JP5861662B2 - Zinc-based electroplated steel sheet and method for producing the same - Google Patents

Zinc-based electroplated steel sheet and method for producing the same Download PDF

Info

Publication number
JP5861662B2
JP5861662B2 JP2013094297A JP2013094297A JP5861662B2 JP 5861662 B2 JP5861662 B2 JP 5861662B2 JP 2013094297 A JP2013094297 A JP 2013094297A JP 2013094297 A JP2013094297 A JP 2013094297A JP 5861662 B2 JP5861662 B2 JP 5861662B2
Authority
JP
Japan
Prior art keywords
zinc
steel sheet
plating
plating film
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013094297A
Other languages
Japanese (ja)
Other versions
JP2014114503A (en
Inventor
土本 和明
和明 土本
妹川 透
透 妹川
吉見 直人
直人 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013094297A priority Critical patent/JP5861662B2/en
Publication of JP2014114503A publication Critical patent/JP2014114503A/en
Application granted granted Critical
Publication of JP5861662B2 publication Critical patent/JP5861662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、平板部および疵部の耐食性に優れる亜鉛系電気めっき鋼板およびその製造方法に関するものである。   The present invention relates to a zinc-based electroplated steel sheet excellent in corrosion resistance of a flat plate part and a collar part and a method for producing the same.

亜鉛系電気めっき鋼板は、高い耐食性に加え、めっき皮膜の均一性および外観に優れていることから、家電、建材用途等に広く用いられている。
しかし、亜鉛は枯渇性資源の一つであり、今後の価格高騰も予想されることから、亜鉛の使用量を減らすべく、亜鉛めっき付着量の低減や亜鉛めっきに替わる表面処理皮膜の開発が要求されている。
Zinc-based electroplated steel sheets are widely used for home appliances, building materials, and the like because they are excellent in the uniformity and appearance of plating films in addition to high corrosion resistance.
However, since zinc is one of the exhaustible resources and the price is expected to rise in the future, it is necessary to reduce the amount of zinc plating and to develop a surface treatment film that replaces zinc plating in order to reduce the amount of zinc used. Has been.

ここに、亜鉛めっき付着量低減の手法の一つとして、めっき層の耐食性を向上させる技術が挙げられる。めっき層の耐食性が向上すれば、めっき層を薄くすることができるので、亜鉛付着量の低減につながるからである。   Here, a technique for improving the corrosion resistance of the plating layer is mentioned as one of the techniques for reducing the galvanized adhesion amount. This is because if the corrosion resistance of the plating layer is improved, the plating layer can be made thinner, which leads to a reduction in the amount of zinc attached.

従来、高耐食性電気亜鉛めっき皮膜の製造手法として、NiやCoなど、Feより貴な金属とZnとの合金化が検討されてきた。しかし、それらの合金めっきは、使用の初期段階では高い耐食性を示すものが多いが、一旦腐食が始まってしまうと、亜鉛および素材(下地)鋼板の腐食が促進されて、早期に穴あき腐食が発生するという問題があった。   Conventionally, as a method for producing a highly corrosion-resistant electrogalvanized film, alloying of metals such as Ni and Co, which are more precious than Fe, and Zn has been studied. However, many of these alloy platings show high corrosion resistance in the initial stage of use, but once corrosion starts, corrosion of zinc and the material (underlying) steel sheet is promoted, so that perforation corrosion occurs early. There was a problem that occurred.

ここで、上記した問題を解決するために、特許文献1および非特許文献1では、Feより卑な活性金属を含む亜鉛系複合電気めっきの検討が行われている。
すなわち、特許文献1では、0.2 mol/L以上のZnイオンと、Al, Sc, Y, La, Ce, Nd, ZrおよびVから選んだ1種以上の金属イオンと、0.0005〜0.1 mol/Lの硝酸イオンを含有させためっき浴を用い、鋼板との相対流速が0.6m/s以上で電解を行うことによって、優れた耐食性および外観均一性を有する亜鉛系複合電気めっき鋼板が得られる旨記載されている。
Here, in order to solve the above-described problem, in Patent Document 1 and Non-Patent Document 1, studies are made on zinc-based composite electroplating containing an active metal that is lower than Fe.
That is, in Patent Document 1, 0.2 mol / L or more of Zn ions, one or more metal ions selected from Al, Sc, Y, La, Ce, Nd, Zr and V, and 0.0005 to 0.1 mol / L It is described that a zinc-based composite electroplated steel sheet having excellent corrosion resistance and appearance uniformity can be obtained by electrolysis at a relative flow rate of 0.6 m / s or more with a steel sheet containing a nitrate ion. ing.

また、非特許文献1には、めっき浴に、Zn2+より低いpHで加水分解するVO2+を電解液に添加し、V元素を含有した電析Zn膜を得る方法が記載されている。この電析Zn膜のV含有率は、めっき浴のpHおよび電流密度が高くなる程増加し、さらに、めっき浴を撹拌すると電析膜のV含有率は低下するものの、V元素の分布の均一性は改善される旨が記載されている。 Non-Patent Document 1 describes a method of obtaining an electrodeposited Zn film containing V element by adding VO 2+ which hydrolyzes at a pH lower than Zn 2+ to an electrolytic solution in a plating bath. . The V content of this electrodeposited Zn film increases as the pH and current density of the plating bath increase. Further, when the plating bath is stirred, the V content of the electrodeposited film decreases, but the distribution of V elements is uniform. It is stated that the property is improved.

特開2011-111633号公報JP 2011-111633 A

中野博昭、大上悟、神崎大輔、小林繁夫、福島久哲「硫酸塩水溶液からのZn-V酸化物複合電析」鉄と鋼;93, 703 (2007)Hiroaki Nakano, Satoru Ogami, Daisuke Kanzaki, Shigeo Kobayashi, Hisatsu Fukushima "Zn-V oxide composite electrodeposition from aqueous sulfate" iron and steel; 93, 703 (2007)

しかしながら、特許文献1に記載の技術では、めっき浴中に硝酸イオンを含むことによって、電解中、浴液のpHが急激に上昇しやすくなって、めっき浴組成や、液流速の条件等が僅かに変化しただけでも、得られためっき皮膜組成が大幅に変化してしまうという問題があった。   However, in the technique described in Patent Document 1, since the plating bath contains nitrate ions, the pH of the bath solution is likely to increase rapidly during electrolysis, and the plating bath composition, the conditions of the liquid flow rate, etc. are slight. There was a problem that the resulting plating film composition would change drastically even if it was only changed.

一方、非特許文献1では、無撹拌の場合、めっき皮膜中のVの分布が偏在してしまい、均一なめっき皮膜は得られない。また、撹拌を行うと表面は均一になるものの、皮膜中のV含有率が著しく下がってしまうという問題があった。   On the other hand, in Non-Patent Document 1, when there is no stirring, the distribution of V in the plating film is unevenly distributed, and a uniform plating film cannot be obtained. In addition, although the surface becomes uniform when stirring is performed, there is a problem that the V content in the film is remarkably lowered.

すなわち、従来技術では、Vを含有し、かつ均一な電気めっき皮膜を得ることは、極めて困難であって、良好な平板部耐食性さらには疵部耐食性が得られないという問題が残っていた。   That is, in the prior art, it is very difficult to obtain a uniform electroplated film containing V, and there remains a problem that good flat plate corrosion resistance and further heel corrosion resistance cannot be obtained.

本発明は、上記した現状に鑑み開発されたもので、優れた平板部耐食性および疵部耐食性を有する亜鉛系電気めっき鋼板を、その鋼板を得るために有利な製造方法と共に提供することを目的とする。   The present invention was developed in view of the above-mentioned present situation, and an object thereof is to provide a zinc-based electroplated steel sheet having excellent flat plate portion corrosion resistance and heel portion corrosion resistance together with an advantageous manufacturing method for obtaining the steel plate. To do.

発明者らは、上記した問題を解決するために、硝酸イオンを含有せず、Znイオン、Vイオンを含有するめっき浴を用い、素材鋼板とめっき液の相対流速:0.5m/s以上で陰極電解処理を行った。
その結果、以下の知見を得た。
In order to solve the above-mentioned problems, the inventors used a plating bath that does not contain nitrate ions but contains Zn ions and V ions, and uses a cathode having a relative flow rate of the material steel plate and the plating solution of 0.5 m / s or more. Electrolytic treatment was performed.
As a result, the following knowledge was obtained.

陰極電解処理時には、電解によってZnが析出すると共に、電解時の水素ガス発生に起因する界面pHの上昇によって、V酸化物(V2O3、VO2およびV2O5など)が生成し、その複合めっきが形成される。この形成された複合めっき皮膜は、印加電流密度によりV量が変化するが、電流密度が低い程、界面のpHが上昇し難く、めっき皮膜のV量が少なくなる一方で、電流密度が上昇する程、V量が多いめっき皮膜となる。すなわち、このような手順で製造しためっき皮膜は、V含有量が多いほど、優れた平板部耐食性を示すものの、V含有量が増加しすぎると、めっき皮膜が不活性となって、亜鉛めっきの持つ犠牲防食能が弱まり、疵部耐食性が劣化するという課題を有している。 At the time of cathodic electrolysis, Zn is deposited by electrolysis, and V oxides (V 2 O 3 , VO 2, V 2 O 5, etc.) are generated due to an increase in interfacial pH caused by hydrogen gas generation during electrolysis. The composite plating is formed. In the formed composite plating film, the amount of V varies depending on the applied current density. However, the lower the current density, the more difficult the pH of the interface increases, and the amount of V in the plating film decreases, while the current density increases. The more the amount of V is, the more the plating film becomes. That is, although the plating film manufactured by such a procedure shows the more excellent flat plate part corrosion resistance, so that there is much V content, when V content increases too much, a plating film will become inactive and galvanization of The sacrificial anticorrosive ability possessed has the problem that the buttock corrosion resistance deteriorates.

そこで、発明者らは、V含有量を最適化するために、陰極電解処理を二段に分けることを想起し、鋭意検討を重ねた。その結果、陰極電解処理の前段では、やや低めの電流密度で電解を行うことにより、まず、下層にV含有量の少ない犠牲防食能を有しためっき皮膜を形成して疵部耐食性を確保し、その後段では、高めの電流密度で電解を行うことによって、上層にVを多く含む不活性なめっき皮膜を形成させることで、平板部耐食性を確保することにより、平板部耐食性および疵部耐食性に優れた亜鉛系電気めっき鋼板が得られることを知見した。
本発明は、上記知見に基づいてなされたものである。
Therefore, the inventors recalled that the cathodic electrolysis is divided into two stages in order to optimize the V content, and conducted extensive studies. As a result, in the previous stage of the cathodic electrolysis treatment, by performing electrolysis at a slightly lower current density, first, a plating film having a sacrificial anticorrosive ability with a low V content is formed in the lower layer to ensure the buttock corrosion resistance, In the subsequent stage, by performing electrolysis at a higher current density, an inactive plating film containing a large amount of V is formed in the upper layer, thereby ensuring flat plate portion corrosion resistance, and excellent flat plate portion corrosion resistance and heel portion corrosion resistance. It was found that a zinc-based electroplated steel sheet was obtained.
The present invention has been made based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.亜鉛を主成分とするめっき皮膜を有する亜鉛系電気めっき鋼板であって、該めっき皮膜中のVが、めっき皮膜と下地鋼板との界面から0.1μm高さまでの範囲において0.5atm%以上8atm%未満であって、かつめっき皮膜の最表面から0.1μm深さまでの範囲において8atm%以上であることを特徴とする、亜鉛系電気めっき鋼板。
That is, the gist configuration of the present invention is as follows.
1. A zinc-based electroplated steel sheet having a zinc-based plating film, wherein V in the plating film is 0.5 atm% or more and less than 8 atm% in the range from the interface between the plating film and the base steel sheet to a height of 0.1 μm. A zinc-based electroplated steel sheet characterized by being 8 atm% or more in the range from the outermost surface of the plating film to a depth of 0.1 μm.

2.亜鉛含有めっき浴中で、素材鋼板を陰極として電解することで、該素材鋼板の表面に亜鉛系電気めっき皮膜を形成する亜鉛系電気めっき鋼板の製造方法であって、
上記めっき浴は、Znイオンを0.2mol/L以上、Vイオンを0.1mol/L以上含有し、かつ上記素材鋼板に対する上記めっき浴中のめっき液の相対流速が0.5m/s以上であって、さらに以下に示す前段処理と後段処理の二段処理からなる電気めっき処理を施すことを特徴とする、亜鉛系電気めっき鋼板の製造方法。
上記前段処理は、電流密度:10A/dm2以上60A/dm2未満で陰極電解処理を行う。
上記後段処理は、電流密度:60A/dm2以上で陰極電解処理を行う。
2. A method for producing a zinc-based electroplated steel sheet in which a zinc-based electroplated film is formed on the surface of the material steel sheet by electrolyzing the steel sheet as a cathode in a zinc-containing plating bath,
The plating bath contains Zn ions of 0.2 mol / L or more, V ions of 0.1 mol / L or more, and the relative flow rate of the plating solution in the plating bath with respect to the material steel plate is 0.5 m / s or more, Furthermore, the manufacturing method of the zinc-type electroplating steel plate characterized by performing the electroplating process which consists of a two-stage process of the front | former stage process and a back | latter stage process shown below.
In the above pretreatment, cathodic electrolysis is performed at a current density of 10 A / dm 2 or more and less than 60 A / dm 2 .
In the latter stage treatment, cathodic electrolysis is performed at a current density of 60 A / dm 2 or more.

本発明の亜鉛系電気めっき鋼板および本発明に従う亜鉛系電気めっき鋼板の製造方法によれば、少ないZn付着量で優れた平板部耐食性および疵部耐食性の維持が可能となり、全体としてZn付着量を低く抑えたまま、純Zn:20g/m2と同程度の平板部耐食性および疵部耐食性を持つ亜鉛系電気めっき鋼板を効率的に得ることができる。 According to the zinc-based electroplated steel sheet of the present invention and the method for producing a zinc-based electroplated steel sheet according to the present invention, it is possible to maintain excellent flat plate portion corrosion resistance and heel portion corrosion resistance with a small amount of Zn adhesion, and the Zn adhesion amount as a whole is reduced. While keeping it low, a zinc-based electroplated steel sheet having flat plate corrosion resistance and buttock corrosion resistance comparable to pure Zn: 20 g / m 2 can be obtained efficiently.

疵部耐食性を測定する試験片を示した図である。It is the figure which showed the test piece which measures a buttock corrosion resistance.

以下、本発明を具体的に説明する。
本発明では、亜鉛を主成分とするめっき皮膜を、前記めっき皮膜中のVが、下地鋼板とめっき皮膜との界面から0.1μm高さまでの範囲において、0.5atm%以上8atm%未満とする必要がある。
これは、V含有率が0.5atm%未満では、純Znめっきと比べて良好な疵部耐食性が得られない。一方、V含有率が8atm%以上になると、めっき皮膜が不活性となって、良好な犠牲防食能を示すことができずに、疵部耐食性が劣位となるからである。
なお、本発明において、亜鉛を主成分とするめっき皮膜とは、めっき皮膜の成分中、亜鉛が、50atm%以上含有していることを意味する。
Hereinafter, the present invention will be specifically described.
In the present invention, the plating film containing zinc as a main component needs to be 0.5 atm% or more and less than 8 atm% in the range where V in the plating film is 0.1 μm height from the interface between the base steel sheet and the plating film. is there.
This means that when the V content is less than 0.5 atm%, good buttock corrosion resistance cannot be obtained as compared with pure Zn plating. On the other hand, when the V content is 8 atm% or more, the plating film becomes inactive, and the sacrificial corrosion resistance becomes inferior without being able to show good sacrificial corrosion resistance.
In addition, in this invention, the plating film which has zinc as a main component means that zinc contains 50atm% or more in the component of a plating film.

また、亜鉛を主成分とするめっき皮膜を、前記めっき皮膜中のVが、めっき皮膜の最表面から0.1μm深さまでの範囲において、8atm%以上とする必要がある。これは、V含有率が8atm%未満では、十分な平板部耐食性を得ることができないからである。
なお、V含有率の上限において、特に制限はないが、生産性の観点から、20atm%程度とするのが好ましい。
Further, the plating film containing zinc as a main component needs to be 8 atm% or more in the range where V in the plating film is 0.1 μm deep from the outermost surface of the plating film. This is because sufficient flat plate portion corrosion resistance cannot be obtained when the V content is less than 8 atm%.
In addition, although there is no restriction | limiting in particular in the upper limit of V content rate, From a viewpoint of productivity, it is preferable to set it as about 20 atm%.

本発明におけるめっき皮膜成分は、上記のように亜鉛を主成分とするが、その他の成分は、従来公知のめっき皮膜に用いられる成分組成および比率で良い。
なお、上記したV含有率の規定された以外のめっき皮膜のV含有率は、特に限定されない。
The plating film component in the present invention is mainly composed of zinc as described above, but the other components may be component compositions and ratios used in conventionally known plating films.
In addition, the V content rate of the plating film other than the above-described V content rate is not particularly limited.

本発明では、上記V含有率の測定方法を特に限定せず、一般的なV含有率の測定方法を用いることができるが、例えばAESや、EPMAなどを用いる元素の定量分析方法が挙げられる。   In the present invention, the method for measuring the V content is not particularly limited, and a general method for measuring the V content can be used. Examples thereof include a quantitative analysis method for elements using AES, EPMA, or the like.

また、本発明では、浴中のZnイオンを0.2mol/L以上、Vイオンを0.1mol/L以上含有させる必要がある。これは、Znイオン、Vイオン共に、上記範囲に満たないと、陰極界面の各イオンが欠乏し、良好なめっき皮膜が得られないからである。好ましくは、Znイオン:0.5mol/L以上、Vイオン:0.2mol/L以上である。
なお、Znイオン、Vイオン共にその上限濃度に限定はないが、Znイオン:2.0mol/L程度、Vイオン:1.0mol/L程度がそれぞれ好ましい。
In the present invention, it is necessary to contain Zn ions in the bath at 0.2 mol / L or more and V ions at 0.1 mol / L or more. This is because if both the Zn ion and the V ion are less than the above range, each ion at the cathode interface is deficient and a good plating film cannot be obtained. Preferably, Zn ion: 0.5 mol / L or more, V ion: 0.2 mol / L or more.
The upper limit concentration of both Zn ions and V ions is not limited, but Zn ions: about 2.0 mol / L and V ions: about 1.0 mol / L are preferable, respectively.

さらに、本発明では、めっき液と被めっき鋼板の相対流速は0.5m/s以上とする必要がある。流速:0.5m/s未満では、均一なV含有量を有するめっき皮膜を形成することができないからである。好ましくは流速:1.0m/s以上である。なお、上記相対流速の上限に特に限定はないが、6.0m/s程度が好ましい。   Furthermore, in the present invention, the relative flow rate of the plating solution and the steel plate to be plated needs to be 0.5 m / s or more. This is because a plating film having a uniform V content cannot be formed at a flow rate of less than 0.5 m / s. The flow rate is preferably 1.0 m / s or more. The upper limit of the relative flow velocity is not particularly limited, but is preferably about 6.0 m / s.

そして、陰極電解処理は、前段処理と後段処理からなる二段処理とし、前段処理の電流密度を10A/dm2以上60A/dm2未満とし、後段処理の電流密度を60A/dm2以上とする必要がある。
というのは、前段処理の電流密度が10A/dm2未満では、陰極界面のpHが上昇しにくくなって均一なV含有量のめっき皮膜下層を得ることができない。一方、前段処理の電流密度が60A/dm2以上では、めっき皮膜下層が不活性となって、良好な疵部耐食性が得られないからである。また、後段処理の電流密度が60A/dm2未満では、めっき皮膜上層にV含有量の高い上層が形成されず、良好な平板部耐食性が得られないからである。なお、上記後段処理の電流密度の上限に特に限定はないが、300A/dm2程度が好ましい。
Cathodic electrolysis is a two-stage process consisting of a pre-stage process and a post-stage process, the current density of the pre-stage process is set to 10 A / dm 2 or more and less than 60 A / dm 2, and the current density of the post-stage process is set to 60 A / dm 2 or more. There is a need.
This is because if the current density of the pre-treatment is less than 10 A / dm 2 , the pH at the cathode interface is difficult to increase and a plating film lower layer having a uniform V content cannot be obtained. On the other hand, if the current density of the pretreatment is 60 A / dm 2 or more, the lower layer of the plating film becomes inactive, and good buttock corrosion resistance cannot be obtained. Further, if the current density of the post-treatment is less than 60 A / dm 2 , an upper layer having a high V content is not formed on the upper layer of the plating film, and good plate portion corrosion resistance cannot be obtained. The upper limit of the current density of the latter stage treatment is not particularly limited, but is preferably about 300 A / dm 2 .

さらに、前段処理の電気量密度は3500〜34200C/m2とし、後段処理の電気量密度は3500〜34200C/m2とすることが好ましい。前段処理の電気量密度が3500C/m2以上であれば、下層の付着量が確保でき、疵部耐食性に問題が生じない。一方、前段処理の電気量密度が34200C/m2以下であれば、亜鉛めっき付着量の低減に繋がる効果を有する。また、後段処理の電気量密度が3500C/m2以上であれば、上層の付着量が確保でき、平板部耐食性に問題が生じない。一方、後段処理の電気量密度が34200C/m2以下であれば、亜鉛めっき付着量の低減に繋がる効果を有する。 Furthermore, it is preferable that the electric density of the pre-treatment is 3500 to 34200 C / m 2 and the electric density of the post-treatment is 3500 to 34200 C / m 2 . If the electric density of the pre-treatment is 3500 C / m 2 or more, the amount of adhesion of the lower layer can be secured, and no problem occurs in the corrosion resistance of the buttock. On the other hand, if the electric quantity density of the pretreatment is 34200 C / m 2 or less, it has an effect of reducing the amount of galvanized adhesion. In addition, if the electric density of the post-treatment is 3500 C / m 2 or more, the amount of adhesion of the upper layer can be secured, and no problem occurs in the corrosion resistance of the flat plate portion. On the other hand, if the electric quantity density in the post-treatment is 34200 C / m 2 or less, it has the effect of reducing the amount of galvanized adhesion.

ここに、前記めっき浴のpHは1.5〜3.0が好ましい。pHが1.5以上であれば陰極界面pHを十分に上昇させることができ、めっき皮膜中にVを取り込むことができる。一方で、pHが3.0以下であれば、電解時に界面のpHが上がり過ぎることがなく、均一なV含有量のめっき皮膜が形成されるからである。   Here, the pH of the plating bath is preferably 1.5 to 3.0. If the pH is 1.5 or more, the cathode interface pH can be sufficiently increased, and V can be taken into the plating film. On the other hand, if the pH is 3.0 or less, the pH of the interface does not rise too much during electrolysis, and a plating film having a uniform V content is formed.

浴温は、特に限定しないが、定温保持性の観点から40〜65℃程度が好ましい。
また、Zn付着量は、特に限定しないが、片面当たり3g/m2以上10g/m2以下が好ましい。3g/m2以上であれば十分な耐食性が得られ、10g/m2より以下であればZn量の低減に繋がり、亜鉛の使用量を低減できるからである。なお、本発明におけるめっき皮膜の厚みは0.2μm以上とすることが好ましい。一方、上限に特に制限はないが、亜鉛使用量の観点から、5μm程度とすることが好ましい。
The bath temperature is not particularly limited, but is preferably about 40 to 65 ° C. from the viewpoint of constant temperature retention.
Further, the Zn adhesion amount is not particularly limited, but is preferably 3 g / m 2 or more and 10 g / m 2 or less per side. If it is 3 g / m 2 or more, sufficient corrosion resistance can be obtained, and if it is less than 10 g / m 2 , the amount of Zn can be reduced and the amount of zinc used can be reduced. In addition, it is preferable that the thickness of the plating film in this invention shall be 0.2 micrometer or more. On the other hand, the upper limit is not particularly limited, but is preferably about 5 μm from the viewpoint of the amount of zinc used.

亜鉛系電気めっき処理後、必要により、耐食性、耐疵付き性および加工性等の各種性能の更なる向上を目的として、クロメート又はクロメートフリー型の各種化成処理皮膜(塗布型、反応型および電解型)、更には、その上に樹脂被覆処理等を実施することができる。なお、これらの処理を施した鋼板についても、本発明の効果が得られることはいうまでもない。   After the zinc-based electroplating treatment, if necessary, various chemical conversion coatings (coating type, reaction type and electrolytic type) of chromate or chromate-free type are provided for the purpose of further improving various performances such as corrosion resistance, scratch resistance and workability. Further, a resin coating treatment or the like can be performed thereon. Needless to say, the effects of the present invention can also be obtained for steel sheets subjected to these treatments.

めっき原板として冷延鋼板(板厚:0.7mm)を使用し、これをアルカリで電解脱脂処理、水洗および酸洗処理(硫酸濃度:70g/L、液温:25〜40℃、5秒浸漬)を施した。次いで、表1に示すめっき浴およびめっき条件で亜鉛系電気めっき処理を行い、亜鉛系電気めっき鋼板を製造した。
かくして得られた亜鉛系電気めっき鋼板に対して、Zn、V、Fe、O各元素濃度を、AES(オージェ電子分光分析)深さ方向分析(加速電圧:3kV、Arイオンスパッタ)を用いて測定し、めっき皮膜上層の最表面近傍およびめっき皮膜下層の下地鋼板との界面近傍のV含有率を確認し、以下のように評価した。
Cold-rolled steel sheet (thickness: 0.7 mm) is used as the plating plate, and this is subjected to electrolytic degreasing treatment, water washing and pickling treatment (sulfuric acid concentration: 70 g / L, liquid temperature: 25 to 40 ° C., immersion for 5 seconds). Was given. Next, a zinc-based electroplating treatment was performed using a plating bath and plating conditions shown in Table 1 to produce a zinc-based electroplated steel sheet.
The zinc-based electroplated steel sheet thus obtained was measured for Zn, V, Fe, and O element concentrations using AES (Auger electron spectroscopy) depth direction analysis (acceleration voltage: 3 kV, Ar ion sputtering). Then, the V content in the vicinity of the outermost surface of the plating film upper layer and in the vicinity of the interface with the underlying steel sheet in the lower layer of the plating film was confirmed and evaluated as follows.

下層(亜鉛系めっき皮膜中、下地鋼板との界面から0.1μm高さまでの範囲)
×:8atm%以上
○:0.5atm%以上8atm%未満
−:0.5atm%未満
上層(亜鉛系めっき皮膜中、最表面から0.1μm深さまでの範囲)
○:8atm%以上
×:8atm%未満
Lower layer (in the zinc-based plating film, the range from the interface with the underlying steel plate to a height of 0.1 μm)
×: 8 atm% or more ○: 0.5 atm% or more and less than 8 atm% −: Less than 0.5 atm% Upper layer (in the zinc-based plating film, the range from the outermost surface to a depth of 0.1 μm)
○: 8 atm% or more ×: Less than 8 atm%

また、蛍光X線分析を行い、付着量が既知の標準板測定によって得られた検量線を用いて、亜鉛系電気めっき皮膜の片面当たりのZn付着量(g/m2)を測定した。
さらに、以下の評価項目に付き評価した。
<評価項目>
I 平板部耐食性
得られた亜鉛系電気めっき鋼板に対して、JIS Z 2371-2000に準拠した塩水噴霧試験により耐食性を評価した。試験片は150mm×50mmを用い、切断端面および裏面をシール後実施した。なお、平板部耐食性は5%赤錆発生時間により評価した。
◎:36h以上
○:24h以上36h未満
×:24h未満
In addition, X-ray fluorescence analysis was performed, and using a calibration curve obtained by standard plate measurement with a known adhesion amount, the Zn adhesion amount (g / m 2 ) per one side of the zinc-based electroplating film was measured.
Furthermore, the following evaluation items were evaluated.
<Evaluation items>
I Flat Plate Corrosion Resistance The obtained zinc-based electroplated steel sheet was evaluated for corrosion resistance by a salt spray test in accordance with JIS Z 2371-2000. The test piece was 150 mm × 50 mm, and the cut end face and back face were sealed. In addition, flat plate part corrosion resistance was evaluated by 5% red rust generation time.
◎: More than 36h ○: More than 24h and less than 36h ×: Less than 24h

II 疵部耐食性
得られた亜鉛系電気めっき鋼板に対して、カッターナイフを用い、下地鋼板まで到達する力で図1に示すように疵をつけ、上記平板部耐食性と同様の塩水噴霧試験により疵部耐食性を測定した。試験片は150mm×50mmを用いて、切断端面および裏面をシール後実施した。疵部耐食性は、疵部周辺の5%赤錆発生時間により評価した。
◎:36h以上
○:24h以上36h未満
×:24h未満
II Corrugation resistance on the galvanized steel sheet The obtained zinc-based electroplated steel sheet was clawed with a cutter knife as shown in FIG. 1 with a force reaching the base steel sheet, and was subjected to a salt spray test similar to the flat plate corrosion resistance. The corrosion resistance of the part was measured. The test piece was 150 mm × 50 mm, and the cut end face and back face were sealed. The buttock corrosion resistance was evaluated by the 5% red rust occurrence time around the buttock.
◎: More than 36h ○: More than 24h and less than 36h ×: Less than 24h

Figure 0005861662
Figure 0005861662

以上の結果より、本発明に従う亜鉛系電気めっき鋼板(試験No.9〜24)は、高い平板部耐食性と疵部耐食性を有していることが分かる。   From the above results, it can be seen that the zinc-based electroplated steel sheets (test Nos. 9 to 24) according to the present invention have high flat plate portion corrosion resistance and heel portion corrosion resistance.

本発明の亜鉛系電気めっき鋼板は、表面外観に優れるだけでなく、平板部耐食性および疵部耐食性に優れているので、無塗装でも問題なく使用できる。そのため、家電製品、自動車および建材等の広範な用途での使用が可能となる。   The zinc-based electroplated steel sheet of the present invention is not only excellent in surface appearance, but also excellent in flat plate portion corrosion resistance and collar portion corrosion resistance, and can be used without any problem even without coating. Therefore, it can be used in a wide range of applications such as home appliances, automobiles, and building materials.

Claims (2)

亜鉛を主成分とするめっき皮膜を有する亜鉛系電気めっき鋼板であって、該めっき皮膜中のVが、めっき皮膜と下地鋼板との界面から0.1μm高さまでの範囲において0.5atm%以上8atm%未満であって、かつめっき皮膜の最表面から0.1μm深さまでの範囲において8atm%以上であることを特徴とする、亜鉛系電気めっき鋼板。   A zinc-based electroplated steel sheet having a zinc-based plating film, wherein V in the plating film is 0.5 atm% or more and less than 8 atm% in the range from the interface between the plating film and the base steel sheet to a height of 0.1 μm. A zinc-based electroplated steel sheet characterized by being 8 atm% or more in the range from the outermost surface of the plating film to a depth of 0.1 μm. 亜鉛含有めっき浴中で、素材鋼板を陰極として電解することで、該素材鋼板の表面に亜鉛系電気めっき皮膜を形成する亜鉛系電気めっき鋼板の製造方法であって、
上記めっき浴は、Znイオンを0.2mol/L以上、Vイオンを0.1mol/L以上含有し、かつ上記素材鋼板に対する上記めっき浴中のめっき液の相対流速が0.5m/s以上であって、さらに以下に示す前段処理と後段処理の二段処理からなる電気めっき処理を施すことを特徴とする、亜鉛系電気めっき鋼板の製造方法。
上記前段処理は、電流密度:10A/dm2以上60A/dm2未満で陰極電解処理を行う。
上記後段処理は、電流密度:60A/dm2以上で陰極電解処理を行う。

A method for producing a zinc-based electroplated steel sheet in which a zinc-based electroplated film is formed on the surface of the material steel sheet by electrolyzing the steel sheet as a cathode in a zinc-containing plating bath,
The plating bath contains Zn ions of 0.2 mol / L or more, V ions of 0.1 mol / L or more, and the relative flow rate of the plating solution in the plating bath with respect to the material steel plate is 0.5 m / s or more, Furthermore, the manufacturing method of the zinc-type electroplating steel plate characterized by performing the electroplating process which consists of a two-stage process of the front | former stage process and a back | latter stage process shown below.
In the above pretreatment, cathodic electrolysis is performed at a current density of 10 A / dm 2 or more and less than 60 A / dm 2 .
In the latter stage treatment, cathodic electrolysis is performed at a current density of 60 A / dm 2 or more.

JP2013094297A 2012-11-15 2013-04-26 Zinc-based electroplated steel sheet and method for producing the same Active JP5861662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013094297A JP5861662B2 (en) 2012-11-15 2013-04-26 Zinc-based electroplated steel sheet and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012251542 2012-11-15
JP2012251542 2012-11-15
JP2013094297A JP5861662B2 (en) 2012-11-15 2013-04-26 Zinc-based electroplated steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014114503A JP2014114503A (en) 2014-06-26
JP5861662B2 true JP5861662B2 (en) 2016-02-16

Family

ID=51170818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013094297A Active JP5861662B2 (en) 2012-11-15 2013-04-26 Zinc-based electroplated steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP5861662B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180100244A1 (en) * 2015-06-09 2018-04-12 Nippon Steel & Sumitomo Metal Corporation Surface-treated steel sheet
WO2017010406A1 (en) * 2015-07-10 2017-01-19 新日鐵住金株式会社 Surface treated steel sheet

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109994A (en) * 1985-11-06 1987-05-21 Kawasaki Steel Corp Surface treated steel sheet having superior adhesion after painting and superior corrosion resistance and its manufacture
JPS63143286A (en) * 1986-12-08 1988-06-15 Sumitomo Metal Ind Ltd Production of ni-zn alloy electroplated steel sheet
JP2591025B2 (en) * 1988-02-29 1997-03-19 日本鋼管株式会社 Electric Zn plating method for steel strip having excellent plating adhesion and / or chemical conversion treatment
JP2675152B2 (en) * 1989-08-11 1997-11-12 川崎製鉄株式会社 Method for producing Zn-Ni alloy electroplated steel sheet with excellent plating adhesion
JPH0480392A (en) * 1990-07-20 1992-03-13 Sumitomo Metal Ind Ltd Double layer plated steel sheet excellent in corrosion resistance
JP3267797B2 (en) * 1994-04-15 2002-03-25 新日本製鐵株式会社 Manufacturing method of electrogalvanized steel sheet with excellent surface appearance
JPH08225984A (en) * 1995-02-21 1996-09-03 Kawasaki Steel Corp Production of zinc-nickel alloy plated steel sheet excellent in plating appearance and adhesion and corrosion resistance
JP2011111633A (en) * 2009-11-24 2011-06-09 Jfe Steel Corp Method for producing zinc based composite electroplated steel sheet
JP5273316B2 (en) * 2011-03-29 2013-08-28 新日鐵住金株式会社 Surface-treated steel sheet

Also Published As

Publication number Publication date
JP2014114503A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
US9435034B2 (en) Manufacturing method for steel sheets for containers
JP6855833B2 (en) Manufacturing method of Sn-plated steel sheet and Sn-plated steel sheet
KR101318545B1 (en) Process for production of tin-plated steel sheets, tin-plated steel sheets and chemical conversion treatment fluid
JP6146541B2 (en) Plated steel sheet and manufacturing method thereof
JP5983277B2 (en) Electrogalvanized steel sheet for high-definition paint base with excellent corrosion resistance and enamel hair resistance after painting and method for producing the same
JP5812041B2 (en) Method for producing zinc-based electroplated steel sheet
JP5861662B2 (en) Zinc-based electroplated steel sheet and method for producing the same
CN110885999A (en) Chromic acid passivation method for cold-rolled electroplated tin steel plate
JP2013185199A (en) Zinc-based electroplated steel sheet and method for manufacturing the same
JP6852454B2 (en) Manufacturing method of Sn-based alloy-plated steel sheet and Sn-based alloy-plated steel sheet
EP2835447B1 (en) Steel sheet for container, and method for manufacturing same
JP2011111633A (en) Method for producing zinc based composite electroplated steel sheet
CN109689916A (en) Hot-dip Al-Zn system steel plate
JP5994960B1 (en) Steel plate for container and method for producing steel plate for container
JP7400766B2 (en) Zinc-based electroplated steel sheet and its manufacturing method
JP6066030B2 (en) Steel plate for container and method for producing steel plate for container
JP2010270353A (en) Plated steel material excellent in glossy appearance and corrosion resistance, and method of manufacturing the same
JP4864670B2 (en) Surface-treated metal plate and method for producing surface-treated metal plate
JP6831617B2 (en) Hot-dip galvanized steel sheets with excellent corrosion resistance and alloyed hot-dip galvanized steel sheets and their manufacturing methods
JP2011042826A (en) Electrogalvanized steel sheet
JP6565308B2 (en) Steel plate for container and method for producing steel plate for container
JP6146402B2 (en) Steel plate for containers
JP6052305B2 (en) Steel plate for containers
JP6197772B2 (en) Method for producing zinc-based electroplated steel sheet having excellent fingerprint resistance and whiteness
JP6003910B2 (en) Steel plate for container and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151207

R150 Certificate of patent or registration of utility model

Ref document number: 5861662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250