JP5858499B2 - Method for producing amorphous soft magnetic alloy powder - Google Patents

Method for producing amorphous soft magnetic alloy powder Download PDF

Info

Publication number
JP5858499B2
JP5858499B2 JP2014053314A JP2014053314A JP5858499B2 JP 5858499 B2 JP5858499 B2 JP 5858499B2 JP 2014053314 A JP2014053314 A JP 2014053314A JP 2014053314 A JP2014053314 A JP 2014053314A JP 5858499 B2 JP5858499 B2 JP 5858499B2
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
magnetic alloy
producing
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014053314A
Other languages
Japanese (ja)
Other versions
JP2015175041A (en
Inventor
彰宏 牧野
彰宏 牧野
規治 吉年
規治 吉年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2014053314A priority Critical patent/JP5858499B2/en
Publication of JP2015175041A publication Critical patent/JP2015175041A/en
Application granted granted Critical
Publication of JP5858499B2 publication Critical patent/JP5858499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、アモルファス軟磁性合金粉末の製造方法に関し、特に高いアモルファス化率の得られる製造方法に関するものである。   The present invention relates to a method for producing an amorphous soft magnetic alloy powder, and more particularly to a method for producing a high amorphization rate.

現在実用化されている軟磁性材料としては、電磁鋼板や水アトマイズ軟磁性粉末が一般的である。代表的な使用分野は、産業機器分野では発電機、超高圧変電所および一次/二次変電所の変圧器、動力用等の各種モーター、道路照明の安定器などがある。また一般民生分野では、蛍光灯の安定器(トランスの一種)をはじめ、家電機器のモーター、テレビの電源トランスなど、様々な装置で使用されている。   Commonly used soft magnetic materials are magnetic steel sheets and water atomized soft magnetic powder. Typical fields of application include generators, ultra-high voltage substations and primary / secondary substation transformers, various motors for power, ballasts for road lighting, etc. in the industrial equipment field. In the general consumer field, it is used in various devices such as fluorescent lamp ballasts (a kind of transformer), motors for home appliances, and power transformers for televisions.

特に、従来から使用されている方向性電磁鋼板は、製造にノウハウがあり、限られたメーカーにより寡占的に供給されていた。最近、水アトマイズ法の合金粉末の製造方法が普及して、水アトマイズ法で得られたアモルファス軟磁性粉末が民生機器分野で使用されてきている。アモルファス粉末は結晶粉末とは異なり、粒界がないので、結晶に比較して優れた磁気特性が得られる長所がある(例えば、特許文献1参照)。   In particular, the grain-oriented electrical steel sheets that have been used in the past have know-how in production and have been supplied exclusively by a limited number of manufacturers. Recently, a method for producing an alloy powder by the water atomizing method has been widespread, and amorphous soft magnetic powder obtained by the water atomizing method has been used in the field of consumer equipment. Unlike the crystal powder, the amorphous powder has no grain boundary, and therefore has an advantage that excellent magnetic properties can be obtained as compared with the crystal (see, for example, Patent Document 1).

しかしながら、水アトマイズ粉末は、アトマイズ時に水が分解して酸素ガスや酸素イオンが発生して、得られたアトマイズ粉末の表面が酸素により酸化したり、酸化が起点として粉末の一部が結晶化したりするなどの問題点がある。   However, water atomized powder decomposes water during atomization to generate oxygen gas and oxygen ions, and the surface of the obtained atomized powder is oxidized by oxygen, or a part of the powder is crystallized starting from oxidation. There are problems such as.

水アトマイズ法の問題点である粉末表面の酸化や結晶化を防ぐ方法として、不活性ガス中で金属の溶湯を噴霧するガスアトマイズ法が開発されている(例えば、特許文献2参照)。   As a method for preventing oxidation and crystallization of the powder surface, which is a problem of the water atomization method, a gas atomization method in which a molten metal is sprayed in an inert gas has been developed (see, for example, Patent Document 2).

特開2010−7100号公報JP 2010-7100 A 特開平6−172817号公報JP-A-6-172817

しかしながら、ガスアトマイズ法は、水アトマイズ法に比べて冷却速度が格段に遅いという問題点がある。その結果、ガスアトマイズ法では、粉末の一部が結晶化したり、結晶の状態の粉末が得られたりすることとなり、アモルファス粉末の収率が低下するという問題点があった。   However, the gas atomization method has a problem that the cooling rate is much slower than the water atomization method. As a result, the gas atomization method has a problem that a part of the powder is crystallized or a powder in a crystalline state is obtained, and the yield of the amorphous powder is lowered.

本発明は、このような課題に着目してなされたもので、ガスアトマイズ法で得られる、全体がアモルファスになっていない、結晶や一部結晶を含む粉末を、アモルファス化することができるアモルファス軟磁性合金粉末の製造方法を提供することを目的とする。   The present invention has been made paying attention to such a problem, and is obtained by a gas atomization method. Amorphous soft magnetism capable of amorphizing a crystal or a powder containing a part of a crystal which is not entirely amorphous. It aims at providing the manufacturing method of an alloy powder.

本発明者らは、ガスアトマイズ法の冷却速度が遅いことに着目し、ガスアトマイズ処理した粉末を詳細に分析した結果、ガスアトマイズ処理した粉末を一定の大きさでアモルファスと結晶に分離できることを見出し、本発明に至った。   As a result of detailed analysis of the gas atomized powder, the present inventors have found that the gas atomized powder can be separated into amorphous and crystals in a certain size, focusing on the slow cooling rate of the gas atomizing method. It came to.

すなわち、本発明によれば、アモルファス軟磁性合金粉末の製造方法において、軟磁性合金の溶湯に不活性ガスを吹き付けてガスアトマイズして、軟磁性合金の粉末を製造する第一の工程と、次に前記粉末を所定の粒径で二つに分割する第二の工程と、次に、不活性ガスが上方から下方に流れる透明石英管中で、前記所定の粒径より大きい粉末を落下させ、石英管上部の外側に設けた反射型赤外線加熱装置により、落下中の粉末を非接触加熱で再溶解する第三の工程と、しかる後に、前記透明石英管の鉛直下方に設けた不活性ガス冷却部で、再溶解した粉末を急冷固化し、回収する第四の工程とを有することを特徴とするアモルファス軟磁性合金粉末の製造方法が得られる。   That is, according to the present invention, in the method for producing an amorphous soft magnetic alloy powder, the first step of producing a soft magnetic alloy powder by spraying an inert gas onto the molten soft magnetic alloy and gas atomizing, and A second step of dividing the powder into two at a predetermined particle size; and then, in a transparent quartz tube in which an inert gas flows downward from above, the powder having a particle size larger than the predetermined particle size is dropped. A third step of re-dissolving the falling powder by non-contact heating by a reflective infrared heating device provided outside the upper part of the tube, and then an inert gas cooling unit provided vertically below the transparent quartz tube Then, a fourth method of rapidly solidifying and recovering the re-dissolved powder is obtained, and a method for producing an amorphous soft magnetic alloy powder is obtained.

また、本発明によれば、前記第二の工程は、前記粉末を、JIS規格38ミクロンメッシュで篩上と篩下との二つに分割することを特徴とするアモルファス軟磁性合金粉末の製造方法が得られる。   Further, according to the present invention, in the second step, the powder is divided into two parts, a sieve top and a sieve under a JIS standard 38 micron mesh. Is obtained.

また、本発明によれば、前記第一の工程および前記第三の工程の不活性ガスが、3at%水素−ヘリウムガスであることを特徴とするアモルファス軟磁性合金粉末の製造方法が得られる。3at%水素以上に水素量を増やすと、水素の爆発限界を超えるので危険であり、水素濃度は3at%が好ましい。   Further, according to the present invention, there can be obtained a method for producing an amorphous soft magnetic alloy powder, wherein the inert gas in the first step and the third step is 3 at% hydrogen-helium gas. Increasing the amount of hydrogen beyond 3 at% hydrogen is dangerous because it exceeds the explosion limit of hydrogen, and the hydrogen concentration is preferably 3 at%.

更に、本発明によれば、前記軟磁性合金は、Feを主成分とし、Co、Nb、Si、B、P、Cuのうちから少なくとも二種以上の合金成分と、その他不可避不純物元素からなることを特徴とするアモルファス軟磁性合金粉末の製造方法が得られる。   Furthermore, according to the present invention, the soft magnetic alloy is mainly composed of Fe, and is composed of at least two alloy components of Co, Nb, Si, B, P, and Cu, and other inevitable impurity elements. A process for producing an amorphous soft magnetic alloy powder characterized by

本発明により、ガスアトマイズ法で得られる、全体がアモルファスになっていない、結晶や一部結晶を含む粉末を、アモルファス化することができるアモルファス軟磁性合金粉末の製造方法を提供することができる。   According to the present invention, it is possible to provide a method for producing an amorphous soft magnetic alloy powder that can be amorphized from a powder that is obtained by a gas atomization method and that is not entirely amorphous and that contains crystals or partially containing crystals.

本発明の実施例1のアモルファス軟磁性合金粉末の製造方法の、落下中の粉末の加熱と急冷に使用した装置を示す概略側面図である。It is a schematic side view which shows the apparatus used for the heating and rapid cooling of the powder in the fall of the manufacturing method of the amorphous soft magnetic alloy powder of Example 1 of this invention. 本発明の実施例1のアモルファス軟磁性合金粉末の製造方法の、ガスアトマイズ粉末をJIS規格38ミクロンメッシュで篩上と篩下の二つに分割したときの、篩上の粉末のX線回折結果を示すグラフである。The X-ray diffraction result of the powder on the sieve when the gas atomized powder of the method for producing the amorphous soft magnetic alloy powder of Example 1 of the present invention was divided into two on the sieve and on the sieve using a JIS standard 38 micron mesh. It is a graph to show. 本発明の実施例1のアモルファス軟磁性合金粉末の製造方法の、ガスアトマイズ粉末をJIS規格38ミクロンメッシュで篩上と篩下の二つに分割したときの、篩下の粉末のX線回折結果を示すグラフである。The X-ray diffraction result of the powder under the sieve when the gas atomized powder of the method for producing the amorphous soft magnetic alloy powder of Example 1 of the present invention is divided into two parts, the sieve top and the sieve under a JIS standard 38 micron mesh. It is a graph to show. 本発明の実施例1のアモルファス軟磁性合金粉末の製造方法の、篩上の粉末の落下加熱急冷後の粉末のX線回折結果を示すグラフである。It is a graph which shows the X-ray-diffraction result of the powder after the fall heating rapid cooling of the powder on a sieve of the manufacturing method of the amorphous soft magnetic alloy powder of Example 1 of this invention. 本発明の実施例1のアモルファス軟磁性合金粉末の製造方法の、ガスアトマイズ後の粉末のSEM写真である。It is a SEM photograph of the powder after gas atomization of the manufacturing method of the amorphous soft magnetic alloy powder of Example 1 of the present invention. 本発明の実施例1のアモルファス軟磁性合金粉末の製造方法の、JIS規格38ミクロンメッシュで篩上と篩下の二つに分割したときの、篩上の粉末のSEM写真である。It is a SEM photograph of the powder on a sieve when it divides | segments into two on a sieve top and a sieve bottom by the JIS standard 38 micron mesh of the manufacturing method of the amorphous soft magnetic alloy powder of Example 1 of this invention. 本発明の実施例1のアモルファス軟磁性合金粉末の製造方法の、JIS規格38ミクロンメッシュで篩上と篩下の二つに分割したときの、篩下の粉末のSEM写真である。It is a SEM photograph of the powder under a sieve when it divides | segments into two on a sieve top and a sieve bottom by the JIS standard 38 micron mesh of the manufacturing method of the amorphous soft magnetic alloy powder of Example 1 of this invention. 本発明の実施例2のアモルファス軟磁性合金粉末の製造方法の、ガスアトマイズ後の粉末のSEM写真である。It is a SEM photograph of the powder after gas atomization of the manufacturing method of the amorphous soft magnetic alloy powder of Example 2 of the present invention. 本発明の実施例2のアモルファス軟磁性合金粉末の製造方法の、JIS規格38ミクロンメッシュで篩上と篩下の二つに分割したときの、篩上の粉末のSEM写真である。It is a SEM photograph of the powder on a sieve when it divides | segments into two on a sieve top and a sieve bottom by the JIS standard 38 micron mesh of the manufacturing method of the amorphous soft magnetic alloy powder of Example 2 of this invention. 本発明の実施例2のアモルファス軟磁性合金粉末の製造方法の、JIS規格38ミクロンメッシュで篩上と篩下の二つに分割したときの、篩下の粉末のSEM写真である。It is a SEM photograph of the powder under a sieve when it divides | segments into two on a sieve top and a sieve bottom by the JIS standard 38 micron mesh of the manufacturing method of the amorphous soft magnetic alloy powder of Example 2 of this invention.

以下に本発明の実施例について説明するが、本発明の合金組成はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below, but the alloy composition of the present invention is not limited to these examples.

まず、軟磁性合金インゴットとして、[(Fe0.5Co0.50.75Si0.050.296Nbから成る組成物を100g準備し、そのインゴットを3at%水素−ヘリウムガスの雰囲気のチャンバー内部で、その融点1180℃より+50℃高い温度に加熱溶融した。次に、チャンバー内で、溶融金属に対して、10MPaに加圧した3at%水素−ヘリウムガスをノズルから数秒間噴射し、ガスアトマイズ粉末を製造した。次に、得られたガスアトマイズ粉末を、JIS規格38ミクロンメッシュで篩上と篩下との二つに分割した。しかる後に、3at%水素−ヘリウムガス雰囲気の外径50mm、長さ1500mmの透明石英管上部に設置した振動式フィーダーに篩上の粉末を投入し、投入粉末を透明石英管中に順次落下させ、透明石英管外側上部に設けた反射型赤外線加熱装置により、落下中に粉末を1500℃に加熱溶解し、それに続いて鉛直方向の透明石英管下部の3at%水素−ヘリウムガス中で急速凝固し、アモルファス軟磁性合金粉末を得た。 First, as a soft magnetic alloy ingot, 100 g of a composition composed of [(Fe 0.5 Co 0.5 ) 0.75 Si 0.05 B 0.2 ] 96 Nb 4 was prepared, and the ingot was made into 3 at% hydrogen − Inside the chamber of helium gas atmosphere, it was heated and melted to a temperature higher than its melting point of 1180 ° C. by + 50 ° C. Next, in the chamber, 3 at% hydrogen-helium gas pressurized to 10 MPa was sprayed from the nozzle for several seconds with respect to the molten metal to produce gas atomized powder. Next, the obtained gas atomized powder was divided into two on the sieve and below the sieve with a JIS standard 38 micron mesh. After that, the powder on the sieve was put into a vibrating feeder installed on the top of a transparent quartz tube having an outer diameter of 50 mm and a length of 1500 mm in a 3 at% hydrogen-helium gas atmosphere, and the charged powder was sequentially dropped into the transparent quartz tube, The reflective infrared heating device provided on the outer upper part of the transparent quartz tube heats and dissolves the powder to 1500 ° C. during dropping, and then rapidly solidifies in 3 at% hydrogen-helium gas at the lower part of the transparent quartz tube in the vertical direction. Amorphous soft magnetic alloy powder was obtained.

図1は、本実施例で使用した落下中の加熱と急冷に使用した装置の概略図である。図2と図3は、本実施例でガスアトマイズ粉末をJIS規格38ミクロンメッシュで篩上と篩下の二つに分割した、それぞれの粉末のX線回折結果である。図2が篩上粉末で、結晶が晶出していることがわかる。また、図3から、篩下の粉末はアモルファスであることが分かる。図4は、落下加熱急冷後の粉末のX線回折結果で、アモルファスになっていることが分かる。   FIG. 1 is a schematic view of an apparatus used for heating and quenching during dropping used in this example. FIGS. 2 and 3 are X-ray diffraction results of the respective powders obtained by dividing the gas atomized powder into two on the sieve and below the sieve with a JIS standard 38 micron mesh in this example. FIG. 2 shows the powder on the sieve, and it can be seen that crystals are crystallized. Moreover, it can be seen from FIG. 3 that the powder under the sieve is amorphous. FIG. 4 is an X-ray diffraction result of the powder after dropping and rapid cooling, and it can be seen that the powder is amorphous.

図5は、ガスアトマイズ後の粉末、図6は、JIS規格38ミクロンメッシュで篩上の粉末、図7は、JIS規格38ミクロンメッシュで篩下の粉末のそれぞれのSEM像である。   5 is a powder after gas atomization, FIG. 6 is a SEM image of a powder on a sieve with a JIS standard 38 micron mesh, and FIG. 7 is a SEM image of a powder on a sieve with a JIS standard 38 micron mesh.

軟磁性合金インゴットとして、Fe76Si10から成る組成物を100g準備し、実施例1と類似の工程でガスアトマイズした。この時の溶湯の温度は、融点1060℃より+100℃の1160℃とした。また、アトマイズ時の3at%水素−ヘリウムガスのノズル噴射圧力は、14MPaであった。更に、落下装置の透明石英管上部の反射型赤外線加熱装置の加熱温度は、1350℃とした。 As a soft magnetic alloy ingot, 100 g of a composition composed of Fe 76 Si 9 B 10 P 5 was prepared, and gas atomized in the same process as in Example 1. The temperature of the molten metal at this time was 1160 ° C., which is + 100 ° C. from the melting point of 1060 ° C. Further, the nozzle injection pressure of 3 at% hydrogen-helium gas during atomization was 14 MPa. Furthermore, the heating temperature of the reflective infrared heating device on the upper part of the transparent quartz tube of the dropping device was set to 1350 ° C.

図8は、ガスアトマイズ後の粉末、図9は、JIS規格38ミクロンメッシュで篩上の粉末、図10は、JIS規格38ミクロンメッシュで篩下の粉末のそれぞれのSEM像である。   FIG. 8 shows SEM images of the powder after gas atomization, FIG. 9 shows the powder on the sieve with a JIS standard 38 micron mesh, and FIG. 10 shows the powder on the sieve with a JIS standard 38 micron mesh.

本発明によれば、高純度のアモルファスの軟磁性合金粉末が得られ、産業機器分野では発電機、超高圧変電所および一次/二次変電所の変圧器、動力用等の各種モーター、道路照明の安定器など、また一般民生分野では、蛍光灯の安定器(トランスの一種)をはじめ、家電機器のモーター、テレビの電源トランスなどの高効率化に寄与することが可能となる。   According to the present invention, a high-purity amorphous soft magnetic alloy powder can be obtained. In the industrial equipment field, generators, ultra-high voltage substations and primary / secondary substation transformers, various motors for power, road lighting, etc. In the general consumer field, it is possible to contribute to higher efficiency of fluorescent ballasts (a kind of transformer), motors for home appliances, power transformers for televisions, and the like.

Claims (4)

アモルファス軟磁性合金粉末の製造方法において、
軟磁性合金の溶湯に不活性ガスを吹き付けてガスアトマイズして、軟磁性合金の粉末を製造する第一の工程と、
次に前記粉末を所定の粒径で二つに分割する第二の工程と、
次に、不活性ガスが上方から下方に流れる透明石英管中で、前記所定の粒径より大きい粉末を落下させ、石英管上部の外側に設けた反射型赤外線加熱装置により、落下中の粉末を非接触加熱で再溶解する第三の工程と、
しかる後に、前記透明石英管の鉛直下方に設けた不活性ガス冷却部で、再溶解した粉末を急冷固化し、回収する第四の工程とを
有することを特徴とするアモルファス軟磁性合金粉末の製造方法。
In the method for producing amorphous soft magnetic alloy powder,
A first step of producing a soft magnetic alloy powder by spraying an inert gas onto the melt of the soft magnetic alloy and gas atomizing;
Next, a second step of dividing the powder into two with a predetermined particle size,
Next, a powder larger than the predetermined particle size is dropped in a transparent quartz tube in which an inert gas flows downward from above, and the falling powder is reflected by a reflective infrared heating device provided outside the quartz tube. A third step of redissolving with non-contact heating;
Thereafter, a fourth step of rapidly solidifying and recovering the re-dissolved powder in an inert gas cooling section provided vertically below the transparent quartz tube, and producing an amorphous soft magnetic alloy powder, Method.
前記第二の工程は、前記粉末を、JIS規格38ミクロンメッシュで篩上と篩下との二つに分割することを特徴とする請求項1記載のアモルファス軟磁性合金粉末の製造方法。   2. The method for producing an amorphous soft magnetic alloy powder according to claim 1, wherein in the second step, the powder is divided into two parts, a sieve top and a sieve under a JIS standard 38 micron mesh. 前記第一の工程および前記第三の工程の不活性ガスが、3at%水素−ヘリウムガスであることを特徴とする請求項1または2記載のアモルファス軟磁性合金粉末の製造方法。   3. The method for producing an amorphous soft magnetic alloy powder according to claim 1, wherein the inert gas in the first step and the third step is 3 at% hydrogen-helium gas. 前記軟磁性合金は、Feを主成分とし、Co、Nb、Si、B、P、Cuのうちから少なくとも二種以上の合金成分と、その他不可避不純物元素からなることを特徴とする請求項1、2または3記載のアモルファス軟磁性合金粉末の製造方法。
The soft magnetic alloy is mainly composed of Fe, and includes at least two kinds of alloy components of Co, Nb, Si, B, P, and Cu, and other inevitable impurity elements. A method for producing an amorphous soft magnetic alloy powder according to 2 or 3.
JP2014053314A 2014-03-17 2014-03-17 Method for producing amorphous soft magnetic alloy powder Active JP5858499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014053314A JP5858499B2 (en) 2014-03-17 2014-03-17 Method for producing amorphous soft magnetic alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014053314A JP5858499B2 (en) 2014-03-17 2014-03-17 Method for producing amorphous soft magnetic alloy powder

Publications (2)

Publication Number Publication Date
JP2015175041A JP2015175041A (en) 2015-10-05
JP5858499B2 true JP5858499B2 (en) 2016-02-10

Family

ID=54254511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014053314A Active JP5858499B2 (en) 2014-03-17 2014-03-17 Method for producing amorphous soft magnetic alloy powder

Country Status (1)

Country Link
JP (1) JP5858499B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016121950A1 (en) 2015-01-30 2017-12-21 株式会社村田製作所 Magnetic powder and manufacturing method thereof, magnetic core and manufacturing method thereof, coil component, and motor
CN112795919B (en) * 2021-03-17 2021-07-20 中南林业科技大学 Composite coating material for improving friction performance of TC4 alloy and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340583B1 (en) * 1971-05-10 1978-10-27
JPS63111101A (en) * 1986-10-30 1988-05-16 Daido Steel Co Ltd Spheroidizing method for metal or alloy powder
US7008463B2 (en) * 2000-04-21 2006-03-07 Central Research Institute Of Electric Power Industry Method for producing amorphous metal, method and apparatus for producing amorphous metal fine particles, and amorphous metal fine particles
JP5296499B2 (en) * 2008-11-10 2013-09-25 大陽日酸株式会社 Method and apparatus for producing spherical metal particles
JP2011179023A (en) * 2010-02-26 2011-09-15 Japan Atomic Energy Agency Nanoparticle manufacturing device and nanoparticle manufacturing method

Also Published As

Publication number Publication date
JP2015175041A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
CA3009630C (en) Spheroidal dehydrogenated metals and metal alloy particles
JP6842824B2 (en) Manufacturing method of metal soft magnetic alloy and magnetic core
JPWO2017022594A1 (en) Soft magnetic material and manufacturing method thereof
RU2012105311A (en) METHOD FOR PRODUCING AN ALLOY INGOT
JP5932861B2 (en) Alloy composition, Fe-based nanocrystalline alloy ribbon, Fe-based nanocrystalline alloy powder and magnetic component
JP5858499B2 (en) Method for producing amorphous soft magnetic alloy powder
JP2015504483A (en) Zr-based amorphous alloy
JP2020111830A (en) Powder for magnetic core, and magnetic core and coil component using the same
CN103014477A (en) Method for smelting iron-based nanocrystalline master alloy
WO2018103711A1 (en) Process for producing silicon ingots by smelting silicon powder
CN114250404A (en) FeSiBNbCu nanocrystalline soft magnetic alloy and preparation method thereof
KR20150101544A (en) Process for preparation of copper iron alloy and copper iron alloy prepared by the process
JP6118249B2 (en) Method for manufacturing solder joints with improved reliability
CN104480329A (en) Method for preparing metal alloy cast block
DE102014115325A1 (en) Process and composition for the production of ferromanganese, in particular low carbon ferromanganese
JP2012236723A (en) Method for continuously refining silicon
WO2010055615A1 (en) High grade silicon and thermoelectric conversion material
JP5885139B2 (en) High specific strength magnesium with age hardening properties
CN102503357A (en) Premelt crystallization method of high-purity alpha-alumina
CN102432020A (en) Manufacturing method of solar grade polysilicon
CN1854322A (en) High-purity ferroboron
KR20120074628A (en) Method for removing impurities in silicon and apparatus thereof
JP2012136381A (en) Method for continuously refining silicon
RU2231419C1 (en) Method for producing pellets and powders of rare, radioactive metals and their alloys
CN101423218B (en) Method for melting refractory element in silicon metal by plasma flame gun bottom blowing

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151210

R150 Certificate of patent or registration of utility model

Ref document number: 5858499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250