JP5862655B2 - Air conditioning indoor unit - Google Patents

Air conditioning indoor unit Download PDF

Info

Publication number
JP5862655B2
JP5862655B2 JP2013272121A JP2013272121A JP5862655B2 JP 5862655 B2 JP5862655 B2 JP 5862655B2 JP 2013272121 A JP2013272121 A JP 2013272121A JP 2013272121 A JP2013272121 A JP 2013272121A JP 5862655 B2 JP5862655 B2 JP 5862655B2
Authority
JP
Japan
Prior art keywords
fan
angle
air
straight line
horizontal line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013272121A
Other languages
Japanese (ja)
Other versions
JP2015124985A (en
Inventor
全史 宇多
全史 宇多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013272121A priority Critical patent/JP5862655B2/en
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to PCT/JP2014/083440 priority patent/WO2015098657A1/en
Priority to AU2014371321A priority patent/AU2014371321B2/en
Priority to CN201480070842.2A priority patent/CN105849467B/en
Priority to ES14874416.2T priority patent/ES2667960T3/en
Priority to MYPI2016702107A priority patent/MY164382A/en
Priority to US15/107,436 priority patent/US20170003038A1/en
Priority to BR112016014857-6A priority patent/BR112016014857B1/en
Priority to EP14874416.2A priority patent/EP3088806B1/en
Publication of JP2015124985A publication Critical patent/JP2015124985A/en
Application granted granted Critical
Publication of JP5862655B2 publication Critical patent/JP5862655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/422Discharge tongues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0073Indoor units, e.g. fan coil units with means for purifying supplied air characterised by the mounting or arrangement of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

本発明は、空調室内機、特に、壁掛け式の空調室内機に関する。   The present invention relates to an air conditioning indoor unit, and more particularly to a wall-mounted air conditioning indoor unit.

従来から、天井ではなく部屋の側壁に設置され、正面や上面から空気を吸い込み、空調後の空気を下部の吹出口から吹き出す空気調和機の室内ユニット(以下、空調室内機という。)が、広く普及している。室内機の内部には、冷媒と空気との熱交換を担う熱交換器や、クロスフローファンが収容されている。   Conventionally, an indoor unit of an air conditioner (hereinafter referred to as an air-conditioning indoor unit) that is installed on a side wall of a room instead of the ceiling, sucks air from the front or upper surface, and blows out air after air conditioning from a lower outlet. It is popular. Inside the indoor unit, a heat exchanger responsible for heat exchange between the refrigerant and air and a cross flow fan are accommodated.

例えば、特許文献1(特開2008−8500号公報)に示されるように、空調室内機は、送風路を構成する部材として、スタビライザとリアガイダとを有している。   For example, as shown in Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-8500), an air conditioning indoor unit includes a stabilizer and a rear guider as members constituting the air passage.

最近の空調室内機では、クロスフローファンの大径化に伴い、低回転・高風量の傾向が出てきている。そして、低回転化によって低下したサージング耐力を静圧上昇時でも向上させることが要求される一方、省エネの観点から低動力の要求も存在する。   In recent air-conditioning indoor units, as the diameter of the cross-flow fan increases, the tendency for low rotation and high airflow has been emerging. And while it is required to improve the surging proof strength, which has been reduced by the low rotation, even when the static pressure is increased, there is also a demand for low power from the viewpoint of energy saving.

本発明の課題は、サージング耐力と省エネ性とを兼ね備えた空調室内機を提供することにある。   The subject of this invention is providing the air-conditioning indoor unit which has a surging proof stress and energy-saving property.

本発明の第1観点に係る空調室内機は、壁掛け式の空調室内機であって、クロスフローファンと、ケーシングと、熱交換器とを備えている。クロスフローファンは、円周に沿って複数の翼が並び、空気流れを生成する。ケーシングは、正面側のスタビライザと、背面側のリアガイダとを含んでいる。これらのスタビライザおよびリアガイダによって、ケーシングは、クロスフローファンから吹出口に流れるスクロール状の空気の吹出空気流路を形成する。スタビライザは、舌部を挟んで、上部および下部に分かれる。熱交換器は、正面側熱交換部と背面側熱交換部とを含んでおり、クロスフローファンの空気流れ上流側に配置される。この空調室内機の縦断面視において、クロスフローファンの回転中心であるファン中心点を通る水平線を、ファン基準水平線とする。また、縦断面視において、クロスフローファンの複数の翼の外端を結んだ円の接線であって且つスタビライザの下部に接する直線のうち、最もファン基準水平線と為す角度が小さい直線を、スクロール基準線とする。また、縦断面視において、ファン基準水平線とスクロール基準線とが為す角度を、基準角度θ0とする。また、縦断面視において、スタビライザの上部のうち最もクロスフローファンに接近している点である正面側最接近点とファン中心点とを結ぶ直線である第1直線と、ファン基準水平線とが為す角度を、第1角度θaとする。また、縦断面視において、リアガイダのうち最もクロスフローファンに接近している点である背面側最接近点とファン中心点とを結ぶ直線である第2直線と、ファン基準水平線とが為す角度を、第2角度θbとする。以上のように定義された基準角度θ0、第1角度θaおよび第2角度θbが、以下の第1角度関係式、第2角度関係式および第3角度関係式を満たすように、この空調室内機ではスタビライザ、リアガイダおよびクロスフローファンが配置されている。
第1角度関係式:(θa−θ0)>16°
第2角度関係式:17°<(θb−θ0)<26°
第3角度関係式:θb≧θa
本発明に係る空調室内機では、第1角度関係式、第2角度関係式および第3角度関係式のいずれかを満足させるのではなく、第1角度関係式、第2角度関係式および第3角度関係式を全て満足するようにスタビライザ、リアガイダおよびクロスフローファンを配置している。これにより、スタビライザの正面側最接近点の高さ位置を低く抑えることで、正面側熱交換部の下部からクロスフローファンへと流れる空気の流れが阻害されることを小さくし、また、いわゆるファン吸い込み角度も180°以内の範囲で大きくすることができている。このため、低損失である空気の流れが生まれ、且つ、クロスフローファンから吹出口に向かう空気の流れが吸込口の側に逆流することが抑えられる。この逆流の抑制によって、サージング耐力が向上する。
An air conditioning indoor unit according to a first aspect of the present invention is a wall-hanging air conditioning indoor unit, and includes a crossflow fan, a casing, and a heat exchanger. In the cross flow fan, a plurality of blades are arranged along a circumference to generate an air flow. The casing includes a front-side stabilizer and a rear-side rear guider. By these stabilizers and the rear guider, the casing forms an air flow passage for scroll-like air flowing from the cross flow fan to the air outlet. The stabilizer is divided into an upper part and a lower part across the tongue. The heat exchanger includes a front-side heat exchange unit and a back-side heat exchange unit, and is disposed on the upstream side of the air flow of the cross flow fan. In the longitudinal sectional view of the air conditioning indoor unit, a horizontal line passing through the fan center point that is the rotation center of the cross flow fan is defined as a fan reference horizontal line. Also, in the vertical cross-sectional view, the straight line with the smallest angle formed with the fan reference horizontal line is the tangent line of the circle connecting the outer ends of the blades of the cross flow fan and the lower part of the stabilizer. A line. In addition, an angle formed by the fan reference horizontal line and the scroll reference line in the longitudinal sectional view is defined as a reference angle θ0. In addition, in the longitudinal sectional view, a first straight line that is a straight line connecting the front closest point that is the point closest to the cross flow fan in the upper part of the stabilizer and the fan center point, and the fan reference horizontal line are formed. The angle is a first angle θa. In addition, in the longitudinal sectional view, the angle formed by the second straight line that connects the rear side closest approach point that is the closest point to the cross flow fan in the rear guider and the fan center point and the fan reference horizontal line is The second angle θb. The air conditioning indoor unit is set so that the reference angle θ0, the first angle θa, and the second angle θb defined as described above satisfy the following first angle relational expression, second angle relational expression, and third angle relational expression. Then, a stabilizer, a rear guider, and a cross flow fan are arranged.
First angle relational expression: (θa−θ0)> 16 °
Second angle relational expression: 17 ° <(θb−θ0) <26 °
Third angle relational expression: θb ≧ θa
The air conditioning indoor unit according to the present invention does not satisfy any of the first angle relational expression, the second angle relational expression, and the third angle relational expression, but the first angle relational expression, the second angle relational expression, and the third angle relational expression. Stabilizer, rear guider and cross flow fan are arranged to satisfy all the angle relational expressions. As a result, the height position of the closest point on the front side of the stabilizer is kept low, so that the flow of air flowing from the lower part of the front side heat exchange section to the cross flow fan is reduced, and so-called fans The suction angle can also be increased within a range of 180 ° or less. For this reason, the flow of air with low loss is born, and the flow of air from the cross flow fan toward the outlet is prevented from flowing back to the suction port. The suppression of the reverse flow improves the surging strength.

さらに、リアガイダの背面側最接近点の高さ位置を適切な範囲に収めることで、リアガイダを低くしすぎることに起因するファン動力の増大が抑制され、省エネ性が向上する。すなわち、リアガイダの背面側最接近点の高さ位置を低くしすぎると、スクロール状の空気の吹出空気流路が短くなり、また背面側最接近点のクロスフローファン側に生じる循環渦の保持力が弱くなって、スクロール状の吹出空気流路の表面における乱流が増大しファン動力が大きくなってしまうが、本発明によれば、そのようなファン動力の増大が抑制される。   Further, by keeping the height position of the rear closest approach point of the rear guider within an appropriate range, an increase in fan power caused by making the rear guideer too low is suppressed, and energy saving is improved. That is, if the height position of the rear closest approach point of the rear guider is made too low, the scroll-like air blowing air flow path becomes shorter, and the holding force of the circulating vortex generated on the cross flow fan side of the rear closest approach point However, the turbulent flow on the surface of the scroll-like blown air flow path increases and the fan power increases, but according to the present invention, such an increase in fan power is suppressed.

本発明の第2観点に係る空調室内機は、第1観点に係る空調室内機であって、縦断面視において、正面側熱交換部の下部はファン基準水平線よりも下に位置しており、背面側熱交換部の下部はファン基準水平線よりも上に位置している。そして、空調室内機の縦断面視において、正面側熱交換部の下部とファン中心点とを通る直線のうち最もファン基準水平線と為す角度が大きい直線を、第3直線とし、その第3直線とファン基準水平線とが為す角度を第3角度θcとし、背面側熱交換部の下部とファン中心点とを通る直線のうち最もファン基準水平線と為す角度が小さい直線を第4直線とし、その第4直線とファン基準水平線とが為す角度を第4角度θdとしたときに、以下の第4角度関係式および第5角度関係式を満たすように、スタビライザ、リアガイダ、熱交換器およびクロスフローファンが配置されている。
第4角度関係式:θc>θa
第5角度関係式:θd<θb
第2観点に係る空調室内機では、第4角度関係式が満たされるように正面側熱交換部の下部が低い位置に配置され、第5角度関係式が満たされるように背面側熱交換部の下部が低い位置に配置されており、熱交換器の容量を大きくすることができる。そして、同時に第1角度関係式、第2角度関係式および第3角度関係式を満たしているため、正面側熱交換部や背面側熱交換部の下部が低い位置に配置されていても、そこからクロスフローファンへと流れる空気の流れが阻害され難く、各熱交換部の下部にも多くの空気が流れて省エネ性が向上する。
The air conditioning indoor unit according to the second aspect of the present invention is the air conditioning indoor unit according to the first aspect, and in the longitudinal sectional view, the lower part of the front side heat exchange part is located below the fan reference horizontal line, The lower part of the back side heat exchange part is located above the fan reference horizontal line. And in the longitudinal sectional view of the air conditioning indoor unit, the straight line having the largest angle with the fan reference horizontal line among the straight lines passing through the lower part of the front side heat exchange section and the fan center point is defined as the third straight line. The angle formed by the fan reference horizontal line is defined as the third angle θc, and the straight line having the smallest angle formed by the fan reference horizontal line among the straight lines passing through the lower portion of the rear heat exchange section and the fan center point is defined as the fourth straight line. When the angle formed by the straight line and the fan reference horizontal line is the fourth angle θd, the stabilizer, the rear guider, the heat exchanger, and the cross flow fan are arranged so as to satisfy the following fourth angle relational expression and fifth angle relational expression Has been.
Fourth angle relational expression: θc> θa
Fifth angle relational expression: θd <θb
In the air conditioning indoor unit according to the second aspect, the lower part of the front side heat exchange unit is arranged at a low position so that the fourth angle relational expression is satisfied, and the rear side heat exchange part is satisfied so that the fifth angle relational expression is satisfied. The lower part is arranged at a low position, and the capacity of the heat exchanger can be increased. And since the 1st angle relational expression, the 2nd angle relational expression, and the 3rd angle relational expression are satisfied simultaneously, even if the lower part of the front side heat exchange part and the back side heat exchange part is arranged in a low position, there The flow of air flowing from the fan to the cross flow fan is hardly obstructed, and a large amount of air also flows under the heat exchange parts, improving energy saving performance.

本発明の第1観点に係る空調室内機では、サージング耐力と省エネ性とが共に向上する。   In the air conditioning indoor unit according to the first aspect of the present invention, both the surging proof strength and the energy saving performance are improved.

本発明の第2観点に係る空調室内機では、熱交換器の容量が大きくなるが、各熱交換部の下部にも多くの空気が流れ、省エネ性がさらに向上する。   In the air-conditioning indoor unit according to the second aspect of the present invention, the capacity of the heat exchanger is increased, but a large amount of air flows to the lower part of each heat exchange section, further improving energy saving performance.

空調室外機および空調室内機から成る空気調和装置の構成図。The block diagram of the air conditioning apparatus which consists of an air-conditioning outdoor unit and an air-conditioning indoor unit. 正面パネル、フィルタおよび熱交換器の配置を説明するための空調室内機の縦断面図(図1のII-II矢視の断面図)。The longitudinal cross-sectional view of the air-conditioning indoor unit for demonstrating arrangement | positioning of a front panel, a filter, and a heat exchanger (cross-sectional view of the II-II arrow of FIG. 1). スタビライザおよびリアガイダの配置を説明するための空調室内機の縦断面図。The longitudinal cross-sectional view of the air-conditioning indoor unit for demonstrating arrangement | positioning of a stabilizer and a rear guider. スタビライザの配置とファン動力の効率改善との関係を示すグラフ。The graph which shows the relationship between arrangement | positioning of a stabilizer and the efficiency improvement of fan motive power. リアガイダの配置とファン動力の効率改善との関係を示すグラフ。The graph which shows the relationship between arrangement | positioning of a rear guider and the fan power efficiency improvement.

以下、図面を参照しながら、本発明の一実施形態に係る空調室内機92について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。   Hereinafter, an air conditioning indoor unit 92 according to an embodiment of the present invention will be described with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.

(1)空調室内機の構成
図1は、本発明の一実施形態に係る空調室内機92を含む空気調和機90の構成図である。空調室内機92は、室内の壁面に取り付けられる壁掛け式の室内ユニットである。また、空調室内機92は、室外に配置される空調室外機91と冷媒配管93を介して接続されて、空気調和機90を構成する。空調室内機92は、リモコン等による操作に応じて、室内の冷房運転および暖房運転を行う。
(1) Configuration of Air Conditioning Indoor Unit FIG. 1 is a configuration diagram of an air conditioner 90 including an air conditioning indoor unit 92 according to an embodiment of the present invention. The air conditioning indoor unit 92 is a wall-mounted indoor unit that is attached to a wall surface in the room. The air conditioner indoor unit 92 is connected to the air conditioner outdoor unit 91 arranged outside the room via a refrigerant pipe 93 to constitute an air conditioner 90. The air conditioning indoor unit 92 performs indoor cooling operation and heating operation in accordance with an operation by a remote controller or the like.

空調室内機92は、図2に示すように、主として、ケーシング10、フィルタ40、熱交換器20およびクロスフローファン30を備えている。   As shown in FIG. 2, the air conditioning indoor unit 92 mainly includes a casing 10, a filter 40, a heat exchanger 20, and a cross flow fan 30.

(1−1)ケーシング
ケーシング10は、空調室内機92の外郭およびフレームとなる部材の集合体であって、フィルタ40、熱交換器20、クロスフローファン30などを支持、収納している。
(1-1) Casing The casing 10 is an assembly of members that form an outline and a frame of the air conditioning indoor unit 92, and supports and accommodates the filter 40, the heat exchanger 20, the cross flow fan 30, and the like.

ケーシング10の上部には、室内の空気を取り込む吸込口10aが形成されている。ケーシング10の下部には、空調後の空気を室内に送り出す吹出口10bが形成されている。吸込口10aは、クロスフローファン30の回転中心であるファン中心点0よりも高い位置にある。より詳細には、吸込口10aは、ケーシング10の天面(上面)に形成されており、空調室内機92の上方の空間から室内空気を吸い込む。吹出口10bは、ファン中心点Oよりも低い位置にある。より詳細には、吹出口10bは、ケーシング10の底面の正面側部分に形成されており、空調室内機92の前方および下方に空気を吹き出す。   A suction port 10 a that takes in indoor air is formed in the upper portion of the casing 10. At the lower part of the casing 10, an air outlet 10b for sending air after air conditioning into the room is formed. The suction port 10 a is at a position higher than the fan center point 0 that is the rotation center of the cross flow fan 30. More specifically, the suction port 10 a is formed on the top surface (upper surface) of the casing 10 and sucks room air from the space above the air conditioning indoor unit 92. The blower outlet 10b is at a position lower than the fan center point O. In more detail, the blower outlet 10b is formed in the front side part of the bottom face of the casing 10, and blows off air to the front and the lower side of the air conditioning indoor unit 92.

ケーシング10は、図2および図3に示す正面パネル15、スタビライザ17、リアガイダ18、などを含んでいる。スタビライザ17およびリアガイダ18によって、ケーシング10には、クロスフローファン30から吹出口10bに流れるスクロール状の空気の吹出空気流路10cが形成されている。リアガイダ18よりも正面側に配置されているスタビライザ17は、湾曲面からなる舌部71を挟んで、上部72および下部73に分かれている。スタビライザ17は、縦断面図である図3に示すように、上部72の正面側最接近点P7において、クロスフローファン30に最も接近している。リアガイダ18は、その上部がファン中心点Oよりも高い位置にあり、背面側最接近点P8において、クロスフローファン30に最も接近している。正面パネル15は、フィルタ40の正面側に配置されている。   The casing 10 includes a front panel 15, a stabilizer 17, a rear guider 18, and the like shown in FIGS. By means of the stabilizer 17 and the rear guider 18, a scroll-like air blowing air passage 10 c that flows from the cross flow fan 30 to the air outlet 10 b is formed in the casing 10. The stabilizer 17 disposed on the front side of the rear guider 18 is divided into an upper portion 72 and a lower portion 73 with a tongue portion 71 formed of a curved surface interposed therebetween. As shown in FIG. 3, which is a longitudinal sectional view, the stabilizer 17 is closest to the cross flow fan 30 at the front side closest approach point P <b> 7 of the upper portion 72. The upper part of the rear guider 18 is located at a position higher than the fan center point O, and is closest to the cross flow fan 30 at the rear side closest approach point P8. The front panel 15 is disposed on the front side of the filter 40.

(1−2)熱交換器およびフィルタ
熱交換器20は、縦断面視において逆V字の形状を有するフィンアンドチューブ型の熱交換器であり、吸込口10a側からクロスフローファン30側に流れる空気と、チューブを流れる冷媒との間で、熱交換を行わせる。熱交換器20は、多数のアルミ製の伝熱フィンと、それらの伝熱フィンに開けられた多数の孔を貫通する多数のチューブとから構成されている。銅製の伝熱管であるチューブは、その外径が5mmあるいは4mmである。
(1-2) Heat exchanger and filter The heat exchanger 20 is a fin-and-tube heat exchanger having an inverted V shape in a longitudinal sectional view, and flows from the suction port 10a side to the cross flow fan 30 side. Heat exchange is performed between the air and the refrigerant flowing through the tube. The heat exchanger 20 includes a large number of aluminum heat transfer fins and a large number of tubes penetrating a large number of holes formed in the heat transfer fins. The tube which is a copper heat transfer tube has an outer diameter of 5 mm or 4 mm.

また、熱交換器20は、頂部20aよりも正面側に位置する正面側熱交換部21と、頂部20aよりも背面側に位置する背面側熱交換部22とを含む。正面側熱交換部21の下部21aは、後述するファン基準水平線L1よりも下に位置しており、背面側熱交換部22の下部22aは、ファン基準水平線L1よりも上に位置している。   Moreover, the heat exchanger 20 includes a front side heat exchange part 21 located on the front side of the top part 20a and a back side heat exchange part 22 located on the back side of the top part 20a. A lower portion 21a of the front-side heat exchange unit 21 is located below a fan reference horizontal line L1, which will be described later, and a lower part 22a of the back-side heat exchange unit 22 is located above the fan reference horizontal line L1.

クロスフローファン30の空気流れ上流側、具体的には、クロスフローファン30の上方および前方に位置する熱交換器20は、フィルタ40によって覆われている。熱交換器20の空気流れ上流側に配置されるフィルタ40は、熱交換器20の上方および前方に位置し、吸込口10aから熱交換器20へと流れる空気に含まれる塵埃を捕集する。   The heat exchanger 20 located on the upstream side of the cross flow fan 30, specifically, above and in front of the cross flow fan 30, is covered with a filter 40. The filter 40 disposed on the upstream side of the air flow of the heat exchanger 20 is located above and in front of the heat exchanger 20 and collects dust contained in the air flowing from the suction port 10a to the heat exchanger 20.

(1−3)クロスフローファン
クロスフローファン30は、水平方向に長く延びる円筒状のファンロータと、ファンロータを回転させるモータとを備えている。ファンロータは、円周に沿って並ぶ多数のファン翼31を有しており、回転することによって、熱交換器20側から吹出口10b側へと流れる空気流れを生成する。
(1-3) Cross Flow Fan The cross flow fan 30 includes a cylindrical fan rotor that extends long in the horizontal direction and a motor that rotates the fan rotor. The fan rotor has a large number of fan blades 31 arranged along the circumference, and generates an air flow that flows from the heat exchanger 20 side to the outlet 10b side by rotating.

クロスフローファン30が回転すると、室内から吸込口10aおよびフィルタ40を介して熱交換器20へと空気が流れ、熱交換器20を通過した空気が吹出空気流路10cへと流れて吹出口10bから室内に吹き出される。   When the crossflow fan 30 rotates, air flows from the room to the heat exchanger 20 through the suction port 10a and the filter 40, and the air that has passed through the heat exchanger 20 flows to the blown air flow path 10c to blow out the air outlet 10b. Is blown out into the room.

なお、クロスフローファン30のモータの回転数は、図示しない制御装置によって変更される。空調室内機92に内蔵される制御装置は、リモコン等によるユーザーの操作入力に基づいて、モータの回転数を変える。   Note that the rotational speed of the motor of the cross flow fan 30 is changed by a control device (not shown). The control device built in the air conditioning indoor unit 92 changes the number of rotations of the motor based on a user operation input from a remote controller or the like.

(2)正面パネル、フィルタおよび熱交換器の配置の詳細
本発明に係る空調室内機92では、従来の空調室内機にはない、新しい各部品の配置を採用している。以下、正面パネル、フィルタおよび熱交換器の配置について詳しく説明する。
(2) Details of Arrangement of Front Panel, Filter, and Heat Exchanger In the air conditioning indoor unit 92 according to the present invention, new arrangements of respective parts not used in the conventional air conditioning indoor unit are adopted. Hereinafter, the arrangement of the front panel, the filter, and the heat exchanger will be described in detail.

図2に示すように、空調室内機92の縦断面視において、正面側熱交換部21の下部21aおよびフィルタ40の下部40aは、ファン中心点Oよりも下に位置している。言い換えれば、正面側熱交換部21は、ファン中心点Oよりも下に位置する下部21aを含んでおり、フィルタ40は、ファン中心点Oよりも下に位置する下部40aを含んでいる。   As shown in FIG. 2, the lower portion 21 a of the front-side heat exchange unit 21 and the lower portion 40 a of the filter 40 are located below the fan center point O in the longitudinal sectional view of the air conditioning indoor unit 92. In other words, the front-side heat exchanging part 21 includes a lower part 21a located below the fan center point O, and the filter 40 includes a lower part 40a located below the fan center point O.

ここで、以下のように各線L1,SL3,SL5、各角度θc,θeおよび各隙間距離D1,D2,D3を定義する。   Here, the lines L1, SL3, SL5, the angles θc, θe, and the gap distances D1, D2, D3 are defined as follows.

ファン基準水平線L1は、ファン中心点Oを通る水平線。   The fan reference horizontal line L1 is a horizontal line passing through the fan center point O.

第3直線SL3は、正面側熱交換部21の下部21aとファン中心点Oとを通る直線のうち最もファン基準水平線L1と為す角度が大きい直線。   The third straight line SL3 is a straight line having the largest angle with the fan reference horizontal line L1 among straight lines passing through the lower portion 21a of the front-side heat exchange unit 21 and the fan center point O.

熱交換器下部角度θcは、第3直線SL3と、ファン基準水平線L1とが為す角度。   The heat exchanger lower angle θc is an angle formed by the third straight line SL3 and the fan reference horizontal line L1.

第5直線SL5は、フィルタ40の下部40aとファン中心点Oとを通る直線のうち最もファン基準水平線L1と為す角度が大きい直線。   The fifth straight line SL5 is a straight line having the largest angle with the fan reference horizontal line L1 among straight lines passing through the lower portion 40a of the filter 40 and the fan center point O.

フィルタ下部角度θeは、第5直線SL5と、ファン基準水平線L1とが為す角度。   The filter lower angle θe is an angle formed by the fifth straight line SL5 and the fan reference horizontal line L1.

第1距離D1は、ファン中心点Oの高さ位置でのクロスフローファン30と正面側熱交換部21との隙間距離。   The first distance D <b> 1 is a gap distance between the cross flow fan 30 and the front side heat exchange unit 21 at the height position of the fan center point O.

第2距離D2は、ファン中心点Oの高さ位置での正面側熱交換部21とフィルタ40との隙間距離。   The second distance D2 is a gap distance between the front-side heat exchange unit 21 and the filter 40 at the height position of the fan center point O.

第3距離D3は、ファン中心点Oの高さ位置でのフィルタ40と正面パネル15との隙間距離。   The third distance D3 is a gap distance between the filter 40 and the front panel 15 at the height position of the fan center point O.

以上のように定義された各線L1,SL3,SL5、各角度θc,θeおよび各隙間距離D1,D2,D3が、以下の第1式、第2式および第3式を満たすように、空調室内機92ではクロスフローファン30、熱交換器20、フィルタ40および正面パネル15が配置されている。   The air-conditioned room so that the lines L1, SL3, SL5, the angles θc, θe and the gap distances D1, D2, D3 defined as described above satisfy the following first, second, and third expressions: In the machine 92, the cross flow fan 30, the heat exchanger 20, the filter 40, and the front panel 15 are disposed.

第1式:θe>(θc×0.4)
第2式:D3>D2>D1
第3式:D1>(0.3×R)
なお、クロスフローファン30のファンロータの半径であるファン半径Rは、縦断面視において、ファン中心点Oから、多数のファン翼31の外端を結んだ仮想円(図2の点線で示す円30aを参照)までの距離である。
First formula: θe> (θc × 0.4)
Second formula: D3>D2> D1
Third formula: D1> (0.3 × R)
Note that the fan radius R, which is the radius of the fan rotor of the cross flow fan 30, is a virtual circle (a circle indicated by a dotted line in FIG. 2) connecting the outer ends of a large number of fan blades 31 from the fan center point O in a longitudinal sectional view. 30a)).

これらの式を満たすことによって、空調室内機92の奥行き寸法を抑えつつ正面側熱交換部21の下部21aにも十分な空気が通るようになるが、空調室内機92では、それらを満たす以下の数値を採用している。   Satisfying these equations allows sufficient air to pass through the lower portion 21a of the front-side heat exchange unit 21 while suppressing the depth dimension of the air-conditioning indoor unit 92. The numerical value is adopted.

熱交換器下部角度θc=52°
フィルタ下部角度θe=23°>(θc×0.4)
ファン半径R=52mm
第1距離D1=16mm>(0.3×R)
第2距離D2=22mm>D1
第3距離D3=27mm>D2
また、空調室内機92では、縦断面視において、ファン中心点Oの高さ位置での、ファン中心点Oと正面パネル15との距離である第4距離D4を、ファン半径Rの3倍未満に抑えている。すなわち、第4距離D4とファン半径Rとは、以下の第4式を満たしている。
Heat exchanger lower angle θc = 52 °
Filter lower angle θe = 23 °> (θc × 0.4)
Fan radius R = 52mm
First distance D1 = 16 mm> (0.3 × R)
Second distance D2 = 22 mm> D1
Third distance D3 = 27 mm> D2
Further, in the air conditioning indoor unit 92, the fourth distance D4 that is the distance between the fan center point O and the front panel 15 at the height position of the fan center point O in the longitudinal sectional view is less than three times the fan radius R. It is suppressed to. That is, the fourth distance D4 and the fan radius R satisfy the following fourth expression.

第4式:D4<(3×R)
具体的には、第4距離D4が143mmになるように、クロスフローファン30に対して正面パネル15が相対的に配置されている。この第4距離D4を小さく抑えて空調室内機92の奥行き寸法が大きくなり過ぎないようにしているが、上述の第1式〜第3式を満たすようにクロスフローファン30、熱交換器20、フィルタ40および正面パネル15を配置することによって、天面に形成されている吸込口10aから吸い込まれた空気が正面側熱交換部21の下部21aへと十分な量だけ送られるようになっている。
Fourth formula: D4 <(3 × R)
Specifically, the front panel 15 is disposed relative to the cross flow fan 30 so that the fourth distance D4 is 143 mm. Although the fourth distance D4 is kept small so that the depth dimension of the air conditioning indoor unit 92 does not become too large, the cross flow fan 30, the heat exchanger 20, By disposing the filter 40 and the front panel 15, a sufficient amount of air sucked from the suction port 10 a formed on the top surface is sent to the lower portion 21 a of the front-side heat exchange unit 21. .

(3)スタビライザおよびリアガイダの配置の詳細
次に、従来の空調室内機にはなかったスタビライザ17およびリアガイダ18の新しい配置について詳しく説明を行う。
(3) Details of Arrangement of Stabilizer and Rear Guider Next, a new arrangement of the stabilizer 17 and the rear guider 18 that was not included in the conventional air conditioning indoor unit will be described in detail.

図3に示すように、空調室内機92の縦断面視において、以下のように各線L2,SL1,SL2,SL4および各角度θ0,θa,θb,θc,θdを定義する。ファン基準水平線L1および第3直線SL3については、上述のとおりである。   As shown in FIG. 3, in the longitudinal sectional view of the air conditioning indoor unit 92, the lines L2, SL1, SL2, and SL4 and the angles θ0, θa, θb, θc, and θd are defined as follows. The fan reference horizontal line L1 and the third straight line SL3 are as described above.

スクロール基準線L2は、クロスフローファン30の複数のファン翼31の外端を結んだ円30aの接線であって且つスタビライザ17の下部73に接する直線のうち、最もファン基準水平線L1と為す角度が小さい直線。ここでは、吹出口10b近傍の吹出空気流路10cの上壁となるスタビライザ17の下部73が平面であり、その平面から背面側に延長された直線が縦断面視において円30aに接するため、その直線がスクロール基準線L2である。   The scroll reference line L2 is the tangent of a circle 30a connecting the outer ends of the plurality of fan blades 31 of the crossflow fan 30 and the angle formed with the fan reference horizontal line L1 is the most straight line in contact with the lower portion 73 of the stabilizer 17. A small straight line. Here, since the lower part 73 of the stabilizer 17 which becomes the upper wall of the blowout air flow path 10c near the blower outlet 10b is a plane, and the straight line extended from the plane to the back side contacts the circle 30a in the longitudinal sectional view, The straight line is the scroll reference line L2.

基準角度θ0は、ファン基準水平線L1とスクロール基準線L2とが為す角度。   The reference angle θ0 is an angle formed by the fan reference horizontal line L1 and the scroll reference line L2.

第1直線SL1は、スタビライザ17の上部72のうち最もクロスフローファン30に接近している点である正面側最接近点P7と、ファン中心点Oとを結ぶ直線。   The first straight line SL <b> 1 is a straight line connecting the front-side closest approach point P <b> 7 that is the point closest to the cross flow fan 30 in the upper portion 72 of the stabilizer 17 and the fan center point O.

第1角度θaは、第1直線SL1と、ファン基準水平線L1とが為す角度。   The first angle θa is an angle formed by the first straight line SL1 and the fan reference horizontal line L1.

第2直線SL2は、リアガイダ18のうち最もクロスフローファン30に接近している点である背面側最接近点P8と、ファン中心点Oとを結ぶ直線。   The second straight line SL <b> 2 is a straight line connecting the rear-side closest approach point P <b> 8 that is the point closest to the cross flow fan 30 in the rear guider 18 and the fan center point O.

第2角度θbは、第2直線SL2と、ファン基準水平線L1とが為す角度。   The second angle θb is an angle formed by the second straight line SL2 and the fan reference horizontal line L1.

第3角度θcは、上述の熱交換器下部角度θcであり、第3直線SL3と、ファン基準水平線L1とが為す角度。   The third angle θc is the above-described heat exchanger lower angle θc, and is an angle formed by the third straight line SL3 and the fan reference horizontal line L1.

第4直線SL4は、背面側熱交換部22の下部22aとファン中心点Oとを通る直線のうち最もファン基準水平線L1と為す角度が小さい直線。   The fourth straight line SL4 is a straight line having the smallest angle formed with the fan reference horizontal line L1 among straight lines passing through the lower portion 22a of the back side heat exchange unit 22 and the fan center point O.

第4角度θdは、第4直線SL4と、ファン基準水平線L1とが為す角度。   The fourth angle θd is an angle formed by the fourth straight line SL4 and the fan reference horizontal line L1.

以上のように定義された各線L2,SL1,SL2,SL4および各角度θ0,θa,θb,θc,θdが、以下の第1角度関係式〜第5角度関係式を全て満たすように、空調室内機92ではスタビライザ17、リアガイダ18、熱交換器20およびクロスフローファン30が配置されている。   Each line L2, SL1, SL2, SL4 and each angle θ0, θa, θb, θc, θd defined as described above satisfy all the following first to fifth angle relational expressions. In the machine 92, the stabilizer 17, the rear guider 18, the heat exchanger 20, and the crossflow fan 30 are arranged.

第1角度関係式:(θa−θ0)>16°
第2角度関係式:17°<(θb−θ0)<26°
第3角度関係式:θb≧θa
第4角度関係式:θc>θa
第5角度関係式:θd<θb
これらの式を満たすことによって、後述のようにサージング耐力が向上し、ファン動力の増大が抑制されているが、空調室内機92では、それらを満たす以下の数値を採用している。
First angle relational expression: (θa−θ0)> 16 °
Second angle relational expression: 17 ° <(θb−θ0) <26 °
Third angle relational expression: θb ≧ θa
Fourth angle relational expression: θc> θa
Fifth angle relational expression: θd <θb
By satisfying these equations, the surging proof strength is improved as will be described later, and the increase in fan power is suppressed, but the air conditioning indoor unit 92 adopts the following numerical values that satisfy them.

基準角度θ0=28°
第1角度θa=48°
第2角度θb=51°
第3角度θc=52°
第4角度θd=31°
(4)特徴
(4−1)
本実施形態に係る空調室内機92では、上述の第1角度関係式、第2角度関係式および第3角度関係式のいずれかを満足させるのではなく、第1角度関係式、第2角度関係式および第3角度関係式を全て満足するようにスタビライザ17、リアガイダ18およびクロスフローファン30を配置している。
Reference angle θ0 = 28 °
First angle θa = 48 °
Second angle θb = 51 °
Third angle θc = 52 °
Fourth angle θd = 31 °
(4) Features (4-1)
In the air conditioning indoor unit 92 according to the present embodiment, the first angle relational expression, the second angle relational expression is not satisfied, but the first angle relational expression, the second angle relational expression, and the third angle relational expression are not satisfied. The stabilizer 17, the rear guider 18, and the cross flow fan 30 are arranged so as to satisfy both the equation and the third angle relational equation.

この配置を採っているため、スタビライザ17の正面側最接近点P7の高さ位置が低く抑えられ、正面側熱交換部21の下部21aからクロスフローファン30へと流れる空気の流れが阻害されることが少なくなっている。すなわち、正面側熱交換部21の下部21aからクロスフローファン30へと、低損失の空気の流れを生じさせている。図4に、第1角度関係式の基になっているデータを示す。図4のグラフにおいて、横軸は、角度差(θa−θ0)であり、縦軸は、クロスフローファン30のモータに係る負荷であるファン動力の、ある所定の基準値に対する比である効率改善量である。試験の結果、角度差(θa−θ0)が16°未満の場合には効率改善量が小さく、16°を超えると効率改善量が大きくなっている。角度差(θa−θ0)が17°、20°、24°、28°いずれの場合も、効率改善量が大きく、ファン動力の増大が抑制されることになる。   Since this arrangement is adopted, the height position of the front-side closest point P7 of the stabilizer 17 is kept low, and the flow of air flowing from the lower portion 21a of the front-side heat exchange unit 21 to the cross flow fan 30 is hindered. Things are getting smaller. That is, a low-loss air flow is generated from the lower portion 21 a of the front heat exchange unit 21 to the cross flow fan 30. FIG. 4 shows data on which the first angle relational expression is based. In the graph of FIG. 4, the horizontal axis is the angle difference (θa−θ0), and the vertical axis is the efficiency improvement that is the ratio of the fan power that is the load related to the motor of the crossflow fan 30 to a predetermined reference value. Amount. As a result of the test, when the angle difference (θa−θ0) is less than 16 °, the efficiency improvement amount is small, and when it exceeds 16 °, the efficiency improvement amount is large. When the angle difference (θa−θ0) is 17 °, 20 °, 24 °, or 28 °, the efficiency improvement amount is large, and the increase in fan power is suppressed.

また、この空調室内機92で採った配置によって、いわゆるファン吸い込み角度(第1直線SL1と第2直線SL2とが為す吸込口10a側の角度)を、180°以内の範囲で大きくすることができている。ここでは、ファン吸い込み角度が、
180°−θb+θa=177°
であり、クロスフローファン30から吹出口10bに向かう空気の流れが吸込口10aの側に逆流することが抑えられている。すなわち、空調室内機92では、サージング耐力が向上している。なお、従来の空調室内機は、ファン吸い込み角度が170°程度になっているものが多い。
Further, the arrangement adopted by the air conditioning indoor unit 92 can increase the so-called fan suction angle (the angle on the suction port 10a side formed by the first straight line SL1 and the second straight line SL2) within a range of 180 ° or less. ing. Here, the fan suction angle is
180 ° −θb + θa = 177 °
Thus, the flow of air from the cross flow fan 30 toward the air outlet 10b is prevented from flowing backward to the inlet 10a. That is, the surging strength is improved in the air conditioning indoor unit 92. Many conventional air-conditioning indoor units have a fan suction angle of about 170 °.

さらに、空調室内機92では、リアガイダ18の背面側最接近点P8の高さ位置を適切な範囲に収めることで、リアガイダ18を低くしすぎることに起因するファン動力の増大が抑制され、省エネ性が向上している。すなわち、リアガイダ18の背面側最接近点P8の高さ位置を低くしすぎると、スクロール状の空気の吹出空気流路10cが短くなり、また背面側最接近点P8のクロスフローファン30側に生じる循環渦の保持力が弱くなって、スクロール状の吹出空気流路10cの表面における乱流が増大しファン動力が大きくなってしまうが、上述のリアガイダ18およびクロスフローファン30の配置によれば、そのようなファン動力の増大が抑制される。図5に、第2角度関係式の基になっているデータを示す。図5のグラフにおいて、横軸は、角度差(θb−θ0)であり、縦軸は、図4と同じ効率改善量である。試験の結果、角度差(θb−θ0)が17°未満あるいは26°を超える場合には効率改善量が小さく、17°〜26°の範囲にある場合には効率改善量が大きくなっている。角度差(θb−θ0)が18°、22°、25°いずれの場合も、効率改善量が大きく、ファン動力の増大が抑制されることになる。   Further, in the air conditioner indoor unit 92, by keeping the height position of the rear closest approach point P8 of the rear guider 18 within an appropriate range, an increase in fan power caused by making the rear guider 18 too low is suppressed, and energy saving is achieved. Has improved. That is, if the height position of the rear side closest approach point P8 of the rear guider 18 is set too low, the scroll-like air blowing air flow path 10c is shortened, and is generated on the cross flow fan 30 side of the rear side closest approach point P8. Although the holding power of the circulating vortex is weakened, the turbulent flow on the surface of the scroll-like blown air flow path 10c is increased and the fan power is increased, but according to the arrangement of the rear guider 18 and the cross flow fan 30 described above, Such an increase in fan power is suppressed. FIG. 5 shows data on which the second angle relational expression is based. In the graph of FIG. 5, the horizontal axis is the angle difference (θb−θ0), and the vertical axis is the same efficiency improvement amount as in FIG. As a result of the test, the efficiency improvement amount is small when the angle difference (θb−θ0) is less than 17 ° or exceeds 26 °, and the efficiency improvement amount is large when it is in the range of 17 ° to 26 °. When the angle difference (θb−θ0) is 18 °, 22 °, or 25 °, the efficiency improvement amount is large, and the increase in fan power is suppressed.

以上のように、本実施形態に係る空調室内機92では、第1角度関係式、第2角度関係式および第3角度関係式を全て満足するようにスタビライザ17、リアガイダ18およびクロスフローファン30を配置することによって、サージング耐力の向上と、ファン動力の増大の抑制とを両立させている。   As described above, in the air conditioning indoor unit 92 according to the present embodiment, the stabilizer 17, the rear guider 18, and the cross flow fan 30 are set so as to satisfy all of the first angle relational expression, the second angle relational expression, and the third angle relational expression. By arranging, the surging proof stress is improved and the increase in fan power is suppressed.

(4−2)
空調室内機92では、第4角度関係式が満たされるように正面側熱交換部21の下部21aが低い位置に配置され、第5角度関係式が満たされるように背面側熱交換部22の下部22aが低い位置に配置されているため、熱交換器20の容量が大きくなっている。特に、第3角度θcを45°以上にして、空調室内機92では正面側熱交換部21の下部21aを下方に延ばした構造を採っているため、従来よりも大きな熱交換器20の容量が確保されている。このような大きな熱交換器20を搭載していると、熱交換器を通る空気の流れの分布に部分的な偏りが生じて空気の流れが阻害されてファン動力が大きくなりがちであるが、空調室内機92では、上述のように第1角度関係式、第2角度関係式および第3角度関係式を全て満足する部品配置を採っているため、熱交換器20の下部21a,22aからクロスフローファン30へと流れる空気の流れが阻害され難く、各熱交換部21,22の下部21a,22aにも多くの空気が流れる。すなわち、空調室内機92の省エネ性が向上している。
(4-2)
In the air conditioning indoor unit 92, the lower portion 21a of the front-side heat exchange unit 21 is disposed at a low position so that the fourth angle relational expression is satisfied, and the lower part of the rear-side heat exchange unit 22 is satisfied so that the fifth angle relational expression is satisfied. Since 22a is arrange | positioned in the low position, the capacity | capacitance of the heat exchanger 20 is large. In particular, since the third angle θc is set to 45 ° or more and the air conditioning indoor unit 92 adopts a structure in which the lower portion 21a of the front side heat exchanging portion 21 is extended downward, the capacity of the heat exchanger 20 larger than the conventional one is increased. It is secured. When such a large heat exchanger 20 is mounted, a partial bias occurs in the distribution of air flow through the heat exchanger, and the air flow is obstructed and the fan power tends to increase. Since the air conditioner indoor unit 92 adopts a component arrangement that satisfies all of the first angle relational expression, the second angle relational expression, and the third angle relational expression as described above, the air conditioner indoor unit 92 is crossed from the lower portions 21a and 22a of the heat exchanger 20. The flow of air flowing to the flow fan 30 is not easily obstructed, and a large amount of air also flows through the lower portions 21a and 22a of the heat exchange units 21 and 22. That is, the energy saving performance of the air conditioning indoor unit 92 is improved.

(4−3)
空調室内機92では、ファン中心点Oよりも高い位置にあるケーシング10の天面に形成された吸込口10aから室内の空気を吸い込む構造を採り、且つ、正面側熱交換部21の下部21aもフィルタ40の下部40aも、ファン中心点Oよりも下に位置する構造を採っている。このため、従来の設計のやり方を踏襲した場合には、正面側熱交換部21の下部21aを通過する空気の量が少なくなり、熱交換器20の全体を有効に活用することができなくなる。
(4-3)
The air conditioning indoor unit 92 employs a structure for sucking indoor air from a suction port 10a formed on the top surface of the casing 10 located higher than the fan center point O, and a lower portion 21a of the front side heat exchange unit 21 is also used. The lower part 40a of the filter 40 also has a structure located below the fan center point O. For this reason, when the conventional design method is followed, the amount of air passing through the lower portion 21a of the front-side heat exchange unit 21 is reduced, and the entire heat exchanger 20 cannot be effectively used.

そこで、空調室内機92では、まず上述の第1式を満たすようにフィルタ40の下部40aを従来よりも低い位置まで下方に延ばし、そのフィルタ40の下部40aを通って空気が正面側熱交換部21の下部21aに向かう流路を確保している。   Therefore, in the air conditioning indoor unit 92, first, the lower portion 40a of the filter 40 is extended downward to a position lower than the conventional one so as to satisfy the above-described first formula, and the air passes through the lower portion 40a of the filter 40 and the front side heat exchange unit. The flow path toward the lower part 21a of 21 is secured.

さらに、空調室内機92では、3つの隙間距離D1,D2,D3が上述の第2式を満たすようにクロスフローファン30、熱交換器20、フィルタ40および正面パネル15を配置して、空調室内機92の奥行き寸法を抑えつつ、フィルタ40と正面パネル15との隙間(隙間距離が第3距離D3)を通って吸込口10aからフィルタ40の下部40aおよび正面側熱交換部21の下部21aへと流れていく空気流路の圧力損失を小さくしている。これにより、正面側熱交換部21の下部21aを通過する空気の量が十分に確保されるようになっており、熱交換器20の全体が有効に活用される構造が実現されている。   Further, in the air conditioning indoor unit 92, the cross flow fan 30, the heat exchanger 20, the filter 40, and the front panel 15 are arranged so that the three gap distances D1, D2, and D3 satisfy the above-mentioned second formula, While suppressing the depth dimension of the machine 92, it passes from the suction port 10a to the lower part 40a of the filter 40 and the lower part 21a of the front side heat exchange part 21 through the gap (gap distance is the third distance D3) between the filter 40 and the front panel 15. The pressure loss of the flowing air flow path is reduced. Thereby, the quantity of the air which passes the lower part 21a of the front side heat exchange part 21 is fully ensured, and the structure where the whole heat exchanger 20 is utilized effectively is implement | achieved.

以上のような配置を採ることによって、空調室内機92では、熱交換器20とクロスフローファン30との隙間距離(第1距離D1)を小さくし過ぎずに正面側熱交換部21の下部21aへの空気流路の幅を拡げ、摩擦抵抗(圧力損失)を抑えることができている。また、第1距離D1よりも第2距離D2を大きくし、第2距離D2よりも第3距離D3を大きくして、クロスフローファン30から離れた流路ほど広い幅が確保されるため、図2に示すように、吸込口10aから正面側熱交換部21の下部21aまでの途中で幅が狭くなる空間が無くなっており、従来の構造に比べて流体摩擦抵抗が大きく低減されている。   By adopting the arrangement as described above, in the air conditioning indoor unit 92, the gap distance (first distance D1) between the heat exchanger 20 and the cross flow fan 30 is not reduced too much, and the lower portion 21a of the front side heat exchange unit 21 is set. The width of the air flow path to can be expanded, and the frictional resistance (pressure loss) can be suppressed. In addition, since the second distance D2 is made larger than the first distance D1, the third distance D3 is made larger than the second distance D2, and a wider width is ensured in the flow path away from the cross flow fan 30, As shown in FIG. 2, there is no space in which the width becomes narrow in the middle from the suction port 10a to the lower portion 21a of the front side heat exchange section 21, and the fluid friction resistance is greatly reduced as compared with the conventional structure.

(4−4)
空調室内機92では、奥行き寸法(図2の左右方向の寸法)を抑えるべく第2式を満たすような各部品の配置を採用しているが、第1距離D1を小さくし過ぎると、正面側熱交換部21とクロスフローファン30との距離が近づきすぎて、空気が正面側熱交換部21を通過するときに騒音が生じる恐れがある。特に、フィンアンドチューブ式の熱交換器20を採用し、且つ、そのチューブの外径が小さい(5mmあるいは4mm)空調室内機92では、カルマン渦に代表される流れの周期的速度変動の中でもより高い周波数の乱れの強い変動が生じ、ファン翼31の周期的圧力変動との相互作用によって高周波数での離散周波数騒音が生じる恐れが高い。
(4-4)
In the air conditioning indoor unit 92, the arrangement of each component that satisfies the second formula is adopted in order to suppress the depth dimension (the dimension in the left-right direction in FIG. 2). When the distance between the heat exchange unit 21 and the cross flow fan 30 becomes too close, noise may occur when the air passes through the front heat exchange unit 21. In particular, the air-conditioning indoor unit 92 that employs the fin-and-tube heat exchanger 20 and has a small outer diameter of the tube (5 mm or 4 mm) is more susceptible to periodic flow fluctuations represented by Karman vortices. There is a high possibility that high-frequency turbulent fluctuations occur, and discrete frequency noise at high frequencies is caused by interaction with periodic pressure fluctuations of the fan blades 31.

この騒音を小さく抑えるため、空調室内機92では、上述の第3式を満たすような各部品の配置を採っている。すなわち、ファン中心点Oの高さ位置でのクロスフローファン30と正面側熱交換部21との隙間距離である第1距離D1を、ファン半径Rの30%を超える大きさにすることで、騒音を許容範囲に収めている。この空調室内機92の第1距離D1の大きさを確保すれば、熱交換器20を通った後の空気流れを周期性の無い広帯域乱流構造へ変化させてからファン翼31と衝突させることができ、ファン翼31との相互作用による周期性騒音を低減することができる。   In order to suppress this noise, the air conditioner indoor unit 92 employs an arrangement of components that satisfies the above-described third formula. That is, by setting the first distance D1, which is the gap distance between the cross flow fan 30 and the front heat exchange portion 21 at the height position of the fan center point O, to a size exceeding 30% of the fan radius R, Noise is within an acceptable range. If the size of the first distance D1 of the air conditioning indoor unit 92 is secured, the air flow after passing through the heat exchanger 20 is changed to a broadband turbulent structure having no periodicity and then collided with the fan blade 31. The periodic noise due to the interaction with the fan blade 31 can be reduced.

(4−5)
空調室内機92では、上述の第4式を満たすように正面パネル15が配置されており、ファン中心点Oから正面パネル15までの距離(第4距離D4)が比較的小さくなっている。これにより、奥行き寸法を抑えた薄型の空調室内機92が実現されているが、同時に第1式〜第3式も満たす構造を採っているため、薄型であっても、熱交換器20全体を有効に活用することができている。
(4-5)
In the air conditioning indoor unit 92, the front panel 15 is disposed so as to satisfy the above-described fourth formula, and the distance from the fan center point O to the front panel 15 (fourth distance D4) is relatively small. Thereby, although the thin air-conditioning indoor unit 92 which suppressed the depth dimension is implement | achieved, since it has adopted the structure which satisfy | fills 1st type-3rd type | formula simultaneously, even if it is thin, the heat exchanger 20 whole is comprised. It can be used effectively.

10 ケーシング
10b 吹出口
10c 吹出空気流路
17 スタビライザ
18 リアガイダ
20 熱交換器
21 正面側熱交換部
21a 正面側熱交換部の下部
22 背面側熱交換部
22a 背面側熱交換部の下部
30 クロスフローファン
30a 翼の外端を結んだ円
31 ファン翼(翼)
71 スタビライザの舌部
72 スタビライザの上部
73 スタビライザの下部
92 空調室内機
L1 ファン基準水平線
L2 スクロール基準線
O ファン中心点
P7 スタビライザの正面側最接近点
P8 リアガイダの背面側最接近点
θ0 基準角度
θa 第1角度
θb 第2角度
θc 第3角度
θd 第4角度
SL1 第1直線
SL2 第2直線
SL3 第3直線
SL4 第4直線
DESCRIPTION OF SYMBOLS 10 Casing 10b Outlet 10c Outlet air flow path 17 Stabilizer 18 Rear guider 20 Heat exchanger 21 Front side heat exchange part 21a Lower part of front side heat exchange part 22 Rear side heat exchange part 22a Lower part of rear side heat exchange part 30 Crossflow fan 30a Circle connecting the outer ends of the wings 31 Fan wings (wings)
71 Stabilizer tongue 72 Stabilizer upper part 73 Stabilizer lower part 92 Air conditioning indoor unit L1 Fan reference horizontal line L2 Scroll reference line O Fan center point P7 Stabilizer front side closest point P8 Rear guider rear side closest point θ0 Reference angle θa No. 1 angle θb 2nd angle θc 3rd angle θd 4th angle SL1 1st straight line SL2 2nd straight line SL3 3rd straight line SL4 4th straight line

特開2008−8500号公報JP 2008-8500 A

Claims (2)

壁掛け式の空調室内機(92)であって、
円周に沿って複数の翼(31)が並び、空気流れを生成するクロスフローファン(30)と、
正面側のスタビライザ(17)と背面側のリアガイダ(18)とを含み、前記スタビライザが舌部(71)を挟んで上部(72)および下部(73)に分かれており、前記スタビライザおよび前記リアガイダによって、前記クロスフローファンから吹出口(10b)に流れるスクロール状の空気の吹出空気流路(10c)を形成する、ケーシング(10)と、
正面側熱交換部(21)と背面側熱交換部(22)とを含み、前記クロスフローファンの空気流れ上流側に配置される、熱交換器(20)と、
を備え、
縦断面視において、
前記クロスフローファンの回転中心であるファン中心点(O)を通る水平線を、ファン基準水平線(L1)とし、
前記クロスフローファンの複数の前記翼の外端を結んだ円(30a)の接線であって且つ前記スタビライザの前記下部に接する直線のうち、最も前記ファン基準水平線と為す角度が小さい直線を、スクロール基準線(L2)とし、
前記ファン基準水平線と前記スクロール基準線とが為す角度を、基準角度θ0とし、
前記スタビライザの前記上部のうち最も前記クロスフローファンに接近している点である正面側最接近点(P7)と前記ファン中心点とを結ぶ直線である第1直線(SL1)と、前記ファン基準水平線(L1)とが為す角度を、第1角度θaとし、
前記リアガイダのうち最も前記クロスフローファンに接近している点である背面側最接近点(P8)と前記ファン中心点とを結ぶ直線である第2直線(SL2)と、前記ファン基準水平線(L1)とが為す角度を、第2角度θbとしたときに、
第1角度関係式:(θa−θ0)>16°
第2角度関係式:17°<(θb−θ0)<26°
および
第3角度関係式:θb≧θa
を満たすように、
前記スタビライザ、前記リアガイダおよび前記クロスフローファンが配置されている、
空調室内機。
A wall-mounted air conditioning indoor unit (92),
A plurality of blades (31) are arranged along the circumference, and a cross flow fan (30) that generates an air flow;
A front-side stabilizer (17) and a rear-side rear guider (18), and the stabilizer is divided into an upper part (72) and a lower part (73) with a tongue part (71) in between, and the stabilizer and the rear guider A casing (10) that forms an air flow passage (10c) for scroll-like air flowing from the cross flow fan to the air outlet (10b);
A heat exchanger (20) including a front side heat exchange part (21) and a back side heat exchange part (22), disposed on the upstream side of the air flow of the cross flow fan;
With
In longitudinal section view,
A horizontal line passing through the fan center point (O) that is the rotation center of the cross flow fan is defined as a fan reference horizontal line (L1),
Among the straight lines that are tangent to a circle (30a) connecting the outer ends of the blades of the crossflow fan and are in contact with the lower portion of the stabilizer, the straight line having the smallest angle with the fan reference horizontal line is scrolled. The reference line (L2)
An angle formed by the fan reference horizontal line and the scroll reference line is a reference angle θ0,
A first straight line (SL1) that is a straight line connecting the front closest point (P7) that is the point closest to the cross flow fan among the upper part of the stabilizer and the fan center point, and the fan reference The angle formed by the horizontal line (L1) is the first angle θa,
A second straight line (SL2) that is a straight line connecting the rear side closest approach point (P8) that is the point closest to the cross flow fan in the rear guider and the fan center point, and the fan reference horizontal line (L1). ) Is the second angle θb,
First angle relational expression: (θa−θ0)> 16 °
Second angle relational expression: 17 ° <(θb−θ0) <26 °
And the third angle relational expression: θb ≧ θa
To meet
The stabilizer, the rear guider and the cross flow fan are arranged,
Air conditioning indoor unit.
縦断面視において、
前記正面側熱交換部の下部(21a)は、前記ファン基準水平線(L1)よりも下に位置し、
前記背面側熱交換部の下部(22a)は、前記ファン基準水平線(L1)よりも上に位置し、
前記正面側熱交換部の下部と前記ファン中心点とを通る直線のうち最も前記ファン基準水平線(L1)と為す角度が大きい直線を、第3直線(SL3)とし、
前記第3直線と前記ファン基準水平線とが為す角度を、第3角度θcとし、
前記背面側熱交換部の下部と前記ファン中心点とを通る直線のうち最も前記ファン基準水平線と為す角度が小さい直線を、第4直線(SL4)とし、
前記第4直線と前記ファン基準水平線とが為す角度を、第4角度θdとしたときに、
第4角度関係式:θc>θa
および
第5角度関係式:θd<θb
を満たすように、
前記スタビライザ、前記リアガイダ、前記熱交換器および前記クロスフローファンが配置されている、
請求項1に記載の空調室内機。
In longitudinal section view,
The lower part (21a) of the front side heat exchange part is located below the fan reference horizontal line (L1),
The lower part (22a) of the back side heat exchange part is located above the fan reference horizontal line (L1),
Of the straight lines passing through the lower part of the front side heat exchange section and the fan center point, the straight line having the largest angle with the fan reference horizontal line (L1) is defined as a third straight line (SL3),
An angle formed by the third straight line and the fan reference horizontal line is a third angle θc,
Of the straight lines passing through the lower part of the back side heat exchange part and the fan center point, a straight line having the smallest angle with the fan reference horizontal line is defined as a fourth straight line (SL4),
When the angle formed by the fourth straight line and the fan reference horizontal line is a fourth angle θd,
Fourth angle relational expression: θc> θa
And the fifth angle relational expression: θd <θb
To meet
The stabilizer, the rear guider, the heat exchanger and the cross flow fan are arranged,
The air conditioning indoor unit according to claim 1.
JP2013272121A 2013-12-27 2013-12-27 Air conditioning indoor unit Active JP5862655B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2013272121A JP5862655B2 (en) 2013-12-27 2013-12-27 Air conditioning indoor unit
AU2014371321A AU2014371321B2 (en) 2013-12-27 2014-12-17 Air-conditioning indoor machine
CN201480070842.2A CN105849467B (en) 2013-12-27 2014-12-17 Indoor apparatus of air conditioner
ES14874416.2T ES2667960T3 (en) 2013-12-27 2014-12-17 Indoor air conditioning
PCT/JP2014/083440 WO2015098657A1 (en) 2013-12-27 2014-12-17 Indoor air conditioner
MYPI2016702107A MY164382A (en) 2013-12-27 2014-12-17 Air-conditioning indoor machine
US15/107,436 US20170003038A1 (en) 2013-12-27 2014-12-17 Air-conditioning indoor machine
BR112016014857-6A BR112016014857B1 (en) 2013-12-27 2014-12-17 INTERNAL AIR CONDITIONING
EP14874416.2A EP3088806B1 (en) 2013-12-27 2014-12-17 Indoor air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013272121A JP5862655B2 (en) 2013-12-27 2013-12-27 Air conditioning indoor unit

Publications (2)

Publication Number Publication Date
JP2015124985A JP2015124985A (en) 2015-07-06
JP5862655B2 true JP5862655B2 (en) 2016-02-16

Family

ID=53478521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013272121A Active JP5862655B2 (en) 2013-12-27 2013-12-27 Air conditioning indoor unit

Country Status (9)

Country Link
US (1) US20170003038A1 (en)
EP (1) EP3088806B1 (en)
JP (1) JP5862655B2 (en)
CN (1) CN105849467B (en)
AU (1) AU2014371321B2 (en)
BR (1) BR112016014857B1 (en)
ES (1) ES2667960T3 (en)
MY (1) MY164382A (en)
WO (1) WO2015098657A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490066B (en) * 2017-08-25 2023-05-23 武汉凌达压缩机有限公司 Indoor unit and air conditioning system
WO2019230988A1 (en) * 2018-06-01 2019-12-05 ダイキン工業株式会社 Blowing device
US11624514B2 (en) * 2019-02-03 2023-04-11 Gd Midea Air-Conditioning Equipment Co., Ltd. Window air conditioner with water receiving pan and filter screen support
JP7244773B2 (en) * 2021-01-22 2023-03-23 ダイキン工業株式会社 Wall-mounted air conditioning indoor units and air conditioners

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3649567B2 (en) * 1998-01-12 2005-05-18 三菱電機株式会社 Once-through fan
JP3497073B2 (en) * 1998-01-19 2004-02-16 三菱電機株式会社 Once-through blower
JP2001280288A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Impeller structure of multiblade blower
CN1196894C (en) * 2000-09-29 2005-04-13 三菱电机株式会社 Air conditioner
JP2002276585A (en) * 2001-03-23 2002-09-25 Mitsubishi Heavy Ind Ltd Indoor unit and air conditioner
JP3564414B2 (en) * 2001-03-23 2004-09-08 三菱重工業株式会社 Indoor unit and air conditioner
CN1282853C (en) * 2001-03-23 2006-11-01 三菱重工业株式会社 Indoor unit and air conditioner
JP4214994B2 (en) * 2004-12-24 2009-01-28 三菱電機株式会社 Air conditioner
JP2008008500A (en) 2006-06-27 2008-01-17 Matsushita Electric Ind Co Ltd Air conditioner

Also Published As

Publication number Publication date
JP2015124985A (en) 2015-07-06
EP3088806A1 (en) 2016-11-02
AU2014371321B2 (en) 2016-08-04
US20170003038A1 (en) 2017-01-05
CN105849467A (en) 2016-08-10
EP3088806A4 (en) 2017-03-01
BR112016014857A2 (en) 2017-08-08
EP3088806B1 (en) 2018-04-18
BR112016014857B1 (en) 2022-05-03
MY164382A (en) 2017-12-15
CN105849467B (en) 2017-12-01
ES2667960T3 (en) 2018-05-16
WO2015098657A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP5178816B2 (en) Air conditioner
JP5143317B1 (en) Air conditioner indoor unit
JP2008240612A (en) Sirocco fan and air conditioner
JP5862655B2 (en) Air conditioning indoor unit
JP5744209B2 (en) Air conditioner
JP2015124986A (en) Air-conditioner indoor unit
JP5933759B2 (en) Propeller fan, blower, outdoor unit
KR101347932B1 (en) Cross­flow fan, molding die, and fluid feeder
JP5837235B2 (en) Air conditioner outdoor unit
JP2018059506A (en) Cross flow type blower and indoor unit of air conditioning device including the same
JP2013164219A (en) Indoor unit
JP2012073024A (en) Indoor unit of air conditioner
JP5320435B2 (en) Cross-flow fan, molding die and fluid feeder
JP2009281215A (en) Air conditioner indoor unit
JP4794498B2 (en) Refrigeration air conditioner
JPWO2014054132A1 (en) Propeller fan, blower, and outdoor unit
JP5774206B2 (en) Air conditioner indoor unit
JP2018084154A (en) Cross-flow type blower and indoor unit for air conditioning device including the same
JP2015214912A (en) Axial flow fan and air conditioner with axial flow fan
JP5997115B2 (en) Air conditioner
JP5179638B2 (en) Fan, molding die and fluid feeder
JP2008070110A (en) Air conditioner
JP2018025354A (en) Indoor unit and air conditioner
JP2017138008A (en) Heat exchanger
JP6000454B2 (en) Air conditioner indoor unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R151 Written notification of patent or utility model registration

Ref document number: 5862655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151