors, for example, 1.5, as the minimum amount.

さらに、吸着剤は、すくなくとも、容器底部の全面にゆきわたるように、設置厚さ5mm以上、好ましくは、20mm以上となるように敷詰め、容器底部と収納物または、これを覆うコンテナが、直接、接触しないように設置されることが好ましい。従って、(2)から算出される最低必要量が容器底面全面を覆うことができないときは、設置厚さ5mm以上とする。5mm未満であると、セシウムイオンを含む水が、コンクリート製の収納壁と接触する確率が大きくなる。 Furthermore, the adsorbent is laid so that the installation thickness is 5 mm or more, preferably 20 mm or more so as to spread over the entire surface of the container bottom, and the container bottom and the stored item or the container covering the container directly It is preferable to be installed so as not to contact. Therefore, when the minimum required amount calculated from (2) cannot cover the entire bottom surface of the container, the installation thickness is set to 5 mm or more. If it is less than 5 mm, the probability that water containing cesium ions will come into contact with the concrete storage wall increases.

図1に、セシウムに汚染された被汚染物を本容器に収納する方法の模式図を示した。容器は、15cm厚で、収納部分が1m角の立方体のコンクリート製角型容器10とした。本容器の底部に、止水材又は吸着剤設置部分20を設けた。ここに、粉末、又は顆粒状の吸着剤を設置した。粉末の種類によっては、流動性が悪く、ハンドリング性を向上させるために、顆粒状とすることが好ましいからである。粉末は、比表面積が大きいと、吸着平衡に速やかに到達するので好ましい。 FIG. 1 shows a schematic diagram of a method for storing an object contaminated with cesium in this container. The container was a cubic concrete container 10 made of a cube having a thickness of 15 cm and a storage area of 1 m square. A water blocking material or adsorbent installation portion 20 was provided at the bottom of the container. Here, a powder or granular adsorbent was installed. This is because, depending on the type of powder, the fluidity is poor and it is preferable to form granules in order to improve handling. A powder having a large specific surface area is preferable because it quickly reaches the adsorption equilibrium.

吸着剤は、前記吸着剤を複数混合して用いることができる。異なる吸着剤への吸着反応は、競争的に起きるが、被汚染物の性状によっては、特定の吸着剤の性能が実験値通りに効果を奏しない場合もあり、例えば、ゼオライトとフェロシアン化鉄の併用も好ましい。微粉末の吸着剤には、凝集剤や、担持体としての珪砂等を併用することができる。 As the adsorbent, a plurality of adsorbents can be mixed and used. Adsorption reactions to different adsorbents occur competitively, but depending on the nature of the contaminated material, the performance of certain adsorbents may not be as effective as experimental values, such as zeolite and ferrocyanide. Is also preferred. The fine powder adsorbent may be used in combination with a flocculant or silica sand as a carrier.

さらに止水材として、セピオライト、ベントナイトを予め、容器底部に敷詰めることができる。また、これらを混合することも好ましい。これら、止水材は、吸着剤の作用を妨害しないので、吸着剤とセシウムイオン含有水との接触を妨げない範囲ならば、任意の使用割合で混合して、使用することができる。特に短繊維タイプのセピオライト(トルコ産セピオライト)は、乾燥重量の300%程度の吸水が可能であり、この性能は、水分のpH、共存するイオンの影響が小さく、放射性セシウムの漏えい媒体となる水を吸収するので、特に好ましい。セピオライト粉末(例えば、トルコ産セピオライト原石を解砕、粉砕して、繊維長200〜1μmとした繊維状セピオライトの集合体)を、吸着剤と同量程度以下を混合して、使用するか、吸着剤と収納容器の底面の間に層状に敷詰めることが好ましい。層状に敷詰めたときは、セピオライト粉末の使用量は、底面を覆うことができる層厚5mm以上とする。このとき、止水材は、セシウムイオンが吸着された後の水分を吸収したり、セピオライトにいったんトラップされた水中のセシウムイオンを吸着したりすることも考えられる。 Further, sepiolite and bentonite can be preliminarily spread on the bottom of the container as a waterstop material. Moreover, it is also preferable to mix these. Since these water-stopping materials do not interfere with the action of the adsorbent, they can be mixed and used at any use ratio as long as they do not interfere with the contact between the adsorbent and the cesium ion-containing water. In particular, short fiber type sepiolite (Turkish sepiolite) can absorb about 300% of its dry weight, and this performance is less affected by pH of water and coexisting ions, and water that is a leaking medium for radioactive cesium. Is particularly preferable. Sepiolite powder (for example, aggregate of fibrous sepiolite obtained by crushing and crushing Turkish sepiolite ore to a fiber length of 200 to 1 μm) is mixed with the adsorbent in the same amount or less, or adsorbed. It is preferable to lay in layers between the agent and the bottom surface of the storage container. When laid in layers, the amount of sepiolite powder used is a layer thickness of 5 mm or more that can cover the bottom surface. At this time, the water-stopping material may absorb water after the cesium ions are adsorbed, or adsorb cesium ions in water once trapped by sepiolite.

ベントナイトは、例えば、商品名スーパークレイ(株式会社ホージュン製)を、吸着剤と同量程度以下を混合するか、吸着剤と収納容器の底面の間に層状に敷詰めることが好ましい。ベントナイトの使用量も、セピオライトの使用量に準ずる。吸着剤設置部を本容器の底部に設けたのは、容器中の被汚染物中の水が重力で底部に滞留するからである。止水材は、水を容器内にとどめ、吸着剤の吸着平衡へ達する時間を確保するとともに、コンクリートのひび割れ等による漏水を防御する。 For example, the bentonite is preferably mixed with the trade name Super Clay (manufactured by Hojun Co., Ltd.) in the same amount or less as the adsorbent, or laid in layers between the adsorbent and the bottom surface of the storage container. The amount of bentonite used is also the same as that of sepiolite. The reason why the adsorbent installation portion is provided at the bottom of the container is that water in the contaminated material in the container stays at the bottom due to gravity. The water stop material keeps the water in the container and secures the time to reach the adsorption equilibrium of the adsorbent, and prevents water leakage due to concrete cracks and the like.

止水材と吸着剤は、これらが密接に共存する形態であると、セシウムイオンの閉じ込め効果が確実なものとなる。両者を直接混合するか、両者を別々に層状にしたものを互いに密接して配置することが好ましい。両者は役割が別であり、止水材は、汚染水を止めて、流動化を防止するが、セシウムイオンを選択的にとどめるものでない。一方、吸着剤は、水中のセシウムイオンを選択して吸着して、水中のセシウムイオンの濃度勾配を生むが、水自体の吸収能は、止水材ほどでない。 If the water-stopping material and the adsorbent are in the form of close coexistence, the effect of confining cesium ions is ensured. It is preferable to directly mix the two or to arrange the two separately in close contact with each other. Both have different roles, and the water-stopping material stops contaminated water and prevents fluidization, but does not selectively retain cesium ions. On the other hand, the adsorbent selects and adsorbs cesium ions in water to produce a concentration gradient of cesium ions in water, but the absorption capacity of water itself is not as good as that of the water-stopping material.

止水材がトラップした水中のセシウムイオンが、止水材に密接する吸着剤で、吸着されると、吸着剤粉末表面近傍ほど、セシウムイオン濃度が小さくなり、濃度勾配を生ずる。すると、その周辺の水中から吸着剤表面に向かって、セシウムイオンが順次移動して、効率よくセシウムイオンの固定が進行することとなる。分配係数Kdが大きく、吸着剤が少量でセシウムイオンの固定が済むときは、両者を混合しても、止水力は、低下しないが、Kdが比較的小さく、かなり大量の吸着剤で、吸着剤の止水が不十分なときは、両者を分けて別々の層状として、密接配置するか、止水材を比較的多めに配分することが好ましい。両者の層を2層以上、交互に設けて配置することも好ましい。セシウムイオンが吸着平衡に達するまでの時間は、両者の配分比と両者の密接形態と関係する。 When the cesium ions in the water trapped by the water-stopping material are adsorbed by the adsorbent that is in close contact with the water-stopping material, the concentration of cesium ions becomes smaller and the concentration gradient is generated near the adsorbent powder surface. Then, cesium ions move sequentially from the surrounding water toward the adsorbent surface, and the fixation of cesium ions proceeds efficiently. When the partition coefficient Kd is large and the adsorbent is small and the cesium ions are fixed, the water stopping power does not decrease even if both are mixed, but the Kd is relatively small and the adsorbent is a relatively large amount. When the water stop is insufficient, it is preferable to divide the two into separate layers and arrange them closely or to distribute a relatively large amount of the water stop material. It is also preferable to dispose both layers alternately in two or more layers. The time required for the cesium ions to reach adsorption equilibrium is related to the distribution ratio of both and the close form of both.

こうして、止水材粉末と吸着剤粉末を設置後、被汚染物30を本容器に格納する。このとき、被汚染物は、フレキシブルコンテナに収納して、コンテナごと格納することもできる。このとき、止水材又は吸着剤を予めコンテナ内の底部にセットして、コンテナを格納したとき、本容器底部の止水材又は吸着剤設置部分20に止水材又は吸着剤がセットされるようにすることもできる。コンテナ内での止水材と吸着剤の配置は、コンクリート製容器内に直接配置する前記方法に準じて行うことができる。 Thus, after the waterstop material powder and the adsorbent powder are installed, the contaminated object 30 is stored in the container. At this time, the contaminated object can be stored in a flexible container and stored together with the container. At this time, when the water-stopping material or adsorbent is set in advance in the bottom of the container and the container is stored, the water-stopping material or adsorbent is set in the water-stopping material or adsorbent installation portion 20 at the bottom of the container. It can also be done. The arrangement of the water blocking material and the adsorbent in the container can be performed in accordance with the above-described method of directly arranging in the concrete container.

その後、収納容器の蓋部12を収納容器本体部11に被せて、収納容器内に汚染物を密閉する。 Thereafter, the lid 12 of the storage container is placed on the storage container main body 11 to seal the contaminants in the storage container.

固化処理をしない放射能汚染物質の放射能のセシウムイオンの閉じ込め性能を大幅に向上させる収納容器、収納方法を提供する。放射線の遮蔽性能は、変化しないが、遮蔽性能の満足できる容器への水の浸み込みがあったとき、また、被汚染物とともに水が、容器内に持ち込まれたとき、水中のセシウムイオンが吸着剤に止まり、セシウムイオンを含有する水の濃度を低下させ、セシウムイオンの外部への漏出を遅延させる さらに、止水効果のpH依存性のない止水材により、セシウムを含有しない水も吸収して、容器へのセシウムイオンの浸透を防止し、吸着剤からのセシウムイオンの脱離も防ぐことができる。 Provided are a storage container and a storage method for greatly improving the confinement performance of radioactive cesium ions of radioactive contaminants that are not solidified. The radiation shielding performance does not change, but when there is water penetration into a container that satisfies the shielding performance, or when water is brought into the container together with the contaminated material, cesium ions in the water Stops adsorbent, lowers the concentration of water containing cesium ions, delays leakage of cesium ions to the outside, and absorbs water that does not contain cesium by a water-stopping material that does not depend on the pH of the water-stopping effect. Thus, it is possible to prevent cesium ions from penetrating into the container and to prevent cesium ions from desorbing from the adsorbent.

[実施の形態]
図1に示した角型コンクリート容器(普通コンクリート製キューブ内容積1m、重量コンクリート製キューブ内容積1m)を用いて、放射性セシウムに汚染された収納物から放射性セシウムを含む溶液が漏出したことを想定して浸透試験を実施した。フレキシブルコンテナに40万Bq/kgのセシウム137で汚染した表層土を1000kg詰めたと仮定すると、セシウムの半減期からセシウム量は0.124mgと計算される。この放射性セシウム全量が1リットルの水に溶解して容器底部に浸出したと仮定すると溶液のセシウム濃度は、0.124ppmとなる。そこで、安定同位体の塩化セシウム試薬で、この濃度のセシウム溶液を調整して模擬セシウム溶液とした。しかし、高濃度の汚染物を処理する場合を想定して、本模擬セシウム溶液100リットルを、収納容器10内に散布し、コンクリート容器へのセシウムの浸透状況を確認した。即ち、40万Bq/kg相当の100倍量のセシウムで試験を実施した(4000万Bq相当)。模擬セシウム溶液散布の後、7日後に吸着剤及び止水材を回収した。コンクリート製角型容器への浸透状態の確認は、模擬セシウム溶液と接触したコンクリート容器底面の表面を1mm削り取り、回収したコンクリートの粉末に存在するセシウムの量を測定した。回収したコンクリートの粉末は塩酸に溶解し、その塩酸溶液のセシウムの濃度をICP-MASを用いて測定することでコンクリート製角型容器に浸透したセシウムの量を評価した。吸着剤及び止水材へのセシウム吸着性能の評価は、回収した吸着剤及び/又は止水材から代表試料100gを分取して1リットルの水に24時間浸漬し、溶出したセシウムの濃度をICP-MASを用いて測定した。
[Embodiment]
Using the rectangular concrete container shown in FIG. 1 (normal concrete cube internal volume 1 m 3 , heavy concrete cube internal volume 1 m 3 ), the solution containing radioactive cesium leaked from the storage contaminated with radioactive cesium. The penetration test was conducted assuming that Assuming that 1000 kg of surface soil contaminated with 400,000 Bq / kg of cesium 137 is packed in a flexible container, the amount of cesium is calculated to be 0.124 mg from the half-life of cesium. Assuming that the total amount of radioactive cesium is dissolved in 1 liter of water and leached to the bottom of the container, the concentration of cesium in the solution is 0.124 ppm. Therefore, a cesium solution of this concentration was prepared with a stable isotope cesium chloride reagent to obtain a simulated cesium solution. However, assuming that high-concentration contaminants are to be treated, 100 liters of the simulated cesium solution was sprayed into the storage container 10 to confirm the state of penetration of cesium into the concrete container. That is, the test was conducted with 100 times the amount of cesium equivalent to 400,000 Bq / kg (equivalent to 40 million Bq). After spraying the simulated cesium solution, the adsorbent and the water stop material were collected 7 days later. The state of penetration into the concrete square container was confirmed by scraping the surface of the bottom surface of the concrete container in contact with the simulated cesium solution by 1 mm and measuring the amount of cesium present in the recovered concrete powder. The collected concrete powder was dissolved in hydrochloric acid, and the concentration of cesium in the concrete square container was evaluated by measuring the concentration of cesium in the hydrochloric acid solution using ICP-MAS. Evaluation of cesium adsorption performance to adsorbent and water-stopping material was conducted by separating 100 g of representative sample from the collected adsorbent and / or water-stopping material and immersing it in 1 liter of water for 24 hours. Measurement was performed using ICP-MAS.

角型コンクリート容器に、そのまま前記の模擬セシウム溶液を投入してセシウムのコンクリートへの浸透実験(A)を行った。 The simulated cesium solution was put into a square concrete container as it was, and a penetration experiment (A) of cesium into concrete was performed.

一方、浸透実験(B)として、吸着剤として、クリノプチロライト(山形県板谷地区の天然ゼオライト)、ベントナイト(商品名スーパークレイ:株式会社ホージュン製)を用いて行った。
浸透実験(A)と同じ仕様のコンクリートキューブを用いた。コンクリートキューブの底に厚さ2cmのベントナイトを敷き詰め、その上に17.9kgのクリノプチロライトを層状に敷きつめた。そして、本願発明容器に模擬セシウム溶液を投入した。クリノプチロライトのKdを、式(1)から算出すると、5.6×10であった。この値を用いて、収納容器の容積に匹敵する水にセシウムが溶解したと仮定したイオン濃度を1/100にするために、吸着させるための必要量を式(2)から算出して、17.9kgを得たものである。
On the other hand, the penetration experiment (B) was performed using clinoptilolite (natural zeolite in Itaya, Yamagata Prefecture) and bentonite (trade name Super Clay, manufactured by Hojun Co., Ltd.) as the adsorbent.
A concrete cube having the same specifications as in the penetration experiment (A) was used. A 2 cm thick bentonite was spread on the bottom of the concrete cube, and 17.9 kg of clinoptilolite was layered on it. And the simulated cesium solution was thrown into the container of the present invention. When Kd of clinoptilolite was calculated from the formula (1), it was 5.6 × 10 3 . Using this value, in order to reduce the ion concentration assumed to have dissolved cesium in water equivalent to the volume of the storage container to 1/100, the necessary amount to be adsorbed is calculated from the equation (2). kg is obtained.

(浸透実験(C))
収納容器の底部にセピオライトを厚さ2cm敷きつめた。その上に、フェロシアン化鉄粉末を1kg設置し、本願発明容器に模擬セシウム溶液を投入した。フェロシアン化鉄のKdを、式(1)から算出すると、1.0×10であった。この値を用いて、収納容器の容積に匹敵する水にセシウムが溶解したと仮定したイオン濃度を1/1000にするために、固層のフェロシアン化鉄に吸着させるための必要量(1kg)は式(2)から算出した。
(Penetration experiment (C))
Sepiolite was spread 2 cm thick on the bottom of the storage container. On top of that, 1 kg of ferrocyanide powder was placed, and the simulated cesium solution was put into the container of the present invention. The Kd of ferrocyanide was calculated from the formula (1) and found to be 1.0 × 10 6 . Using this value, in order to reduce the ion concentration assumed to be cesium dissolved in water equivalent to the volume of the storage container to 1/1000, the amount necessary to adsorb on solid iron ferrocyanide (1 kg) Was calculated from equation (2).

(浸透実験(D))
結晶性ケイチタン酸塩CST−2(米国UOP社製)のKdを、式(1)から算出すると、1.6×10であった。この値を用いて、式(2)から、収納容器の容積に匹敵する水にセシウムが溶解したと仮定したイオン濃度を1/1000にするための、結晶性ケイチタン酸塩CST−2の必要量(6.25kg)を算出した。
収納容器の底部に、結晶性ケイチタン酸塩CST−2(米国UOP社製)、6.25kgとセピオライト粉末5kgを混合して設置し、本願発明容器に模擬セシウム溶液を投入した。
(Penetration experiment (D))
It was 1.6 * 10 < 5 > when Kd of crystalline silicotitanate CST-2 (made by UOP USA) was computed from Formula (1). Using this value, the necessary amount of crystalline silicotitanate CST-2 from formula (2) to make the ion concentration 1/1000 assuming that cesium was dissolved in water comparable to the volume of the storage container (6.25 kg) was calculated.
Crystalline silicotitanate CST-2 (manufactured by UOP, USA), 6.25 kg and 5 kg of sepiolite powder were mixed and installed at the bottom of the storage container, and the simulated cesium solution was charged into the container of the present invention.

(浸透実験(E))
収納容器の底部に、吸着剤を用いず、セピオライト粉末を2cm敷詰めて設置し、本願発明容器に模擬セシウム溶液を投入した。
(Penetration experiment (E))
At the bottom of the storage container, 2 cm of sepiolite powder was installed without using an adsorbent, and the simulated cesium solution was charged into the container of the present invention.

(浸透実験(F))
結晶性ケイチタン酸塩CST−2(米国UOP社製)のKdを、式(1)から算出すると、1.6×10であった。この値を用いて、式(2)から、収納容器の容積に匹敵する水にセシウムが溶解したと仮定したイオン濃度を1/1000にするための、結晶性ケイチタン酸塩CST−2の必要量(6.25kg)を算出した。
収納容器の底部に、結晶性ケイチタン酸塩CST−2(米国UOP社製)、3kgを層状に覆うように敷き詰め、その上に密接して、セピオライト粉末3kgを敷き詰め、更に3.25kgのCST−2と、セピオライト粉末2kgを層状に密接に設置し、本願発明容器に模擬セシウム溶液を投入した。
(Penetration experiment (F))
It was 1.6 * 10 < 5 > when Kd of crystalline silicotitanate CST-2 (made by UOP USA) was computed from Formula (1). Using this value, the necessary amount of crystalline silicotitanate CST-2 from formula (2) to make the ion concentration 1/1000 assuming that cesium was dissolved in water comparable to the volume of the storage container (6.25 kg) was calculated.
At the bottom of the storage container, 3 kg of crystalline silicotitanate CST-2 (manufactured by UOP, USA) is layered so as to cover it in layers, and 3 kg of sepiolite powder is spread on top of it, and 3.25 kg of CST- 2 and 2 kg of sepiolite powder were placed closely in a layered manner, and the simulated cesium solution was charged into the container of the present invention.

上記浸透実験例A乃至Fにおいて、コンクリート容器への浸透量と吸着量測定をおこなった。上記吸着剤と止水材を設置したコンクリートキューブに模擬セシウム溶液を100リットル散布投入した。7日間放置した後、吸着剤及び/又は止水材を回収し、コンクリート容器底部表面から1mmコンクリートを削り取りセシウムの浸透状況を評価した。さらに、吸着剤及び/又は止水材から代表試料を分取してセシウムイオン抽出測定用の水1リットルに浸漬してセシウムイオンの吸着量を評価した。吸着剤及び/又は止水材を浸漬した後24時間静置して、セシウム吸着量測定用の水を採取して、未吸着のセシウムイオン濃度測定をICP-MASでおこなった。これらの結果を、表1に示した。 In the above penetration examples A to F, the amount of penetration into the concrete container and the amount of adsorption were measured. 100 liters of a simulated cesium solution was sprayed into a concrete cube provided with the adsorbent and water-stopping material. After being left for 7 days, the adsorbent and / or water-stopping material was collected, and 1 mm concrete was scraped from the bottom surface of the concrete container to evaluate the cesium penetration state. Further, a representative sample was taken from the adsorbent and / or water-stopping material and immersed in 1 liter of water for cesium ion extraction measurement to evaluate the amount of cesium ion adsorbed. After immersing the adsorbent and / or water-stopping material, it was allowed to stand for 24 hours, water for measuring the amount of cesium adsorbed was collected, and unadsorbed cesium ion concentration was measured by ICP-MAS. These results are shown in Table 1.

表1が示す通り、遮蔽効果はコンクリート材料の密度と厚さから評価される通常の効果が期待できるうえ、セシウムイオン吸着効果と浸透に対する止水効果が優れているのは、実験例B乃至Dであった。以上の模擬セシウム水を用いた実験とは、別に、実際の土壌と模擬セシウム水を混合して試験をおこなったが、いずれも、セシウムイオンの吸着促進、コンクリート壁への浸透抑制について、模擬セシウム水単独の実験より、好ましい結果が得られた。従って、模擬セシウム水の単独散布の実験は、最も厳しい条件下を想定した試験であって、これをクリアーすることで、実際の土壌等の汚染物収納に対する対応が可能となったことを確認した。 As Table 1 shows, the shielding effect can be expected to be a normal effect evaluated from the density and thickness of the concrete material, and the excellent water stopping effect against cesium ion adsorption and penetration is shown in Experimental Examples B to D. Met. In addition to the above experiments using simulated cesium water, tests were conducted by mixing actual soil and simulated cesium water. In both cases, simulated cesium was used to promote adsorption of cesium ions and inhibit penetration into concrete walls. Preferred results were obtained from experiments with water alone. Therefore, the experiment of single spraying of simulated cesium water was a test that assumed the most severe conditions, and by clearing this, it was confirmed that it was possible to handle storage of contaminants such as actual soil. .

実験例Fにおいては、実験例Dに匹敵する、セシウムの吸着能が得られ、容器へのセシウムの浸透も実験例Dと同等程度に減少した。 In Experimental Example F, the adsorption ability of cesium comparable to that of Experimental Example D was obtained, and the penetration of cesium into the container was reduced to the same extent as in Experimental Example D.

セシウムに汚染された被汚染物を本容器に収納する方法の模式図である。It is a schematic diagram of the method of accommodating the to-be-contaminated thing contaminated with cesium in this container.

10 収納容器
11 収納容器本体部
12 収納容器の蓋部
20 止水材又は吸着剤設置部
30 セシウムに汚染された被収納物
DESCRIPTION OF SYMBOLS 10 Storage container 11 Storage container main-body part 12 Cover part 20 of a storage container Water-stopping material or adsorbent installation part 30

Claims (7)

繊維状セピオライトの集合体であるセピオライト粉末及び/又はベントナイト粉末の層と、ゼオライト、フェロシアン化塩、マンガン化合物、ケイチタン酸塩から選ばれた1以上の吸着剤層を互いに密接させて、コンクリート製収納容器の少なくとも底部に敷き詰め、底面を覆うように配置し、その上に、セシウム汚染物を前記コンクリート製収納容器に収納することを特徴とする収納方法。 A sepiolite powder and / or bentonite powder layer, which is an aggregate of fibrous sepiolite, and one or more adsorbent layers selected from zeolite, ferrocyanide salt, manganese compound, and silicotitanate are brought into close contact with each other, and made of concrete. A storage method comprising: laying at least a bottom portion of a storage container so as to cover a bottom surface, and storing a cesium contaminant in the concrete storage container thereon. 繊維状セピオライト粉末及び/又はベントナイト粉末と、ゼオライト、フェロシアン化塩、マンガン化合物、ケイチタン酸塩から選ばれた1以上の吸着剤を混合して、コンクリート製収納容器の少なくとも底部に、底面を覆うように層状に配置し、その上に、セシウム汚染物を前記コンクリート製収納容器に収納することを特徴とする収納方法。 Fibrous sepiolite powder and / or bentonite powder and one or more adsorbents selected from zeolite, ferrocyanide salt, manganese compound, and silicotitanate are mixed to cover at least the bottom of the concrete container. Thus, the storage method is characterized in that the cesium contamination is stored in the concrete storage container. ゼオライト、フェロシアン化塩、マンガン化合物、ケイチタン酸塩から選ばれた1以上の吸着剤のセシウムに対する固液分配係数を測定し、収納容器内の容積を勘案して、前記吸着剤量を決定して、繊維状セピオライト粉末及び/又はベントナイト粉末と密接させて、底面を覆うように設置した後、セシウム汚染物を収納容器に収納することを特徴とする請求項1又は、2記載のセシウム汚染物収納方法。 Measure the solid-liquid distribution coefficient for cesium of one or more adsorbents selected from zeolite, ferrocyanide salt, manganese compound and silicotitanate, and determine the adsorbent amount in consideration of the volume in the storage container. The cesium contaminant according to claim 1 or 2, wherein the cesium contaminant is stored in a storage container after being placed in close contact with the fibrous sepiolite powder and / or bentonite powder and covering the bottom surface. Storage method. ゼオライト、フェロシアン化塩、マンガン化合物、ケイチタン酸塩から選ばれた1以上の吸着剤を、セシウムに対する固液分配係数Kdを式(1)にて、測定し、収納容器内の容積を勘案して、前記吸着剤の最低必要量mを式(2)から決定して、繊維状セピオライト及び/又はベントナイトと密接させて、底面を覆うように設置した後、セシウム汚染物を収納容器内に収納することを特徴とする請求項1乃至3記載のいずれかに記載のセシウム汚染物収納方法。
One or more adsorbents selected from zeolites, ferrocyanide salts, manganese compounds, and silicotitanates are measured for the solid-liquid distribution coefficient Kd for cesium using Equation (1), and the volume in the storage container is taken into account. Then, the minimum required amount m of the adsorbent is determined from the formula (2) and is placed in close contact with the fibrous sepiolite and / or bentonite so as to cover the bottom surface, and then the cesium contaminant is stored in the storage container. The cesium contaminant storing method according to any one of claims 1 to 3, wherein:
止水材又は吸着剤を予めフレキシブルコンテナ内の底部に配置して、それらのフレキシブルコンテナをコンクリート製収納容器に格納することによって、コンクリート製収納容器底部の止水材又は吸着剤設置部分に止水材又は吸着剤を配置したことを特徴とする請求項1乃至4記載のいずれかに記載の放射性セシウム汚染物収納方法。 By placing water-stopping material or adsorbent in the bottom of the flexible container in advance and storing these flexible containers in the concrete storage container, the water-stopping material or adsorbent is installed at the bottom of the concrete storage container. 5. The radioactive cesium contaminant storage method according to claim 1, wherein a material or an adsorbent is disposed. 容器内で、繊維状セピオライトの集合体であるセピオライト粉末及び/又はベントナイト粉末の層と、ゼオライト、フェロシアン化塩、マンガン化合物、ケイチタン酸塩から選ばれた1以上の吸着剤層が、互いに密接する状態、且つ前容器内底部に敷き詰められた状態で、底面を覆ってなり、その上部に、放射性セシウム汚染物の収納部を有することを特徴とするコンクリート製収納容器。 In the container, a layer of sepiolite powder and / or bentonite powder, which is an aggregate of fibrous sepiolite, and one or more adsorbent layers selected from zeolite, ferrocyanide, manganese compound, and silicotitanate are in close contact with each other. A concrete storage container characterized by having a storage part for radioactive cesium contaminants at the top thereof, covering the bottom surface in a state of being laid and laid on the bottom of the front container. 容器内で、繊維状セピオライト粉末及び/又はベントナイト粉末と、ゼオライト、フェロシアン化塩、マンガン化合物、ケイチタン酸塩から選ばれた1以上の吸着剤の混合層が、前容器内底部に敷き詰められた状態で、底面を覆ってなり、その上部に、放射性セシウム汚染物の収納部を有することを特徴とするコンクリート製収納容器。In the container, a mixed layer of fibrous sepiolite powder and / or bentonite powder and one or more adsorbents selected from zeolite, ferrocyanide salt, manganese compound, and silicotitanate was laid on the bottom of the front container. A concrete storage container characterized by covering the bottom surface in a state and having a storage part for radioactive cesium contaminants in the upper part.
JP2012015531A 2011-10-09 2012-01-27 Method for storing contaminants caused by radioactive cesium, and container for storing contaminants caused by radioactive cesium Active JP5863480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015531A JP5863480B2 (en) 2011-10-09 2012-01-27 Method for storing contaminants caused by radioactive cesium, and container for storing contaminants caused by radioactive cesium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011223522A JP4919528B1 (en) 2011-10-09 2011-10-09 Storage container for contaminants caused by radioactive cesium, and storage method for contaminants caused by radioactive cesium
JP2011223522 2011-10-09
JP2012015531A JP5863480B2 (en) 2011-10-09 2012-01-27 Method for storing contaminants caused by radioactive cesium, and container for storing contaminants caused by radioactive cesium

Publications (2)

Publication Number Publication Date
JP2013101094A JP2013101094A (en) 2013-05-23
JP5863480B2 true JP5863480B2 (en) 2016-02-16

Family

ID=46243804

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011223522A Expired - Fee Related JP4919528B1 (en) 2011-10-09 2011-10-09 Storage container for contaminants caused by radioactive cesium, and storage method for contaminants caused by radioactive cesium
JP2012015531A Active JP5863480B2 (en) 2011-10-09 2012-01-27 Method for storing contaminants caused by radioactive cesium, and container for storing contaminants caused by radioactive cesium

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011223522A Expired - Fee Related JP4919528B1 (en) 2011-10-09 2011-10-09 Storage container for contaminants caused by radioactive cesium, and storage method for contaminants caused by radioactive cesium

Country Status (1)

Country Link
JP (2) JP4919528B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013248548A (en) * 2012-05-30 2013-12-12 Metawater Co Ltd Exhaust gas treatment method and exhaust gas treatment device
JP5985313B2 (en) * 2012-08-31 2016-09-06 株式会社東芝 Production method of solidified radioactive waste
JP2014102092A (en) * 2012-11-16 2014-06-05 Fujimura Fume Kan Kk Storage container for waste containing radioactive materials
JP2014102240A (en) * 2012-11-20 2014-06-05 Kankyo Joka Kenkyusho:Kk Method for decontaminating accumulated radioactive liquid and device for the same
JP6157857B2 (en) * 2013-01-10 2017-07-05 株式会社東芝 Solidification method for radioactive waste
JP5722385B2 (en) * 2013-05-30 2015-05-20 旭コンクリート工業株式会社 Precast concrete containment
JP6067497B2 (en) * 2013-07-05 2017-01-25 株式会社東芝 Production method of solidified radioactive waste
WO2016010142A1 (en) 2014-07-18 2016-01-21 東ソー株式会社 Composition including silicotitanate having sitinakite structure, and production method for same
JP6485265B2 (en) * 2014-07-18 2019-03-20 東ソー株式会社 Silicotitanate having a Sichinakite structure and method for producing the same
WO2023106280A1 (en) 2021-12-08 2023-06-15 東ソー株式会社 Composition and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2993486B2 (en) * 1997-11-28 1999-12-20 株式会社日立製作所 Radioactive waste filling container and solidified radioactive waste
JP4299498B2 (en) * 2002-05-31 2009-07-22 株式会社神戸製鋼所 Radioactive waste disposal container and disposal container suspension
JP2010002379A (en) * 2008-06-23 2010-01-07 Toshiba Corp Manufacturing method for radioactive waste processing material, radioactive waste processing method, and radioactive waste backfilling method

Also Published As

Publication number Publication date
JP2013101094A (en) 2013-05-23
JP4919528B1 (en) 2012-04-18
JP2014095549A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5863480B2 (en) Method for storing contaminants caused by radioactive cesium, and container for storing contaminants caused by radioactive cesium
Koťátková et al. Concrete and cement composites used for radioactive waste deposition
Osmanlioglu Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey
Ojovan et al. Long-term field and laboratory leaching tests of cemented radioactive wastes
Rahman et al. Cementitious materials for nuclear waste immobilization
US4950426A (en) Granular fill material for nuclear waste containing modules
Melkior et al. Diffusion of an alkaline fluid through clayey barriers and its effect on the diffusion properties of some chemical species
Watson et al. The Tournemire industrial analogue: reactive-transport modelling of a cement–clay interface
Jolin et al. Sorbent materials for rapid remediation of wash water during radiological event relief
Kurihara et al. Cesium-adsorption capacity and hydraulic conductivity of sealing geomaterial made with marine clay, bentonite, and zeolite
Guimarães et al. Role of clay barrier systems in the disposal of radioactive waste
Grauer Bentonite as a backfill material in a high-level waste repository
KR100727092B1 (en) Ddisposal container for used nuclear fuel and method for disposal of used nuclear fuel by using the same
Ichikawa et al. Super Volume Reduction of ¹³⁷Cs-contaminated Solid Waste by Ion Chromatographic Elimination of Cs from ¹³⁷Cs-enriched Dust Generated by Pyroprocessing Decontamination
Dyer Applications of natural zeolites in the treatment of nuclear wastes and fall-out
Shin et al. Estimation of radionuclides leaching characteristics in different sized geopolymer waste forms with simulated spent ion-exchange resin
Choudri et al. Radioactive wastes
Valenta et al. Tc-99 Ion exchange resin testing
RU2223562C1 (en) Method for handling solid low-radioactivity wastes
Kaminski et al. Technical Improvements to an Absorbing Supergel for Radiological Decontamination in Tropical Environments
Macášek Sorption and leaching properties of the composites and complexes of natural microporous materials
Helal et al. Sorption of radiocobalt on pottery
Sorokin DISPOSAL SAFETY JUSTIFICATION FOR SALT MELT GENERATED AT NPP EVAPORATION-TO-THE-MAXIMUM-SALT CONCENTRATION PLANTS AND PACKED IN NZK-150-1.5 P CONTAINERS
Bath et al. Radioactive contamination of concrete: Uptake and release of radionuclides
Savage et al. SFR 1 Vault Database

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151222

R150 Certificate of patent or registration of utility model

Ref document number: 5863480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250