JP5862100B2 - solenoid - Google Patents

solenoid Download PDF

Info

Publication number
JP5862100B2
JP5862100B2 JP2011172713A JP2011172713A JP5862100B2 JP 5862100 B2 JP5862100 B2 JP 5862100B2 JP 2011172713 A JP2011172713 A JP 2011172713A JP 2011172713 A JP2011172713 A JP 2011172713A JP 5862100 B2 JP5862100 B2 JP 5862100B2
Authority
JP
Japan
Prior art keywords
outer diameter
coil
magnetic
plunger
diameter portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011172713A
Other languages
Japanese (ja)
Other versions
JP2013036529A (en
Inventor
哲也 市原
哲也 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2011172713A priority Critical patent/JP5862100B2/en
Publication of JP2013036529A publication Critical patent/JP2013036529A/en
Application granted granted Critical
Publication of JP5862100B2 publication Critical patent/JP5862100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Description

本発明は、プランジャを吸引する磁気吸引力を増大するソレノイドに関する。   The present invention relates to a solenoid that increases a magnetic attractive force for attracting a plunger.

従来、ソレノイドは液体や気体等の流体を制御するバルブ等の被駆動部材を駆動するものとして利用されている。具体的には、コイルボビンに巻回された銅線に電流を流すことにより磁性部材の吸引面に吸引力としての磁力を発生させ、プランジャがその磁力により吸引面に吸引されることで被駆動部材を駆動するものである。
しかし、上述した磁気吸引力が小さいなどの問題が指摘されている。例えば磁束を安定してプランジャに収束させるためのサイドリングが設けられる場合があるが、そのサイドリングとプランジャとの間に容器としてのコイルボビンが形成されるために磁束の漏れが大きくなって吸引力が小さくなるという問題があった。
これに対して、筒状のコイル部材の内筒部に直列に配置される、磁性材料からなるセンタポストと、非磁性材料からなる筒状のスリーブと、及び磁性材料からなる筒状のサイドリングと、前記スリーブ及びサイドリングの内側を軸方向に往復自在に装填されるプランジャとを、備えるソレノイドが提案されている(例えば、特許文献1参照。)。
また、電磁制御弁のソレノイド装置では、特に、ベローズ式の感圧素子を組み込まれる電磁式容量制御弁では、ソレノイド部を大型化することなく、巻線電流(コイル電流)の変化に対するプランジャー吸引子間の磁気的吸引力の変化率が大きいことが要望されている。
しかし、プランジャー吸引子間に作用する磁気的吸引力は、閉ループ状磁路において、プランジャを有効に通過する磁力線数が多いほど強くなるが、従来のものでは、磁路構成の構造上、このことについて充分でないため、磁気的吸引力が弱く、巻線電流の変化に対するプランジャ−吸引子間の磁気的吸引力の変化率が小さいという問題があった。
これに対しては、電磁制御弁のソレノイド構造で、巻線−吸引子−磁路構成外函−磁路構成部材−プランジャ−吸引子を経由する閉ループ状の磁路が形成され、コイルボビンは磁路構成部材の筒状部をプランジャケースとの間に受け入れる段付き部をボビン内周側に有していて段付き部を含むボビン内周壁の全体の肉厚がほぼ同一であることにより、巻線の外寸法を大きくすることなく巻線数を多くでき、励磁力が強くなる電磁制御のソレノイド構造が提案されている(例えば、特許文献2参照。)。
Conventionally, a solenoid is used as one for driving a driven member such as a valve for controlling a fluid such as liquid or gas. Specifically, a current is passed through a copper wire wound around a coil bobbin to generate a magnetic force as an attractive force on the attracting surface of the magnetic member, and the driven member is attracted to the attracting surface by the magnetic force. Is to drive.
However, problems such as the above-described small magnetic attractive force have been pointed out. For example, a side ring may be provided to stably converge the magnetic flux on the plunger. However, since a coil bobbin as a container is formed between the side ring and the plunger, the leakage of the magnetic flux increases and the attractive force There was a problem that became smaller.
On the other hand, a center post made of a magnetic material, a cylindrical sleeve made of a non-magnetic material, and a cylindrical side ring made of a magnetic material, which are arranged in series in the inner cylinder portion of the cylindrical coil member And a solenoid that includes a plunger that is reciprocated in the axial direction inside the sleeve and the side ring (see, for example, Patent Document 1).
In the solenoid device of the electromagnetic control valve, in particular, in the electromagnetic capacity control valve in which the bellows type pressure sensitive element is incorporated, the plunger is attracted to the change of the winding current (coil current) without increasing the size of the solenoid portion. There is a demand for a high rate of change in magnetic attraction between the children.
However, the magnetic attractive force acting between the plunger attractors becomes stronger as the number of lines of magnetic force that effectively pass through the plunger increases in the closed loop magnetic path. Since this is not sufficient, there is a problem that the magnetic attractive force is weak and the rate of change of the magnetic attractive force between the plunger and the attractor with respect to the change of the winding current is small.
On the other hand, the solenoid structure of the electromagnetic control valve has a closed loop magnetic path that passes through the winding-attractor-magnetic path configuration outer box-magnetic path configuration member-plunger-attractor, and the coil bobbin is magnetized. Since the bobbin inner peripheral wall including the stepped portion has a stepped portion that receives the cylindrical portion of the path constituent member between the plunger case and the plunger case, the entire thickness of the bobbin inner peripheral wall is substantially the same. There has been proposed an electromagnetic control solenoid structure in which the number of windings can be increased without increasing the outer dimension of the wire and the excitation force is increased (see, for example, Patent Document 2).

特開10−89522号公報(段落[0014]、図1)JP 10-89522 A (paragraph [0014], FIG. 1) 特開2002−250456号公報(段落[0012]、図2)JP 2002-250456 A (paragraph [0012], FIG. 2)

しかしながら、特許文献1では、現状のコイルの巻数そのものは変わらないため、吸引力を大きくすることには限界があるという問題がある。
一方、特許文献2では、段付き部を含むボビン内周壁の全体の肉厚をほぼ同一とすることで巻線設置有効面積を大きくし、その分コイルの巻数を増やしている。しかし、そもそも当該段付き部を形成しない場合は、元々ボビン内周壁の全体の肉厚はほぼ同一であって巻線設置有効面積を増やすことができず、コイルの巻数を増加できないという問題がある。
そこで、コイルボビン内周壁の肉厚をさらに薄くすることでコイルボビンの外径を小さくし、巻線の外寸法を大きくすることなく導線を巻回できる容積を増やして巻数を増し、磁気による吸引力を増やすことが考えられる。
しかし、コイルボビンの内周面とプランジャとの間に油等の流体が介在している場合に不用意にコイルボビンの外径を小さくするとその流体による圧力に耐えられなくなりコイルボビンを傷めてしまう可能性があるという問題がある。
また、仮に当該段付き部を形成したとしてもソレノイドの外形を大きくしないために段付き部の大きさによっては殆ど巻数の増加が望めない可能性もある。さらにコイルボビン内周壁の全体の肉厚をほぼ同一とするために、コイルを巻回するコイルボビンの全体外径を上記流体の圧力に耐えられる強度の径にせざるを得ず、必ずしも十分な巻数の増加を望めないという問題がある。
However, in Patent Document 1, since the current number of turns of the coil itself does not change, there is a problem that there is a limit to increasing the attractive force.
On the other hand, in patent document 2, the winding installation effective area is enlarged by making the whole wall thickness of the bobbin inner peripheral wall including the stepped portion substantially the same, and the number of turns of the coil is increased accordingly. However, if the stepped portion is not formed in the first place, the entire thickness of the bobbin inner peripheral wall is essentially the same, and the effective area for installing the winding cannot be increased, and the number of turns of the coil cannot be increased. .
Therefore, the outer diameter of the coil bobbin inner wall is further reduced to reduce the outer diameter of the coil bobbin, increase the volume that can be wound with the conductor without increasing the outer dimensions of the winding, increase the number of turns, and increase the magnetic attractive force. It is possible to increase.
However, if a fluid such as oil is interposed between the inner peripheral surface of the coil bobbin and the plunger, if the coil bobbin is inadvertently reduced in outer diameter, it may not be able to withstand the pressure of the fluid and damage the coil bobbin. There is a problem that there is.
Even if the stepped portion is formed, there is a possibility that almost no increase in the number of turns can be expected depending on the size of the stepped portion because the outer shape of the solenoid is not enlarged. Furthermore, in order to make the entire wall thickness of the inner peripheral wall of the coil bobbin substantially the same, the entire outer diameter of the coil bobbin around which the coil is wound must be a diameter that can withstand the pressure of the fluid, and a sufficient increase in the number of turns is necessary. There is a problem that I can not hope for.

以上のような事情に鑑み、本発明の目的は、ソレノイドの外形を大きくしないでその巻数を増やし、プランジャがその磁力により吸引面に吸引される吸引力を増大させながらコイルボビンに必要とされる強度を確保できるソレノイドを提供することにある。   In view of the circumstances as described above, the object of the present invention is to increase the number of turns without increasing the outer shape of the solenoid, and to increase the suction force that the plunger is attracted to the suction surface by the magnetic force, and the strength required for the coil bobbin. It is to provide a solenoid capable of ensuring the above.

上記目的を達成するため、本発明の一形態に係るソレノイドは、プランジャと、コイルボビンと、コイルとを具備する。
プランジャは、一軸方向に軸部と前記軸部の外径より大きな外径を有する本体部とを有する。
コイルボビンは、内周面と外周面とを有する筒形状であり、前記内周面は流体を介して前記本体部を前記一軸方向に摺動させて前記流体の圧力を受ける摺動面を有し、前記外周面は少なくとも前記摺動面に対応して設けられた第1外径部とその第1外径部より小さい外径で前記摺動面から離れて当該軸部側に設けられた第2外径部とを有する。
コイルは、前記第1外径部及び第2外径部に巻回されている。
In order to achieve the above object, a solenoid according to an embodiment of the present invention includes a plunger, a coil bobbin, and a coil.
The plunger includes a shaft portion and a main body portion having an outer diameter larger than the outer diameter of the shaft portion in one axial direction.
The coil bobbin has a cylindrical shape having an inner peripheral surface and an outer peripheral surface, and the inner peripheral surface has a sliding surface that receives the pressure of the fluid by sliding the main body portion in the uniaxial direction via a fluid. The outer peripheral surface is provided with at least a first outer diameter portion corresponding to the sliding surface and an outer diameter smaller than the first outer diameter portion and provided on the shaft portion side away from the sliding surface. 2 outer diameter portions.
The coil is wound around the first outer diameter portion and the second outer diameter portion.

ここで、プランジャの軸部及び本体部はお互いの中心軸が一致するように一軸(中心軸)方向に並んで接続されている。勿論、軸部と本体部とを一体形成してもよい。   Here, the shaft portion and the main body portion of the plunger are connected side by side in a uniaxial (center axis) direction so that their center axes coincide with each other. Of course, the shaft portion and the main body portion may be integrally formed.

コイルボビンの内周面は、プランジャの軸部が収まる部分と本体部が収まる部分とが形成されており、軸部が収まる部分は先端が閉じられた凹部の内周面であり、当該凹部には軸部を本体部方向に付勢するバネが備えられている。当該軸部が収まる部分の内径は、本体部が収まる部分の内径より小さく形成されており、その内径の差分がプランジャの本体部を磁力により吸引する磁性部となり、吸引面を形成することになる。
また、本体部が収まる部分の内周面には当該本体部と摺動する摺動面を備えており、少なくともその摺動面と本体との間には油等からなる流体が介在している。したがって、通常コイルボビンは密閉されているので当該油等による圧力をその摺動面に受けることとなる。
The inner peripheral surface of the coil bobbin is formed with a portion where the shaft portion of the plunger is accommodated and a portion where the main body portion is accommodated, and the portion where the shaft portion is accommodated is the inner peripheral surface of the recess whose tip is closed. A spring that biases the shaft portion toward the main body portion is provided. The inner diameter of the portion in which the shaft portion is accommodated is smaller than the inner diameter of the portion in which the main body portion is accommodated, and the difference in inner diameter becomes a magnetic portion that attracts the main body portion of the plunger by magnetic force, thereby forming an attraction surface. .
Further, the inner peripheral surface of the portion in which the main body portion is accommodated has a sliding surface that slides with the main body portion, and at least a fluid made of oil or the like is interposed between the sliding surface and the main body. . Accordingly, since the coil bobbin is normally sealed, the pressure by the oil or the like is applied to the sliding surface.

コイルボビンの外周面は第1外径部と第2外径部とを有し、その第1外径部は少なくとも内周面の摺動面に対応して形成されており、コイルボビンの中心軸から径外方向に摺動面に重なるように設けられている。さらに第1外径部は当該摺動面に重なる部分から軸部方向に若干延在されており、その延在部分を含め所定の外径以上の径を有している。
ここで、所定の外径とは、当該摺動面がプランジャとの間にある流体から受ける主に径外方向への力(圧力)に耐えられるだけの厚みを担保できる外径であり、材質やプランジャの径等により当該所定の外径は違ってくる。勿論、当該第1外径部は一定以上の径であればよく全て同じ径である必要は無い。途中で一定の径よりも大きい径の部分があってもよいが、第1外径部の銅線等の導線が巻回される部分は巻数を確保するために所定の径で形成されることが望ましい。
The outer peripheral surface of the coil bobbin has a first outer diameter portion and a second outer diameter portion, and the first outer diameter portion is formed corresponding to at least the sliding surface of the inner peripheral surface, and is from the central axis of the coil bobbin. It is provided so as to overlap the sliding surface in the radially outward direction. Furthermore, the first outer diameter portion extends slightly from the portion overlapping the sliding surface in the axial direction, and has a diameter equal to or greater than a predetermined outer diameter including the extending portion.
Here, the predetermined outer diameter is an outer diameter that can secure a thickness sufficient to withstand a force (pressure) mainly in a radially outward direction that the sliding surface receives from a fluid between the plunger and a material. The predetermined outer diameter varies depending on the diameter of the plunger and the like. Of course, the said 1st outer diameter part should just be a fixed diameter or more, and does not need to be the same diameter altogether. There may be a portion with a diameter larger than a certain diameter in the middle, but the portion where the conducting wire such as the copper wire of the first outer diameter portion is wound is formed with a predetermined diameter in order to secure the number of turns. Is desirable.

第2外径部は、第1外径部に連続してコイルボビンの外周面として設けられており、コイルボビン及びプランジャの中心軸である一軸方向に平行な方向に摺動面から離間して第2外径部が始まっている。
当該摺動面から離れた部分(第2外径部)では、流体による径外方向への圧力は掛からないのでコイルボビンの肉厚も第1外径部と同じである必要はなく、第1外径部の外径より小さい外径、即ち上記所定外径より小さい外径であっても強度的には十分である。
The second outer diameter portion is provided as an outer peripheral surface of the coil bobbin continuously from the first outer diameter portion, and is separated from the sliding surface in a direction parallel to the uniaxial direction that is the central axis of the coil bobbin and the plunger. The outer diameter has begun.
In the portion away from the sliding surface (second outer diameter portion), the pressure in the radially outer direction is not applied by the fluid, so the thickness of the coil bobbin does not have to be the same as that of the first outer diameter portion. An outer diameter smaller than the outer diameter of the diameter portion, that is, an outer diameter smaller than the predetermined outer diameter is sufficient in terms of strength.

コイルは、銅線等の導線がコイルボビンの第1外径部及び第2外径部に複数回巻回され、略円筒形状を有し、その外周面は略面一の円柱外周面となっている。勿論、コイルの外周面は円柱面である必要は無く、多角柱外周面等、プランジャの形状等に基づき多用な外周面であってもよい。   The coil has a substantially cylindrical shape in which a conductive wire such as a copper wire is wound around the first outer diameter portion and the second outer diameter portion of the coil bobbin, and the outer peripheral surface thereof is substantially flush with the cylindrical outer peripheral surface. Yes. Of course, the outer peripheral surface of the coil need not be a cylindrical surface, and may be a versatile outer peripheral surface based on the shape of the plunger, such as a polygonal column outer peripheral surface.

ここで、コイルボビンの第1外径部と第2外径部とに接するところまでコイルが巻回されているので、実質上第1外径部及び第2外径部がコイルの内周面とでき、コイルが第1外径部に対応する第1内径部と第2外径部に対応する第2内径部を有するとできる。
すなわち、コイルの第2内径部の内径は第1内径部の内径より小さく、その内径方向の第1内径部との差の間部分(第1内径部より内側(中心軸側)に迫り出した部分)にも導線が巻回可能となるのでコイルの単位長さあたりの巻数を増加させることが可能となる。その結果、磁束密度を増大させて磁気による吸引力を増大できることとなる。
Here, since the coil is wound up to the place where it contacts the first outer diameter portion and the second outer diameter portion of the coil bobbin, the first outer diameter portion and the second outer diameter portion are substantially connected to the inner peripheral surface of the coil. The coil may have a first inner diameter portion corresponding to the first outer diameter portion and a second inner diameter portion corresponding to the second outer diameter portion.
In other words, the inner diameter of the second inner diameter portion of the coil is smaller than the inner diameter of the first inner diameter portion, and the portion between the difference from the first inner diameter portion in the inner diameter direction (approached to the inner side (center axis side) from the first inner diameter portion). Since the conductive wire can be wound also on the portion), the number of turns per unit length of the coil can be increased. As a result, it is possible to increase the magnetic flux density and increase the magnetic attractive force.

例えば、導線をコイルボビンの第1外径部の外径より小さい外径である第2外径部から巻回すると、導線の全長を変えないことでコイル自体の外寸法を小さくし、かつ巻数もコイルの内径部分の方が円周長が小さい分、増やすことが可能である。この場合はコイルの抵抗は変わらないので巻数の増加分がそのまま磁気の吸引力の増加となり得る。
一方、コイルの外寸法を変えないようにコイルボビンの第2外径部から巻回すると、第1内径部より内側に迫り出した部分にも巻回する分、導線の全長は長くなりその分抵抗が増す。しかし、当該コイルはその内径方向の差分が全て巻数の増大となる。しかも、増えた巻数部分の径が第1内径部の内径より小さいので導線の長さの増加分も小さく、長さが増えたことによるコイル全体の抵抗値の増加も小さいので、当該抵抗の増加分を考慮しても巻数の増加により磁気の吸引力を増大できる。
For example, if the conducting wire is wound from the second outer diameter portion, which is smaller than the outer diameter of the first outer diameter portion of the coil bobbin, the outer dimension of the coil itself is reduced without changing the overall length of the conducting wire, and the number of turns is also increased. The inner diameter portion of the coil can be increased by the smaller circumferential length. In this case, since the resistance of the coil does not change, the increase in the number of turns can directly increase the magnetic attractive force.
On the other hand, if the coil bobbin is wound from the second outer diameter portion so as not to change the outer dimensions of the coil, the entire length of the conductive wire becomes longer as it is wound around the portion protruding inward from the first inner diameter portion. Increase. However, the difference in the inner diameter direction of the coil all increases the number of turns. In addition, since the diameter of the increased number of turns is smaller than the inner diameter of the first inner diameter portion, the increase in the length of the conducting wire is also small, and the increase in the resistance value of the entire coil due to the increase in the length is also small. Even if the minute is taken into account, the magnetic attractive force can be increased by increasing the number of turns.

以上のコイルに電流を流すと第2内径部で導線の巻数が増加した分、当該コイルで発生する磁束密度が増し、その増えた磁束はコイルボビンの第2外径部側の後述する磁性部の吸引面からの磁気吸引力を増大させることなる。この増大した磁気吸引力によりプランジャの被吸引面はより強力に駆動されることとなり、その駆動力がプランジャに接続された被駆動部材を駆動し、例えば流体制御バルブを駆動することとなる。
しかも、この磁気吸引力の増強のためにコイルの外寸法を大きくする必要が無く、さらに外径が小さくなっている第2外径部は摺動面から充分離れているので流体による圧力によりコイルボビンを傷める事もなく当該磁気吸引力の増強ができる。
また、上記電流を止めると、磁気吸引力は消滅しバネによる付勢力によりプランジャはコイルボビンの吸引面から離れるので、その駆動力により流体制御バルブを元に戻すことができる。
When a current is passed through the coil, the magnetic flux density generated in the coil increases as the number of turns of the conducting wire increases in the second inner diameter portion, and the increased magnetic flux increases in the magnetic portion described later on the second outer diameter side of the coil bobbin. The magnetic attractive force from the attractive surface is increased. The attracted surface of the plunger is driven more strongly by this increased magnetic attraction force, and the drive force drives a driven member connected to the plunger, for example, drives a fluid control valve.
In addition, it is not necessary to increase the outer dimension of the coil in order to increase the magnetic attraction force, and the second outer diameter portion having a smaller outer diameter is sufficiently away from the sliding surface. The magnetic attractive force can be increased without damaging the surface.
When the current is stopped, the magnetic attractive force disappears and the plunger is separated from the attractive surface of the coil bobbin by the biasing force of the spring, so that the fluid control valve can be returned to its original state by the driving force.

前記本体部は、前記摺動面に摺動される摺動部と前記軸部との間に軸部側に向って径が小さくなるようにテーパ部とを設けて、当該軸部と摺動部とを連結してもよい。これにより、コイルで生じた磁束を広い面積で受けることができ、その吸引力をさらに増大できる。   The main body portion is provided with a tapered portion between the sliding portion that is slid on the sliding surface and the shaft portion so that the diameter decreases toward the shaft portion, and slides on the shaft portion. You may connect a part. Thereby, the magnetic flux generated in the coil can be received over a wide area, and the attractive force can be further increased.

前記第2外径部の外径は、前記摺動部の外径より大きいとしてもよい。これにより、プランジャの被吸引面が無駄なくコイルボビンの磁気吸引力を受けることができるので、磁気吸引力の確実な増強を図れる。   The outer diameter of the second outer diameter portion may be larger than the outer diameter of the sliding portion. As a result, the attracted surface of the plunger can receive the magnetic attractive force of the coil bobbin without waste, so that the magnetic attractive force can be reliably increased.

前記コイルボビンは、非磁性部と磁性部とを有し、前記非磁性部は前記外周面の第1及び第2外径部と前記摺動面の少なくとも一部を形成し、前記磁性部は前記テーパ部に合うように形成された吸引面を有するとしてもよい。
これにより、コイルで生じた磁束が無駄なく磁性部の吸引面から本体部に流れ、また磁性部に入り最後にコイルに戻ることで閉じた磁路を形成することができ、より効率的な磁気による吸引力を生じさせることができる。
The coil bobbin includes a non-magnetic portion and a magnetic portion, the non-magnetic portion forms first and second outer diameter portions of the outer peripheral surface and at least a part of the sliding surface, and the magnetic portion is The suction surface may be formed so as to fit the tapered portion.
As a result, the magnetic flux generated in the coil flows from the attracting surface of the magnetic part to the main body without waste, and enters the magnetic part and finally returns to the coil, thereby forming a closed magnetic path, and more efficient magnetism. A suction force can be generated.

以上のように、本発明では、ソレノイドの外形を大きくしないでコイルの巻数を増やし、プランジャがその磁力により吸引面に吸引される吸引力を増大させながらコイルボビンに必要とされる強度を確保できる。   As described above, in the present invention, it is possible to secure the strength required for the coil bobbin while increasing the number of turns of the coil without increasing the outer shape of the solenoid and increasing the suction force that the plunger is attracted to the suction surface by the magnetic force.

本発明の一実施形態に係るソレノイドの一部断面を示す部分断面図である。It is a fragmentary sectional view which shows the partial cross section of the solenoid which concerns on one Embodiment of this invention.

以下、図面を参照しながら、本発明の実施形態を説明する。
図1は、本発明の一実施形態に係るソレノイドを示す部分断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a partial cross-sectional view showing a solenoid according to an embodiment of the present invention.

ソレノイド1は、プランジャ2と、当該プランジャ2を摺動自在に保持する筒状のコイルボビン3と、そのコイルボビン3に巻回されたコイル4と、外側ケース5と、蓋部6とを備える。   The solenoid 1 includes a plunger 2, a cylindrical coil bobbin 3 that slidably holds the plunger 2, a coil 4 wound around the coil bobbin 3, an outer case 5, and a lid 6.

プランジャ2は、図1に示すように一軸方向としての中心軸方向に軸部21と当該軸部21の径より大きい径の本体部22と被駆動部材に接続された出力部23とをその順に備えており、軸部21は略円柱形で先端には後述するバネの中に挿入される突起を備えている。   As shown in FIG. 1, the plunger 2 includes a shaft portion 21, a main body portion 22 having a diameter larger than the diameter of the shaft portion 21, and an output portion 23 connected to the driven member in that order. The shaft portion 21 has a substantially cylindrical shape, and has a protrusion inserted into a spring described later at the tip.

また、本体部22は円柱形の摺動部221と径の異なる上述の軸部21との間を結ぶテーパ部222を有し、当該テーパ部222は円錐台形状を有し、当該上面には軸部21が、その底面には摺動部221が設けられている。   The main body portion 22 has a tapered portion 222 connecting the cylindrical sliding portion 221 and the above-described shaft portion 21 having a different diameter, and the tapered portion 222 has a truncated cone shape, A sliding portion 221 is provided on the bottom surface of the shaft portion 21.

ここで、テーパ部222は後述するコイルボビン3の磁性部の吸引面に磁力により吸引される被吸引面を構成するものである。   Here, the taper portion 222 constitutes a surface to be attracted by a magnetic force to an attracting surface of a magnetic portion of the coil bobbin 3 to be described later.

コイルボビン3は、図1に示すように磁性部31と非磁性部32とを備えており、磁性部31は軸部側磁性部311と本体部側磁性部312とを有し、非磁性部32によって、一体的に構成されている。磁性部31は、電磁軟鉄(純鉄)等により形成され、非磁性部32はステンレス鋼等により形成される。当該軸部側磁性部311は大径部3111と当該大径部3111よりは径が小さく本体部22の外径に僅かに大きい径の中径部3112とが一体的に形成されている。   As shown in FIG. 1, the coil bobbin 3 includes a magnetic portion 31 and a nonmagnetic portion 32, and the magnetic portion 31 includes a shaft portion side magnetic portion 311 and a main body portion side magnetic portion 312, and the nonmagnetic portion 32. By these, it is comprised integrally. The magnetic part 31 is made of electromagnetic soft iron (pure iron) or the like, and the nonmagnetic part 32 is made of stainless steel or the like. The shaft side magnetic part 311 is integrally formed with a large diameter part 3111 and a medium diameter part 3112 having a diameter smaller than the large diameter part 3111 and slightly larger than the outer diameter of the main body part 22.

ここで、中径部3112から大径部3111の一部に掛けて軸部21の径より僅かに大きい内径の凹部である円柱中空3112aが上述の中心軸Oを中心として形成されており、その内部にはバネ3112cが備えられている。そのバネ3112cはプランジャ2の軸部21を介して本体部22及び出力部23を外側へ付勢する。   Here, a hollow cylindrical portion 3112a, which is a recess having an inner diameter slightly larger than the diameter of the shaft portion 21 from the middle diameter portion 3112 to a part of the large diameter portion 3111, is formed around the central axis O described above. A spring 3112c is provided inside. The spring 3112c urges the main body 22 and the output part 23 to the outside via the shaft part 21 of the plunger 2.

また、中径部3112は大径部3111と反対側端部にテーパ部222に合うように内側に凹んだ吸収面3112bが中心軸Oを中心に形成されている。これにより、軸部側磁性部311が磁性化されたときに、磁性部である吸引面3112bにプランジャ2であるテーパ部222が効率よく吸引されることとなる。   The medium diameter portion 3112 has an absorption surface 3112b that is recessed inwardly at the end opposite to the large diameter portion 3111 so as to fit the tapered portion 222, with the central axis O as the center. Thereby, when the shaft part side magnetic part 311 is magnetized, the taper part 222 which is the plunger 2 is efficiently attracted to the attraction surface 3112b which is the magnetic part.

さらに本体部側磁性部312は、略円筒形状で中径部3121と大径部3122とが上述の一軸方向に一体的に形成されており、その中径部3121は、図1に示すように非磁性部32の摺動面側にもぐり込んで摺動面Aの一部の摺動面A1を構成している。   Further, the main body side magnetic part 312 has a substantially cylindrical shape, and the medium diameter part 3121 and the large diameter part 3122 are integrally formed in the above-mentioned uniaxial direction, and the medium diameter part 3121 is formed as shown in FIG. A part of the sliding surface A1 is formed by sliding into the sliding surface side of the non-magnetic portion 32.

即ち、本体部側磁性部312の中径部3121ではその外周面を非磁性部32が覆うように重なっている一方、大径部3122の内周面の一部が中径部3121の摺動面A1に連続して摺動面A2を構成し、残りの大径部3122の内周面には蓋部6の後述するシール部が嵌め込まれている。   That is, the outer peripheral surface of the medium-diameter portion 3121 of the main body portion side magnetic portion 312 is overlapped so that the nonmagnetic portion 32 covers it, while a part of the inner peripheral surface of the large-diameter portion 3122 is slid on the medium-diameter portion 3121 A sliding surface A2 is formed continuously with the surface A1, and a seal portion (described later) of the lid portion 6 is fitted into the inner peripheral surface of the remaining large-diameter portion 3122.

また、非磁性部32は略円筒形であり、その外周面は図1に示すようにコイルボビン3の外周面を形成し、当該外周面は外径の異なる第1外径部321と当該第1外径部321より1mm程度外径の小さい第2外径部322とを有している。当該第2外径部322は、第1外径部321と結ぶテーパ状段部3221を有している。   Further, the non-magnetic portion 32 has a substantially cylindrical shape, and its outer peripheral surface forms the outer peripheral surface of the coil bobbin 3 as shown in FIG. 1, and the outer peripheral surface is different from the first outer diameter portion 321 and the first outer diameter. And a second outer diameter portion 322 having an outer diameter smaller by about 1 mm than the outer diameter portion 321. The second outer diameter portion 322 has a tapered step portion 3221 that is connected to the first outer diameter portion 321.

さらに非磁性部32の内周面323は、内径が第2外径部322から第1外径部321の途中までは同じであり、当該第1外径部321の途中から上述の中径部3121が摺動面A1となるように僅かに内径の大きい部分を有している。その摺動面A1からはなれた内周面323との間に本体部側磁性部312の中径部3121が入り込むように形成されている。   Further, the inner peripheral surface 323 of the nonmagnetic portion 32 has the same inner diameter from the second outer diameter portion 322 to the middle of the first outer diameter portion 321, and the above-mentioned middle diameter portion from the middle of the first outer diameter portion 321. A portion having a slightly larger inner diameter is provided so that 3121 becomes the sliding surface A1. The medium-diameter portion 3121 of the main body side magnetic portion 312 is formed so as to enter between the inner peripheral surface 323 separated from the sliding surface A1.

また、上述の外径の大きい第1外径部321は、図1に示すようにプランジャ2が摺動する摺動面Aと軸部側磁性部311の吸引面3112bの先端部Bより離れるように大径部3111側に延在されている。したがって、テーパ状段部3221の位置は吸引面3112bの先端部Bより幾分か大径部3111側に寄ることになる。   Further, the first outer diameter portion 321 having the larger outer diameter is separated from the sliding surface A on which the plunger 2 slides and the tip portion B of the suction surface 3112b of the shaft-side magnetic portion 311 as shown in FIG. To the large diameter portion 3111 side. Accordingly, the position of the tapered step portion 3221 is somewhat closer to the large diameter portion 3111 side than the tip portion B of the suction surface 3112b.

以上から、上述した摺動部221の外周面が油7を介して摺動する摺動面Aは、図1に示すように、コイルボビン3の内周面である。具体的には、摺動面Aは非磁性部材32の内周面の吸引面3112bの先端部Bに接する部分から内径の大きい部分となる手前までの摺動面A3と中径部3121の摺動面A1及び大径部3122の内周面の摺動面A2により構成される。   From the above, the sliding surface A on which the outer peripheral surface of the sliding portion 221 described above slides through the oil 7 is the inner peripheral surface of the coil bobbin 3 as shown in FIG. Specifically, the sliding surface A is a sliding surface between the sliding surface A3 from the portion contacting the tip B of the suction surface 3112b on the inner peripheral surface of the nonmagnetic member 32 to the front where the inner diameter is large and the middle diameter portion 3121. The moving surface A1 and the sliding surface A2 of the inner peripheral surface of the large diameter portion 3122 are configured.

コイル4は、コイルボビン3の軸部側磁性部311の大径部3111と本体部側磁性部312の大径部3122との間の外周面に導線としての銅線が巻回されたものであり、外周面は当該大径部3111,3122の外周面より若干小さい一定外径に形成されている。   In the coil 4, a copper wire as a conducting wire is wound around the outer peripheral surface between the large diameter part 3111 of the shaft part side magnetic part 311 of the coil bobbin 3 and the large diameter part 3122 of the main body part side magnetic part 312. The outer peripheral surface is formed to have a constant outer diameter that is slightly smaller than the outer peripheral surfaces of the large diameter portions 3111 and 3122.

即ち、コイル4はコイルボビン3の外周面に接するところまで銅線が巻回されているので、実質上第1外径部321及び第2外径部322がコイル4の内周面とできる。即ち、コイル4は第1外径部321に対応する第1内径部41と第2外径部322に対応する第2内径部42とを有する。テーパ状段部3221にはテーパ状段部421が対応する。   That is, since the coil 4 is wound with the copper wire until it comes into contact with the outer peripheral surface of the coil bobbin 3, the first outer diameter portion 321 and the second outer diameter portion 322 can be substantially used as the inner peripheral surface of the coil 4. That is, the coil 4 has a first inner diameter portion 41 corresponding to the first outer diameter portion 321 and a second inner diameter portion 42 corresponding to the second outer diameter portion 322. A tapered step 421 corresponds to the tapered step 3221.

ここで、図1に示すように第1外径部321より第2外径部322の方の径が小さいのでコイル4の第1内径部41の内径に比較して第2内径部42の内径は小さくなっている。したがって、その内径方向の第1内径部41との差部分(第1内径部41より内側に迫り出した部分)にも銅線が巻回可能となるのでコイル4の単位長さあたりの巻数を増加させることが可能となる。その結果、磁束密度を増大させて磁気による吸引力を増大できることとなる。   Here, as shown in FIG. 1, since the diameter of the second outer diameter portion 322 is smaller than the first outer diameter portion 321, the inner diameter of the second inner diameter portion 42 is larger than the inner diameter of the first inner diameter portion 41 of the coil 4. Is getting smaller. Accordingly, a copper wire can be wound around a difference portion (a portion protruding inward from the first inner diameter portion 41) with respect to the first inner diameter portion 41 in the inner diameter direction, so the number of turns per unit length of the coil 4 can be reduced. It can be increased. As a result, it is possible to increase the magnetic flux density and increase the magnetic attractive force.

また、第2内径部42の内周面は、コイル4で一番内側に迫り出して巻回されているが、図1に示すように磁力により吸引されるテーパ部222の中心軸Oに対する径外方向の最外端部Cよりは径外方向に位置するように形成されている。   Further, the inner peripheral surface of the second inner diameter portion 42 is wound inwardly by the coil 4, and as shown in FIG. 1, the diameter of the taper portion 222 attracted by magnetic force with respect to the central axis O. It is formed so as to be located in the radially outward direction from the outermost end portion C in the outer direction.

コイル4は、図示しない電源部に導通するリード線43を備えており、当該電源部でコイル4に印加される電流のON,OFFが制御される。   The coil 4 includes a lead wire 43 that is electrically connected to a power supply unit (not shown), and ON / OFF of a current applied to the coil 4 is controlled by the power supply unit.

外側ケース5は、コイルボビン3として構成された軸部側磁性部311の大径部3111及び本体側磁性部312の大径部3122が内部に丁度納まる略筒形状である。また、一端側の内周面には当該大径部3122に固定された蓋部6のフランジ部が収まる段差部51が形成されている。当該外側ケース5はコイルボビン3とネジ52によって固定される。   The outer case 5 has a substantially cylindrical shape in which the large-diameter portion 3111 of the shaft portion-side magnetic portion 311 and the large-diameter portion 3122 of the main body-side magnetic portion 312 that are configured as the coil bobbin 3 are just contained. In addition, a stepped portion 51 in which the flange portion of the lid portion 6 fixed to the large diameter portion 3122 is accommodated is formed on the inner peripheral surface on one end side. The outer case 5 is fixed by a coil bobbin 3 and a screw 52.

蓋部6は、上述のシール部61とフランジ部62と端部63とが上述の一軸方向に一体的に形成されており、シール部61は溝部611に配置されたオーリング612によってプランジャ2とコイルボビン3との間の空間を密閉している。また、フランジ部62を大径部3122にネジ621で固定することで蓋部6はコイルボビン3に固定される。さらに端部63に設けられた貫通孔631によりプランジャ2の出力部23のロッド231の一部が蓋部6の外に突出しており、当該突出したロッド231に図示しない被駆動部材としての油圧制御バルブなどが接続される。   The lid portion 6 includes the seal portion 61, the flange portion 62, and the end portion 63 integrally formed in the uniaxial direction described above, and the seal portion 61 is connected to the plunger 2 by an O-ring 612 disposed in the groove portion 611. The space between the coil bobbin 3 is sealed. Further, the lid portion 6 is fixed to the coil bobbin 3 by fixing the flange portion 62 to the large diameter portion 3122 with a screw 621. Further, a part of the rod 231 of the output portion 23 of the plunger 2 protrudes from the lid portion 6 through a through-hole 631 provided in the end portion 63, and hydraulic control as a driven member (not shown) is performed on the protruding rod 231. Valves are connected.

本実施形態のソレノイド1を実験したところ、従来のように第1内径部41の内径で全て形成した場合に比較して同じ電流を印加しても、プランジャ2を吸引する力である吸引力は、約14%上昇した。なお、電圧を同じとした場合は、吸引力は同じであるが、ソレノイド1の温度上昇を21℃下げることができた。   When the solenoid 1 of this embodiment was tested, even if the same current is applied as compared with the case where all the inner diameters of the first inner diameter portion 41 are formed as in the prior art, the attraction force that is the force for attracting the plunger 2 is About 14%. When the voltage was the same, the suction force was the same, but the temperature rise of the solenoid 1 could be lowered by 21 ° C.

以上のように、コイルボビン3の外周面が第1外径部321と当該第1外径部321より外径の小さい第2外径部322を有することとしたので、コイル4を第2内径部42で第1内径部41からさらに内側に巻回することができ、その分、銅線の巻数を増大できる。そして、第2内径部42で導線の巻数が増加した分、当該コイル4で発生する磁束密度の量が多くなり、その増えた磁力はコイルボビン3の吸引面3112bからの磁気吸引力を増大させることなる。この増大した磁気吸引力によりプランジャ2のテーパ部222はより強力に駆動されることとなり、その駆動力がプランジャ2に接続された被駆動部材を駆動し、例えば流体制御バルブを駆動することとなる。   As described above, since the outer peripheral surface of the coil bobbin 3 has the first outer diameter portion 321 and the second outer diameter portion 322 having an outer diameter smaller than that of the first outer diameter portion 321, the coil 4 is connected to the second inner diameter portion. 42 can be further wound inwardly from the first inner diameter portion 41, and the number of turns of the copper wire can be increased accordingly. The amount of magnetic flux density generated in the coil 4 is increased by the increase in the number of turns of the conducting wire in the second inner diameter portion 42, and the increased magnetic force increases the magnetic attractive force from the attractive surface 3112b of the coil bobbin 3. Become. The taper portion 222 of the plunger 2 is driven more strongly by this increased magnetic attraction force, and the driving force drives a driven member connected to the plunger 2, for example, drives a fluid control valve. .

また、第2内径部42の第1内径部41より内径の小さい部分では、銅線の巻回は半径が小さいため、増えた巻数分の銅線の長さも短くてすみ、抵抗値の増加も少なくできる。したがって、コイル4の外寸法を維持することにより増える抵抗値に比べ、第2内径部42により増加する巻数の方の効果が大きくなり、結果としてコイルボビン3の吸引面3112bからの磁気吸引力を増大させることができる。即ち、ソレノイド1の外形の大きさを大きくすること無く、コイルボビン3の磁気吸引力を増強できることになる。   Further, in the portion of the second inner diameter portion 42 having a smaller inner diameter than the first inner diameter portion 41, the winding of the copper wire has a small radius, so the length of the copper wire corresponding to the increased number of turns can be shortened, and the resistance value is also increased. Less. Therefore, the effect of the number of turns increased by the second inner diameter portion 42 is greater than the resistance value increased by maintaining the outer dimension of the coil 4, and as a result, the magnetic attractive force from the attractive surface 3112 b of the coil bobbin 3 is increased. Can be made. That is, the magnetic attractive force of the coil bobbin 3 can be increased without increasing the size of the outer shape of the solenoid 1.

また、コイルボビン3の第2外径部322は第1外径部321に連続してコイルボビンの外周面として設けられており、コイルボビン3及びプランジャ2の中心軸Oに平行な方向に摺動面Aから離間して第2外径部322が始まっている。したがって、第2外径部322が第1外径部321の外径より小さい外径、例えば1mm程度小さい外径であっても流体としての油7による圧力は掛からず、当該油7による圧力によって、コイルボビン3が損傷することもソレノイド1を大きくすること無く防げる。   The second outer diameter portion 322 of the coil bobbin 3 is provided as an outer peripheral surface of the coil bobbin continuously to the first outer diameter portion 321, and the sliding surface A is parallel to the central axis O of the coil bobbin 3 and the plunger 2. The second outer diameter portion 322 starts away from the second portion. Therefore, even if the second outer diameter portion 322 has an outer diameter smaller than the outer diameter of the first outer diameter portion 321, for example, an outer diameter that is smaller by about 1 mm, the pressure by the oil 7 as a fluid is not applied. The coil bobbin 3 can be prevented from being damaged without enlarging the solenoid 1.

さらに非磁性部32の内周面323は、図1に示すように磁力により吸引されるテーパ部222の中心軸Oに対する径外方向の最外端部Cよりは油分僅かに径外方向に位置している。したがって、コイル4により発生する磁力線を受けるテーパ部222の表面積を最も有効に利用することができ、磁力による吸引力をソレノイド1の外形を大きくせずに増大できる。   Further, the inner peripheral surface 323 of the non-magnetic portion 32 is positioned slightly outward in the radial direction from the outermost end portion C in the radially outward direction with respect to the central axis O of the tapered portion 222 attracted by magnetic force as shown in FIG. doing. Therefore, the surface area of the tapered portion 222 that receives the magnetic lines of force generated by the coil 4 can be most effectively used, and the attractive force due to the magnetic force can be increased without increasing the outer shape of the solenoid 1.

また、第2内径部42の内周面は、コイル4で一番内側に迫り出して巻回されているが、図1に示すように磁力により吸引されるテーパ部222の中心軸Oに対する径外方向の最外端部Cよりは径外方向に位置するように形成されている。これにより、コイル4により発生する磁力線を最も効率的にテーパ部222に進ませることができ、磁力による吸引力をソレノイド1の外形を大きくせずに増大できる。   Further, the inner peripheral surface of the second inner diameter portion 42 is wound inwardly by the coil 4, and as shown in FIG. 1, the diameter of the taper portion 222 attracted by magnetic force with respect to the central axis O. It is formed so as to be located in the radially outward direction from the outermost end portion C in the outer direction. Thereby, the magnetic force lines generated by the coil 4 can be most efficiently advanced to the tapered portion 222, and the attractive force due to the magnetic force can be increased without increasing the outer shape of the solenoid 1.

次に、上述したソレノイド1の動作について図1を参照して説明する。   Next, the operation of the solenoid 1 described above will be described with reference to FIG.

コイル4にリード線43を介して電源部により電流が印加されていないときは、コイル4による磁束が発生しないので図1に示すように、吸引面3112bはテーパ部222を吸引できず、バネ3112cの付勢力によりプランジャ2は図1で見て右側に移動する。このプランジャ2の移動によりロッド231も移動し図示しない被駆動部材としての流体制御バルブを例えば閉じる。   When no current is applied to the coil 4 via the lead wire 43 by the power supply unit, no magnetic flux is generated by the coil 4 and, as shown in FIG. The plunger 2 moves to the right as viewed in FIG. As the plunger 2 moves, the rod 231 also moves to close a fluid control valve as a driven member (not shown), for example.

次に、電源部によりコイル4にリード線43を介して電流が印加されると、コイル4による磁束が発生して軸部側磁性部311の吸引面3112bに磁力が発生し、プランジャ2のテーパ部222が吸引される。   Next, when a current is applied to the coil 4 via the lead wire 43 by the power supply unit, a magnetic flux is generated by the coil 4 to generate a magnetic force on the attracting surface 3112b of the shaft side magnetic unit 311 and the taper of the plunger 2 Part 222 is aspirated.

この磁力による吸引力がバネ3112cによる付勢力に打ち勝つと、油7を介して摺動部221の外周面が非磁性部32、中径部3121及び大径部3122の内周面である摺動面Aに摺動して図1で見て左側に移動する。これによりロッド231も一緒に左に移動するので流体制御バルブは開くことになる。   When the attractive force due to the magnetic force overcomes the urging force of the spring 3112c, the outer peripheral surface of the sliding part 221 is slid with the non-magnetic part 32, the medium diameter part 3121 and the large diameter part 3122 through the oil 7. It slides on surface A and moves to the left as seen in FIG. As a result, the rod 231 also moves to the left together, so that the fluid control valve is opened.

ここで、図1でコイル4の第1内径部41の内径に比較して内側の第2内径部42の部分には、巻回された銅線の断面である円が多数入ることからその分、巻数が増大するために発生する磁束密度も増大する。そして、その増大した磁束密度が軸部側磁性部311に働き、吸引面3112bから増大した磁力が発生しプランジャ2のテーパ部222に働くこととなる。   Here, in FIG. 1, compared to the inner diameter of the first inner diameter portion 41 of the coil 4, the inner second inner diameter portion 42 has a large number of circles which are cross sections of the wound copper wire. The magnetic flux density generated due to the increase in the number of turns also increases. The increased magnetic flux density acts on the shaft side magnetic part 311, and an increased magnetic force is generated from the attracting surface 3112 b to act on the tapered part 222 of the plunger 2.

また、非磁性部32がコイルボビン3の大径部3111,3122を除いた外周面の殆どを覆っているので、磁力線が最も効率的に働くことができ、吸引力をより増大できる。   Further, since the nonmagnetic portion 32 covers most of the outer peripheral surface excluding the large diameter portions 3111 and 3122 of the coil bobbin 3, the magnetic lines of force can work most efficiently and the attractive force can be further increased.

本発明に係る実施形態は、以上説明した実施形態に限定されず、他の種々の実施形態が考えられる。   The embodiment according to the present invention is not limited to the above-described embodiment, and various other embodiments are conceivable.

例えば上記の実施形態に係るプランジャ2の本体部22を円柱形の摺動部221と径の異なる上述の軸部21との間を結ぶテーパ部222を有するとしたが、当該摺動部221と軸部21とを直接に接続してもいいし、テーパ状ではなく階段状であってもよい。さらには曲面を形成しても良い。ソレノイドの利用形態等により種々の本体部の形状が適応可能である。   For example, although the main body portion 22 of the plunger 2 according to the above-described embodiment has the tapered portion 222 that connects the columnar sliding portion 221 and the shaft portion 21 having a different diameter, The shaft portion 21 may be directly connected, or may be stepped instead of tapered. Furthermore, a curved surface may be formed. Various shapes of the main body can be applied depending on the usage form of the solenoid.

また、上記の実施形態ではコイル4の外寸法を維持することとしたが、用いる銅線の全長を一定として、第1外径部321と当該第1外径部321より外径の小さい第2外径部322に巻回してもよい。これにより、コイル4自体の外寸法を小さくしながらコイル4の内径部分の方が円周長が小さい分、巻数も増やすことが可能である。この場合はコイル4の抵抗は変わらないので巻数の増加分がそのまま磁気の吸引力の増加となり得る。   In the above embodiment, the outer dimension of the coil 4 is maintained, but the first outer diameter portion 321 and the second outer diameter smaller than the first outer diameter portion 321 are made constant with the total length of the copper wire used being constant. You may wind around the outer diameter part 322. FIG. As a result, the outer diameter of the coil 4 itself can be reduced while the inner diameter portion of the coil 4 has a smaller circumferential length so that the number of turns can be increased. In this case, since the resistance of the coil 4 does not change, the increase in the number of turns can directly increase the magnetic attractive force.

2…プランジャ
21…軸部
22…本体部
3…コイルボビン
321…第1外径部
322…第2外径部
4…コイル
7…油(流体に相当)
A…摺動面
O…中心軸(一軸に相当)
DESCRIPTION OF SYMBOLS 2 ... Plunger 21 ... Shaft part 22 ... Main-body part 3 ... Coil bobbin 321 ... 1st outer diameter part 322 ... 2nd outer diameter part 4 ... Coil 7 ... Oil (equivalent to fluid)
A ... Sliding surface O ... Center axis (equivalent to one axis)

Claims (1)

一軸方向に軸部と前記軸部の外径より大きな外径を有する本体部とを有するプランジャと、
前記本体部が内周面の摺動面で摺動可能であり、少なくとも前記摺動面に対応して設けられた第1外径部及び当該第1外径部より小さい外径で前記摺動面から離れて前記軸部側に設けられた第2外径部を含む外周面を有する筒形状に構成されたコイルボビンと、
前記外周面に巻回されたコイルと
電磁力による前記プランジャの移動により、前記本体部が前記摺動面を前記一軸方向に摺動できるように、前記プランジャと前記コイルボビンの前記内周面との間に介在する流体と
を具備するソレノイド。
A plunger having a shaft portion and a body portion having an outer diameter larger than the outer diameter of the shaft portion in one axial direction;
The main body is slidable on a sliding surface of an inner peripheral surface, and the sliding is performed with at least a first outer diameter portion provided corresponding to the sliding surface and an outer diameter smaller than the first outer diameter portion. A coil bobbin configured in a cylindrical shape having an outer peripheral surface including a second outer diameter portion provided on the shaft portion side away from the surface;
A coil wound around the outer peripheral surface ;
A solenoid having a fluid interposed between the plunger and the inner peripheral surface of the coil bobbin so that the main body can slide in the uniaxial direction by movement of the plunger by electromagnetic force. .
JP2011172713A 2011-08-08 2011-08-08 solenoid Active JP5862100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011172713A JP5862100B2 (en) 2011-08-08 2011-08-08 solenoid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011172713A JP5862100B2 (en) 2011-08-08 2011-08-08 solenoid

Publications (2)

Publication Number Publication Date
JP2013036529A JP2013036529A (en) 2013-02-21
JP5862100B2 true JP5862100B2 (en) 2016-02-16

Family

ID=47886329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011172713A Active JP5862100B2 (en) 2011-08-08 2011-08-08 solenoid

Country Status (1)

Country Link
JP (1) JP5862100B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198369B1 (en) * 1998-12-04 2001-03-06 Tlx Technologies Proportional actuator for proportional control devices
JP2001343086A (en) * 2000-05-31 2001-12-14 Aisin Seiki Co Ltd Solenoid valve device
JP2003074732A (en) * 2001-09-03 2003-03-12 Toyoda Mach Works Ltd Solenoid valve

Also Published As

Publication number Publication date
JP2013036529A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
US9646754B2 (en) Linear solenoid
US20080204176A1 (en) Unequally tapped coil solenoid valve
US10734147B2 (en) Electromechanical solenoid having a pole piece alignment member
US20110068286A1 (en) Solenoid on-off valve
JP2006222199A (en) Proportional solenoid and flow control valve using the same
JP2015506449A (en) Single bearing one piece core solenoid
KR101900587B1 (en) Solenoid robust against misalignment of pole piece and flux sleeve
CN102568739A (en) Solenoid for a direct acting valve having stepped guide tube
JP6321371B2 (en) Solenoid valve device
JP5630354B2 (en) Linear solenoid valve and its abnormality determination method
JP5862100B2 (en) solenoid
US20180038317A1 (en) Gas fuel supply apparatus
US10535483B2 (en) Electromagnetic relay device
JP6379142B2 (en) Solenoid actuator
JP6665068B2 (en) Gas fuel supply device
JP4998315B2 (en) solenoid valve
JP6329781B2 (en) Solenoid device
JP6736330B2 (en) Solenoid valve cartridge assembly, solenoid valve solenoid and solenoid valve
JP2012021611A (en) Linear solenoid valve
CN107210113B (en) Solenoid
JP5124862B2 (en) Piston / cylinder unit
JP6404246B2 (en) Solenoid switching valve
JP2008306123A (en) Electromagnetic actuator
JP2008306124A (en) Electromagnetic actuator
JP2005251937A (en) Super-magnetostriction unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5862100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250